WO2023063018A1 - Copper alloy powder for three-dimensional laminate molding, having excellent moldability and conductivity - Google Patents

Copper alloy powder for three-dimensional laminate molding, having excellent moldability and conductivity Download PDF

Info

Publication number
WO2023063018A1
WO2023063018A1 PCT/JP2022/034633 JP2022034633W WO2023063018A1 WO 2023063018 A1 WO2023063018 A1 WO 2023063018A1 JP 2022034633 W JP2022034633 W JP 2022034633W WO 2023063018 A1 WO2023063018 A1 WO 2023063018A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
alloy powder
powder
atomic
copper
Prior art date
Application number
PCT/JP2022/034633
Other languages
French (fr)
Japanese (ja)
Inventor
将啓 坂田
芳和 相川
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Publication of WO2023063018A1 publication Critical patent/WO2023063018A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a copper alloy powder suitable for processes involving rapid melting, rapid cooling and solidification, such as three-dimensional additive manufacturing, thermal spraying, laser coating, and overlaying.
  • the present invention relates to a copper alloy powder suitable for additive manufacturing using a powder bed method (powder bed fusion bonding method).
  • 3D printers are beginning to be used to manufacture objects made of metal.
  • This 3D printer manufactures a modeled object by the additive manufacturing method.
  • Typical methods of this three-dimensional additive manufacturing method include a powder bed method (powder bed fusion bonding method) and a metal deposition method (directed energy deposition method).
  • irradiated portions of the spread powder are melted and solidified by irradiation with a laser beam or an electron beam. This melting and solidification binds the powder particles together.
  • the irradiation is selectively applied to a portion of the metal powder, the non-irradiated portion does not melt, and a bonding layer is formed only on the irradiated portion.
  • New metal powder is spread over the formed bonding layer, and the metal powder is irradiated with a laser beam or an electron beam. The irradiation then melts and solidifies the metal particles to form a new bonding layer.
  • the new tie layer is also bonded to the existing tie layer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-81840 discloses a powder bed type additive manufacturing method. Specifically, a powder layer forming step of laying metal powder for metal stereolithography, and Disclosed is a method for manufacturing a three-dimensional modeled object by forming a sintered layer by repeating a sintered layer forming step of irradiating a beam to form a sintered layer and a removing step of cutting the surface of the modeled object. It is In this method, a mixture of iron-based powder and one or more powders selected from the group consisting of nickel, nickel-based alloys, copper, copper-based alloys, and graphite is used as the metal powder for metal stereolithography. It is a mixture of iron-based powder and one or more powders selected from the group consisting of nickel, nickel-based alloys, copper, copper-based alloys, and graphite is used as the metal powder for metal stereolithography. It is a mixture of iron-based powder and one or more powders selected from the group consisting
  • Patent Document 2 proposes a copper alloy powder for additive manufacturing containing an additive element having a solid solution amount in copper of less than 0.2 at %. This proposal is intended to obtain mechanical strength while reducing the decrease in electrical conductivity due to solid solubility in copper by using an additive element that has a low solid solubility in copper. Based on this, an element that is difficult to form a solid solution in copper under equilibrium conditions is added in a non-solubilized form.
  • the additive manufacturing method is a process of forming a modeled object by irradiating it with an electron beam or laser, and energy absorption by metal powder is an important factor in modeling.
  • the lower the laser light reflectance with respect to the laser wavelength to be irradiated the easier the energy absorption becomes, and the more efficient the molding can be performed.
  • adding an additive element to copper not only reduces the laser light reflectance and facilitates modeling, but also selects an additive element that has a small solid solubility limit in copper. It has been found that a copper alloy having excellent electrical conductivity and strength can be obtained by facilitating the removal of additive elements as precipitates in the heat treatment of . Furthermore, focusing on the ratio of the forced solid solution amount of the additive element to copper and the solid solubility limit, a copper alloy with a high density and excellent conductivity is found in the range of the solid solubility limit greater than 0 atomic % and 1 atomic % or less. I have found the conditions.
  • An object of the present invention is to provide a copper alloy powder that is suitable for processes involving rapid melting, rapid cooling and solidification, such as additive manufacturing, and that can be used to produce high-density, high-conductivity molded objects.
  • the present inventors have found that when copper alloy powder is produced by a rapid solidification process such as gas atomization, the additive element is forced to dissolve into the copper alloy powder beyond the solid solubility limit as shown in the phase diagram. We have obtained the knowledge that the phenomenon can be seen. Based on this knowledge, the authors measured the forced solid solution amount in an actual copper alloy powder and paid attention to the relationship between the ratio and the solid solubility limit. In addition, in order to clearly distinguish whether the additive element is in a solid solution state or a precipitated state, rather than simply evaluating the content of the powder, the amount of forced solid solution is captured and analyzed while observing the structure. bottom.
  • the ratio (B / A ) is defined within a predetermined range, and the product (XY) of the oxygen content X (mass%) and the laser light absorption rate Y (%) at a wavelength of 1064 nm is defined within a predetermined range, resulting in a high density and high It was found that a copper alloy powder capable of producing a shaped article having electrical conductivity can be provided.
  • a copper alloy powder for three-dimensional additive manufacturing wherein the copper alloy powder is composed of a copper alloy containing an additive element M, and the additive element M has a solid solubility limit A in equilibrium with copper is 0.01 ⁇ A ⁇ 1.00 (atomic %), and B / A, which is the ratio of the actual solid solution amount B (atomic %) to the solid solubility limit A (atomic %), is 1.2 ⁇ 5.0, a copper alloy powder for three-dimensional additive manufacturing.
  • the copper alloy contains 0.10 to 10.00 atomic percent in total of one or more of Cr, Mo, V, and Zr as the additive element M, and the balance is copper and unavoidable impurities.
  • At least one component contained as an inevitable impurity in the copper alloy is selected from the group consisting of Si: 0.10% by mass or less, P: 0.10% by mass or less, and S: 0.10% by mass or less
  • the copper alloy powder for three-dimensional additive manufacturing according to aspect 1 or 2 which satisfies [Aspect 4] Aspects 1 to 1, wherein the value of XY, which is the product of the oxygen content X (mass%) in the copper alloy and the laser light absorption rate Y (%) of the copper alloy at a wavelength of 1064 nm, is 0.2 to 2.0. 4.
  • the ratio (B / A) of the solid solution amount B (atomic %) in the actual copper alloy powder to the solid solubility limit A (atomic %) in the equilibrium state of the additive element to copper, and the amount of oxygen By setting the product (XY) of X and the absorption rate Y at a wavelength of 1064 nm within a predetermined range, it is possible to provide a copper alloy powder from which a high-density shaped body can be obtained by lamination molding. Furthermore, in the copper alloy powder of the present invention, by performing a heat treatment suitable for the obtained shaped body, the elements forced into solid solution are discharged as precipitates, so the shaped body having a high conductivity of 70%IACS or more. It is possible to obtain
  • the reasons for specifying the solid solubility limit of the additive element M the reasons for specifying the ratio of the actual solid solution amount to the solid solubility limit in the equilibrium state, the additive element M and its The reason for specifying the content, the reason for specifying the inevitable impurities, and the reason for specifying the product of the oxygen amount X and the laser light absorptance Y will be explained.
  • Solid solubility limit of additive element M 0.01 ⁇ A ⁇ 1.00 (atomic %)
  • a copper alloy powder containing an additive element M having a small solid solubility limit in copper on the equilibrium diagram tends to have a suppressed laser light reflectance compared to pure copper. Therefore, when the powder is subjected to a process involving rapid melting, rapid cooling and solidification, the energy irradiated during the manufacturing process becomes heat and is less likely to be released to the atmosphere. Therefore, in the additive manufacturing process using copper alloy powder with these elements added, it is not necessary to melt the molten metal by excessively increasing the energy density and irradiating it with a laser, unlike pure copper. The risk of sudden boiling is reduced.
  • the solid solubility limit is 0.01 atomic % or more, the additive element can be sufficiently precipitated from the Cu mother phase by heat treatment, so that a shaped article having excellent electrical conductivity can be obtained.
  • the solid solubility limit exceeds 1.00 atomic %, the precipitation cannot be sufficiently performed even by heat treatment, and the electrical conductivity is significantly lowered. Therefore, the solid solubility limit A in copper in an equilibrium state is set to 0.01 ⁇ A ⁇ 1.00 (atomic %). Since the smaller the solid solubility limit, the more advantageous the precipitation becomes, from this point of view, the solid solubility limit A in the equilibrium state in copper may be 0.01 ⁇ A ⁇ 0.50 (atomic %). preferable.
  • the element M is forcibly dissolved in a larger amount than the solid solubility limit A on the equilibrium diagram.
  • the actual solid solution amount B (atomic %) in the shaped article is greater than the solid solubility limit A (atomic %) in the equilibrium state.
  • the amount of precipitation is determined not only by the solid solubility limit but also by the ratio to the actual solid solution amount. It is possible to produce a modeled object that is excellent in
  • this ratio (B/A) shall be 1.2 to 5.0. If the powder has a ratio (B/A) of 1.2 or more between the solubility limit A (atomic %) and the actual amount of solid solution B (atomic %), a high-density model can be obtained. From this point of view, the ratio (B/A) is more preferably 1.5 or more. However, if the ratio (B/A) exceeds 5.0, the electrical conductivity of the shaped article is reduced. Therefore, this ratio (B/A) is set to 1.2 to 5.0. From the viewpoint of reduction in conductivity, the ratio (B/A) is more preferably 4.5 or less.
  • additive element M one or more can be selected from the group consisting of Cr (chromium), Mo (molybdenum), V (vanadium), and Zr (zirconium).
  • the solid solubility limit of each of Cr, Mo, V and Zr in Cu in the equilibrium state is as small as 1 atomic % or less. Therefore, the addition of these components satisfies 0.01 ⁇ A ⁇ 1.00. That is, as shown in Table 1, the solid solubility limits in Cu are Cr: 0.89at%, Mo: 0.067at%, V: 0.10at%, and Zr: 0.12at%.
  • the additive element M is supersaturated and dissolved in Cu. This supersaturated solid solution can reduce laser light reflectance. Therefore, the addition of these elements M contributes to obtaining a shaped article having a high relative density and few internal voids.
  • the total content of the additive element M in the copper alloy is preferably 0.1 to 10.0 atomic %.
  • a powder having a total content of the additive element M of 0.1 atomic % or more can provide a shaped article having a high relative density. From this point of view, the total content of the additive element M is more preferably 0.5 atomic % or more.
  • the total content of additive element M is preferably 10.0 atomic % or less, more preferably 5.0 atomic % or less, and particularly preferably 3.0 atomic % or less, from the viewpoint of improving electrical conductivity. At this time, the additional elements that have not been solid-dissolved are precipitated as precipitates.
  • the actual solid-dissolved amount may be in a solid-dissolved state in an amount equal to or greater than the solid solubility limit due to the rapid cooling process during powder production. Therefore, taking this point into consideration, the content of the additive element M is set to 10.0 atomic % or less.
  • Si silicon
  • P phosphorus
  • S sulfur
  • the amount of impurities varies depending on the type of raw material and the method and conditions of melting and refining of the raw material.
  • Si, P and S in the present invention are controlled to the following ranges, it is rational to keep the content of inevitable impurities within the desired range by appropriately selecting means such as refining. It is possible.
  • the inevitable impurities contained in the copper alloy other than the additive element M are Si: 0.10% by mass or less, P: 0.10% by mass or less, and S: 0.10% by mass or less. At least one (preferably at least two, more preferably all three) selected from the group is preferably satisfied.
  • Si 0.10% by mass or less
  • Si dissolves in Cu and inhibits the electrical and thermal conductivity of the copper alloy. From this point of view, the Si content is preferably 0.10% by mass or less, more preferably 0.05% by mass or less.
  • P 0.10% by mass or less
  • P dissolves in Cu and inhibits electrical and thermal conduction of the copper alloy. From this point of view, the P content is preferably 0.10% by mass or less, more preferably 0.05% by mass or less.
  • S dissolves in Cu and inhibits the electrical and thermal conduction of the copper alloy. From this point of view, the S content is preferably 0.10% by mass or less, more preferably 0.05% by mass or less.
  • the metal structure of the shaped body obtained by three-dimensional additive manufacturing of the copper alloy powder of the present invention includes (1) a matrix phase containing a large amount of Cu, (2) a grain boundary phase containing a large amount of the element M, and (3) a matrix It has a phase-dispersed compound Cu m M n (where m and n each represent a natural number).
  • the main component of the matrix phase (1) is Cu.
  • the material of the matrix phase may be only Cu.
  • the material of the matrix phase may be Cu and a solid solution element.
  • the main component of the grain boundary phase (2) is a compound of Cu and the element M, and the content of the element M is greater than that of the matrix phase.
  • the grain boundary phase (2) may contain a single phase of the M element.
  • the main component of compound (3) is Cu m Mn .
  • the average particle size D50 of the copper alloy powder of the present invention is preferably 10 ⁇ m to 100 ⁇ m. Since fine particles tend to agglomerate, it becomes impossible to spread the powder smoothly as in layered manufacturing. Therefore, when the average particle size of the copper alloy powder of the present invention is 10 ⁇ m or more, the fluidity is excellent. On the other hand, if it exceeds 100 ⁇ m, the relative density of the resulting shaped article will decrease. Therefore, the average particle diameter D50 of the copper alloy powder is preferably 10 ⁇ m to 100 ⁇ m. More preferably, the lower limit of the average particle diameter D50 is 20 ⁇ m or more, and still more preferably 30 ⁇ m or more. Moreover, the upper limit of the average particle diameter D50 is more preferably 80 ⁇ m or less, and still more preferably 60 ⁇ m or less.
  • the average particle size D50 For the measurement of the average particle size D50 , the total volume of the powder is taken as 100% and the cumulative curve is determined. The particle size at the point where the cumulative volume is 50% on this curve is the average particle size D50 .
  • the average particle size D50 can be measured by a laser diffraction scattering method. For example, as an apparatus suitable for this measurement, Nikkiso Co., Ltd.'s laser diffraction scattering type particle size distribution measuring apparatus "Microtrac MT3000" can be mentioned. Powder is poured into the cell of this device together with pure water, and the particle size is detected based on the light scattering information of the particles.
  • the tap density TD of this powder is preferably 0.10 to 0.40 Mg/m 3 , particularly preferably 0.15 Mg/m 3 to 0.35 Mg/m 3 , from the viewpoint of facilitating the production of shaped objects.
  • the tap density is measured in accordance with "JIS (Japanese Industrial Standard) Z 2512". For the measurements, about 50 g of powder are packed into a cylinder with a volume of 100 cm 3 and the density is measured. The measurement conditions are as follows. Drop height: 10mm Number of taps: 200
  • Examples of methods for producing copper alloy powder include water atomization, single roll quenching, twin roll quenching, gas atomization, disc atomization and centrifugal atomization, preferably single roll quenching, gas atomization and A disc atomization method is mentioned.
  • a powder can be obtained by pulverizing the copper alloy by mechanical milling or the like. Examples of milling methods include ball milling, bead milling, planetary ball milling, attritor milling and vibratory ball milling.
  • the gas atomization method is particularly preferable for the copper alloy powder used for additive manufacturing in the present invention, from the viewpoint of supersaturated solid solution of additive components and spheroidization. Therefore, the following embodiments are described on the premise that copper alloy powder obtained by gas atomization is used.
  • the sphericity of the powder is preferably 0.80-0.95.
  • a powder having a sphericity of 0.80 or more has excellent fluidity. From this point of view, the sphericity is more preferably 0.83 or more, and particularly preferably 0.85 or more.
  • a powder having a sphericity of 0.95 or less can suppress laser reflection. From this point of view, the sphericity is more preferably 0.93 or less, particularly preferably 0.90 or less.
  • sphericity In the measurement of sphericity, a test piece in which powder is embedded in resin is prepared. This test piece is subjected to mirror polishing, and the polished surface is observed with an optical microscope. The magnification of the microscope is 100x. Image analysis is performed on 20 randomly selected particles to measure the sphericity of the particles. The average of 20 measurements is the sphericity of the powder.
  • the sphericity means the maximum length of one powder particle and the ratio of the length in the direction perpendicular to the maximum length.
  • a preferred example of the method of producing a shaped article using the copper alloy powder of the present invention is the rapid melting, rapid cooling and solidification process, which is the process of melting and solidifying the copper alloy powder.
  • Specific examples of this process include three-dimensional additive manufacturing, thermal spraying, laser coating and overlaying.
  • the copper alloy powder of the present invention is suitable for melting and solidifying by absorbing laser light, it Suitable for making.
  • the irradiated parts of the spread powder are melted and solidified by irradiation with a laser beam or an electron beam. This melting and solidification binds the powder particles together. Irradiation is selectively applied to a portion of the copper alloy powder such that the non-irradiated portion does not melt and a bonding layer is formed only on the irradiated portion.
  • New copper alloy powder is spread over the formed bonding layer, and the copper alloy powder is irradiated with a laser beam or an electron beam. The irradiation then melts and solidifies the copper alloy particles to form a new bonding layer.
  • the new tie layer is also bonded to the existing tie layer.
  • the energy density for sintering in a rapid melting, rapid cooling and solidification process such as additive manufacturing is preferably 120 to 250 J/mm 3 .
  • the energy density is 120 J/mm 3 or more, sufficient heat is applied to the powder, so that unmelted powder is suppressed from remaining inside the model, and a model with a high relative density can be easily obtained. Therefore, more preferably, the energy density is 140 J/mm 3 or higher.
  • the energy density is 250 J/mm 3 or less, excessive heat more than necessary for melting is prevented, so bumping of the molten metal is suppressed and defects inside the model are suppressed. Therefore, more preferably, the energy density is 230 J/mm 3 or less.
  • Heat treatment In the heat treatment of the copper alloy shaped article, a step of subjecting the unheated shaped article to aging heat treatment is performed. Due to the aging heat treatment, a single phase of the elemental component of the element group M and/or a compound of Cu and the elemental component of the element group M are precipitated at the grain boundary. This precipitation can increase the purity of Cu in the mother phase. This mother phase can contribute to the electrical conductivity of the shaped article.
  • the temperature of the aging heat treatment is 350°C or higher, a structure in which a single phase of elemental components of the element group M and/or a compound of Cu and the elemental components of the element group M are sufficiently precipitated is obtained. Therefore, the temperature of the aging heat treatment is more preferably 400° C. or higher. When the temperature of the aging heat treatment is 1000° C. or lower, solid solution of the element group M into the matrix phase is suppressed. Therefore, the temperature of the aging heat treatment is more preferably 900° C. or less.
  • the time of the aging heat treatment is 1 hour or more, a structure in which a single phase of the elemental component of the element group M and/or a compound of Cu and the elemental component of the element group M are sufficiently precipitated is obtained.
  • the time for the aging heat treatment is preferably 1 hour or more and 10 hours or less.
  • the relative density of the shaped article obtained by the rapid melting, rapid cooling and solidification process is preferably 95% or more.
  • This non-heat-treated shaped article is excellent in dimensional accuracy and electrical conductivity. From this point of view, the relative density is more preferably 98% or higher, more preferably 99% or higher.
  • the relative density is calculated by multiplying 100 by the ratio (Ds/Dp) of the density Ds of a 10 mm square test piece prepared by additive manufacturing or the like to the true density Dp of the raw material powder.
  • the density of a 10 mm square test piece is measured by the Archimedes method.
  • the true density of powders is measured by a dry density meter.
  • the electric conductivity of the shaped article after heat treatment is preferably 70% IACS or more.
  • a model having an electrical conductivity of 70% IACS or more has excellent electrical conductivity. More preferably, the electrical conductivity is 75% IACS or higher, still more preferably 80% IACS or higher.
  • R is the electrical resistance value ( ⁇ ) of the test piece
  • I is the current (A)
  • S is the cross-sectional area (m 2 ) of the test piece.
  • Electrical conductivity (S/m) was calculated as the reciprocal of electrical resistivity ⁇ .
  • the electrical conductivity (%IACS) of each test piece was calculated with 5.9 ⁇ 10 7 (S/m) as 100%IACS.
  • a copper alloy powder consisting of the components of Examples 1 to 18 shown in Table 2 and the balance Cu was obtained by gas atomizing the material in which the element M component was added to Cu shown in Table 2.
  • copper alloy powders containing the components of Comparative Examples 1 to 13 shown in Table 5 and the balance Cu were obtained.
  • the specific steps are as follows. First, in a vacuum, a raw material having a predetermined composition was heated by high-frequency induction heating in an alumina crucible and melted. After that, the obtained molten metal was dropped from a nozzle with a diameter of 5 mm under the crucible. Next, argon gas was sprayed toward this molten metal to obtain a large number of particles. These particles were classified to remove particles having a diameter exceeding 63 ⁇ m to obtain a copper alloy powder.
  • Heat treatment A heat treatment (aging treatment) was applied to the non-heat-treated molded article at 350 to 1000° C. for 1 to 10 hours. These heat treatments were performed under heat treatment conditions considered appropriate for each composition.
  • Table 3 shows the results of 3-level grading based on the following criteria regarding the properties of the shaped objects.
  • Evaluation ⁇ relative density of 98% or more and electric conductivity of 75% IACS or more.
  • Evaluation ⁇ relative density of 95% or more and electric conductivity of 70% IACS or more (except those corresponding to evaluation ⁇ ).
  • Evaluation x Relative density less than 95% or electric conductivity less than 70% IACS.
  • the solid solubility limit A (atomic %) of the additive element M in copper is 0.01 ⁇ A ⁇ 1.00, and the ratio of the solid solubility limit A to the actual solid solution amount B (atomic %) It was confirmed that a shaped body produced using a powder having a B/A of 1.2 to 5.0 achieves a relative density of 95% or higher and an electric conductivity of 70% IACS or higher.
  • Tables 4-6 show the results for Comparative Examples 1-11.
  • Comparative Example 1 the actual solid solution amount of Cr was smaller than the solid solubility limit, and the relative density was low.
  • Comparative Example 2 the actual solid solution amount of Mo was larger than the solid solubility limit, and the electric conductivity was low.
  • Comparative Example 3 the actual solid solution amount of V was larger than the solid solubility limit, and the electric conductivity was low.
  • Comparative Example 4 the amount of Zr added was small, the actual solid solution amount of Zr was small compared to the solid solubility limit, and the relative density was low.
  • Comparative Example 5 Al having a large solid solubility limit was added, resulting in low electrical conductivity.
  • Comparative Example 6 Al having a large solid solubility limit was added, resulting in low electrical conductivity.
  • Comparative Example 7 Sn having a large solid solubility limit was added, resulting in a low electrical conductivity.
  • Comparative Example 8 the amount of Cr added was small, the actual amount of solid solution of Cr was small compared to the solid solubility limit, and the relative density was low.
  • Comparative Example 9 the amount of V added was large, and the actual solid solution amount of V was large compared to the solid solubility limit, so the electrical conductivity was low.
  • Comparative Example 10 Al with a large solid solubility limit was added, the product of XY was too large, and the electrical conductivity was low.
  • Comparative Example 11 the amount of Zr added was large, the actual solid solution amount of Zr was large compared to the solid solubility limit, the product of XY was large, and the electrical conductivity was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Provided is copper alloy powder which is appropriate for a process involving rapid melting and rapid solidification, such as for a laminate molding, and makes it possible to produce a molded article having high density and high conductivity. The copper alloy powder for a three-dimensional laminate molding is composed of a copper alloy containing an additive element M, wherein the additive element M has a solid solubility limit A in an equilibrium state with copper of 0.01≤A≤1.00 (atomic %), and B/A, which is the ratio of an actual solid solution amount B (atomic %) to the solid solubility limit A (atomic %), is 1.2-5.0.

