JP2024004378A - OXIDE NANOPARTICLE MIXED Ni-BASED ALLOY POWDER FOR ADDITIVE MANUFACTURING AND ADDITIVE MANUFACTURED BODY - Google Patents

OXIDE NANOPARTICLE MIXED Ni-BASED ALLOY POWDER FOR ADDITIVE MANUFACTURING AND ADDITIVE MANUFACTURED BODY Download PDF

Info

Publication number
JP2024004378A
JP2024004378A JP2022104016A JP2022104016A JP2024004378A JP 2024004378 A JP2024004378 A JP 2024004378A JP 2022104016 A JP2022104016 A JP 2022104016A JP 2022104016 A JP2022104016 A JP 2022104016A JP 2024004378 A JP2024004378 A JP 2024004378A
Authority
JP
Japan
Prior art keywords
powder
additive manufacturing
based alloy
mass
oxide nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022104016A
Other languages
Japanese (ja)
Inventor
透 萩谷
Toru Hagitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2022104016A priority Critical patent/JP2024004378A/en
Priority to PCT/JP2023/021285 priority patent/WO2024004563A1/en
Publication of JP2024004378A publication Critical patent/JP2024004378A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder for metal additive manufacturing having excellent high-temperature strength and cracking resistance, and to provide an additive manufactured body with excellent high-temperature strength fabricated using this powder for additive manufacturing.
SOLUTION: A mixed powder for additive manufacturing, comprising a Ni-based alloy powder containing at least one or two species of Ai and Ti in the chemical composition of the Ni-based alloy powder within the range of 0.5 mass%≤Al+1/2Ti≤2.8 mass% and an oxide nanoparticle adhered to the surface of the ni-based alloy powder.
SELECTED DRAWING: None
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、酸化物ナノ粒子を混合した積層造形用Ni基合金粉末および積層造形体に関する。 The present invention relates to a Ni-based alloy powder for additive manufacturing mixed with oxide nanoparticles, and to an additively manufactured article.

粉末材料にレーザーや電子ビームを照射して三次元形状造形物を製造する方法(以下、粉末焼結積層法と呼ぶ) が知られている。金属粉末からなる粉末層に光ビームを照射して焼結層を形成すると共に、焼結層を積層することで三次元形状造形物を得る金属光造形に用いられる金属光造形用金属粉末の製造方法が提案されている。金属積層造形法の代表的な方式にはパウダーベッド方式(粉末床溶融結合方式)やメタルデポジション方式(指向性エネルギー堆積方式)などがある。 A method of manufacturing a three-dimensional shaped object by irradiating a powder material with a laser or an electron beam (hereinafter referred to as the powder sintering lamination method) is known. Production of metal powder for metal stereolithography used in metal stereolithography, in which a powder layer made of metal powder is irradiated with a light beam to form a sintered layer, and a three-dimensional shaped object is obtained by laminating the sintered layers. A method is proposed. Representative methods of metal additive manufacturing include the powder bed method (powder bed fusion bonding method) and the metal deposition method (directed energy deposition method).

パウダーベッド方式では、レーザービームまたは電子ビームの照射によって、敷き詰められた粉末のうち照射された部位が溶融し凝固する。この溶融と凝固により、粉末粒子同士が結合する。照射は、金属粉末の一部に選択的になされ、照射がなされなかった部分は、溶融せず、照射がなされた部分のみにおいて、結合層が形成される。 In the powder bed method, the irradiated parts of the spread powder are melted and solidified by irradiation with a laser beam or electron beam. This melting and solidification causes the powder particles to bond together. The irradiation is selectively applied to a portion of the metal powder, and the portion that is not irradiated is not melted, and a bonding layer is formed only in the irradiated portion.

形成された結合層の上に、さらに新しい金属粉末が敷き詰められ、それらの金属粉末にレーザービームまたは電子ビームの照射が行われる。すると、照射により、金属粒子が溶融、凝固し、新たな結合層が形成される。また、新たな結合層は、既存の結合層とも結合される。 New metal powder is further spread over the formed bonding layer, and the metal powder is irradiated with a laser beam or an electron beam. The irradiation then melts and solidifies the metal particles, forming a new bonding layer. The new bonding layer is also bonded to the existing bonding layer.

照射による溶融・凝固が順次繰り返されていくことにより、結合層の集合体が徐々に成長する。この成長により、三次元形状を有する造形体が得られる。こうした積層造形法を用いると、複雑な形状の造形物が、容易に得られる。 By sequentially repeating melting and solidification by irradiation, an aggregate of bonding layers gradually grows. Through this growth, a shaped body having a three-dimensional shape is obtained. When such additive manufacturing methods are used, complex-shaped objects can be easily obtained.

