JP2024008667A - Substrate processing device, substrate processing method, and gas supply assembly - Google Patents

Substrate processing device, substrate processing method, and gas supply assembly Download PDF

Info

Publication number
JP2024008667A
JP2024008667A JP2022110715A JP2022110715A JP2024008667A JP 2024008667 A JP2024008667 A JP 2024008667A JP 2022110715 A JP2022110715 A JP 2022110715A JP 2022110715 A JP2022110715 A JP 2022110715A JP 2024008667 A JP2024008667 A JP 2024008667A
Authority
JP
Japan
Prior art keywords
gas
processing
flow path
substrate
shower structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022110715A
Other languages
Japanese (ja)
Inventor
貴史 大森
Takashi Omori
誠治 田中
Seiji Tanaka
健次 天野
Kenji Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2022110715A priority Critical patent/JP2024008667A/en
Priority to KR1020230082303A priority patent/KR20240007597A/en
Priority to CN202310772642.2A priority patent/CN117373889A/en
Publication of JP2024008667A publication Critical patent/JP2024008667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32513Sealing means, e.g. sealing between different parts of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder

Abstract

PROBLEM TO BE SOLVED: To improve controllability with respect to the uniformity of plasma processing.
SOLUTION: A substrate processing device comprises: a processing container in which a processing space is formed between a mounting table and a metal window; and an inductive coupling antenna for generating plasma inside the processing space. The metal window includes a plurality of divided windows and insulation parts disposed between the mutually adjacent divided windows. Each of the divided windows has a first gas shower structure including a gas hole for supplying a process gas to the processing space. Each insulation part has a second gas shower structure including a gas hole for supplying the process gas to the processing space. A second gas passage for introducing the process gas to the second gas shower structure is independent of a first gas passage for introducing the process gas to the first gas shower structure, in a portion at an upstream of a portion where the first gas passage is connected to the first gas shower structure.
SELECTED DRAWING: Figure 3
COPYRIGHT: (C)2024,JPO&INPIT

Description

本開示は、基板処理装置、基板処理方法及びガス供給アセンブリに関する。 The present disclosure relates to a substrate processing apparatus, a substrate processing method, and a gas supply assembly.

処理容器の上部に設けられた金属窓を介して、誘導結合アンテナに高周波電力を供給して誘導結合によって処理ガスをプラズマ化し、処理容器内の載置台に載置された基板へプラズマ処理を施す誘導結合型の基板処理装置が知られている。このような基板処理装置では、金属窓に複数のガス孔を設け、複数のガス孔から処理容器内に処理ガスを供給する。 High-frequency power is supplied to an inductively coupled antenna through a metal window installed at the top of the processing container to convert the processing gas into plasma through inductive coupling, and perform plasma processing on the substrate placed on the mounting table inside the processing container. Inductively coupled substrate processing apparatuses are known. In such a substrate processing apparatus, a plurality of gas holes are provided in the metal window, and processing gas is supplied into the processing container from the plurality of gas holes.

基板処理装置においてプラズマ処理が施される基板は世代が進むにつれて大型化し、基板と向き合う金属窓も大型化しているが、このような金属窓を一部材で構成することは困難である。そこで、金属窓を複数の金属窓によって構成することが一般化している。金属窓を複数の分割窓によって構成する場合、各分割窓に誘起される電流が隣接する分割窓に跨がって流れないように、隣接する分割窓の間を絶縁体で仕切る必要がある。 As the generations of substrates that are subjected to plasma processing in substrate processing apparatuses have become larger, the metal windows that face the substrates have also become larger, but it is difficult to construct such metal windows from a single material. Therefore, it has become common to configure a metal window with a plurality of metal windows. When a metal window is composed of a plurality of divided windows, it is necessary to partition adjacent divided windows with an insulator so that the current induced in each divided window does not flow across adjacent divided windows.

そして、プラズマ処理の均一性を向上させるため、各分割窓に複数のガス孔を設けるだけでなく、絶縁体を基板側において覆うカバー部材にガス拡散室と、該ガス拡散室から処理ガスを供給する複数のガス孔とを設ける基板処理装置が提案されている(例えば、特許文献1参照)。 In order to improve the uniformity of plasma processing, in addition to providing multiple gas holes in each divided window, a gas diffusion chamber is provided in the cover member that covers the insulator on the substrate side, and processing gas is supplied from the gas diffusion chamber. A substrate processing apparatus that is provided with a plurality of gas holes has been proposed (for example, see Patent Document 1).

特許第6804392号明細書Patent No. 6804392 specification

本開示に係る技術は、プラズマ処理の均一性に関する制御性を向上させる。 The technology according to the present disclosure improves controllability regarding uniformity of plasma processing.

本開示に係る技術の一態様は、処理ガスのプラズマによって基板にプラズマ処理を施す基板処理装置であって、内部において、下部に前記基板を載置する載置台が配置され、上部に前記載置台と対向する金属窓が配置され、前記載置台と前記金属窓の間に処理空間が形成される処理容器と、前記金属窓を介して前記載置台と対向し、前記処理空間に前記プラズマを生成するための誘導結合アンテナと、を備え、前記金属窓は、複数の分割窓と、互いに隣接する各前記分割窓の間のそれぞれに配置された絶縁部とを有し、各前記分割窓は、前記処理空間へ前記処理ガスを供給するガス孔を有する第1のガスシャワー構造を有し、各前記絶縁部は、前記処理空間へ前記処理ガスを供給するガス孔を有する第2のガスシャワー構造を有し、前記第1のガスシャワー構造に前記処理ガスを導入するための第1のガス流路と、前記第2のガスシャワー構造に前記処理ガスを導入するための第2のガス流路とが配置され、前記第2のガス流路は、前記第1のガス流路が前記第1のガスシャワー構造に接続される部分よりも上流の部分において、前記第1のガス流路から独立する。 One aspect of the technology according to the present disclosure is a substrate processing apparatus that performs plasma processing on a substrate using plasma of a processing gas, in which a mounting table for mounting the substrate is arranged at a lower part, and the mounting table is arranged at an upper part. a processing container in which a metal window facing the metal window is arranged and a processing space is formed between the mounting table and the metal window; and a processing container facing the mounting table through the metal window and generating the plasma in the processing space and an inductively coupled antenna for the metal window, the metal window having a plurality of divided windows, and an insulating part disposed between each of the adjacent divided windows, each of the divided windows comprising: a first gas shower structure having a gas hole for supplying the processing gas to the processing space, and each of the insulating parts having a second gas shower structure having a gas hole for supplying the processing gas to the processing space; a first gas flow path for introducing the processing gas into the first gas shower structure; and a second gas flow path for introducing the processing gas into the second gas shower structure. and the second gas flow path is independent from the first gas flow path in a portion upstream of a portion where the first gas flow path is connected to the first gas shower structure. do.

本開示に係る技術によれば、プラズマ処理の均一性に関する制御性を向上させることができる。 According to the technology according to the present disclosure, controllability regarding the uniformity of plasma processing can be improved.

本開示に係る技術の一実施の形態としての基板処理装置の構成を概略的に示す断面図である。1 is a cross-sectional view schematically showing the configuration of a substrate processing apparatus as an embodiment of the technology according to the present disclosure. 図1の基板処理装置が備える金属窓を処理空間側から眺めた場合を示す図である。FIG. 2 is a diagram showing a metal window included in the substrate processing apparatus of FIG. 1 viewed from the processing space side. 図1の基板処理装置が備える金属窓の構成を概略的に示す拡大断面図である。2 is an enlarged sectional view schematically showing the configuration of a metal window included in the substrate processing apparatus of FIG. 1. FIG. 図3の金属窓が有する仕切部材の近傍の詳細構成を示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view showing the detailed configuration of the vicinity of a partition member included in the metal window of FIG. 3. FIG. 図3の金属窓の第1の変形例の構成を概略的に示す拡大断面図である。FIG. 4 is an enlarged sectional view schematically showing the configuration of a first modified example of the metal window in FIG. 3. FIG. 図3の金属窓の第2の変形例の構成を概略的に示す拡大断面図である。FIG. 4 is an enlarged sectional view schematically showing the configuration of a second modified example of the metal window of FIG. 3. FIG. 図4に示す仕切部材の変形例の近傍の詳細構成を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing the detailed structure of the vicinity of a modified example of the partition member shown in FIG. 4. FIG.