Description

造形性および導電性に優れた三次元積層造形用の銅合金粉末Copper alloy powder for 3D additive manufacturing with excellent moldability and conductivity
 本発明は、三次元積層造形法、溶射法、レーザーコーティング法、肉盛法等の、急速溶融急冷凝固を伴うプロセスに適した銅合金粉末に関する。とりわけ、本発明は、パウダーベッド方式(粉末床溶融結合方式)による積層造形法に好適な銅合金粉末に関する。 The present invention relates to a copper alloy powder suitable for processes involving rapid melting, rapid cooling and solidification, such as three-dimensional additive manufacturing, thermal spraying, laser coating, and overlaying. In particular, the present invention relates to a copper alloy powder suitable for additive manufacturing using a powder bed method (powder bed fusion bonding method).
 三次元積層造形法においては、金属からなる造形物の製作に、3Dプリンターが使用されはじめている。この3Dプリンターとは、積層造形法によって造形物を製作するものである。この三次元積層造形法の代表的な方式には、パウダーベッド方式(粉末床溶融結合方式)やメタルデポジション方式(指向性エネルギー堆積方式)などがある。パウダーベッド方式では、レーザービームまたは電子ビームの照射によって、敷き詰められた粉末のうち照射された部位が溶融し凝固する。この溶融と凝固により、粉末粒子同士が結合する。照射は、金属粉末の一部に選択的になされ、照射がなされなかった部分は、溶融せず、照射がなされた部分のみにおいて、結合層が形成される。  In the 3D additive manufacturing method, 3D printers are beginning to be used to manufacture objects made of metal. This 3D printer manufactures a modeled object by the additive manufacturing method. Typical methods of this three-dimensional additive manufacturing method include a powder bed method (powder bed fusion bonding method) and a metal deposition method (directed energy deposition method). In the powder bed method, irradiated portions of the spread powder are melted and solidified by irradiation with a laser beam or an electron beam. This melting and solidification binds the powder particles together. The irradiation is selectively applied to a portion of the metal powder, the non-irradiated portion does not melt, and a bonding layer is formed only on the irradiated portion.
 形成された結合層の上に、さらに新しい金属粉末が敷き詰められ、それらの金属粉末にレーザービームまたは電子ビームの照射が行われる。すると、照射により、金属粒子が溶融及び凝固し、新たな結合層が形成される。また、新たな結合層は、既存の結合層とも結合される。 New metal powder is spread over the formed bonding layer, and the metal powder is irradiated with a laser beam or an electron beam. The irradiation then melts and solidifies the metal particles to form a new bonding layer. The new tie layer is also bonded to the existing tie layer.
 照射による溶融と凝固が順次繰り返されていくことにより、結合層の集合体が徐々に成長する。この成長により、三次元形状を有する造形体が得られる。こうした積層造形法を用いると、複雑な形状の造形物が、容易に得られる。 By successively repeating melting and solidification by irradiation, the aggregate of the bonding layer gradually grows. This growth yields a shaped body having a three-dimensional shape. Using such a layered manufacturing method makes it possible to easily obtain a modeled object having a complicated shape.
 特許文献1(特開2008-81840号公報)には、パウダーベッド方式の積層造形法が開示されており、具体的には、金属光造形用金属粉末を敷く粉末層形成ステップと、粉末層にビームを照射して焼結層を形成する焼結層形成ステップと、造形物の表面を切削する除去ステップとを繰り返して焼結層を形成して、三次元形状造形物を製造する方法が開示されている。この方法では、金属光造形用金属粉末として、鉄系粉末と、ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる1種類以上の粉末とが混合されたものが用いられている。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-81840) discloses a powder bed type additive manufacturing method. Specifically, a powder layer forming step of laying metal powder for metal stereolithography, and Disclosed is a method for manufacturing a three-dimensional modeled object by forming a sintered layer by repeating a sintered layer forming step of irradiating a beam to form a sintered layer and a removing step of cutting the surface of the modeled object. It is In this method, a mixture of iron-based powder and one or more powders selected from the group consisting of nickel, nickel-based alloys, copper, copper-based alloys, and graphite is used as the metal powder for metal stereolithography. It is
 高周波誘導加熱装置やモーター冷却用ヒートシンク等の合金には、高伝導度が要求される。このような用途には、Cu基合金が適している。例えば、特許文献2(WO2019/039058)には、銅に対する固溶量が0.2at%未満である添加元素を含有する積層造形用銅合金粉末が提案されている。この提案は、銅に対する固溶量の低い添加元素を用いることで銅への固溶による導電率の低下を低減させつつ、機械強度を得ることを意図したものであって、二元状態図に基づき平衡条件下で銅に固溶しにくい元素を非固溶に添加するものである。 High conductivity is required for alloys such as high-frequency induction heating devices and heat sinks for motor cooling. Cu-based alloys are suitable for such applications. For example, Patent Document 2 (WO2019/039058) proposes a copper alloy powder for additive manufacturing containing an additive element having a solid solution amount in copper of less than 0.2 at %. This proposal is intended to obtain mechanical strength while reducing the decrease in electrical conductivity due to solid solubility in copper by using an additive element that has a low solid solubility in copper. Based on this, an element that is difficult to form a solid solution in copper under equilibrium conditions is added in a non-solubilized form.
特開2008-81840号公報JP-A-2008-81840 WO2019/039058WO2019/039058
 積層造形法は、電子ビームやレーザーを照射することで造形物を形成するプロセスであって、金属粉末に対するエネルギー吸収は、造形における重要な因子である。例えば、レーザー積層造形法の場合、照射するレーザー波長に対するレーザー光反射率が低いほど、エネルギー吸収がしやすくなり、高効率に造形を行うことができる。 The additive manufacturing method is a process of forming a modeled object by irradiating it with an electron beam or laser, and energy absorption by metal powder is an important factor in modeling. For example, in the case of the laser lamination molding method, the lower the laser light reflectance with respect to the laser wavelength to be irradiated, the easier the energy absorption becomes, and the more efficient the molding can be performed.
 しかしながら、銅はレーザー光反射率が高いため、エネルギーが吸収されづらく、効率を高めることが難しいので、高密度な造形が困難である。添加元素を添加すると、レーザー光を吸収しやすくなり高密度の造形が容易になるが、銅合金母相への固溶量が大きくなるため、導電性は低下する。 However, since copper has a high laser light reflectance, it is difficult to absorb energy and it is difficult to improve efficiency, making high-density molding difficult. Addition of additional elements makes it easier to absorb laser light and facilitate high-density modeling, but the amount of solid solution in the copper alloy matrix increases, so the electrical conductivity decreases.
 そこで、本発明者らは、銅に添加元素を添加することでレーザー光反射率を低くして造形を容易にするだけでなく、銅に対する固溶限が小さい添加元素を選択することで造形後の熱処理において添加元素を析出物として排出しやすくすることにより、導電性と強度に優れる銅合金が得られることを知見した。さらには、銅に対する添加元素の強制固溶量と固溶限の比に着目し、固溶限が0原子%より大きく1原子%以下の範囲において、高密度でかつ導電性に優れる銅合金が得られる条件を見出した。 Therefore, the present inventors have found that adding an additive element to copper not only reduces the laser light reflectance and facilitates modeling, but also selects an additive element that has a small solid solubility limit in copper. It has been found that a copper alloy having excellent electrical conductivity and strength can be obtained by facilitating the removal of additive elements as precipitates in the heat treatment of . Furthermore, focusing on the ratio of the forced solid solution amount of the additive element to copper and the solid solubility limit, a copper alloy with a high density and excellent conductivity is found in the range of the solid solubility limit greater than 0 atomic % and 1 atomic % or less. I have found the conditions.
 これまでに、銅への固溶量が小さい元素を添加して高導電性を確保するといった文献はいくつかあるが、銅に対する添加元素の固溶量は、二元状態図に基づいて平衡状態を前提に推測しているにとどまっている。銅合金のバルクではなく銅合金粉末であり、アトマイズなどの製造過程も踏まえると、実際の銅合金粉末における添加元素の強制固溶量と、状態図における平衡条件での固溶限とが合致しないこととなる。もっとも、添加元素の強制固溶量と固溶限の相違に言及する文献は見当たらず、高密度でかつ導電性に優れる銅合金が得られる条件の示唆も見当たらない。 So far, there are some literatures that add an element with a small solid solution amount to copper to ensure high conductivity, but the solid solution amount of the additive element to copper is determined in the equilibrium state based on the binary phase diagram. It remains to speculate on the premise that It is not a copper alloy bulk but a copper alloy powder, and considering the manufacturing process such as atomization, the forced solid solution amount of the additive element in the actual copper alloy powder does not match the solid solubility limit under equilibrium conditions in the phase diagram. It will happen. However, no document is found that refers to the difference between the forced solid solution amount and the solid solubility limit of the additive element, and there is no suggestion of conditions for obtaining a copper alloy with high density and excellent conductivity.
 本発明の目的は、積層造形などの急速溶融急冷凝固を伴うプロセスに適しており、高密度でかつ高い導電率を有する造形物を作製可能な銅合金粉末を提供することにある。 An object of the present invention is to provide a copper alloy powder that is suitable for processes involving rapid melting, rapid cooling and solidification, such as additive manufacturing, and that can be used to produce high-density, high-conductivity molded objects.
 本発明者らは、銅合金粉末がガスアトマイズなどの急冷凝固プロセスで作製される場合、状態図で示されるような固溶限を超えて、添加元素が銅合金粉末へ強制的に固溶される現象が見られるとの知見を得ている。この知見に基づいて、実際の銅合金粉末への強制固溶量を測定し、固溶限との比の関係性に着目した。また、添加元素が固溶状態及び析出状態のいずれであるのかを明確に区別するために、単に粉末の含有量を評価するのではなく、組織観察を行いながら強制固溶量を捕捉して分析した。 The present inventors have found that when copper alloy powder is produced by a rapid solidification process such as gas atomization, the additive element is forced to dissolve into the copper alloy powder beyond the solid solubility limit as shown in the phase diagram. We have obtained the knowledge that the phenomenon can be seen. Based on this knowledge, the authors measured the forced solid solution amount in an actual copper alloy powder and paid attention to the relationship between the ratio and the solid solubility limit. In addition, in order to clearly distinguish whether the additive element is in a solid solution state or a precipitated state, rather than simply evaluating the content of the powder, the amount of forced solid solution is captured and analyzed while observing the structure. bottom.
 そして、鋭意検討の結果、銅への添加元素Mの平衡状態図に基づく固溶限A(原子%)に対する、実際の銅合金粉末への固溶量B(原子%)の比(B/A)を所定範囲内に規定し、かつ、酸素量X(質量%)と波長1064nmにおけるレーザー光吸収率Y(%)の積(XY)を所定範囲内に規定することで、高密度でかつ高い導電率を有する造形物を作製可能な銅合金粉末を提供できることを見出した。 Then, as a result of intensive studies, the ratio (B / A ) is defined within a predetermined range, and the product (XY) of the oxygen content X (mass%) and the laser light absorption rate Y (%) at a wavelength of 1064 nm is defined within a predetermined range, resulting in a high density and high It was found that a copper alloy powder capable of producing a shaped article having electrical conductivity can be provided.