また、メタルデポジション方式(指向性エネルギー堆積方式)による積層造形法としては、例えば、金属粉末からなる粉末層に光ビームを照射して焼結層を形成し、三次元形状造形物を得る金属光造形用金属粉末として、「鉄系粉末」と、「ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる1種類以上の粉末」が混合された粉末の製造方法が提案されている。(特許文献1参照。)。 In addition, as an additive manufacturing method using a metal deposition method (directed energy deposition method), for example, a powder layer made of metal powder is irradiated with a light beam to form a sintered layer to obtain a three-dimensional shaped object. A method for producing a powder in which "iron-based powder" and "one or more types of powder selected from the group consisting of nickel, nickel-based alloy, copper, copper-based alloy, and graphite" are mixed as metal powder for stereolithography. Proposed. (See Patent Document 1.).

このような金属積層造形においては、粉末を高い充填性で敷き詰めるために、粉末の流動性が重要とされる。こうした粉末の流動性を高める手段として、粉末の円形度を高める方法が最もよく知られている。 In such metal additive manufacturing, fluidity of powder is important in order to spread the powder with high filling properties. The most well-known method for improving the fluidity of such powders is to increase the circularity of the powder.

また、合金粉末(たとえばニッケル合金のInconel(登録商標)718の粉末)の表面に、処理剤として100ppm未満の微量のフュームドシリカあるいはナノカーボンを乾燥混合することにより付着させて、流動性を改善する方法が提案されている(特許文献2参照)。 In addition, a trace amount of fumed silica or nanocarbon (less than 100 ppm) is attached to the surface of the alloy powder (for example, nickel alloy Inconel (registered trademark) 718 powder) as a treatment agent by dry mixing to improve fluidity. A method has been proposed (see Patent Document 2).

もっとも、この提案では、微量に混合付着させることで流動性を改善することを狙うことに留まるものであって、粉末の配合率に影響させることは望ましいこととされていないことから、積極的にそれ以上に得られた造形体の特性を改善することは意図されていなかった。 However, this proposal only aims to improve fluidity by mixing and adhering a small amount of powder, and it is not desirable to affect the blending ratio of powder, so it is not desirable to actively It was not intended to further improve the properties of the shaped body obtained.

特開2008-81840号公報Japanese Patent Application Publication No. 2008-81840 特許第6716205号公報Patent No. 6716205

本発明の解決しようとする課題は、高温強度と耐割れ性に優れた金属積層造形用の粉末を提供すること、この積層造形用粉末を用いて作製された高温強度に優れた積層造形物を提供することである。 The problem to be solved by the present invention is to provide a powder for metal additive manufacturing that has excellent high-temperature strength and cracking resistance, and to provide an additively-produced article that has excellent high-temperature strength using this powder for additive manufacturing. It is to provide.

本発明の課題を解決するための第1の手段は、化学成分中に少なくともAiとTiの1種または2種を0.5質量% ≦Al+1/2Ti≦2.8質量%の範囲で含有しているNi基合金粉末と、当該Ni基合金粉末の表面に付着している酸化物ナノ粒子とからなる、積層造形用混合粉末である。
なお、酸化物ナノ粒子とは酸化物の粉末であり、大きさが1μm以下の粉末のことである。
A first means for solving the problems of the present invention is to contain at least one or both of Ai and Ti in the range of 0.5% by mass ≦Al+1/2Ti≦2.8% by mass. This is a mixed powder for additive manufacturing, which is composed of a Ni-based alloy powder containing a nickel-based alloy, and oxide nanoparticles attached to the surface of the Ni-based alloy powder.
Note that oxide nanoparticles are oxide powders and have a size of 1 μm or less.

その第2の手段は、前記酸化物ナノ粒子の付着量は、積層造形用混合粉末の0.2~1.5質量%であること、を特徴とする第1の手段に記載の積層造形用混合粉末である。 The second means is for additive manufacturing according to the first means, characterized in that the amount of the oxide nanoparticles attached is 0.2 to 1.5% by mass of the mixed powder for additive manufacturing. It is a mixed powder.

その第3の手段は、Ni基合金粉末の表面に酸化物ナノ粒子が付着している積層造形用混合粉末を用いて積層造形された積層造形体であって、Ni基合金粉末はその化学成分中に少なくともAiとTiの1種または2種を0.5質量% ≦Al+1/2Ti≦2.8質量%の範囲で含有しており、また酸化物ナノ粒子の付着量は積層造形用混合粉末に対して0.2~1.5質量%であることを特徴とする、積層造形用混合粉末を用いて積層造形されたNi基合金からなる積層造形体である。 The third means is an additively manufactured object that is additively manufactured using a mixed powder for additive manufacturing in which oxide nanoparticles are attached to the surface of Ni-based alloy powder, and the Ni-based alloy powder is a chemical component of the powder. It contains at least one or both of Ai and Ti in the range of 0.5% by mass ≦Al+1/2Ti≦2.8% by mass, and the amount of oxide nanoparticles attached is equal to that of mixed powder for additive manufacturing. This is an additively manufactured body made of a Ni-based alloy that is additively manufactured using a mixed powder for additive manufacturing, characterized in that the content is 0.2 to 1.5% by mass.

その第4の手段は、関係式0.5質量% ≦Al+1/2Ti≦2.8質量%を満足する範囲でAl及びTiを含有し、酸化物が0.2~1.5質量%含有されている、Ni基合金の積層造形体である。 The fourth means contains Al and Ti in a range that satisfies the relational expression 0.5% by mass ≦Al+1/2Ti≦2.8% by mass, and contains 0.2 to 1.5% by mass of oxides. This is a layered product made of a Ni-based alloy.