上述した特許文献1の技術では、金属窓の分割窓の一部をカバー部材で覆うことにより、分割窓の各ガス孔からカバー部材のガス拡散室へ処理ガスを導入する。したがって、カバー部材の各ガス孔から処理容器内へ供給される処理ガスの流量は、分割窓の各ガス孔から処理容器内へ供給される処理ガスの流量に比例する。そして、エッチングレートは処理ガスの流量に影響されるため、基板において、絶縁部に対向する領域のエッチングレートは、分割窓に対向する領域のエッチングレートと少なくとも緩やかな比例関係を示すことになる。 In the technique of Patent Document 1 mentioned above, by covering a part of the divided window of the metal window with the cover member, the processing gas is introduced from each gas hole of the divided window into the gas diffusion chamber of the cover member. Therefore, the flow rate of processing gas supplied into the processing container from each gas hole of the cover member is proportional to the flow rate of processing gas supplied into the processing container from each gas hole of the divided window. Since the etching rate is affected by the flow rate of the processing gas, the etching rate of the region facing the insulating portion of the substrate exhibits at least a gentle proportional relationship with the etching rate of the region facing the dividing window.

しかしながら、このような特許文献1の技術では、例えば、絶縁部に対向する領域のエッチングレートを下げる一方、分割窓に対向する領域のエッチングレートを上げるというような制御を行うことが難しく、プラズマ処理の均一性に関する制御性がさほど高くない。 However, with the technique of Patent Document 1, it is difficult to perform control such as, for example, lowering the etching rate of the region facing the insulating portion while increasing the etching rate of the region facing the dividing window, and the plasma processing Controllability regarding uniformity is not very high.

これに対応して、本開示に係る技術は、分割窓の各ガス孔から処理容器内へ供給される処理ガスの流量と、カバー部材の各ガス孔から処理容器内へ供給される処理ガスの流量との比例関係を解消し、プラズマ処理の均一性に関する制御性を向上させる。 In response to this, the technology according to the present disclosure is capable of controlling the flow rate of the processing gas supplied into the processing container from each gas hole of the split window, and the flow rate of the processing gas supplied into the processing container from each gas hole of the cover member. Eliminates the proportional relationship with flow rate and improves controllability regarding uniformity of plasma processing.

以下、図面を参照して本開示に係る技術の一実施の形態を説明する。図1は、本実施の形態としての基板処理装置の構成を概略的に示す断面図であり、図2は、図1の基板処理装置が備える金属窓を処理空間側から眺めた場合を示す図である。また、図3は、図1の基板処理装置が備える金属窓の構成を概略的に示す拡大断面図である。 Hereinafter, one embodiment of the technology according to the present disclosure will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing the configuration of a substrate processing apparatus according to the present embodiment, and FIG. 2 is a diagram showing a metal window provided in the substrate processing apparatus of FIG. 1 viewed from the processing space side. It is. Further, FIG. 3 is an enlarged cross-sectional view schematically showing the configuration of a metal window included in the substrate processing apparatus of FIG. 1.

図1の基板処理装置10は、誘導結合型のプラズマ処理装置である。基板処理装置10は、処理ガスから生成したプラズマを用いて、矩形の基板、例えば、FPD(Flat Panel Display)用のガラス基板G(以下、「基板G」という)に各種プラズマ処理を施す。各種プラズマ処理としては、基板G上にメタル膜、ITO膜や酸化膜等を形成する成膜処理、基板G上に形成されたこれらの膜をエッチングするエッチング処理又はメタル膜や酸化膜を覆うフォトレジスト膜を除去するアッシング処理等が該当する。 The substrate processing apparatus 10 in FIG. 1 is an inductively coupled plasma processing apparatus. The substrate processing apparatus 10 performs various plasma treatments on a rectangular substrate, for example, a glass substrate G for an FPD (Flat Panel Display) (hereinafter referred to as "substrate G") using plasma generated from a processing gas. Various plasma treatments include film formation processing to form a metal film, ITO film, oxide film, etc. on the substrate G, etching processing to etch these films formed on the substrate G, or photolithography to cover the metal film or oxide film. This includes ashing processing to remove a resist film.

基板処理装置10は、導電性材料、例えば、内壁面に陽極酸化処理が施されたアルミニウム又はアルミニウムを含む合金からなる角筒形状の処理容器11を備え、処理容器11は電気的に接地される。処理容器11の上部は金属窓12によって気密に塞がれる。処理容器11の内部において、下部には基板Gを載置する載置台13が配置され、載置台13は金属窓12と対向する。また、処理容器11では、載置台13と金属窓12の間に処理空間Uが形成される。処理空間Uでは、後述するように、処理ガスからプラズマが生成される。 The substrate processing apparatus 10 includes a prismatic cylindrical processing container 11 made of a conductive material, for example, aluminum or an aluminum-containing alloy whose inner wall surface is anodized, and the processing container 11 is electrically grounded. . The upper part of the processing container 11 is hermetically closed by a metal window 12. Inside the processing container 11 , a mounting table 13 on which the substrate G is placed is arranged at the lower part, and the mounting table 13 faces the metal window 12 . Furthermore, in the processing container 11 , a processing space U is formed between the mounting table 13 and the metal window 12 . In the processing space U, plasma is generated from the processing gas, as will be described later.

載置台13は、導電性材料、例えば、表面に陽極酸化処理が施されたアルミニウム、アルミニウムを含む合金又はステンレスなどで構成される。載置台13の上面には不図示の静電チャックが設けられ、載置台13に載置された基板Gは、静電チャックによって載置台13に吸着保持される。なお、載置台13は絶縁体枠24を介して処理容器11の底面に設置される。 The mounting table 13 is made of a conductive material, such as aluminum whose surface is anodized, an alloy containing aluminum, or stainless steel. An electrostatic chuck (not shown) is provided on the upper surface of the mounting table 13, and the substrate G placed on the mounting table 13 is held by suction on the mounting table 13 by the electrostatic chuck. Note that the mounting table 13 is installed on the bottom surface of the processing container 11 with an insulating frame 24 interposed therebetween.

処理容器11の側壁の上端には金属枠14が設けられ、金属枠14の上面には側壁部15が設置される。側壁部15は天板16を支持するとともに電気的に接地され、天板16は金属窓12を上方から覆う。なお、処理容器11の側壁と金属枠14との間にはOリング等のシール部材17が設けられ、処理空間Uを気密に保つ。また、処理容器11の側壁には、基板Gを処理空間Uへ搬入出するための搬入出口18及び搬入出口18を開閉するゲートバルブ19が設けられる。 A metal frame 14 is provided at the upper end of the side wall of the processing container 11, and a side wall portion 15 is provided on the upper surface of the metal frame 14. The side wall portion 15 supports a top plate 16 and is electrically grounded, and the top plate 16 covers the metal window 12 from above. Note that a sealing member 17 such as an O-ring is provided between the side wall of the processing container 11 and the metal frame 14 to keep the processing space U airtight. Further, a side wall of the processing container 11 is provided with a loading/unloading port 18 for loading/unloading the substrate G into/out the processing space U, and a gate valve 19 for opening/closing the loading/unloading port 18 .

図2に示すように、金属窓12は矩形状を呈し、複数の分割窓22に分割される。本実施の形態では、金属窓12が24個の分割窓22に分割されるが、分割窓22の数は24個に限られず、金属窓12の大きさに応じて変更される。各分割窓22は、例えば、非磁性体且つ導電性の金属、アルミニウム又はアルミニウムを含む合金によって構成される。金属窓12では、互いに隣接する各分割窓22の間のそれぞれに絶縁体によって構成される仕切部材23(絶縁部)が配置される。仕切部材23は、隣接する各分割窓22を互いに電気的に絶縁する。 As shown in FIG. 2, the metal window 12 has a rectangular shape and is divided into a plurality of divided windows 22. As shown in FIG. In this embodiment, the metal window 12 is divided into 24 divided windows 22, but the number of divided windows 22 is not limited to 24 and may be changed depending on the size of the metal window 12. Each divided window 22 is made of, for example, a non-magnetic and conductive metal, aluminum, or an alloy containing aluminum. In the metal window 12, partition members 23 (insulating portions) made of an insulator are arranged between the respective divided windows 22 that are adjacent to each other. The partition member 23 electrically insulates the adjacent divided windows 22 from each other.