 そこで、本発明によれば以下の態様が提供される。
[態様1]
 三次元積層造形用の銅合金粉末であって、前記銅合金粉末が、添加元素Mを含有する銅合金で構成されており、前記添加元素Mは、銅への平衡状態での固溶限Aが0.01≦A≦1.00(原子%)であり、かつ、前記固溶限A(原子%)に対する実際の固溶量B(原子%)の比であるB/Aが1.2~5.0である、三次元積層造形用の銅合金粉末。
[態様2]
 前記銅合金は、前記添加元素Mとして、Cr、Mo、V、Zrを1種もしくは2種以上を合計で0.10~10.00原子%含有し、残部が銅および不可避的不純物である、態様1に記載の三次元積層造形用の銅合金粉末。
[態様3]
 前記銅合金に不可避的不純物として含有される成分が、Si:0.10質量%以下、P:0.10質量%以下、及びS:0.10質量%以下からなる群から選択される少なくとも1つを満たす、態様1又は2に記載の三次元積層造形用の銅合金粉末。
[態様4]
 前記銅合金中の酸素量X(質量%)と前記銅合金の波長1064nmにおけるレーザー光吸収率Y(%)との積であるXYの値が0.2~2.0である、態様1~3のいずれか1項に記載の三次元積層造形用の銅合金粉末。
Then, according to this invention, the following aspects are provided.
[Aspect 1]
A copper alloy powder for three-dimensional additive manufacturing, wherein the copper alloy powder is composed of a copper alloy containing an additive element M, and the additive element M has a solid solubility limit A in equilibrium with copper is 0.01 ≤ A ≤ 1.00 (atomic %), and B / A, which is the ratio of the actual solid solution amount B (atomic %) to the solid solubility limit A (atomic %), is 1.2 ~5.0, a copper alloy powder for three-dimensional additive manufacturing.
[Aspect 2]
The copper alloy contains 0.10 to 10.00 atomic percent in total of one or more of Cr, Mo, V, and Zr as the additive element M, and the balance is copper and unavoidable impurities. A copper alloy powder for three-dimensional additive manufacturing according to aspect 1.
[Aspect 3]
At least one component contained as an inevitable impurity in the copper alloy is selected from the group consisting of Si: 0.10% by mass or less, P: 0.10% by mass or less, and S: 0.10% by mass or less The copper alloy powder for three-dimensional additive manufacturing according to aspect 1 or 2, which satisfies
[Aspect 4]
Aspects 1 to 1, wherein the value of XY, which is the product of the oxygen content X (mass%) in the copper alloy and the laser light absorption rate Y (%) of the copper alloy at a wavelength of 1064 nm, is 0.2 to 2.0. 4. The copper alloy powder for three-dimensional additive manufacturing according to any one of 3.
 本発明によれば、銅への添加元素の平衡状態での固溶限A(原子%)に対する実際の銅合金粉末における固溶量B(原子%)の比(B/A)、および酸素量Xと波長1064nmにおける吸収率Yの積(XY)をそれぞれ所定範囲内に規定することで、積層造形すると高密度な造形体が得られる銅合金粉末を提供しうる。さらに、本発明の銅合金粉末は、得られた造形体に適した熱処理を行うことで、強制固溶した元素が析出物として排出されるため、70%IACS以上の高い導電率を有する造形物を得ることが可能である。 According to the present invention, the ratio (B / A) of the solid solution amount B (atomic %) in the actual copper alloy powder to the solid solubility limit A (atomic %) in the equilibrium state of the additive element to copper, and the amount of oxygen By setting the product (XY) of X and the absorption rate Y at a wavelength of 1064 nm within a predetermined range, it is possible to provide a copper alloy powder from which a high-density shaped body can be obtained by lamination molding. Furthermore, in the copper alloy powder of the present invention, by performing a heat treatment suitable for the obtained shaped body, the elements forced into solid solution are discharged as precipitates, so the shaped body having a high conductivity of 70%IACS or more. It is possible to obtain
 本発明の実施の形態を説明するに先だって、まず、添加元素Mの固溶限を規定する理由、平衡状態における固溶限に対する実際の固溶量の比を規定する理由、添加元素Mおよびその含有量を規定する理由、不可避的不純物を規定する理由、及び酸素量Xとレーザー光吸収率Yの積を規定する理由を説明する。 Prior to describing the embodiments of the present invention, first, the reasons for specifying the solid solubility limit of the additive element M, the reasons for specifying the ratio of the actual solid solution amount to the solid solubility limit in the equilibrium state, the additive element M and its The reason for specifying the content, the reason for specifying the inevitable impurities, and the reason for specifying the product of the oxygen amount X and the laser light absorptance Y will be explained.
[添加元素Mの固溶限:0.01≦A≦1.00(原子%)]
 平衡状態図上の銅への固溶限が小さい添加元素Mを含有する銅合金粉末は、純銅と比較してレーザー光反射率が抑制されやすい。そこで、粉末が急速溶融急冷凝固を伴うプロセスに供されるとき、製造過程で照射されたエネルギーが熱となって大気へ放出されにくくなる。そこで、こうした元素を添加した銅合金粉末を用いた積層造形のプロセスでは、純銅のようにエネルギー密度を過剰に高めてレーザーを照射して溶解する必要がなくなるので、過剰なレーザー照射によって溶融金属を突沸させてしまうリスクが低減される。また、レーザーを吸収しにくいことから溶融不足に起因する欠陥も抑制できるので、積層造形に用いると、相対密度が大きく、内部の空隙が少ない造形物を得ることができる。固溶限が0.01原子%以上の場合、熱処理により、Cu母相から添加元素を十分に析出できるため、電気伝導率が優れる造形体が得られる。一方で、固溶限が1.00原子%を上回る場合、熱処理を行っても析出が十分に行うことができず、電気伝導率が著しく低下する。そこで、銅への平衡状態での固溶限Aは0.01≦A≦1.00(原子%)とする。そして、固溶限は小さいほど、析出が有利となるので、この観点から、銅への平衡状態での固溶限Aは、0.01≦A≦0.50(原子%)とすることが好ましい。
[Solid solubility limit of additive element M: 0.01 ≤ A ≤ 1.00 (atomic %)]
A copper alloy powder containing an additive element M having a small solid solubility limit in copper on the equilibrium diagram tends to have a suppressed laser light reflectance compared to pure copper. Therefore, when the powder is subjected to a process involving rapid melting, rapid cooling and solidification, the energy irradiated during the manufacturing process becomes heat and is less likely to be released to the atmosphere. Therefore, in the additive manufacturing process using copper alloy powder with these elements added, it is not necessary to melt the molten metal by excessively increasing the energy density and irradiating it with a laser, unlike pure copper. The risk of sudden boiling is reduced. In addition, since it is difficult to absorb laser light, it is possible to suppress defects caused by insufficient melting. Therefore, when used in layered manufacturing, it is possible to obtain a modeled object with a high relative density and few internal voids. When the solid solubility limit is 0.01 atomic % or more, the additive element can be sufficiently precipitated from the Cu mother phase by heat treatment, so that a shaped article having excellent electrical conductivity can be obtained. On the other hand, when the solid solubility limit exceeds 1.00 atomic %, the precipitation cannot be sufficiently performed even by heat treatment, and the electrical conductivity is significantly lowered. Therefore, the solid solubility limit A in copper in an equilibrium state is set to 0.01≦A≦1.00 (atomic %). Since the smaller the solid solubility limit, the more advantageous the precipitation becomes, from this point of view, the solid solubility limit A in the equilibrium state in copper may be 0.01 ≤ A ≤ 0.50 (atomic %). preferable.
[固溶限A(原子%)に対する実際の固溶量B(原子%)の比B/A:1.2~5.0]
 もっとも本発明で銅に添加する元素は銅に比べてレーザー光反射率低い一方で導電率も低い。このため、固溶量が多すぎる元素を添加すると、銅合金粉末に固溶することによって、得られる造形物の導電率が低下してしまう。ただし、固溶量が多い場合であっても、その添加元素の固溶限が小さいならば、析出が促進されるため、導電率の低下は抑制される。そのため、実際の固溶量Bの固溶限Aに対する比を規定することが重要になる。一方で、固溶量が少ないと、レーザー光が反射率しやすくなるため、造形物の相対密度は低くなってしまう。
[Ratio B/A of actual solid solution amount B (atomic %) to solid solubility limit A (atomic %): 1.2 to 5.0]
However, the element added to copper in the present invention has a lower laser light reflectance and a lower electrical conductivity than copper. For this reason, if an element with an excessively large solid-solution amount is added, the electrical conductivity of the resulting shaped article will decrease due to the solid-solution in the copper alloy powder. However, even if the amount of solid solution is large, if the solid solubility limit of the additive element is small, the precipitation is promoted, so the decrease in electrical conductivity is suppressed. Therefore, it is important to define the ratio of the actual solid solution amount B to the solid solubility limit A. On the other hand, when the amount of solid solution is small, the laser beam is likely to reflect, so the relative density of the modeled object becomes low.
 銅合金粉末がアトマイズ法のような急冷凝固を伴う方法で得られると、元素Mは平衡状態図上の固溶限Aよりも多く強制的に固溶される。造形物における実際の固溶量B(原子%)は平衡状態での固溶限A(原子%)よりも多くなる。たとえば、固溶限のみならず、実際の固溶量との比によっても析出量は決まってくるので、一見すると固溶限が0.89at%と大きめなCrにおいても、高密度でかつ導電性に優れる造形物を作製することができる。 When copper alloy powder is obtained by a method involving rapid solidification such as the atomization method, the element M is forcibly dissolved in a larger amount than the solid solubility limit A on the equilibrium diagram. The actual solid solution amount B (atomic %) in the shaped article is greater than the solid solubility limit A (atomic %) in the equilibrium state. For example, the amount of precipitation is determined not only by the solid solubility limit but also by the ratio to the actual solid solution amount. It is possible to produce a modeled object that is excellent in
 そこで、この比(B/A)は、1.2~5.0とする。固溶限A(原子%)と実際の固溶量B(原子%)の比(B/A)が1.2以上である粉末であれば、高密度の造形物を得ることができる。この観点から、より好ましくは、比(B/A)は1.5以上である。もっとも、比(B/A)が5.0を超えると、造形物の導電性が低下する。そこで、この比(B/A)は、1.2~5.0とする。導電性の低下の観点から、より好ましくは、比(B/A)は4.5以下である。 Therefore, this ratio (B/A) shall be 1.2 to 5.0. If the powder has a ratio (B/A) of 1.2 or more between the solubility limit A (atomic %) and the actual amount of solid solution B (atomic %), a high-density model can be obtained. From this point of view, the ratio (B/A) is more preferably 1.5 or more. However, if the ratio (B/A) exceeds 5.0, the electrical conductivity of the shaped article is reduced. Therefore, this ratio (B/A) is set to 1.2 to 5.0. From the viewpoint of reduction in conductivity, the ratio (B/A) is more preferably 4.5 or less.
[添加元素M]
 添加元素Mとして、Cr(クロム)、Mo(モリブデン)、V(バナジウム)、及びZr(ジルコニウム)からなる群から1種以上を選択することができる。Cr、Mo、V及びZrのそれぞれの、平衡状態のCuへの固溶限は、それぞれ1原子%以下と小さい。このため、これら成分の添加は0.01≦A≦1.00を充足する。すなわち、表1に示すように、Cuへの固溶限は、Cr:0.89at%、Mo:0.067at%、V:0.10at%、Zr:0.12at%である。固溶限Aが0.01≦A≦1.00を満たす場合、実際の固溶量Bが合計で0.1~10.0原子%の範囲内であれば、2種以上の添加元素を添加しても構わない。なお、粉末がアトマイズ法のような急冷凝固を伴う方法で得られると、添加元素MがCuに過飽和に固溶する。この過飽和固溶体は、レーザー光反射率を低減することができる。従って、これらの元素Mの添加は、相対密度が大きく、内部の空隙が少ない造形物を得ることに資する。
[Additional element M]