前記酸化物ナノ粒子の一次粒子径は、1~100nmの範囲内にあることが好ましい。 The primary particle diameter of the oxide nanoparticles is preferably within the range of 1 to 100 nm.

前記酸化物ナノ粒子は、有機物による表面処理がされていないことが望ましい。 It is desirable that the oxide nanoparticles are not surface-treated with an organic substance.

前記酸化物ナノ粒子は、Y23、ThO2、Al23、TiO2、SiO2のいずれかで
あることが好ましく、より好ましくはY23、A22O3であり、さらに好ましくはY23である。
The oxide nanoparticles are preferably Y 2 O 3 , ThO 2 , Al 2 O 3 , TiO 2 , or SiO 2 , more preferably Y 2 O 3 or A 2 2O 3 , and further Preferably it is Y2O3 .

本発明の手段の積層造形用混合粉末を用いて積層造形すると、造形体中に酸化物が微細分散されることで優れた高温強度を示す積層造形体が得られる。 When the mixed powder for additive manufacturing of the means of the present invention is used for additive manufacturing, the oxide is finely dispersed in the shaped product, so that a additively manufactured product exhibiting excellent high-temperature strength can be obtained.

酸化物ナノ粒子を金属粉末表面に混合付着させることで、金属粉末粒子と金属粉末粒子の間に酸化物ナノ粒子が位置し、その結果金属粉末粒子同士が直接接触しなくなってこれらの粒子間に働く付着力が低減するので、本発明の積層造形用混合粉末では、合金粉末材料の流動性を向上させることができる。 By mixing and adhering oxide nanoparticles to the metal powder surface, the oxide nanoparticles are located between the metal powder particles, and as a result, the metal powder particles are no longer in direct contact with each other and there is a gap between these particles. Since the acting adhesive force is reduced, the mixed powder for additive manufacturing of the present invention can improve the fluidity of the alloy powder material.

Ni合金粉末中のAlとTiの化学成分は、Al+1/2Tiの値が0.5質量%より小さいと高温強度が足りず、Al+1/2Tiの値が2.8質量%より大きいと凝固割れが起こり試験片の強度が低下する。本発明では、Ni基合金粉末におけるAl+1/2Tiを0.5~2.8質量%とすることで、その表面に酸化物ナノ粒子が付着した混合粉末を積層造形した際に、この混合粉末を用いて積層造形された積層造形体は、粒子分散強化と相俟って高温強度を備えつつも、凝固割れによる強度低下は抑制されている。 Regarding the chemical composition of Al and Ti in the Ni alloy powder, if the value of Al+1/2Ti is less than 0.5% by mass, high temperature strength is insufficient, and if the value of Al+1/2Ti is greater than 2.8% by mass, solidification cracking occurs. This occurs and the strength of the test piece decreases. In the present invention, by setting Al+1/2Ti in the Ni-based alloy powder to 0.5 to 2.8% by mass, when the mixed powder with oxide nanoparticles attached to its surface is additively manufactured, this mixed powder can be The laminate-produced body produced by using this method has high-temperature strength due to particle dispersion strengthening, while suppressing a decrease in strength due to solidification cracking.

[供試材のベースとなるNi基合金アトマイズ粉末の作製]
本発明の実施例No.1~5及び比較例No.6~10に用いたベース粉末のNi基合金粉末は、表1、表2に記載の化学成分からなっており、これら粉末はガスアトマイズ法により作製した。ガスアトマイズは、真空中にてアルミナ製坩堝で所定の配分となるよう配合した原料を高周波誘導加熱で溶解し、坩堝下の直径約5mmのノズルから溶融した合金を落下させ、これに高圧アルゴンまたは高圧窒素をガス噴霧することで粉末を得た。
[Preparation of Ni-based alloy atomized powder that will be the base of the sample material]
Example No. of the present invention. 1 to 5 and Comparative Example No. The Ni-based alloy powder used as the base powder in Examples 6 to 10 had the chemical components listed in Tables 1 and 2, and these powders were produced by a gas atomization method. Gas atomization involves melting raw materials mixed in a predetermined proportion in an alumina crucible in a vacuum using high-frequency induction heating, dropping the molten alloy from a nozzle with a diameter of approximately 5 mm under the crucible, and then injecting high-pressure argon or high-pressure A powder was obtained by gas atomization with nitrogen.

また、得られたNi基合金粉末の平均粒径D50(μm)と、球形度を表5,表6に示す。ここでいう平均粒径は体積平均である。 Furthermore, the average particle diameter D 50 (μm) and sphericity of the obtained Ni-based alloy powder are shown in Tables 5 and 6. The average particle size here is a volume average.