また、各仕切部材23の処理空間Uに対向する面は、プラズマによる消耗を防ぐために 絶縁体のカバー部材25(絶縁部)によって覆われる。カバー部材25は、例えば、細長い平板状のアルミナ等のセラミックス部材によって構成され、後述のガス孔30を有する第1のカバー部材25aと、ガス孔30を有さない第2のカバー部材25bとから成 る。なお、本実施の形態では、各仕切部材23の処理空間Uに対向する面の一部が第1のカバー部材25aによって覆われ、各仕切部材23の処理空間Uに対向する面の他の部分は第2のカバー部材25bによって覆われるが、各第1のカバー部材25aが覆う各仕切部材23の範囲は基板処理装置10の仕様や実行されるプラズマ処理の内容に応じて変更される。 Further, the surface of each partition member 23 facing the processing space U is covered with an insulating cover member 25 (insulating portion) to prevent wear due to plasma. The cover member 25 is made of, for example, an elongated flat ceramic member such as alumina, and includes a first cover member 25a having gas holes 30, which will be described later, and a second cover member 25b having no gas holes 30. Become. In this embodiment, a part of the surface of each partition member 23 facing the processing space U is covered by the first cover member 25a, and the other part of the surface of each partition member 23 facing the processing space U is covered by the first cover member 25a. are covered by the second cover member 25b, but the range of each partition member 23 covered by each first cover member 25a is changed depending on the specifications of the substrate processing apparatus 10 and the content of the plasma processing to be performed.

図1に戻り、基板処理装置10において、金属窓12、側壁部15及び天板16にて囲まれた空間はアンテナ室20を構成する。アンテナ室20には、金属窓12を介して載置台13と対向するように、誘導結合アンテナ21が配置される。誘導結合アンテナ21は、例えば、図示しない絶縁体からなるスペーサを介して金属窓12から離間して配置される。また、誘導結合アンテナ21は、各分割窓22に対向する領域に跨がって配置され、且つ金属窓12の周方向に沿って周回するように、渦巻状に形成される。なお、誘導結合アンテナ21は、一本又は複数のアンテナ線からなる環状アンテナであってもよい。また、誘導結合アンテナ21は、同心状に複数設けられてもよい。さらに、誘導結合アンテナ21は、金属窓12の周方向に複数のアンテナユニットを配列して全体として環状のアンテナを構成するようにしてもよい。その際、各アンテナユニットは、処理内容に応じて、各分割窓22を跨いで配置してもよく、跨がずに配置してもよい。 Returning to FIG. 1, in the substrate processing apparatus 10, a space surrounded by the metal window 12, the side wall portion 15, and the top plate 16 constitutes an antenna room 20. An inductively coupled antenna 21 is arranged in the antenna room 20 so as to face the mounting table 13 through the metal window 12 . The inductively coupled antenna 21 is placed apart from the metal window 12 via a spacer made of an insulator (not shown), for example. Further, the inductively coupled antenna 21 is arranged so as to straddle the area facing each of the divided windows 22 and is formed in a spiral shape so as to circulate along the circumferential direction of the metal window 12 . Note that the inductively coupled antenna 21 may be a ring-shaped antenna made of one or more antenna wires. Further, a plurality of inductively coupled antennas 21 may be provided concentrically. Further, the inductively coupled antenna 21 may have a plurality of antenna units arranged in the circumferential direction of the metal window 12 to form an annular antenna as a whole. At this time, each antenna unit may be arranged to straddle each divided window 22, or may be arranged without straddling each divided window 22, depending on the processing content.

図1や図3に示すように、各分割窓22には、処理空間Uに向けて開口する多数のガス孔26が形成される。なお、図3において、誘導結合アンテナ21や後述の温調流路37の図示は省略される。各分割窓22には、ガス供給路60を有するガス供給管28が接続され、ガス供給管28はガス供給源29に接続される。なお、ガス供給路60は第1のガス流路を構成する。また、各分割窓22の内部にはガス拡散室27が形成され、ガス供給源29はガス供給管28を介してガス拡散室27へ処理ガスを導入する。導入される処理ガスは、例えば、成膜処理、エッチング処理又はアッシング処理に必要なガスである。ガス拡散室27へ導入された処理ガスは各ガス孔26から処理空間Uへ供給される。したがって、各分割窓22は、各ガス孔26及びガス拡散室27からなる分割窓ガスシャワー構造(第1のガスシャワー構造)を有することになる。 As shown in FIGS. 1 and 3, each divided window 22 is formed with a large number of gas holes 26 that open toward the processing space U. In addition, in FIG. 3, illustration of the inductively coupled antenna 21 and a temperature control channel 37, which will be described later, is omitted. A gas supply pipe 28 having a gas supply path 60 is connected to each divided window 22 , and the gas supply pipe 28 is connected to a gas supply source 29 . Note that the gas supply path 60 constitutes a first gas flow path. Further, a gas diffusion chamber 27 is formed inside each divided window 22 , and a gas supply source 29 introduces a processing gas into the gas diffusion chamber 27 via a gas supply pipe 28 . The processing gas introduced is, for example, a gas necessary for film formation processing, etching processing, or ashing processing. The processing gas introduced into the gas diffusion chamber 27 is supplied to the processing space U from each gas hole 26. Therefore, each divided window 22 has a divided window gas shower structure (first gas shower structure) consisting of each gas hole 26 and gas diffusion chamber 27.

各第1のカバー部材25aにも処理空間Uに向けて開口する多数のガス孔30が形成され、各第1のカバー部材25aの内部にはガス拡散室31が形成される。また、ガス供給源29には、ガス供給路61を有するガス供給管32が、間接的若しくは直接的に接続され、ガス供給源29はガス供給管32を介してガス拡散室31へ処理ガスを導入する。なお、ガス供給路61は第2のガス流路の一部を構成する。ガス拡散室31へ導入された処理ガスは各ガス孔30から処理空間Uへ供給される。したがって、各第1のカバー部材25aも、各ガス孔30及びガス拡散室31からなるカバー部材ガスシャワー構造(第2のガスシャワー構造)を有することになる。 A large number of gas holes 30 opening toward the processing space U are also formed in each first cover member 25a, and a gas diffusion chamber 31 is formed inside each first cover member 25a. Further, a gas supply pipe 32 having a gas supply path 61 is connected indirectly or directly to the gas supply source 29 , and the gas supply source 29 supplies processing gas to the gas diffusion chamber 31 via the gas supply pipe 32 . Introduce. Note that the gas supply path 61 constitutes a part of the second gas flow path. The processing gas introduced into the gas diffusion chamber 31 is supplied to the processing space U from each gas hole 30. Therefore, each first cover member 25a also has a cover member gas shower structure (second gas shower structure) consisting of each gas hole 30 and gas diffusion chamber 31.

したがって、基板処理装置10では、処理空間Uにおいて、各分割窓22に対向する領域だけでなく各第1のカバー部材25aに対向する領域にも処理ガスが供給される。これにより、処理空間Uにおいて、各分割窓22に対向する領域のみに処理ガスが偏在するのを防止することができる。 Therefore, in the substrate processing apparatus 10, in the processing space U, the processing gas is supplied not only to the region facing each divided window 22 but also to the region facing each first cover member 25a. Thereby, in the processing space U, it is possible to prevent the processing gas from being unevenly distributed only in the area facing each divided window 22.

また、基板処理装置10では、誘導結合アンテナ21に、整合器33を介して高周波電源34が接続される。高周波電源34は、例えば、13.56MHzのプラズマ生成用の高周波電力を誘導結合アンテナ21に供給する。これにより、金属窓12を構成する各分割窓22のそれぞれにおいて、上面(誘導結合アンテナ21側)から下面(処理空間U側)にわたって周回する渦電流が誘起され、この渦電流によって処理空間Uに誘導電界が形成される。そして、この誘導電界が処理空間Uに供給された処理ガスを励起してプラズマを生成する。 Further, in the substrate processing apparatus 10 , a high frequency power source 34 is connected to the inductively coupled antenna 21 via a matching box 33 . The high frequency power supply 34 supplies, for example, 13.56 MHz high frequency power for plasma generation to the inductively coupled antenna 21. As a result, an eddy current circulating from the upper surface (inductively coupled antenna 21 side) to the lower surface (processing space U side) is induced in each of the divided windows 22 constituting the metal window 12, and this eddy current flows into the processing space U. An induced electric field is formed. This induced electric field excites the processing gas supplied to the processing space U to generate plasma.