As the additive element M, one or more can be selected from the group consisting of Cr (chromium), Mo (molybdenum), V (vanadium), and Zr (zirconium). The solid solubility limit of each of Cr, Mo, V and Zr in Cu in the equilibrium state is as small as 1 atomic % or less. Therefore, the addition of these components satisfies 0.01≤A≤1.00. That is, as shown in Table 1, the solid solubility limits in Cu are Cr: 0.89at%, Mo: 0.067at%, V: 0.10at%, and Zr: 0.12at%. When the solid solubility limit A satisfies 0.01 ≤ A ≤ 1.00, two or more additive elements are added if the actual solid solution amount B is in the range of 0.1 to 10.0 atomic % in total. You can add it. When the powder is obtained by a method involving rapid solidification such as the atomization method, the additive element M is supersaturated and dissolved in Cu. This supersaturated solid solution can reduce laser light reflectance. Therefore, the addition of these elements M contributes to obtaining a shaped article having a high relative density and few internal voids.
[添加元素Mの含有率:0.1~10.0原子%]
 銅合金における添加元素Mの合計含有率は、0.1~10.0原子%が好ましい。添加元素Mの合計含有率が0.1原子%以上である粉末であれば、相対密度が大きい造形物を得ることができる。この観点から、より好ましい添加元素Mの合計含有率は0.5原子%以上である。また、添加元素Mの合計含有率は10.0原子%以下とするのが導電性向上の観点から好ましく、より好ましくは5.0原子%以下、特に好ましくは3.0原子%以下である。このとき、固溶されなかった添加元素は、析出物として析出されることになる。実際に固溶される量は、粉末作製時の急速冷却プロセスに起因して、固溶限以上の量を固溶した状態になり得る。このため、この点も加味して、添加元素Mの含有率は、10.0原子%までとしている。
[Content of additive element M: 0.1 to 10.0 atomic %]
The total content of the additive element M in the copper alloy is preferably 0.1 to 10.0 atomic %. A powder having a total content of the additive element M of 0.1 atomic % or more can provide a shaped article having a high relative density. From this point of view, the total content of the additive element M is more preferably 0.5 atomic % or more. The total content of additive element M is preferably 10.0 atomic % or less, more preferably 5.0 atomic % or less, and particularly preferably 3.0 atomic % or less, from the viewpoint of improving electrical conductivity. At this time, the additional elements that have not been solid-dissolved are precipitated as precipitates. The actual solid-dissolved amount may be in a solid-dissolved state in an amount equal to or greater than the solid solubility limit due to the rapid cooling process during powder production. Therefore, taking this point into consideration, the content of the additive element M is set to 10.0 atomic % or less.
[不可避的不純物について]
 不可避的不純物の中でも、Si(シリコン)、P(リン)、S(硫黄)は、銅合金の電気伝導及び熱伝導を阻害する成分である。これらの元素は、他元素と化合物を形成しやすく、特に造形時の割れ発生に敏感な元素であるから、ごく少量でも割れ発生に影響を与えやすい。そこで、Si、P及びSは、多く含有しすぎないようにすることが好ましい。本発明は不可避的不純物としてのSi、P及びSの含有を許容しているものの、さらに次に示す範囲に規制することが好ましい。
[Regarding inevitable impurities]
Among the unavoidable impurities, Si (silicon), P (phosphorus), and S (sulfur) are components that hinder the electrical and thermal conduction of the copper alloy. These elements are likely to form compounds with other elements, and are particularly sensitive to the generation of cracks during molding. Therefore, it is preferable not to contain too much Si, P and S. Although the present invention allows the inclusion of Si, P and S as unavoidable impurities, it is preferable to limit the content to the following ranges.
 なお、不純物の多寡については原料の種類や原料の溶解や精錬等の方法及び条件によって変化するものである。しかし、本発明におけるSi、P及びSを次の範囲に制御する場合であれば、その精錬等の手段を適宜選定することによって、不可避不純物の含有量を所望の範囲に収めることが合理的に可能である。 In addition, the amount of impurities varies depending on the type of raw material and the method and conditions of melting and refining of the raw material. However, if Si, P and S in the present invention are controlled to the following ranges, it is rational to keep the content of inevitable impurities within the desired range by appropriately selecting means such as refining. It is possible.
 そこで、銅合金には、添加元素M以外に含有される不可避的不純物としては、Si:0.10質量%以下、P:0.10質量%以下、及びS:0.10質量%以下からなる群から選択される少なくとも1つ(望ましくは少なくとも2つ、より望ましくは3つ全て)を充足していることが好ましい。 Therefore, the inevitable impurities contained in the copper alloy other than the additive element M are Si: 0.10% by mass or less, P: 0.10% by mass or less, and S: 0.10% by mass or less. At least one (preferably at least two, more preferably all three) selected from the group is preferably satisfied.
[Si:0.10質量%以下]
 SiはCuに固溶し、銅合金の電気伝導及び熱伝導を阻害する。この観点から、Siの含有率は0.10質量%以下が好ましく、0.05質量%以下がより好ましい。
[Si: 0.10% by mass or less]
Si dissolves in Cu and inhibits the electrical and thermal conductivity of the copper alloy. From this point of view, the Si content is preferably 0.10% by mass or less, more preferably 0.05% by mass or less.
[P:0.10質量%以下]
 PはCuに固溶し、銅合金の電気伝導及び熱伝導を阻害する。この観点から、Pの含有率は0.10質量%以下が好ましく、0.05質量%以下がより好ましい。
[P: 0.10% by mass or less]
P dissolves in Cu and inhibits electrical and thermal conduction of the copper alloy. From this point of view, the P content is preferably 0.10% by mass or less, more preferably 0.05% by mass or less.
[S:0.10質量%以下]
 SはCuに固溶し、銅合金の電気伝導及び熱伝導を阻害する。この観点から、Sの含有率は0.10質量%以下が好ましく、0.05質量%以下がより好ましい。
[S: 0.10% by mass or less]
S dissolves in Cu and inhibits the electrical and thermal conduction of the copper alloy. From this point of view, the S content is preferably 0.10% by mass or less, more preferably 0.05% by mass or less.
[銅合金中の酸素量X(質量%)]
 銅合金粉末への酸素含有量が多くなると、酸化膜が形成されるため、レーザー光反射率が低減でき、造形し易くなる。しかし、作製された造形物の酸素濃度も高くなり、酸化物として残存するため、導電性は低くなる。また、酸化物が残存する場合は、強度が劣る。
[Oxygen content X (mass%) in copper alloy]
When the oxygen content in the copper alloy powder increases, an oxide film is formed, so the laser beam reflectance can be reduced, and modeling becomes easier. However, the oxygen concentration in the manufactured modeled object also increases and remains as an oxide, resulting in low electrical conductivity. Moreover, when an oxide remains, intensity|strength is inferior.
[銅合金の波長1064nmにおけるレーザー光吸収率Y(%)]
 波長1064nmにおけるレーザーの吸収率が高いと合金粉末は完全に溶融するが、吸収率が低いと部分的に溶融し未溶融な粉末が残る。この未溶融な粉末が造形物内部に取り残された場合、低密度でかつ強度が劣る造形物が形成される。なお、波長1064nmとは、レーザー積層造形装置の汎用的なエネルギー源であるYbファイバレーザー光の波長である。
[Laser light absorption rate Y (%) at wavelength 1064 nm of copper alloy]
If the absorptivity of the laser at a wavelength of 1064 nm is high, the alloy powder will be completely melted, but if the absorptivity is low, it will be partially melted and unmelted powder will remain. If this unmelted powder is left behind inside the model, a model with low density and poor strength is formed. Note that the wavelength of 1064 nm is the wavelength of Yb fiber laser light, which is a general-purpose energy source for laser lamination molding apparatuses.
[XYの値:0.2~2.0]
 酸素量X(質量%)と波長1064nmにおけるレーザー光吸収率Y(%)の積XYが0.2以上の場合、造形が容易になり、高密度の造形物が得られる。一方で、XYが2.0以下の場合、造形物内部に酸化物が残存しにくくなり、導電率および強度が向上する。そこで、酸素量X(質量%)と波長1064nmにおけるレーザー光吸収率Y(%)の積XYの値は、0.2~2.0であることが望ましい。
[XY value: 0.2 to 2.0]
When the product XY of the oxygen content X (% by mass) and the laser light absorption rate Y (%) at a wavelength of 1064 nm is 0.2 or more, modeling becomes easy, and a high-density model can be obtained. On the other hand, when XY is 2.0 or less, it becomes difficult for oxides to remain inside the model, and the electrical conductivity and strength are improved. Therefore, the value of the product XY of the oxygen content X (mass %) and the laser light absorption rate Y (%) at a wavelength of 1064 nm is preferably 0.2 to 2.0.
[組織]
 本発明の銅合金粉末を三次元積層造形して得られた造形体の金属組織は、(1)Cuを多く含むマトリクス相、(2)元素Mを多く含む粒界相、及び(3)マトリクス相に分散する化合物Cu(式中、m及びnはそれぞれ自然数を表す)を有する。
[Organization]
The metal structure of the shaped body obtained by three-dimensional additive manufacturing of the copper alloy powder of the present invention includes (1) a matrix phase containing a large amount of Cu, (2) a grain boundary phase containing a large amount of the element M, and (3) a matrix It has a phase-dispersed compound Cu m M n (where m and n each represent a natural number).
 マトリクス相(1)の主成分は、Cuである。マトリクス相の材質が、Cuのみであってもよい。マトリクス相の材質が、Cuと固溶元素とであってもよい。 The main component of the matrix phase (1) is Cu. The material of the matrix phase may be only Cu. The material of the matrix phase may be Cu and a solid solution element.
 粒界相(2)の主成分は、Cuと元素Mとの化合物であり、マトリクス相に比べて元素Mの含有量は多い。粒界相(2)は、M元素の単相を含んでもよい。化合物(3)の主成分は、Cuである。 The main component of the grain boundary phase (2) is a compound of Cu and the element M, and the content of the element M is greater than that of the matrix phase. The grain boundary phase (2) may contain a single phase of the M element. The main component of compound (3) is Cu m Mn .
[銅合金粉末の粒子径]
 本発明の銅合金粉末の平均粒子径D50は、10μm~100μmが好ましい。微細な粒子は凝集しやすくなるため、積層造形のようにパウダーを敷き詰める際にスムーズに粉体を敷き詰めることができなくなる。そこで、本発明の銅合金粉末の平均粒子径が10μm以上であれば、流動性に優れる。他方、100μmを超えると、得られる造形物の相対密度が下がってしまうこととなる。そこで、銅合金粉末の平均粒子径D50は、10μm~100μmが好ましい。より好ましくは、平均粒子径D50の下限は20μm以上であり、さらに好ましくは、30μm以上である。また、平均粒子径D50の上限は、より好ましくは80μm以下であり、さらに好ましくは、60μm以下である。
[Particle size of copper alloy powder]
The average particle size D50 of the copper alloy powder of the present invention is preferably 10 μm to 100 μm. Since fine particles tend to agglomerate, it becomes impossible to spread the powder smoothly as in layered manufacturing. Therefore, when the average particle size of the copper alloy powder of the present invention is 10 μm or more, the fluidity is excellent. On the other hand, if it exceeds 100 μm, the relative density of the resulting shaped article will decrease. Therefore, the average particle diameter D50 of the copper alloy powder is preferably 10 μm to 100 μm. More preferably, the lower limit of the average particle diameter D50 is 20 µm or more, and still more preferably 30 µm or more. Moreover, the upper limit of the average particle diameter D50 is more preferably 80 µm or less, and still more preferably 60 µm or less.
 平均粒子径D50の測定では、粉末の全体積が100%とされて、累積カーブが求められる。このカーブ上の、累積体積が50%である点の粒子径が、平均粒子径D50である。平均粒子径D50は、レーザー回折散乱法によって測定することができる。たとえば、この測定に適した装置として、日機装社のレーザー回折散乱式粒子径分布測定装置「マイクロトラックMT3000」が挙げられる。この装置のセル内に、粉末が純水と共に流し込まれ、粒子の光散乱情報に基づいて、粒子径が検出される。 For the measurement of the average particle size D50 , the total volume of the powder is taken as 100% and the cumulative curve is determined. The particle size at the point where the cumulative volume is 50% on this curve is the average particle size D50 . The average particle size D50 can be measured by a laser diffraction scattering method. For example, as an apparatus suitable for this measurement, Nikkiso Co., Ltd.'s laser diffraction scattering type particle size distribution measuring apparatus "Microtrac MT3000" can be mentioned. Powder is poured into the cell of this device together with pure water, and the particle size is detected based on the light scattering information of the particles.