Figure 2024004378000001
Figure 2024004378000001

Figure 2024004378000002
Figure 2024004378000002

[Al+1/2Ti:0.5~2.8質量%]
Ni基合金粉末中におけるAl+1/2Tiが0.5質量%より小さいと高温強度が足りず、Al+1/2Tiが2.8質量%より大きいと凝固割れが起こり試験片の強度が低下する。固液共存域が広くなるほど凝固割れしやすくなるからである。そこで、本発明では、Al+1/2Tiを0.5~2.8質量%とすることで、この混合粉末を用いて積層造形した積層造形体は、粒子分散強化と相俟って高温強度を備えつつも、凝固割れによる強度低下が抑制されている。
[Al+1/2Ti: 0.5 to 2.8% by mass]
If Al+1/2Ti in the Ni-based alloy powder is less than 0.5% by mass, high temperature strength is insufficient, and if Al+1/2Ti is greater than 2.8% by mass, solidification cracking occurs and the strength of the test piece decreases. This is because the wider the solid-liquid coexistence region, the more likely solidification cracking will occur. Therefore, in the present invention, by setting Al+1/2Ti to 0.5 to 2.8% by mass, the laminate manufactured using this mixed powder has high temperature strength in combination with particle dispersion strengthening. However, the decrease in strength due to solidification cracking is suppressed.

[金属粉末の形態]
Ni基合金粉末のサイズ:2μm≦D50≦150μm
合金粉末のサイズが2μm未満であると、過度の微粉化により粉末の流動性が著しく低下すること、他方、150μmを超えると粉末の充填率が低下し、造形体の密度が低下することから、合金粉末のサイズは2μm≦D50≦150μmとすることが好ましい。
[Form of metal powder]
Size of Ni-based alloy powder: 2 μm≦D 50 ≦150 μm
If the size of the alloy powder is less than 2 μm, the fluidity of the powder will decrease significantly due to excessive pulverization, while if it exceeds 150 μm, the filling rate of the powder will decrease and the density of the shaped object will decrease. The size of the alloy powder is preferably 2 μm≦D 50 ≦150 μm.

[D50の測定方法]
平均粒子径D50の測定は、粉末の全体積が100%とされて、累積カーブが求められる。このカーブ上の、累積体積が50%である点の粒子径が、D50である。粒子直径D50は、レーザー回折散乱法によって測定される。この測定に適した装置として、日機装社のレーザー回折・散乱式粒子径分布測定装置「マイクロトラックMT3000」が挙げられる。この装置のセル内に、粉末が純水と共に流し込まれ、粒子の光散乱情報に基づいて、粒子径が検出される。
[Method of measuring D50 ]
When measuring the average particle diameter D 50 , the total volume of the powder is assumed to be 100%, and a cumulative curve is determined. The particle diameter at the point on this curve where the cumulative volume is 50% is D50 . The particle diameter D 50 is determined by laser diffraction scattering. An example of an apparatus suitable for this measurement is Nikkiso Co.'s laser diffraction/scattering particle size distribution measuring apparatus "Microtrac MT3000." Powder is poured into the cell of this device together with pure water, and the particle size is detected based on light scattering information of the particles.

[粉末の球形度]
粉末の球形度は、0.80以上0.95以下が好ましい。球形度が0.80以上である粉末は、流動性に優れる。この観点から、球形度は0.83以上がより好ましく、0.85以上が特に好ましい。球形度が0.95以下である粉末では、レーザーの反射が抑制されうる。この観点から、球形度は0.93以下がより好ましく、0.90以下が特に好ましい。
[Sphericity of powder]
The sphericity of the powder is preferably 0.80 or more and 0.95 or less. Powder having a sphericity of 0.80 or more has excellent fluidity. From this viewpoint, the sphericity is more preferably 0.83 or more, particularly preferably 0.85 or more. Powder having a sphericity of 0.95 or less can suppress laser reflection. From this viewpoint, the sphericity is more preferably 0.93 or less, particularly preferably 0.90 or less.

球形度の測定では、粉末が樹脂に埋め込まれた試験片が準備される。この試験片が鏡面研磨に供され、研磨面が光学顕微鏡で観察される。顕微鏡の倍率は、100倍である。無作為に抽出された20個の粒子について画像解析がなされ、この粒子の球形度が測定される。20個の測定値の平均が、粉末の球形度である。球形度は、粉末1粒子の最大長と、最大長に対して垂直方向における長さの割合を意味している。 To measure sphericity, a specimen is prepared in which powder is embedded in resin. This test piece is subjected to mirror polishing, and the polished surface is observed with an optical microscope. The magnification of the microscope is 100x. Image analysis is performed on 20 randomly selected particles, and the sphericity of these particles is measured. The average of 20 measurements is the sphericity of the powder. Sphericity refers to the maximum length of one powder particle and the ratio of the length in the direction perpendicular to the maximum length.