さらに、載置台13に、整合器35を介して高周波電源36が接続される。高周波電源36は、例えば、3.2MHzのバイアス用の高周波電力を載置台13に供給する。これにより、処理空間Uのプラズマ中のイオンを基板Gに引き込むことができる。 Further, a high frequency power source 36 is connected to the mounting table 13 via a matching box 35. The high frequency power supply 36 supplies bias high frequency power of 3.2 MHz to the mounting table 13, for example. Thereby, ions in the plasma in the processing space U can be drawn into the substrate G.

基板処理装置10では、各分割窓22が、仕切部材23によって他の分割窓22から電気的に絶縁されるため、金属窓12の各分割窓22において個別に渦電流が誘起され、各分割窓22に対向する領域において個別に誘導電界が発生する。したがって、各分割窓22の大きさや配置を変更することにより、処理空間Uにおいて発生する誘導電界の分布を制御することができ、もって、基板Gに施すプラズマ処理の度合いを局所的に制御することができる。例えば、基板Gにおけるエッチングレートの分布を制御することができ、若しくは、基板Gに形成されている酸化膜のエッチングによる残存膜厚分布を制御することができる。 In the substrate processing apparatus 10, each divided window 22 is electrically insulated from other divided windows 22 by the partition member 23, so eddy currents are individually induced in each divided window 22 of the metal window 12, and each divided window 22 is electrically insulated from other divided windows 22 by the partition member 23. An induced electric field is generated individually in the region facing 22. Therefore, by changing the size and arrangement of each divided window 22, it is possible to control the distribution of the induced electric field generated in the processing space U, thereby locally controlling the degree of plasma processing applied to the substrate G. Can be done. For example, the etching rate distribution on the substrate G can be controlled, or the remaining film thickness distribution due to etching of the oxide film formed on the substrate G can be controlled.

また、プラズマ処理の度合いは温度にも左右されるため、基板処理装置10では、各分割窓22の内部に、温調流路37が形成される。温調流路37には冷却媒体又は加熱媒体が導入され、各分割窓22が所望の温度に調整され、プラズマ処理の度合いが制御される。なお、同様の機能を発揮させるために、載置台13の内部に、基板Gの温度を制御するためのチラー等の温調機構や伝熱ガス供給機構を設けてもよい。 Further, since the degree of plasma processing also depends on temperature, in the substrate processing apparatus 10, a temperature control channel 37 is formed inside each divided window 22. A cooling medium or a heating medium is introduced into the temperature control channel 37, and each divided window 22 is adjusted to a desired temperature, thereby controlling the degree of plasma processing. Note that in order to exhibit the same function, a temperature control mechanism such as a chiller or a heat transfer gas supply mechanism may be provided inside the mounting table 13 to control the temperature of the substrate G.

さらに、基板処理装置10では、処理容器11の底面に排気口38が形成される。この排気口38にはターボ分子ポンプやドライポンプ等の排気装置39が接続される。プラズマ処理を実行する際、排気装置39は、処理空間Uを大気圧よりも低い所定の圧力に維持する。また、基板処理装置10には制御部40が設けられる。制御部40は、少なくともCPUとメモリを有するコンピュータからなり、メモリには所定のプラズマ処理を実行するためのレシピ(プログラム)が記録される。 Further, in the substrate processing apparatus 10, an exhaust port 38 is formed at the bottom of the processing container 11. An exhaust device 39 such as a turbo molecular pump or a dry pump is connected to this exhaust port 38 . When performing plasma processing, the exhaust device 39 maintains the processing space U at a predetermined pressure lower than atmospheric pressure. Further, the substrate processing apparatus 10 is provided with a control section 40 . The control unit 40 includes a computer having at least a CPU and a memory, and a recipe (program) for executing a predetermined plasma treatment is recorded in the memory.

図4は、図3の金属窓12が有する仕切部材23の近傍の詳細構成を示す拡大断面図である。図4に示すように、仕切部材23は、処理空間U側に配置される下部仕切部材41と、誘導結合アンテナ21側に配置される上部仕切部材42(第2の絶縁部)とを有する。下部仕切部材41はアルミナ等のセラミックス部材によって構成され、上部仕切部材42はPTFE(Polytetrafluoroethylene)等のフッ素樹脂部材によって構成される。また、分割窓22と上部仕切部材42の間には、シール部材43が配置される。これにより、処理空間Uが大気圧のアンテナ室20等の外部から密封される。仕切部材23の一部をなす上部仕切部材42をセラミックス部材ではなく、フッ素樹脂部材によって構成することにより、仕切部材23全体を軽量化するだけでなく、金属からなる分割窓22の熱膨張に追従させることができる。その結果、シール部材43の捻れ等の変形を抑制することができ、処理空間Uの密封を良好に維持することができる。 FIG. 4 is an enlarged sectional view showing the detailed configuration of the vicinity of the partition member 23 included in the metal window 12 of FIG. 3. As shown in FIG. As shown in FIG. 4, the partition member 23 includes a lower partition member 41 arranged on the processing space U side and an upper partition member 42 (second insulating part) arranged on the inductively coupled antenna 21 side. The lower partition member 41 is made of a ceramic member such as alumina, and the upper partition member 42 is made of a fluororesin member such as PTFE (Polytetrafluoroethylene). Further, a seal member 43 is arranged between the divided window 22 and the upper partition member 42. Thereby, the processing space U is sealed from the outside, such as the antenna room 20, which is at atmospheric pressure. By constructing the upper partition member 42, which forms part of the partition member 23, from a fluororesin material instead of a ceramic member, not only is the weight of the entire partition member 23 reduced, but it also follows the thermal expansion of the divided window 22 made of metal. can be done. As a result, deformation such as twisting of the seal member 43 can be suppressed, and the sealing of the processing space U can be maintained well.

第1のカバー部材25aと下部仕切部材41の間には、ガス拡散室形成部材44が配置される。ガス拡散室形成部材44はアルミナ等のセラミックス部材によって構成され、内部に空間を有し、第1のカバー部材25aと合わさることにより、ガス拡散室31を形成する。また、ガス拡散室形成部材44は上部が凸形状に成形され、該上部は下部仕切部材41の下部に形成された凹部へ挿嵌されて、下部仕切部材41に対するガス拡散室形成部材44の位置決めがなされる。なお、下部仕切部材41、ガス拡散室形成部材44及び第1のカバー部材25aは、第1の絶縁部を構成する。 A gas diffusion chamber forming member 44 is arranged between the first cover member 25a and the lower partition member 41. The gas diffusion chamber forming member 44 is made of a ceramic member such as alumina, has a space inside, and forms the gas diffusion chamber 31 when combined with the first cover member 25a. Further, the upper part of the gas diffusion chamber forming member 44 is formed into a convex shape, and the upper part is inserted into a recess formed in the lower part of the lower partition member 41 to determine the position of the gas diffusion chamber forming member 44 with respect to the lower partition member 41. will be done. Note that the lower partition member 41, the gas diffusion chamber forming member 44, and the first cover member 25a constitute a first insulating section.

下部仕切部材41は、内部に形成された絶縁部ガス流路45を有する。なお、絶縁部ガス流路45は、第2のガス流路の一部を構成する。絶縁部ガス流路45は下部仕切部材41の側面に開口し、内部においてガス拡散室31へ向けて下方へ屈曲する。なお、絶縁部ガス流路45は下部仕切部材41のみに形成され、上部仕切部材42と接触しない。すなわち、上部仕切部材42は絶縁部ガス流路45内に露出しない。これにより、フッ素樹脂部材によって構成される上部仕切部材42が絶縁部ガス流路45を流れる処理ガスによって劣化するのを防止することができる。 The lower partition member 41 has an insulating gas flow path 45 formed therein. Note that the insulating gas flow path 45 constitutes a part of the second gas flow path. The insulating gas flow path 45 opens on the side surface of the lower partition member 41 and bends downward toward the gas diffusion chamber 31 inside. Note that the insulating gas flow path 45 is formed only in the lower partition member 41 and does not come into contact with the upper partition member 42. That is, the upper partition member 42 is not exposed within the insulating gas flow path 45. Thereby, the upper partition member 42 made of a fluororesin member can be prevented from being deteriorated by the processing gas flowing through the insulating gas flow path 45.