[タップ密度]
 造形物の製造容易の観点から、この粉末のタップ密度TDは、0.10~0.40Mg/mが好ましく、0.15Mg/m~0.35Mg/mが特に好ましい。
[Tap density]
The tap density TD of this powder is preferably 0.10 to 0.40 Mg/m 3 , particularly preferably 0.15 Mg/m 3 to 0.35 Mg/m 3 , from the viewpoint of facilitating the production of shaped objects.
 タップ密度は、「JIS(日本産業規格) Z 2512」の規定に準拠して測定される。測定では、約50gの粉末が容積100cmのシリンダーに充填され、密度が測定される。測定条件は、以下の通りである。
  落下高さ :10mm
  タップ回数:200
The tap density is measured in accordance with "JIS (Japanese Industrial Standard) Z 2512". For the measurements, about 50 g of powder are packed into a cylinder with a volume of 100 cm 3 and the density is measured. The measurement conditions are as follows.
Drop height: 10mm
Number of taps: 200
[銅合金粉末の製造について]
 以下、本発明の銅合金粉末の製造について説明する。
[Production of copper alloy powder]
The production of the copper alloy powder of the present invention is described below.
 銅合金粉末の製造方法の例としては、水アトマイズ法、単ロール急冷法、双ロール急冷法、ガスアトマイズ法、ディスクアトマイズ法及び遠心アトマイズ法が挙げられ、好ましくは、単ロール急冷法、ガスアトマイズ法及びディスクアトマイズ法が挙げられる。また、銅合金粉末の作製のために、メカニカルミリング等で銅合金を粉砕して粉体を得ることもできる。ミリング方法の例としては、ボールミル法、ビーズミル法、遊星ボールミル法、アトライタ法及び振動ボールミル法が挙げられる。本発明における積層造形に用いる銅合金粉末は、添加成分の過飽和固溶および球状化の観点からは、とりわけガスアトマイズ法が好ましい。そこで、以下の実施の形態では、ガスアトマイズによる製造で得られた銅合金粉末を用いる前提で説明する。 Examples of methods for producing copper alloy powder include water atomization, single roll quenching, twin roll quenching, gas atomization, disc atomization and centrifugal atomization, preferably single roll quenching, gas atomization and A disc atomization method is mentioned. Moreover, in order to prepare copper alloy powder, a powder can be obtained by pulverizing the copper alloy by mechanical milling or the like. Examples of milling methods include ball milling, bead milling, planetary ball milling, attritor milling and vibratory ball milling. The gas atomization method is particularly preferable for the copper alloy powder used for additive manufacturing in the present invention, from the viewpoint of supersaturated solid solution of additive components and spheroidization. Therefore, the following embodiments are described on the premise that copper alloy powder obtained by gas atomization is used.
[球形度]
 粉末の球形度は、0.80~0.95が好ましい。球形度が0.80以上である粉末は、流動性に優れる。この観点から、球形度は0.83以上がより好ましく、0.85以上が特に好ましい。球形度が0.95以下である粉末では、レーザーの反射が抑制されうる。この観点から、球形度は0.93以下がより好ましく、0.90以下が特に好ましい。
[Sphericality]
The sphericity of the powder is preferably 0.80-0.95. A powder having a sphericity of 0.80 or more has excellent fluidity. From this point of view, the sphericity is more preferably 0.83 or more, and particularly preferably 0.85 or more. A powder having a sphericity of 0.95 or less can suppress laser reflection. From this point of view, the sphericity is more preferably 0.93 or less, particularly preferably 0.90 or less.
 球形度の測定では、粉末が樹脂に埋め込まれた試験片が準備される。この試験片が鏡面研磨に供され、研磨面が光学顕微鏡で観察される。顕微鏡の倍率は、100倍である。無作為に抽出された20個の粒子について画像解析がなされ、この粒子の球形度が測定される。20個の測定値の平均が、粉末の球形度である。球形度は、粉末1粒子の最大長と、最大長に対して垂直方向における長さの割合を意味している。  In the measurement of sphericity, a test piece in which powder is embedded in resin is prepared. This test piece is subjected to mirror polishing, and the polished surface is observed with an optical microscope. The magnification of the microscope is 100x. Image analysis is performed on 20 randomly selected particles to measure the sphericity of the particles. The average of 20 measurements is the sphericity of the powder. The sphericity means the maximum length of one powder particle and the ratio of the length in the direction perpendicular to the maximum length.
[造形物の作製について]
 本発明の銅合金粉末を用いて造形物を作製する方法の好ましい例としては、銅合金粉末を溶融及び凝固する工程である急速溶融急冷凝固プロセスが挙げられる。このプロセスの具体例としては、三次元積層造形法、溶射法、レーザーコーティング法及び肉盛法が挙げられる。特に、本発明の銅合金粉末は、レーザー光を吸収して溶融凝固させることに好適であることから、パウダーベッド方式(粉末床溶融結合方式)の三次元積層造形法で造形物を積層しながら作製していくことに適している。
[About production of modeled objects]
A preferred example of the method of producing a shaped article using the copper alloy powder of the present invention is the rapid melting, rapid cooling and solidification process, which is the process of melting and solidifying the copper alloy powder. Specific examples of this process include three-dimensional additive manufacturing, thermal spraying, laser coating and overlaying. In particular, since the copper alloy powder of the present invention is suitable for melting and solidifying by absorbing laser light, it Suitable for making.
 パウダーベッド方式では、レーザービームまたは電子ビームの照射によって、敷き詰められた粉末のうち照射された部位が溶融し凝固する。この溶融と凝固により、粉末粒子同士が結合する。照射は、銅合金粉末の一部に選択的になされ、照射がなされなかった部分は、溶融せず、照射がなされた部分のみにおいて、結合層が形成される。 In the powder bed method, the irradiated parts of the spread powder are melted and solidified by irradiation with a laser beam or an electron beam. This melting and solidification binds the powder particles together. Irradiation is selectively applied to a portion of the copper alloy powder such that the non-irradiated portion does not melt and a bonding layer is formed only on the irradiated portion.
 形成された結合層の上に、さらに新しい銅合金粉末が敷き詰められ、それらの銅合金粉末にレーザービームまたは電子ビームの照射が行われる。すると、照射により、銅合金粒子が溶融及び凝固し、新たな結合層が形成される。また、新たな結合層は、既存の結合層とも結合される。 New copper alloy powder is spread over the formed bonding layer, and the copper alloy powder is irradiated with a laser beam or an electron beam. The irradiation then melts and solidifies the copper alloy particles to form a new bonding layer. The new tie layer is also bonded to the existing tie layer.
 照射による溶融と凝固が順次繰り返されていくことにより、結合層の集合体が徐々に成長する。この成長により、三次元形状を有する造形体が得られる。こうした積層造形法を用いると、複雑な形状の造形物が、容易に得られる。 By successively repeating melting and solidification by irradiation, the aggregate of the bonding layer gradually grows. This growth yields a shaped body having a three-dimensional shape. Using such a layered manufacturing method makes it possible to easily obtain a modeled object having a complicated shape.
 なお、積層造形法などの急速溶融急冷凝固プロセスで焼結をおこなう時のエネルギー密度は、120~250J/mmであることが好ましい。エネルギー密度が120J/mm以上である場合、十分な熱が粉末に与えられるので、造形物内部における未溶融粉末の残存が抑制され、相対密度の大きな造形物が得られやすい。そこで、より好ましくは、エネルギー密度は140J/mm以上である。 The energy density for sintering in a rapid melting, rapid cooling and solidification process such as additive manufacturing is preferably 120 to 250 J/mm 3 . When the energy density is 120 J/mm 3 or more, sufficient heat is applied to the powder, so that unmelted powder is suppressed from remaining inside the model, and a model with a high relative density can be easily obtained. Therefore, more preferably, the energy density is 140 J/mm 3 or higher.
 エネルギー密度が250J/mm以下である場合、溶融に必要以上の過剰な熱を防ぐため、溶融金属の突沸が抑制され、造形物の内部における欠陥が抑制される。そこで、より好ましくは、エネルギー密度は230J/mm以下である。 When the energy density is 250 J/mm 3 or less, excessive heat more than necessary for melting is prevented, so bumping of the molten metal is suppressed and defects inside the model are suppressed. Therefore, more preferably, the energy density is 230 J/mm 3 or less.
[熱処理]
 銅合金造形物の熱処理では、未熱処理造形物に時効熱処理を施す工程を行う。時効熱処理により、元素群Mの元素成分単相および/またはCuと元素群Mの元素成分との化合物が、粒界に析出する。この析出により、母相におけるCuの純度を高めることができる。この母相は、造形物の導電性に寄与しうる。
[Heat treatment]
In the heat treatment of the copper alloy shaped article, a step of subjecting the unheated shaped article to aging heat treatment is performed. Due to the aging heat treatment, a single phase of the elemental component of the element group M and/or a compound of Cu and the elemental component of the element group M are precipitated at the grain boundary. This precipitation can increase the purity of Cu in the mother phase. This mother phase can contribute to the electrical conductivity of the shaped article.
 時効熱処理の温度が、350℃以上である場合、元素群Mの元素成分単相および/またはCuと元素群Mの元素成分との化合物が、十分に析出した組織が得られる。そこで、時効熱処理の温度は、400℃以上がより好ましい。時効熱処理の温度が、1000℃以下である場合、元素群Mの母相への固溶が抑制される。そこで、時効熱処理の温度は、900℃以下がより好ましい。 When the temperature of the aging heat treatment is 350°C or higher, a structure in which a single phase of elemental components of the element group M and/or a compound of Cu and the elemental components of the element group M are sufficiently precipitated is obtained. Therefore, the temperature of the aging heat treatment is more preferably 400° C. or higher. When the temperature of the aging heat treatment is 1000° C. or lower, solid solution of the element group M into the matrix phase is suppressed. Therefore, the temperature of the aging heat treatment is more preferably 900° C. or less.
 時効熱処理の時間が1時間以上である場合、元素群Mの元素成分単相および/またはCuと元素群Mの元素成分との化合物が、十分に析出した組織が得られる。一方で、時効熱処理の時間が10時間以下である場合、過時効による析出物の粗大化に起因した導電率低下および強度低下を抑制することができる。そこで、時効熱処理の時間は、1時間以上、10時間以下が好ましい。 When the time of the aging heat treatment is 1 hour or more, a structure in which a single phase of the elemental component of the element group M and/or a compound of Cu and the elemental component of the element group M are sufficiently precipitated is obtained. On the other hand, when the aging heat treatment time is 10 hours or less, it is possible to suppress the decrease in electrical conductivity and strength due to coarsening of precipitates due to overaging. Therefore, the time for the aging heat treatment is preferably 1 hour or more and 10 hours or less.
[相対密度]
 急速溶融急冷凝固プロセスで得られた造形物(すなわち、後述される熱処理が施される前の造形物)の相対密度は、95%以上が好ましい。この未熱処理の造形物は、寸法精度及び導電性に優れる。この観点から、相対密度は98%以上がより好ましく、99%以上がさらに好ましい。
[Relative density]
The relative density of the shaped article obtained by the rapid melting, rapid cooling and solidification process (that is, the shaped article before heat treatment to be described later) is preferably 95% or more. This non-heat-treated shaped article is excellent in dimensional accuracy and electrical conductivity. From this point of view, the relative density is more preferably 98% or higher, more preferably 99% or higher.