[酸化物ナノ粒子について]
そして、実施例及び比較例では、それぞれ表3,表4に記載の成分の酸化物ナノ粒子を用いた。酸化物ナノ粒子は、CIKナノテック株式会社のY23ナノ粒子(平均粒子径29nm)、Al23ナノ粒子(平均粒子径34nm)、SiO2ナノ粒子(平均粒子径45nm)を使用した。
なお、酸化物は、基本的にNiが溶融する温度域1300-1400℃においても、Ni基合金とほぼ反応することなく安定に酸化物として残存するため、固液共存域に影響を与えない。固液共存域の広さが大きくなれば凝固割れを起こしやすくなるが、酸化物はこうした影響をもたらしにくいといえる。
[About oxide nanoparticles]
In Examples and Comparative Examples, oxide nanoparticles having the components listed in Tables 3 and 4 were used, respectively. The oxide nanoparticles used were Y 2 O 3 nanoparticles (average particle diameter 29 nm), Al 2 O 3 nanoparticles (average particle diameter 34 nm), and SiO 2 nanoparticles (average particle diameter 45 nm) manufactured by CIK Nanotech Co., Ltd. .
Note that even in the temperature range of 1300 to 1400° C. where Ni basically melts, the oxide remains stably as an oxide without substantially reacting with the Ni-based alloy, so it does not affect the solid-liquid coexistence region. As the solid-liquid coexistence area increases, solidification cracking becomes more likely to occur, but it can be said that oxides are less likely to cause this effect.

[酸化物ナノ粒子の形態]
酸化物ナノ粒子のサイズ:好ましくは一次粒子径で1~100nm
酸化物ナノ粒子としては、一次粒子径が1~100nmのサイズが好適である。粒径が小さいほど、積層造形された際の粒子分散強化(ODS)の効果が大きくなるので、酸化物ナノ粒子のサイズは、より好ましくは1~50nm、さらにより好ましくは1~30nmである。なお、酸化物ナノ粒子を付着させた混合粉末における一次粒子径は、混合前の酸化物ナノ粒子の一次粒子径と同様であり、一次粒子径は、ガス吸着法による比表面積測定に基づいて決定することができる。
[Form of oxide nanoparticles]
Size of oxide nanoparticles: preferably 1 to 100 nm in primary particle diameter
The oxide nanoparticles preferably have a primary particle size of 1 to 100 nm. The smaller the particle size, the greater the effect of particle dispersion enhancement (ODS) during additive manufacturing, so the size of the oxide nanoparticles is more preferably 1 to 50 nm, even more preferably 1 to 30 nm. The primary particle size of the mixed powder to which the oxide nanoparticles are attached is the same as the primary particle size of the oxide nanoparticles before mixing, and the primary particle size is determined based on specific surface area measurement using a gas adsorption method. can do.

Figure 2024004378000003
Figure 2024004378000003

Figure 2024004378000004
Figure 2024004378000004

[金属粉末と酸化物ナノ粒子の混合]
表面に酸化物ナノ粒子が付着した混合粉末の作製のために、V型混合機を用いて機械的に混合した。粉末の混合は、金属粉末の表面に付着させる目的の範囲で、タンブラーミキサー、ボールミキサー、その他の道具によっても混合することができる。また、容器に入れて手作業で混合することも可能である。
[Mixture of metal powder and oxide nanoparticles]
To prepare a mixed powder with oxide nanoparticles attached to the surface, mechanical mixing was performed using a V-type mixer. The powders can also be mixed using a tumbler mixer, a ball mixer, or other tools for the purpose of adhering to the surface of the metal powder. It is also possible to mix manually in a container.

[未付着酸化物ナノ粒子の除去]
これらの混合作業を経ても、金属粉末粒子に付着しないままの酸化物ナノ粒子が残存することがある。酸化物ナノ粒子は数μmから数百μmのサイズである。そこで、それらの未付着の酸化物ナノ粒子を、篩分級によって除去した。この除去工程を経ることで、より適切な混合粉末材料を得ることができる。
[Removal of unattached oxide nanoparticles]
Even after these mixing operations, oxide nanoparticles that are not attached to the metal powder particles may remain. Oxide nanoparticles range in size from a few μm to several hundred μm. Therefore, those unattached oxide nanoparticles were removed by sieve classification. Through this removal step, a more suitable mixed powder material can be obtained.

[酸化物ナノ粒子添加量:0.2~1.5%]
本発明の合金粉末への酸化物ナノ粒子の添加量としては、質量%で0.2~1.5%であれば適用できる。0.1%未満だと粒子分散強化(ODS)の効果が十分に得られない。1.5%以上だと、酸化物凝集部が発生しやすくなり、強度が低下する。ナノ粒子添加量は好ましくは0.2~1.5%であり、さらに好ましくは0.25~1.0%である。
[Amount of oxide nanoparticles added: 0.2 to 1.5%]
The amount of oxide nanoparticles added to the alloy powder of the present invention may be 0.2 to 1.5% by mass. If it is less than 0.1%, the effect of particle dispersion strengthening (ODS) cannot be sufficiently obtained. When it is 1.5% or more, oxide agglomerates are likely to occur, resulting in a decrease in strength. The amount of nanoparticles added is preferably 0.2 to 1.5%, more preferably 0.25 to 1.0%.

以上の手順で、表1、表2に示す実施例No.1~5及び比較例No.6~10の成分組成のNi基合金に、表3,4の酸化物ナノ粒子が付着した積層造形用混合粉末を作製した。 With the above procedure, Example No. 1 shown in Tables 1 and 2. 1 to 5 and Comparative Example No. A mixed powder for additive manufacturing was prepared in which the oxide nanoparticles shown in Tables 3 and 4 were attached to a Ni-based alloy having a component composition of 6 to 10.