分割窓22において、ガス供給管32と下部仕切部材41の間には連結部材46,47が配置される。連結部材46,47はいずれも内部にガス流路48,49を有し、ガス流路48,49を介してガス供給路61と絶縁部ガス流路45を連通させる。なお、ガス流路48,49は第2のガス流路の一部を構成する。したがって、ガス供給源29から供給された処理ガスは、ガス供給路61、ガス流路48,49及び絶縁部ガス流路45を経由してガス拡散室31へ導入される。ここで、ガス供給路61、ガス流路48、ガス流路49及び絶縁部ガス流路45は第2のガス流路を構成する。なお、連結部材46,47はいずれもステンレス部材によって構成される。これにより、連結部材46,47がガス流路48,49を流れる処理ガスによって腐食するのを防止することができる。また、連結部材46,47は分割窓22に機械加工によって設けられた挿入孔へ挿嵌される。ここでは、機械加工の容易さを考慮して、連結部材46が挿嵌される挿入孔は基板処理装置10の上下方向に沿い、連結部材47が挿嵌される挿入孔は基板処理装置10の左右方向に沿うように設けられる。なお、図4においては、分割窓22を上下に貫通する挿入孔に下から連結部材46を挿入し、さらに、挿入孔蓋55によって挿入孔を塞ぐ構成を描いているが、挿入孔蓋55を設けずに、下側が閉塞した挿入孔に上側から連結部材46を挿入するようにしてもよい。 In the divided window 22, connecting members 46 and 47 are arranged between the gas supply pipe 32 and the lower partition member 41. Each of the connecting members 46 and 47 has gas passages 48 and 49 therein, and the gas supply passage 61 and the insulating part gas passage 45 are communicated through the gas passages 48 and 49. Note that the gas flow paths 48 and 49 constitute a part of the second gas flow path. Therefore, the processing gas supplied from the gas supply source 29 is introduced into the gas diffusion chamber 31 via the gas supply path 61, the gas flow paths 48 and 49, and the insulator gas flow path 45. Here, the gas supply path 61, the gas flow path 48, the gas flow path 49, and the insulating part gas flow path 45 constitute a second gas flow path. Note that both the connecting members 46 and 47 are made of stainless steel members. Thereby, the connecting members 46 and 47 can be prevented from being corroded by the processing gas flowing through the gas channels 48 and 49. Further, the connecting members 46 and 47 are inserted into insertion holes provided in the divided window 22 by machining. Here, in consideration of ease of machining, the insertion hole into which the connecting member 46 is inserted is along the vertical direction of the substrate processing apparatus 10, and the insertion hole into which the connecting member 47 is inserted is along the vertical direction of the substrate processing apparatus 10. It is provided along the left and right direction. Note that although FIG. 4 depicts a configuration in which the connecting member 46 is inserted from below into the insertion hole that vertically passes through the divided window 22 and the insertion hole is further closed with the insertion hole cover 55, the insertion hole cover 55 is Alternatively, the connecting member 46 may be inserted from above into an insertion hole whose lower side is closed.

第1の絶縁部では、上述したように、下部仕切部材41、ガス拡散室形成部材44及び第1のカバー部材25aのいずれもがセラミックス部材によって構成される。これにより、プラズマ耐性を確保することができ、万が一、処理空間Uからプラズマがガス拡散室31や絶縁部ガス流路45へ侵入しても、下部仕切部材41、ガス拡散室形成部材44及び第1のカバー部材25aがプラズマによって消耗するのを防止することができる。 In the first insulating section, as described above, the lower partition member 41, the gas diffusion chamber forming member 44, and the first cover member 25a are all made of ceramic members. Thereby, plasma resistance can be ensured, and even if plasma enters the gas diffusion chamber 31 or the insulating gas flow path 45 from the processing space U, the lower partition member 41, the gas diffusion chamber forming member 44, and the It is possible to prevent the first cover member 25a from being consumed by plasma.

また、第1の絶縁部において、絶縁部ガス流路45のガス拡散室31と接続される末端部には、流量調整ブロック50(流量調整部)が配置される。流量調整ブロック50には、絶縁部ガス流路45とガス拡散室31を連通させる絞り孔51が形成される。流量調整ブロック50は、下部仕切部材41の下部において絶縁部ガス流路45の末端に形成された凹部に嵌め込み可能に構成される。絞り孔51の断面積(絞り孔51の軸方向に直交する断面の断面積。以下同様。)は、ガス供給路61の断面積、ガス流路48,49の断面積や絶縁部ガス流路45の断面積のいずれよりも小さい。したがって、流量調整ブロック50はオリフィスとして機能し、ガス拡散室31へ導入される処理ガスの流量は流量調整ブロック50の絞り孔51の断面積に左右される。 Further, in the first insulating section, a flow rate adjustment block 50 (flow rate adjustment section) is disposed at the end portion of the insulating section gas flow path 45 that is connected to the gas diffusion chamber 31. A throttle hole 51 is formed in the flow rate adjustment block 50 so that the insulating gas flow path 45 and the gas diffusion chamber 31 communicate with each other. The flow rate adjustment block 50 is configured to be able to be fitted into a recess formed at the end of the insulating gas flow path 45 in the lower part of the lower partition member 41 . The cross-sectional area of the throttle hole 51 (the cross-sectional area of the cross section perpendicular to the axial direction of the throttle hole 51; the same applies hereinafter) is the cross-sectional area of the gas supply path 61, the cross-sectional area of the gas flow paths 48 and 49, and the insulating gas flow path. It is smaller than any of the 45 cross-sectional areas. Therefore, the flow rate adjustment block 50 functions as an orifice, and the flow rate of the processing gas introduced into the gas diffusion chamber 31 depends on the cross-sectional area of the throttle hole 51 of the flow rate adjustment block 50.

本実施の形態では、絞り孔51の断面積が異なる何種類かの流量調整ブロック50が準備され、絶縁部ガス流路45の末端の凹部に嵌め込まれる流量調整ブロック50を入れ換えることにより、ガス拡散室31へ導入される処理ガスの流量を変更することができる。また、流量調整ブロック50が絶縁部ガス流路45の末端の凹部に嵌め込まれるとき、流量調整ブロック50はガス拡散室31の中央に位置し、絞り孔51はガス拡散室31の中央にて開口する。これにより、第2のガス流路は、ガス拡散室31の中央にてガス拡散室31に接続される。また、流量調整ブロック50は、ガス拡散室形成部材44及び第1のカバー部材25aを取り外せば、下方から容易に交換することができる。このため、流量を制御するために流量制御機器(例えば、マスフローコントローラなど)を用いた構成よりも極めて簡単な構造によって、ガス拡散室31へ導入される処理ガスの流量を容易に調整することができる。なお、本実施の形態において、「ガス拡散室31の中央」にはガス拡散室31の中央近傍を含んでもよい。以下同様とする。 In this embodiment, several types of flow rate adjustment blocks 50 with different cross-sectional areas of the throttle holes 51 are prepared, and by replacing the flow rate adjustment blocks 50 fitted into the recesses at the end of the insulating gas flow path 45, gas diffusion is achieved. The flow rate of processing gas introduced into chamber 31 can be changed. Further, when the flow rate adjustment block 50 is fitted into the recess at the end of the insulating gas flow path 45, the flow rate adjustment block 50 is located at the center of the gas diffusion chamber 31, and the throttle hole 51 is opened at the center of the gas diffusion chamber 31. do. Thereby, the second gas flow path is connected to the gas diffusion chamber 31 at the center of the gas diffusion chamber 31. Further, the flow rate adjustment block 50 can be easily replaced from below by removing the gas diffusion chamber forming member 44 and the first cover member 25a. Therefore, the flow rate of the processing gas introduced into the gas diffusion chamber 31 can be easily adjusted with a much simpler structure than a configuration using a flow rate control device (for example, a mass flow controller, etc.) to control the flow rate. can. Note that in this embodiment, "the center of the gas diffusion chamber 31" may include the vicinity of the center of the gas diffusion chamber 31. The same shall apply hereinafter.

以上説明したように、基板処理装置10では、金属窓12の各分割窓22が分割窓ガスシャワー構造を有し、金属窓12の各仕切部材23はカバー部材ガスシャワー構造を有し、各分割窓22、各仕切部材23がガス供給管28,32と協働して処理空間Uへ処理ガスを供給する。したがって、各分割窓22及び各仕切部材23は、ガス供給アセンブリを構成する。なお、図4中の白抜きの丸はシール部材の断面を示し、各シール部材は、仕切部材23の近傍の各構成部材の微小隙間を封止する。 As explained above, in the substrate processing apparatus 10, each divided window 22 of the metal window 12 has a divided window gas shower structure, each partition member 23 of the metal window 12 has a cover member gas shower structure, and each divided window 22 has a divided window gas shower structure. The window 22 and each partition member 23 cooperate with the gas supply pipes 28 and 32 to supply processing gas to the processing space U. Each dividing window 22 and each partition member 23 thus constitute a gas supply assembly. Note that the white circles in FIG. 4 indicate the cross sections of the sealing members, and each sealing member seals a minute gap between each component in the vicinity of the partition member 23.