 相対密度は、積層造形法等で作製した10mm角試験片の密度Dsの、原料である粉末の真密度Dpに対する比(Ds/Dp)に100を乗じることにより算出される。10mm角試験片の密度は、アルキメデス法によって測定される。粉末の真密度は、乾式密度測定器によって測定される。 The relative density is calculated by multiplying 100 by the ratio (Ds/Dp) of the density Ds of a 10 mm square test piece prepared by additive manufacturing or the like to the true density Dp of the raw material powder. The density of a 10 mm square test piece is measured by the Archimedes method. The true density of powders is measured by a dry density meter.
[造形物の電気伝導度]
 熱処理後の造形物の電気伝導度は、70%IACS以上が好ましい。電気伝導度が70%IACS以上である造形物は、導電性に優れる。より好ましくは、電気伝導度は75%IACS以上であり、さらに好ましくは80%IACS以上である。
[Electrical conductivity of model]
The electric conductivity of the shaped article after heat treatment is preferably 70% IACS or more. A model having an electrical conductivity of 70% IACS or more has excellent electrical conductivity. More preferably, the electrical conductivity is 75% IACS or higher, still more preferably 80% IACS or higher.
[電気伝導度の測定]
 試験片(3×2×60mm)を作製し、「JIS C 2525」に準拠した4端子法で、電気抵抗値(Ω)を測定した。測定には、アルバック理工社の装置「TER-2000RH型」を用いた。測定条件は、以下の通り:
 温度:25℃
 電流:4A
 電圧降下間距離:40mm
である。下記数式:
 ρ=R×S/I
に基づき、電気抵抗率ρ(Ωm)を算出した。
[Measurement of electrical conductivity]
A test piece (3×2×60 mm) was prepared, and the electric resistance value (Ω) was measured by the four-probe method based on "JIS C 2525". For the measurement, an apparatus "TER-2000RH" manufactured by ULVAC-RIKO was used. Measurement conditions are as follows:
Temperature: 25°C
Current: 4A
Distance between voltage drops: 40mm
is. The formula below:
ρ=R×S/I
Based on, the electrical resistivity ρ (Ωm) was calculated.
 この数式において、Rは試験片の電気抵抗値(Ω)であり、Iは電流(A)であり、Sは試験片の断面積(m)である。電気伝導度(S/m)は、電気抵抗率ρの逆数として算出した。また、5.9×10(S/m)を100%IACSとして、各試験片の電気伝導度(%IACS)を算出した。 In this formula, R is the electrical resistance value (Ω) of the test piece, I is the current (A), and S is the cross-sectional area (m 2 ) of the test piece. Electrical conductivity (S/m) was calculated as the reciprocal of electrical resistivity ρ. Also, the electrical conductivity (%IACS) of each test piece was calculated with 5.9×10 7 (S/m) as 100%IACS.
 以下、実施例によって本発明の効果が確認されることを示すが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。 Hereinafter, the effects of the present invention will be confirmed by examples, but the present invention should not be construed as being limited based on the description of these examples.
 まず、表2に記載のCuに元素M成分を添加した材料をガスアトマイズすることによって、表2に記載の実施例1~18の成分及び残部Cuからなる銅合金粉末を得た。同様に、表5に記載の比較例1~13の成分及び残部Cuからなる銅合金粉末を得た。具体的な手順は、次のとおりである。まず、真空中にて、アルミナ製坩堝で、所定の組成を有する原料を高周波誘導加熱で加熱し、溶解した。その後、得られた溶湯を坩堝下にある直径が5mmのノズルから落下させた。次いで、この溶湯に向けてアルゴンガスを噴霧し、多数の粒子を得た。これらの粒子に分級を施して直径が63μmを超える粒子を除去し、銅合金粉末を得た。 First, a copper alloy powder consisting of the components of Examples 1 to 18 shown in Table 2 and the balance Cu was obtained by gas atomizing the material in which the element M component was added to Cu shown in Table 2. Similarly, copper alloy powders containing the components of Comparative Examples 1 to 13 shown in Table 5 and the balance Cu were obtained. The specific steps are as follows. First, in a vacuum, a raw material having a predetermined composition was heated by high-frequency induction heating in an alumina crucible and melted. After that, the obtained molten metal was dropped from a nozzle with a diameter of 5 mm under the crucible. Next, argon gas was sprayed toward this molten metal to obtain a large number of particles. These particles were classified to remove particles having a diameter exceeding 63 μm to obtain a copper alloy powder.
[粉末の固溶量測定]
 実施例1~18に示す各銅合金粉末について、断面を走査型電子顕微鏡(SEM)(日本電子株式会社、JSM-IT500HR/LV)を用いて、母相と析出物を明確にしたうえで、銅合金粉末に固溶される添加元素の量を測定した。測定には、SEM装置に付属のエネルギー分散型X線分光器(EDS)(オックスフォードインストゥルメンツ株式会社、AZtec Energy/Automated X-MaxN150)を用いた。銅合金粉末について、銅への元素Mの実際の固溶量を測定した結果を、表1に示す。元素Mの添加量、その他元素の含有量は表2に示す。
[Measurement of solid solution amount of powder]
For each of the copper alloy powders shown in Examples 1 to 18, the cross section was analyzed using a scanning electron microscope (SEM) (JEOL Ltd., JSM-IT500HR/LV) to clarify the matrix and precipitates, The amounts of additive elements solid-dissolved in the copper alloy powder were measured. For the measurement, an energy dispersive X-ray spectrometer (EDS) (Oxford Instruments Co., Ltd., AZtec Energy/Automated X-MaxN150) attached to the SEM apparatus was used. Table 1 shows the results of measuring the actual solid solution amount of the element M in copper for the copper alloy powder. Table 2 shows the amount of element M added and the contents of other elements.
[レーザー光吸収率の測定]
 各銅合金粉末について、分光光度計を用いて、レーザー波長1064nmにおけるレーザー光反射率を測定した。レーザー光吸収率(%)は、100-「レーザー光反射率(%)」として算出した。結果は、表2に示してある。
[Measurement of laser light absorption rate]
For each copper alloy powder, a spectrophotometer was used to measure the laser light reflectance at a laser wavelength of 1064 nm. The laser light absorptivity (%) was calculated as 100−“laser light reflectance (%)”. The results are shown in Table 2.
[造形]
 銅合金粉末を原料として用いて3次元積層造形装置(EOS-M280)による積層造形法を実施し、造形物(未熱処理造形物)を得た。
[molding]
Using the copper alloy powder as a raw material, an additive manufacturing method was performed using a three-dimensional additive manufacturing apparatus (EOS-M280) to obtain a modeled object (unheat-treated modeled object).
[熱処理]
 未熱処理造形物に、350~1000℃、1~10時間の範囲内で熱処理(時効処理)を施した。これらの熱処理は各組成に応じて、適切と考えられる熱処理条件で実施した。
[Heat treatment]
A heat treatment (aging treatment) was applied to the non-heat-treated molded article at 350 to 1000° C. for 1 to 10 hours. These heat treatments were performed under heat treatment conditions considered appropriate for each composition.
[相対密度測定]
 熱処理後の造形物を加工して試験片(10×10×10mm)を作製し、相対密度(%)を測定した。結果を表3に示す。
[Relative density measurement]
A test piece (10×10×10 mm) was produced by processing the shaped article after the heat treatment, and the relative density (%) was measured. Table 3 shows the results.
[電気伝導率測定]
 熱処理後の造形物を加工して試験片(3×2×60mm)を作製し、「JIS C 2525」に準拠した4端子法で、電気伝導率(%IACS)を測定した。結果を表3に示す。
[Electrical conductivity measurement]
A test piece (3×2×60 mm) was prepared by processing the shaped article after the heat treatment, and the electric conductivity (%IACS) was measured by the four-probe method based on "JIS C 2525". Table 3 shows the results.
[評価格付け]
 造形物の特性に関する下記の基準に基づき、3段階の格付けを実施した結果を表3に示した。
 評価◎:相対密度98%以上かつ電気伝導率75%IACS以上。
 評価○:相対密度95%以上かつ電気伝導率70%IACS以上(ただし評価◎に該当するものは除く)。
 評価×:相対密度95%未満または電気伝導率70%IACS未満。
[Rating]
Table 3 shows the results of 3-level grading based on the following criteria regarding the properties of the shaped objects.
Evaluation ⊚: relative density of 98% or more and electric conductivity of 75% IACS or more.
Evaluation ∘: relative density of 95% or more and electric conductivity of 70% IACS or more (except those corresponding to evaluation ⊚).
Evaluation x: Relative density less than 95% or electric conductivity less than 70% IACS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、添加元素Mの銅への固溶限A(原子%)が0.01≦A≦1.00であって、固溶限Aの実際の固溶量B(原子%)に対する比B/Aが1.2~5.0である粉末を用いて作製した造形体は、相対密度95%以上かつ電気伝導率70%IACS以上を達成することが確認された。 From Table 3, the solid solubility limit A (atomic %) of the additive element M in copper is 0.01 ≤ A ≤ 1.00, and the ratio of the solid solubility limit A to the actual solid solution amount B (atomic %) It was confirmed that a shaped body produced using a powder having a B/A of 1.2 to 5.0 achieves a relative density of 95% or higher and an electric conductivity of 70% IACS or higher.
[比較例]
 表4~6に比較例1~11についての結果を示す。
 比較例1は、固溶限に比してCrの実際の固溶量が少なく、相対密度が低いものとなった。
 比較例2は、固溶限に比してMoの実際の固溶量が多く、電気伝導率が低いものとなった。
 比較例3は、固溶限に比してVの実際の固溶量が多く、電気伝導率が低いものとなった。
 比較例4は、Zrの添加量が少なく、固溶限に比してZrの実際の固溶量も少なく、相対密度が低いものとなった。
 比較例5は、固溶限が大きいAlが添加されており、電気伝導率が低いものとなった。
 比較例6は、固溶限が大きいAlが添加されており、電気伝導率が低いものとなった。
 比較例7は、固溶限が大きいSnが添加されており、電気伝導率が低いものとなった。
 比較例8は、Crの添加量が少なく、固溶限に比してCrの実際の固溶量も少なく、相対密度が低いものとなった。
 比較例9は、Vの添加量が多く、固溶限に比してVの実際の固溶量も多いので、電気伝導率が低いものとなった。
 比較例10は、固溶限が大きいAlが添加されており、XYの積が大きすぎ、電気伝導率が低いものとなった。
 比較例11は、Zrの添加量が多く、固溶限に比してZrの実際の固溶量も多く、XYの積が大きく、電気伝導率が低いものとなった。
[Comparative example]
Tables 4-6 show the results for Comparative Examples 1-11.
In Comparative Example 1, the actual solid solution amount of Cr was smaller than the solid solubility limit, and the relative density was low.
In Comparative Example 2, the actual solid solution amount of Mo was larger than the solid solubility limit, and the electric conductivity was low.
In Comparative Example 3, the actual solid solution amount of V was larger than the solid solubility limit, and the electric conductivity was low.
In Comparative Example 4, the amount of Zr added was small, the actual solid solution amount of Zr was small compared to the solid solubility limit, and the relative density was low.
In Comparative Example 5, Al having a large solid solubility limit was added, resulting in low electrical conductivity.
In Comparative Example 6, Al having a large solid solubility limit was added, resulting in low electrical conductivity.
In Comparative Example 7, Sn having a large solid solubility limit was added, resulting in a low electrical conductivity.
In Comparative Example 8, the amount of Cr added was small, the actual amount of solid solution of Cr was small compared to the solid solubility limit, and the relative density was low.
In Comparative Example 9, the amount of V added was large, and the actual solid solution amount of V was large compared to the solid solubility limit, so the electrical conductivity was low.
In Comparative Example 10, Al with a large solid solubility limit was added, the product of XY was too large, and the electrical conductivity was low.
In Comparative Example 11, the amount of Zr added was large, the actual solid solution amount of Zr was large compared to the solid solubility limit, the product of XY was large, and the electrical conductivity was low.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 