[金属積層造形による引張、ラプチャー試験片の作製]
上記処理を経て表面にナノ粒子を付着させた実施例No.1~5、比較例No.6~10の積層造形用混合粉末を用いて、レーザー粉末焼結積層造形(SLM)方式で金属積層造形することで、引張試験片および、ラプチャー試験片を作製した。
[Preparation of tensile and rupture test pieces by metal additive manufacturing]
Example No. 1, in which nanoparticles were attached to the surface through the above treatment. 1 to 5, Comparative Example No. A tensile test piece and a rupture test piece were produced by metal additive manufacturing using a laser powder sintering additive manufacturing (SLM) method using mixed powders for additive manufacturing of Nos. 6 to 10.

なお、本発明の粉末を用いた積層造形方法はこれらの手法に限定されるものではなく、バインダジェット方式、電子ビーム粉末焼結積層造形(EBM)方式や、レーザーデポジション方式でも積層造形することができる。 Note that the additive manufacturing method using the powder of the present invention is not limited to these methods, and additive manufacturing can also be performed using a binder jet method, an electron beam powder sintering additive manufacturing (EBM) method, or a laser deposition method. Can be done.

[造形体の熱処理]
得られた造形体は、溶体化熱処理として、1000℃×1時間の溶体化焼きなまし後に、空冷を行った。
[Heat treatment of shaped object]
The obtained shaped body was solution annealed at 1000° C. for 1 hour as solution heat treatment, and then air cooled.

[ハウスナー比]
ハウスナー比は、タップ密度/見かけ密度で定義される指標である。このハウスナー比が低いほど、流動性に優れた粉末である。
タップ密度は、約50gの粉末を、容積100cm3のシリンダーに充填し、落下高さ10mm、タップ回数200回の時の充填密度で評価した。
[Hausner ratio]
The Hausner ratio is an index defined by tap density/apparent density. The lower the Hausner ratio, the better the fluidity of the powder.
The tap density was evaluated based on the filling density when approximately 50 g of powder was filled into a cylinder with a volume of 100 cm 3 , the falling height was 10 mm, and the number of taps was 200.

[ラプチャー試験]
平行部が直径6mmのクリープラプチャー試験片を作製し、650℃、760℃でラプチャー試験(破断試験)を行い、1000hにおける破断強度を算出した。この1000hにおける破断強度を、高温材料におけるクリープ特性を表すための指標とする。
具体的には、負荷応力を一定とした破断試験における破断時間を計測する、といった手順を、負荷応力の条件を変えつつ複数計測する。それらの測定結果を、負荷応力とこれに対するラプチャー破断時間との関係のグラフ上にプロットして示し、それらの結果に基づいて1000hにおいて破断するであろう応力を読み取り、1000hにおける破断強度として算出した。
[Rupture test]
A creep rupture test piece with a parallel portion having a diameter of 6 mm was prepared, a rupture test (rupture test) was performed at 650°C and 760°C, and the breaking strength at 1000 hours was calculated. This breaking strength at 1000 hours is used as an index to express the creep characteristics of the high-temperature material.
Specifically, multiple measurements are performed while varying the conditions of the applied stress, such as measuring the rupture time in a rupture test with a constant applied stress. The measurement results were plotted and shown on a graph of the relationship between the applied stress and the rupture rupture time, and based on those results, the stress that would cause rupture in 1000 hours was read and calculated as the rupture strength in 1000 hours. .

[0.2%耐力]
得られた造形体を試験片として、JISZ2241に準ずる試験法にて引張試験を実施した。0.2%耐力の算出方法は、応力-ひずみ関係における弾性であると判断される任意の点の傾き(弾性率)を決定し直線を引き、この決定した直線を0.2%ひずみまでオフセットし、オフセットした直線と応力-ひずみ関係の交点を0.2%耐力とした。
[0.2% proof stress]
Using the obtained shaped body as a test piece, a tensile test was conducted using a test method according to JIS Z2241. The method for calculating 0.2% proof stress is to determine the slope (modulus of elasticity) of any point that is judged to be elastic in the stress-strain relationship, draw a straight line, and offset this determined straight line to 0.2% strain. The intersection of the offset straight line and the stress-strain relationship was defined as 0.2% yield strength.

表5、表6に、実施例No.1~5及び比較例No.6~10の混合粉末を用いた積層造形体の特性を示す。 Tables 5 and 6 show Example No. 1 to 5 and Comparative Example No. The characteristics of a layered product using mixed powders of 6 to 10 are shown.