図1に戻り、ガス供給管32は、ガス供給源29と分割窓22の間でガス供給管28から分岐する。したがって、ガス供給管32は、ガス供給管28が各ガス孔26及びガス拡散室27からなるガスシャワー構造を有する分割窓22に接続される部分よりも上流側(ガス供給源29側)の部分において、ガス供給管28から独立する。そして、上述したように、ガス供給管32と連通するガス拡散室31へ導入される処理ガスの流量は、ガス供給管32がガス供給管28から独立する部分よりも下流の第2のガス流路に配置された流量調整ブロック50を入れ換えることによって変更することができる。すなわち、ガス供給管28を経由してガス拡散室27へ導入される処理ガスの流量と、ガス供給管32を経由してガス拡散室31へ導入される処理ガスの流量の分配比率を、流量調整ブロック50を入れ換えることによって変更することができる。これにより、分割窓22の各ガス孔26から処理空間Uへ供給される処理ガスの流量と、第1のカバー部材25aの各ガス孔30から処理空間Uへ供給される処理ガスの流量との比例関係を解消することができる。 Returning to FIG. 1, the gas supply pipe 32 branches from the gas supply pipe 28 between the gas supply source 29 and the dividing window 22. Therefore, the gas supply pipe 32 is located at a portion upstream (on the gas supply source 29 side) of the portion where the gas supply pipe 28 is connected to the divided window 22 having a gas shower structure consisting of each gas hole 26 and the gas diffusion chamber 27. , it is independent from the gas supply pipe 28. As described above, the flow rate of the processing gas introduced into the gas diffusion chamber 31 that communicates with the gas supply pipe 32 is determined by the second gas flow downstream of the part where the gas supply pipe 32 is independent from the gas supply pipe 28. This can be changed by replacing the flow rate adjustment block 50 placed in the path. That is, the distribution ratio of the flow rate of the processing gas introduced into the gas diffusion chamber 27 via the gas supply pipe 28 and the flow rate of the processing gas introduced into the gas diffusion chamber 31 via the gas supply pipe 32 is defined as the flow rate. It can be changed by replacing the adjustment block 50. Thereby, the flow rate of the processing gas supplied to the processing space U from each gas hole 26 of the divided window 22 and the flow rate of the processing gas supplied to the processing space U from each gas hole 30 of the first cover member 25a are adjusted. Proportional relationships can be resolved.

例えば、絞り孔51の断面積の小さい流量調整ブロック50を絶縁部ガス流路45の末端の凹部へ嵌め込むことにより、ガス拡散室31へ導入される処理ガスの流量を減らすとともに、ガス拡散室27へ導入される処理ガスの流量を増やすことができる。これにより、処理空間Uにおいて、各分割窓22に対向する領域における処理ガスの濃度を、各第1のカバー部材25aに対向する領域における処理ガスの濃度よりも高めることができる。その結果、基板Gにおいて、各第1のカバー部材25aに対向する領域のエッチングレートや成膜量を減少させる一方、各分割窓22に対向する領域のエッチングレートや成膜量を増加させることができる。 For example, by fitting the flow rate adjustment block 50 with a small cross-sectional area of the throttle hole 51 into the recess at the end of the insulating gas flow path 45, the flow rate of the processing gas introduced into the gas diffusion chamber 31 can be reduced, and the flow rate of the processing gas introduced into the gas diffusion chamber 31 can be reduced. The flow rate of the processing gas introduced into 27 can be increased. Thereby, in the processing space U, the concentration of the processing gas in the region facing each divided window 22 can be made higher than the concentration of the processing gas in the region facing each first cover member 25a. As a result, in the substrate G, it is possible to reduce the etching rate and the amount of film formation in the region facing each first cover member 25a, while increasing the etching rate and the amount of film formation in the region facing each dividing window 22. can.

また、絞り孔51の断面積の大きい流量調整ブロック50を絶縁部ガス流路45の末端 の凹部へ嵌め込むことにより、ガス拡散室31へ導入される処理ガスの流量を増やすとともに、ガス拡散室27へ導入される処理ガスの流量を減らすことができる。これにより、処理空間Uにおいて、各分割窓22に対向する領域における処理ガスの濃度を、各第1のカバー部材25aに対向する領域における処理ガスの濃度よりも低下させることができる。その結果、基板Gにおいて、各第1のカバー部材25aに対向する領域のエッチングレートや成膜量を増加させる一方、各分割窓22に対向する領域のエッチングレートや成膜量を減少させることができる。 Furthermore, by fitting the flow rate adjustment block 50 with a large cross-sectional area of the throttle hole 51 into the recess at the end of the insulating gas flow path 45, the flow rate of the processing gas introduced into the gas diffusion chamber 31 can be increased, and the flow rate of the processing gas introduced into the gas diffusion chamber 31 can be increased. The flow rate of processing gas introduced into 27 can be reduced. Thereby, in the processing space U, the concentration of the processing gas in the region facing each divided window 22 can be made lower than the concentration of the processing gas in the region facing each first cover member 25a. As a result, on the substrate G, it is possible to increase the etching rate and the amount of film formation in the region facing each first cover member 25a, while decreasing the etching rate and the amount of film formation in the region facing each dividing window 22. can.

すなわち、本実施の形態に係る基板処理装置10では、基板Gに施すプラズマ処理の均一性に関する制御性を向上させることができる。 That is, in the substrate processing apparatus 10 according to the present embodiment, controllability regarding the uniformity of plasma processing performed on the substrate G can be improved.

また、基板処理装置10では、上述したように、流量調整ブロック50の絞り孔51はガス拡散室31の中央にて開口する。これにより、ガス拡散室31において処理ガスがほぼ均等に拡散するため、処理ガスが各ガス孔30から処理空間Uへ均等に供給される。その結果、各第1のカバー部材25aに対向する領域におけるプラズマ処理の度合いに偏りが生じるのを抑制することができる。 Further, in the substrate processing apparatus 10, as described above, the throttle hole 51 of the flow rate adjustment block 50 opens at the center of the gas diffusion chamber 31. As a result, the processing gas is almost uniformly diffused in the gas diffusion chamber 31, so that the processing gas is evenly supplied from each gas hole 30 to the processing space U. As a result, it is possible to suppress unevenness in the degree of plasma processing in the region facing each first cover member 25a.

以上、本開示の好ましい実施の形態について説明したが、本開示は上述した実施の形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although preferred embodiments of the present disclosure have been described above, the present disclosure is not limited to the embodiments described above, and various modifications and changes can be made within the scope of the gist.

例えば、仕切部材23は、下部仕切部材41と上部仕切部材42の2つの部材で構成されるが、1つの部材で構成されてもよい。 For example, the partition member 23 is composed of two members, the lower partition member 41 and the upper partition member 42, but may be composed of one member.

また、流量調整ブロック50は、仕切部材23の下部仕切部材41に形成された絶縁部ガス流路45の末端に配置されるが、ガス供給管32からガス拡散室31までの第2の ガス流路に配置されればよく、例えば、図5に示すように、ガス供給管32のガス供給路61に配置されてもよい。但し、この場合、流量調整ブロック50の交換のための作業性を確保しておく必要がある。 Further, the flow rate adjustment block 50 is arranged at the end of the insulating gas flow path 45 formed in the lower partition member 41 of the partition member 23, and the flow rate adjustment block 50 controls the second gas flow from the gas supply pipe 32 to the gas diffusion chamber 31. For example, as shown in FIG. 5, it may be placed in the gas supply path 61 of the gas supply pipe 32. However, in this case, it is necessary to ensure workability for replacing the flow rate adjustment block 50.