Claims (4)

  1.  三次元積層造形用の銅合金粉末であって、前記銅合金粉末が、添加元素Mを含有する銅合金で構成されており、前記添加元素Mは、銅への平衡状態での固溶限Aが0.01≦A≦1.00(原子%)であり、かつ、前記固溶限A(原子%)に対する実際の固溶量B(原子%)の比であるB/Aが1.2~5.0である、三次元積層造形用の銅合金粉末。 A copper alloy powder for three-dimensional additive manufacturing, wherein the copper alloy powder is composed of a copper alloy containing an additive element M, and the additive element M has a solid solubility limit A in equilibrium with copper is 0.01 ≤ A ≤ 1.00 (atomic %), and B / A, which is the ratio of the actual solid solution amount B (atomic %) to the solid solubility limit A (atomic %), is 1.2 ~5.0, a copper alloy powder for three-dimensional additive manufacturing.
  2.  前記銅合金は、前記添加元素Mとして、Cr、Mo、V、Zrを1種もしくは2種以上を合計で0.10~10.00原子%含有し、残部が銅および不可避的不純物である、請求項1に記載の三次元積層造形用の銅合金粉末。 The copper alloy contains 0.10 to 10.00 atomic percent in total of one or more of Cr, Mo, V, and Zr as the additive element M, and the balance is copper and unavoidable impurities. The copper alloy powder for three-dimensional additive manufacturing according to claim 1.
  3.  前記銅合金に不可避的不純物として含有される成分が、Si:0.10質量%以下、P:0.10質量%以下、及びS:0.10質量%以下からなる群から選択される少なくとも1つを満たす、請求項1又は2に記載の三次元積層造形用の銅合金粉末。 At least one component contained as an inevitable impurity in the copper alloy is selected from the group consisting of Si: 0.10% by mass or less, P: 0.10% by mass or less, and S: 0.10% by mass or less The copper alloy powder for three-dimensional additive manufacturing according to claim 1 or 2, which satisfies the following:
  4.  前記銅合金中の酸素量X(質量%)と前記銅合金の波長1064nmにおけるレーザー光吸収率Y(%)との積であるXYの値が0.2~2.0である、請求項1~3のいずれか1項に記載の三次元積層造形用の銅合金粉末。