Figure 2024004378000005
Figure 2024004378000005

Figure 2024004378000006
Figure 2024004378000006

実施例No.1~5のNi基合金の積層造形用混合粉末は、ベースのNi基合金粉末のAl+1/2Tiが0.5~2.8質量%であって、混合粉末に対して酸化物ナノ粒子は0.2~1.5質量%含有されている。すると、ハウスナー比は1.14以下と低く、またベースのNi基合金粉末の球形度も高くD50も適切な範囲であることから、混合粉末も流動性に優れた粉末である。さらに、これらの混合粉末を用いて得られた積層造形体は、凝固割れも抑制されており、耐力、破断強度の結果が示すとおり高温強度に優れている。酸化物ナノ粒子が適切な量付着しているので、粒子分散強化の効果が大きく得られており、流動性に留まらず高温強度の向上に寄与している。 Example No. The mixed powders for additive manufacturing of Ni-based alloys 1 to 5 contain 0.5 to 2.8% by mass of Al+1/2Ti in the base Ni-based alloy powder, and 0 oxide nanoparticles to the mixed powder. It is contained in an amount of .2 to 1.5% by mass. As a result, the Hausner ratio is as low as 1.14 or less, and the sphericity of the base Ni-based alloy powder is high and the D 50 is within an appropriate range, so the mixed powder is also a powder with excellent fluidity. Furthermore, the laminate-molded body obtained using these mixed powders has suppressed solidification cracking and has excellent high-temperature strength as shown by the results of yield strength and breaking strength. Since an appropriate amount of oxide nanoparticles are attached, a large effect of particle dispersion reinforcement is obtained, which contributes not only to fluidity but also to improvement of high temperature strength.

比較例6では、Al+1/2Tiの量が過少であり、高温強度が低くなった。
比較例7では、Al+1/2Tiの量が過多であり、凝固割れが起こり高温強度が低くなった。
比較例8では、酸化物ナノ粒子の量が過少であり、高温強度低いものとなった。
比較例9では、酸化物ナノ粒子の量が過多であり、レーザ照射時にスパッタが発生して、造形体の空孔が増えるので、高温強度が低くなった。
比較例10では、酸化物ナノ粒子が添加されておらず、高温強度が低いものとなっていることに加えて、ハウスナー比が高く流動性に劣るものとなった。
In Comparative Example 6, the amount of Al+1/2Ti was too small, resulting in low high temperature strength.
In Comparative Example 7, the amount of Al+1/2Ti was too large, causing solidification cracking and low high temperature strength.
In Comparative Example 8, the amount of oxide nanoparticles was too small, resulting in low high-temperature strength.
In Comparative Example 9, the amount of oxide nanoparticles was excessive, and sputtering occurred during laser irradiation, increasing the number of pores in the shaped body, resulting in low high-temperature strength.
In Comparative Example 10, no oxide nanoparticles were added, and in addition to the high-temperature strength being low, the Hausner ratio was high and the fluidity was poor.

本発明の粉末は、パウダーベッド方式、デポジション方式、電子ビーム方式、バインダジェット方式の積層造形向けの金属粉末に適している。また、この混合粉末を積層造形することで得られる積層造形体は耐熱部品に適している。 The powder of the present invention is suitable as a metal powder for additive manufacturing using a powder bed method, a deposition method, an electron beam method, or a binder jet method. Moreover, the laminate-molded body obtained by layer-manufacturing this mixed powder is suitable for heat-resistant parts.

Claims (4)

化学成分中に少なくともAiとTiの1種または2種を0.5質量% ≦Al+1/2Ti≦2.8質量%の範囲で含有しているNi基合金粉末と、当該Ni基合金粉末の表面に付着している酸化物ナノ粒子とからなる、積層造形用混合粉末。 Ni-based alloy powder containing at least one or both of Ai and Ti in the chemical composition in the range of 0.5% by mass ≦Al+1/2Ti≦2.8% by mass, and the surface of the Ni-based alloy powder. A mixed powder for additive manufacturing consisting of oxide nanoparticles attached to. 前記酸化物ナノ粒子の付着量は、積層造形用混合粉末の0.2~1.5質量%であること、を特徴とする請求項1に記載の積層造形用混合粉末。 The mixed powder for additive manufacturing according to claim 1, wherein the amount of the oxide nanoparticles attached is 0.2 to 1.5% by mass of the mixed powder for additive manufacturing. Ni基合金粉末の表面に酸化物ナノ粒子が付着している積層造形用混合粉末を用いて積層造形された積層造形体であって、Ni基合金粉末はその化学成分中に少なくともAiとTiの1種または2種を0.5質量% ≦Al+1/2Ti≦2.8質量%の範囲で含有しており、また酸化物ナノ粒子の付着量は積層造形用混合粉末に対して0.2~1.5質量%であることを特徴とする、積層造形用混合粉末を用いて積層造形されたNi基合金からなる積層造形体。 This is an additively manufactured object that is additively manufactured using a mixed powder for additive manufacturing in which oxide nanoparticles are attached to the surface of Ni-based alloy powder, and the Ni-based alloy powder contains at least Ai and Ti in its chemical components. It contains one or two types in the range of 0.5% by mass ≦Al+1/2Ti≦2.8% by mass, and the amount of oxide nanoparticles attached is 0.2 to 0.2% to the mixed powder for additive manufacturing. A laminate-manufactured body made of a Ni-based alloy that is additive-manufactured using a mixed powder for additive manufacturing, characterized in that the content is 1.5% by mass. 関係式0.5質量% ≦Al+1/2Ti≦2.8質量%を満足する範囲でAl及びTiを含有し、酸化物が0.2~1.5質量%含有されている、Ni基合金の積層造形体。 A Ni-based alloy containing Al and Ti within a range that satisfies the relational expression 0.5% by mass ≦Al+1/2Ti≦2.8% by mass and 0.2 to 1.5% by mass of oxides. Laminated object.
JP2022104016A 2022-06-28 2022-06-28 OXIDE NANOPARTICLE MIXED Ni-BASED ALLOY POWDER FOR ADDITIVE MANUFACTURING AND ADDITIVE MANUFACTURED BODY Pending JP2024004378A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022104016A JP2024004378A (en) 2022-06-28 2022-06-28 OXIDE NANOPARTICLE MIXED Ni-BASED ALLOY POWDER FOR ADDITIVE MANUFACTURING AND ADDITIVE MANUFACTURED BODY
PCT/JP2023/021285 WO2024004563A1 (en) 2022-06-28 2023-06-08 Nickel-based alloy powder for lamination molding and lamination molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022104016A JP2024004378A (en) 2022-06-28 2022-06-28 OXIDE NANOPARTICLE MIXED Ni-BASED ALLOY POWDER FOR ADDITIVE MANUFACTURING AND ADDITIVE MANUFACTURED BODY