さらに、ガス供給管32からガス拡散室31までのガス流路は一部が仕切部材23(下部仕切部材41)を経由するが、図6に示すように、分割窓22にガス供給管32からガス拡散室31に到るガス流路52が形成されてもよい。この場合、流量調整ブロック50は絞り孔51がガス流路52の上流部と連通するように、分割窓22の下部に形成されたガス流路52の末端の凹部に嵌め込まれるが、分割窓22の下部においてガス流路52の末端の凹部は、嵌め込まれた流量調整ブロック50がガス拡散室31の中央に位置するように形成される。この場合、仕切部材23にはガス流路が形成されない。 Further, a part of the gas flow path from the gas supply pipe 32 to the gas diffusion chamber 31 passes through the partition member 23 (lower partition member 41), but as shown in FIG. A gas flow path 52 leading to the gas diffusion chamber 31 may be formed. In this case, the flow rate adjustment block 50 is fitted into a recess at the end of the gas flow path 52 formed at the lower part of the divided window 22 so that the throttle hole 51 communicates with the upstream portion of the gas flow path 52. A recess at the end of the gas flow path 52 is formed in the lower part of the gas flow path 52 so that the fitted flow rate adjustment block 50 is located at the center of the gas diffusion chamber 31 . In this case, no gas flow path is formed in the partition member 23.

また、ガス供給管32は、ガス供給源29と分割窓22の間でガス供給管28から分岐するが、ガス供給管32をガス供給管28から分岐させず、直接、ガス供給源29と接続させてもよい。この場合、ガス供給源29がガス供給管28とガス供給管32のそれぞれを流れる処理ガスの流量を調整可能であれば、流量調整ブロック50を配置する必要を無くすことができる。さらに、ガス供給管32がガス供給源29と接続される場合、ガス供給管28がガス供給源29と分割窓22の間でガス供給管32から分岐してもよい。この場合も、流量調整ブロック50は、ガス供給管28とガス供給管32の分岐位置よりも下流の第2のガス流路に配置される。 Further, the gas supply pipe 32 branches from the gas supply pipe 28 between the gas supply source 29 and the split window 22, but the gas supply pipe 32 is not branched from the gas supply pipe 28 and is directly connected to the gas supply source 29. You may let them. In this case, if the gas supply source 29 can adjust the flow rate of the processing gas flowing through each of the gas supply pipe 28 and the gas supply pipe 32, it is possible to eliminate the need to arrange the flow rate adjustment block 50. Furthermore, when the gas supply pipe 32 is connected to the gas supply source 29 , the gas supply pipe 28 may be branched from the gas supply pipe 32 between the gas supply source 29 and the dividing window 22 . Also in this case, the flow rate adjustment block 50 is arranged in the second gas flow path downstream of the branch position of the gas supply pipe 28 and the gas supply pipe 32.

さらに、基板処理装置10では、ガス供給管32と下部仕切部材41の間には2つの連結部材である連結部材46,47が配置される。しかしながら、例えば、図7に示すように、分割窓22にガス供給管32から下部仕切部材41へ到る斜めの挿入孔を設け、該挿入孔に1つの連結部材53を挿嵌してもよい。この連結部材53は、ガス供給管32と絶縁部ガス流路45を連通させるガス流路54を有する。これにより、連結部材の数を減らすことができる。 Further, in the substrate processing apparatus 10, two connecting members 46 and 47 are arranged between the gas supply pipe 32 and the lower partition member 41. However, for example, as shown in FIG. 7, an oblique insertion hole extending from the gas supply pipe 32 to the lower partition member 41 may be provided in the divided window 22, and one connecting member 53 may be inserted into the insertion hole. . The connecting member 53 has a gas flow path 54 that communicates the gas supply pipe 32 with the insulation gas flow path 45 . This allows the number of connecting members to be reduced.

また、基板処理装置10でプラズマ処理が施される基板Gは、液晶ディスプレイ、エレクトロルミネセンス(Electro Luminescence)ディスプレイやプラズマディスプレイパネル等である。しかしながら、基板処理装置10においてプラズマ処理が施される基板は、FPD用のガラス基板に限られない。例えば、当該基板は、太陽電池パネル用の基板や半導体デバイス用のシリコンウエハであってもよい。 Further, the substrate G subjected to plasma processing in the substrate processing apparatus 10 is a liquid crystal display, an electroluminescence display, a plasma display panel, or the like. However, the substrate to which plasma processing is performed in the substrate processing apparatus 10 is not limited to a glass substrate for FPD. For example, the substrate may be a substrate for a solar cell panel or a silicon wafer for a semiconductor device.

G 基板
U 処理空間
10 基板処理装置
11 処理容器
12 金属窓
13 載置台
21 誘導結合アンテナ
22 分割窓
23 仕切部材
25 カバー部材
26,30 ガス孔
28,32 ガス供給管
45 絶縁部ガス流路
48,49 ガス流路
60,61 ガス供給路
G Substrate U Processing space 10 Substrate processing apparatus 11 Processing container 12 Metal window 13 Mounting table 21 Inductively coupled antenna 22 Divided window 23 Partition member 25 Cover members 26, 30 Gas holes 28, 32 Gas supply pipe 45 Insulation gas flow path 48, 49 Gas flow path 60, 61 Gas supply path

Claims (9)