     
    Claim 1, wherein the value of XY, which is the product of the oxygen content X (mass%) in the copper alloy and the laser light absorption rate Y (%) of the copper alloy at a wavelength of 1064 nm, is 0.2 to 2.0. 3. The copper alloy powder for three-dimensional additive manufacturing according to any one of -3.

PCT/JP2022/034633 2021-10-12 2022-09-15 Copper alloy powder for three-dimensional laminate molding, having excellent moldability and conductivity WO2023063018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021167141A JP2023057593A (en) 2021-10-12 2021-10-12 Copper alloy powder for three-dimensional lamination having excellent moldability and electric conductivity
JP2021-167141 2021-10-12

Publications (1)

Publication Number Publication Date
WO2023063018A1 true WO2023063018A1 (en) 2023-04-20

Family

ID=85987476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034633 WO2023063018A1 (en) 2021-10-12 2022-09-15 Copper alloy powder for three-dimensional laminate molding, having excellent moldability and conductivity

Country Status (3)

Country Link
JP (1) JP2023057593A (en)
TW (1) TW202330950A (en)
WO (1) WO2023063018A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193671A1 (en) * 2017-04-21 2018-10-25 Jx金属株式会社 Copper powder and method for manufacturing same, and method for manufacturing three-dimensional molded object
WO2019044073A1 (en) * 2017-09-04 2019-03-07 株式会社Nttデータエンジニアリングシステムズ Copper alloy powder, heat treatment method for multilayer shaped structure, method for producing copper alloy shaped structure, and copper alloy shaped structure
JP2019210497A (en) * 2018-06-01 2019-12-12 山陽特殊製鋼株式会社 Cu-based alloy powder
WO2019239655A1 (en) * 2018-06-14 2019-12-19 古河電気工業株式会社 Copper alloy powder, layered/molded product, method for producing layered/molded product, and metal parts
JP2021017639A (en) * 2019-07-23 2021-02-15 山陽特殊製鋼株式会社 Cu-based alloy powder
JP2021031691A (en) * 2019-08-19 2021-03-01 山陽特殊製鋼株式会社 Cu alloy powder
JP2021123770A (en) * 2020-02-07 2021-08-30 山陽特殊製鋼株式会社 COATED Cu BASED ALLOY POWDER
JP2021143384A (en) * 2020-03-12 2021-09-24 山陽特殊製鋼株式会社 Cu-based alloy powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193671A1 (en) * 2017-04-21 2018-10-25 Jx金属株式会社 Copper powder and method for manufacturing same, and method for manufacturing three-dimensional molded object
WO2019044073A1 (en) * 2017-09-04 2019-03-07 株式会社Nttデータエンジニアリングシステムズ Copper alloy powder, heat treatment method for multilayer shaped structure, method for producing copper alloy shaped structure, and copper alloy shaped structure
JP2019210497A (en) * 2018-06-01 2019-12-12 山陽特殊製鋼株式会社 Cu-based alloy powder
WO2019239655A1 (en) * 2018-06-14 2019-12-19 古河電気工業株式会社 Copper alloy powder, layered/molded product, method for producing layered/molded product, and metal parts
JP2021017639A (en) * 2019-07-23 2021-02-15 山陽特殊製鋼株式会社 Cu-based alloy powder
JP2021031691A (en) * 2019-08-19 2021-03-01 山陽特殊製鋼株式会社 Cu alloy powder
JP2021123770A (en) * 2020-02-07 2021-08-30 山陽特殊製鋼株式会社 COATED Cu BASED ALLOY POWDER
JP2021143384A (en) * 2020-03-12 2021-09-24 山陽特殊製鋼株式会社 Cu-based alloy powder

Also Published As

Publication number Publication date
TW202330950A (en) 2023-08-01
JP2023057593A (en) 2023-04-24

Similar Documents

Publication Publication Date Title
JP7132751B2 (en) Cu-based alloy powder
WO2019239655A1 (en) Copper alloy powder, layered/molded product, method for producing layered/molded product, and metal parts
JP7288368B2 (en) Cu alloy powder
US11987870B2 (en) Cu-based alloy powder
JP7425634B2 (en) Cu-based alloy powder
WO2022215468A1 (en) Copper alloy powder for additive manufacturing having excellent electrical conductivity
JP7425617B2 (en) Coated Cu-based alloy powder
JP2022148139A (en) MOLDED BODY MADE OF Cu-BASED ALLOY
WO2023063018A1 (en) Copper alloy powder for three-dimensional laminate molding, having excellent moldability and conductivity
JP2022122462A (en) Carbon-fixed carbon steel powder
JP6559865B1 (en) Method for producing copper alloy shaped article and copper alloy shaped article
JP2023024164A (en) Copper alloy molding having excellent electrical conductivity
WO2023162610A1 (en) Cu-based alloy powder having excellent electric conductivity
JP2023126091A (en) Cu-BASED ALLOY POWDER HAVING EXCELLENT ELECTRIC CONDUCTIVITY
JP2023024165A (en) Cu-BASED ALLOY POWDER FOR RAPID MELTING RAPID SOLIDIFICATION
WO2022168914A1 (en) Ni-based alloy powder for lamination molding, lamination molded article, and lamination molded article manufacturing method
CN118119722A (en) Ni-based alloy powder suitable for additive manufacturing and additive manufactured body obtained by using same
JP2021134423A (en) Copper alloy powder for laminated molding, and manufacturing method thereof
WO2024004563A1 (en) Nickel-based alloy powder for lamination molding and lamination molded body
JP2022122461A (en) Fe-BASED ALLOY POWDER FOR ADDITIVE MANUFACTURING AND ADDITIVE-MANUFACTURED ARTICLE
TW202328465A (en) Ni alloy powder suited to additive manufacturing and additively manufactured article obtained using same
JP2022148950A (en) METHOD FOR PRODUCING MOLDED ARTICLE INCLUDING Fe-BASED ALLOY POWDER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880714

Country of ref document: EP

Kind code of ref document: A1