Publications (1)

Publication Number Publication Date
JP2024004378A true JP2024004378A (en) 2024-01-16

Family

ID=89382821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022104016A Pending JP2024004378A (en) 2022-06-28 2022-06-28 OXIDE NANOPARTICLE MIXED Ni-BASED ALLOY POWDER FOR ADDITIVE MANUFACTURING AND ADDITIVE MANUFACTURED BODY

Country Status (2)

Country Link
JP (1) JP2024004378A (en)
WO (1) WO2024004563A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290388B (en) * 2014-07-04 2020-04-07 通用电气公司 Powder treatment method and correspondingly treated powder
GB2565063B (en) * 2017-07-28 2020-05-27 Oxmet Tech Limited A nickel-based alloy
US20200399744A1 (en) * 2019-06-21 2020-12-24 United States Of America As Represented By The Administrator Of Nasa Additively manufactured oxide dispersion strengthened medium entropy alloys for high temperature applications
US20210260651A1 (en) * 2020-02-21 2021-08-26 General Electric Company Methods of manufacturing dispersion strengthened materials
CN111230098B (en) * 2020-03-18 2021-07-13 北京大学 Metal-based nano composite powder material, preparation method and application thereof

Also Published As

Publication number Publication date
WO2024004563A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
JP6482092B2 (en) Copper alloy manufacturing method and copper alloy
CN111712337B (en) Cu-based alloy powder
TW201610187A (en) Process for producing a component of a metal alloy with an amorphous phase
JP2009054615A (en) Powder magnetic core, and manufacturing method thereof
TW201917224A (en) Crystalline fe-based alloy powder and method of producing the same
JP2021031691A (en) Cu alloy powder
WO2021015119A1 (en) Cu-based alloy powder
JP7176219B2 (en) Metal powder material and method for producing metal powder material
JP7425634B2 (en) Cu-based alloy powder
JP2024004378A (en) OXIDE NANOPARTICLE MIXED Ni-BASED ALLOY POWDER FOR ADDITIVE MANUFACTURING AND ADDITIVE MANUFACTURED BODY
JP7294141B2 (en) Spherical Ti-based powder and method for producing the same
WO2022215468A1 (en) Copper alloy powder for additive manufacturing having excellent electrical conductivity
WO2019123989A1 (en) Powder material, powder material for additive manufacturing, and method for producing powder material
JP7425617B2 (en) Coated Cu-based alloy powder
JP2022122462A (en) Carbon-fixed carbon steel powder
WO2023100920A1 (en) 3d printing alloy powder material comprising oxide nanoparticles, and 3d printed body
JP2023012810A (en) Copper-based powder, method for producing the same, and method for producing stereolithographic molding using copper-based powder
WO2023063018A1 (en) Copper alloy powder for three-dimensional laminate molding, having excellent moldability and conductivity
JP2022122461A (en) Fe-BASED ALLOY POWDER FOR ADDITIVE MANUFACTURING AND ADDITIVE-MANUFACTURED ARTICLE
WO2022138233A1 (en) Copper alloy powder for additive manufacturing and method for evaluating said copper alloy powder, method for producing copper alloy additively-manufactured article, and copper alloy additively-manufactured article
US20230323513A1 (en) Ni-BASED ALLOY POWDER AND METHOD FOR MANUFACTURING LAMINATION MOLDED ARTICLE USING SAID Ni-BASED ALLOY POWDER
KR20130000470A (en) Magnesium material having improved mechanical properties and corrosion-resistance
JP2023024164A (en) Copper alloy molding having excellent electrical conductivity
JP2022148950A (en) METHOD FOR PRODUCING MOLDED ARTICLE INCLUDING Fe-BASED ALLOY POWDER
JP2022022667A (en) Shaping metal powder, and method for manufacturing the same