処理ガスのプラズマによって基板にプラズマ処理を施す基板処理装置であって、
内部において、下部に前記基板を載置する載置台が配置され、上部に前記載置台と対向する金属窓が配置され、前記載置台と前記金属窓の間に処理空間が形成される処理容器と、
前記金属窓を介して前記載置台と対向し、前記処理空間に前記プラズマを生成するための誘導結合アンテナと、を備え、
前記金属窓は、複数の分割窓と、互いに隣接する各前記分割窓の間のそれぞれに配置された絶縁部とを有し、
各前記分割窓は、前記処理空間へ前記処理ガスを供給するガス孔を有する第1のガスシャワー構造を有し、
各前記絶縁部は、前記処理空間へ前記処理ガスを供給するガス孔を有する第2のガスシャワー構造を有し、
前記第1のガスシャワー構造に前記処理ガスを導入するための第1のガス流路と、前記第2のガスシャワー構造に前記処理ガスを導入するための第2のガス流路とが配置され、
前記第2のガス流路は、前記第1のガス流路が前記第1のガスシャワー構造に接続される部分よりも上流の部分において、前記第1のガス流路から独立する、基板処理装置。
A substrate processing apparatus that performs plasma processing on a substrate using plasma of a processing gas,
A processing container in which a mounting table for mounting the substrate is arranged at a lower part, a metal window facing the mounting table is arranged at an upper part, and a processing space is formed between the mounting table and the metal window. ,
an inductively coupled antenna that faces the mounting table through the metal window and that generates the plasma in the processing space;
The metal window has a plurality of divided windows and an insulating portion disposed between each of the adjacent divided windows,
Each of the divided windows has a first gas shower structure having a gas hole that supplies the processing gas to the processing space,
Each of the insulating parts has a second gas shower structure having a gas hole for supplying the processing gas to the processing space,
A first gas flow path for introducing the processing gas into the first gas shower structure and a second gas flow path for introducing the processing gas into the second gas shower structure are arranged. ,
The second gas flow path is independent from the first gas flow path in a portion upstream of a portion where the first gas flow path is connected to the first gas shower structure, the substrate processing apparatus .
前記第2のガス流路は、前記第1のガス流路から独立する部分よりも下流の部分において、前記第2のガス流路を流れる前記処理ガスの流量を調整する流量調整部を有する、請求項1に記載の基板処理装置。 The second gas flow path has a flow rate adjusting section that adjusts the flow rate of the processing gas flowing through the second gas flow path in a portion downstream of a portion independent from the first gas flow path. The substrate processing apparatus according to claim 1. 前記第2のガス流路は、前記処理ガスの供給源と前記分割窓の間において前記第1のガス流路から分岐する、請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the second gas flow path branches from the first gas flow path between the processing gas supply source and the dividing window. 前記絶縁部は、前記処理空間側に配置される第1の絶縁部と、前記誘導結合アンテナ側に配置される第2の絶縁部とを有し、
前記第1の絶縁部は前記第2のガスシャワー構造を有し、
前記第2のガス流路の少なくとも一部は、前記第1の絶縁部に形成される、請求項1に記載の基板処理装置。
The insulating section includes a first insulating section disposed on the processing space side and a second insulating section disposed on the inductively coupled antenna side,
the first insulating section has the second gas shower structure,
The substrate processing apparatus according to claim 1, wherein at least a portion of the second gas flow path is formed in the first insulating section.
前記第1の絶縁部において、前記第2のガス流路の少なくとも一部は、前記第2のガスシャワー構造へ向けて屈曲し、前記第2の絶縁部と接触しない、請求項4に記載の基板処理装置。 In the first insulating section, at least a portion of the second gas flow path is bent toward the second gas shower structure and does not come into contact with the second insulating section. Substrate processing equipment. 前記第1の絶縁部は、前記第2のガスシャワー構造の各前記ガス孔と連通するガス拡散室を有し、
前記第2のガス流路は前記ガス拡散室の中央にて前記ガス拡散室に接続される、請求項4に記載の基板処理装置。
The first insulating part has a gas diffusion chamber communicating with each of the gas holes of the second gas shower structure,
5. The substrate processing apparatus according to claim 4, wherein the second gas flow path is connected to the gas diffusion chamber at the center of the gas diffusion chamber.
前記第1の絶縁部は、前記第2の絶縁部を構成する部材と異なる部材によって構成される、請求項4に記載の基板処理装置。 5. The substrate processing apparatus according to claim 4, wherein the first insulating section is made of a member different from a member constituting the second insulating section. 基板処理装置において処理ガスのプラズマによって基板にプラズマ処理を施す基板処理方法であって、
前記基板処理装置は、内部において、下部に前記基板を載置する載置台が配置され、上部に前記載置台と対向する金属窓が配置され、前記載置台と前記金属窓の間に処理空間が形成される処理容器と、前記金属窓を介して前記載置台と対向し、前記処理空間に前記プラズマを生成するための誘導結合アンテナと、を備え、
前記金属窓は、複数の分割窓と、互いに隣接する各前記分割窓の間のそれぞれに配置された絶縁部とを有し、
各前記分割窓は、前記処理空間へ前記処理ガスを供給するガス孔を有する第1のガスシャワー構造を有し、
各前記絶縁部は、前記処理空間へ前記処理ガスを供給するガス孔を有する第2のガスシャワー構造を有し、
前記第1のガスシャワー構造に前記処理ガスを導入するための第1のガス流路と、前記第2のガスシャワー構造に前記処理ガスを導入するための第2のガス流路とが配置され、
前記第2のガス流路は、前記第1のガス流路が前記第1のガスシャワー構造に接続される部分よりも上流の部分において、前記第1のガス流路と独立し、
前記処理容器に前記基板を搬入し、前記載置台に載置する工程と、
前記処理空間へ、前記第1のガスシャワー構造と前記第2のガスシャワー構造のそれぞれから前記処理ガスを供給する工程と、
前記誘導結合アンテナによって前記処理ガスから前記プラズマを生成する工程と、
前記プラズマによって前記基板にプラズマ処理を施す工程と、を有する基板処理方法。
A substrate processing method in which a substrate is subjected to plasma processing using plasma of a processing gas in a substrate processing apparatus, the method comprising:
Inside the substrate processing apparatus, a mounting table on which the substrate is placed is disposed at a lower part, a metal window facing the mounting table is arranged at an upper part, and a processing space is provided between the mounting table and the metal window. a processing chamber formed therein; and an inductively coupled antenna that faces the mounting table through the metal window and generates the plasma in the processing space,
The metal window has a plurality of divided windows and an insulating portion disposed between each of the adjacent divided windows,
Each of the divided windows has a first gas shower structure having a gas hole that supplies the processing gas to the processing space,
Each of the insulating parts has a second gas shower structure having a gas hole for supplying the processing gas to the processing space,
A first gas flow path for introducing the processing gas into the first gas shower structure and a second gas flow path for introducing the processing gas into the second gas shower structure are arranged. ,
The second gas flow path is independent of the first gas flow path in a portion upstream of a portion where the first gas flow path is connected to the first gas shower structure,
carrying the substrate into the processing container and placing it on the mounting table;
supplying the processing gas to the processing space from each of the first gas shower structure and the second gas shower structure;
generating the plasma from the process gas by the inductively coupled antenna;
A substrate processing method, comprising the step of subjecting the substrate to plasma treatment using the plasma.
誘導結合アンテナ及びプラズマ処理が施される基板の間に配置されるガス供給アセンブリであって、
複数の分割窓と、互いに隣接する各前記分割窓の間のそれぞれに配置された絶縁部とを有する金属窓を備え 、
各前記分割窓は、前記基板と前記金属窓の間の処理空間に向けて処理ガスを供給するガス孔を有する第1のガスシャワー構造を有し、
各前記絶縁部は、前記処理空間に向けて前記処理ガスを供給するガス孔を有する第2のガスシャワー構造を有し、
前記第2のガスシャワー構造に前記処理ガスを導入するための第2のガス流路は、前記第1のガスシャワー構造に前記処理ガスを導入するための第1のガス流路から、前記第1のガス流路が前記第1のガスシャワー構造に接続される部分よりも上流の部分において、独立する、ガス供給アセンブリ。
A gas supply assembly disposed between an inductively coupled antenna and a substrate to be subjected to plasma treatment, the gas supply assembly comprising:
A metal window having a plurality of divided windows and an insulating portion disposed between each of the adjacent divided windows,
Each of the divided windows has a first gas shower structure having a gas hole that supplies a processing gas toward a processing space between the substrate and the metal window;
Each of the insulating parts has a second gas shower structure having a gas hole that supplies the processing gas toward the processing space,
A second gas flow path for introducing the processing gas into the second gas shower structure is connected to the second gas flow path from the first gas flow path for introducing the processing gas into the first gas shower structure. A gas supply assembly in which one gas flow path is independent at a portion upstream of a portion where the first gas flow path is connected to the first gas shower structure.
JP2022110715A 2022-07-08 2022-07-08 Substrate processing device, substrate processing method, and gas supply assembly Pending JP2024008667A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022110715A JP2024008667A (en) 2022-07-08 2022-07-08 Substrate processing device, substrate processing method, and gas supply assembly
KR1020230082303A KR20240007597A (en) 2022-07-08 2023-06-27 Substrate processing apparatus, substrate processing method and gas supply assembly
CN202310772642.2A CN117373889A (en) 2022-07-08 2023-06-28 Substrate processing apparatus, substrate processing method, and gas supply assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022110715A JP2024008667A (en) 2022-07-08 2022-07-08 Substrate processing device, substrate processing method, and gas supply assembly

Publications (1)

Publication Number Publication Date
JP2024008667A true JP2024008667A (en) 2024-01-19

Family

ID=89402914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022110715A Pending JP2024008667A (en) 2022-07-08 2022-07-08 Substrate processing device, substrate processing method, and gas supply assembly

Country Status (3)

Country Link
JP (1) JP2024008667A (en)
KR (1) KR20240007597A (en)
CN (1) CN117373889A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6804392B2 (en) 2017-06-05 2020-12-23 東京エレクトロン株式会社 Plasma processing equipment and gas shower head

Also Published As

Publication number Publication date
CN117373889A (en) 2024-01-09
KR20240007597A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
KR102594442B1 (en) Plasma processing apparatus
US8696862B2 (en) Substrate mounting table, substrate processing apparatus and substrate temperature control method
KR100802667B1 (en) Upper electrode, plasma processing apparatus and method, and recording medium having a control program recorded therein
US7815740B2 (en) Substrate mounting table, substrate processing apparatus and substrate processing method
TWI390605B (en) Processing device
US8038834B2 (en) Method and system for controlling radical distribution
US20090078563A1 (en) Plasma Processing Apparatus And Method Capable of Adjusting Temperature Within Sample Table
JP2008124190A (en) Vacuum processing apparatus
TWI772430B (en) Plasma treatment device and gas shower head
JP5583413B2 (en) Apparatus and method for depositing on large area substrates
TW201936014A (en) Plasma processing apparatus
US20090181526A1 (en) Plasma Doping Method and Apparatus
KR101039085B1 (en) Plasma processing apparatus and plasma processing method
JP2011119708A (en) Substrate holding device and plasma processing device
JP2024008667A (en) Substrate processing device, substrate processing method, and gas supply assembly
JP5690603B2 (en) Plasma processing equipment
US11978614B2 (en) Substrate processing apparatus
KR20200045964A (en) Substrate processing apparatus
JP2021174872A (en) Piping system and processing unit
KR102638030B1 (en) Plasma processing apparatus, manufacturing method thereof, and plasma processing method
KR101905640B1 (en) Apparatus for treating substrate
JP7296854B2 (en) Gas supply method and substrate processing apparatus
CN117558674A (en) Plasma processing apparatus, electrostatic chuck, and temperature adjustment method thereof
JP2009212286A (en) Plasma treatment device