JP2023532438A - Solid state lithium battery cell, battery comprising said battery cell, and manufacturing process for manufacturing said battery - Google Patents

Solid state lithium battery cell, battery comprising said battery cell, and manufacturing process for manufacturing said battery Download PDF

Info

Publication number
JP2023532438A
JP2023532438A JP2022579026A JP2022579026A JP2023532438A JP 2023532438 A JP2023532438 A JP 2023532438A JP 2022579026 A JP2022579026 A JP 2022579026A JP 2022579026 A JP2022579026 A JP 2022579026A JP 2023532438 A JP2023532438 A JP 2023532438A
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
battery cell
layer
copper substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022579026A
Other languages
Japanese (ja)
Inventor
モハメド チャキール,
アキール ディリープ,
バラジ カルヤナランガン,
マドゥミーター ムラリ-エー,
ジャヤント-ラマスワミ ラママーシー,
コンダ-シヴァ レッディ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2008647A external-priority patent/FR3113541B1/en
Application filed by Renault SAS filed Critical Renault SAS
Publication of JP2023532438A publication Critical patent/JP2023532438A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

エッチングされた銅基板(15)、グラファイト層(14)、電解質(12)、ならびにニッケル、マンガン、およびコバルトの酸化物の層(11)を積層することによって形成され、電解質(12)が、グラファイト層(14)ならびにニッケル、マンガン、およびコバルトの酸化物の層(11)と接触しており、銅基板(15)が電池セルのアノードを形成し、ニッケル、マンガン、およびコバルトの酸化物の層(11)が電池セルのカソードを形成する、固体リチウム電池セルであって、電解質(12)が固体リチウム系電解質であり、グラファイト層(15)が、液体リチウム系電解質を用いたプレリチウム化中に生成される第1の固体電解質界面(16)と、固体リチウム系電解質を用いたプレリチウム化中に生成される第2の固体電解質界面(17)とを有する、固体リチウム電池セルが開示される。【選択図】図2formed by stacking an etched copper substrate (15), a graphite layer (14), an electrolyte (12), and a layer (11) of oxides of nickel, manganese and cobalt, the electrolyte (12) being graphite In contact with the layer (14) and the layer (11) of oxides of nickel, manganese and cobalt, the copper substrate (15) forms the anode of the battery cell and the layer of oxides of nickel, manganese and cobalt. A solid lithium battery cell, wherein (11) forms the cathode of the battery cell, the electrolyte (12) is a solid lithium-based electrolyte, and the graphite layer (15) is during prelithiation with a liquid lithium-based electrolyte. A solid state lithium battery cell is disclosed having a first solid electrolyte interface (16) produced during prelithiation with a solid lithium based electrolyte and a second solid electrolyte interface (17) produced during prelithiation with a solid lithium based electrolyte. be. [Selection drawing] Fig. 2

Description

本発明は、リチウム電池に関し、特に固体リチウム電池に関する。 The present invention relates to lithium batteries, and more particularly to solid state lithium batteries.

固体電解質電池技術により、既存の電池の容量およびその動作の安全性を、特にリチウムイオン電池の場合に、液体電解質電池と比較して改善することが可能になると予期されている。 Solid electrolyte battery technology is expected to allow improvements in the capacity of existing batteries and their operational safety, especially in the case of lithium-ion batteries, compared to liquid electrolyte batteries.

従来の固体リチウム電池は、液体電解質リチウムイオン電池の場合と同様に、カソードと、固体ポリマー電解質と、アノードとを備える。より具体的には、固体リチウム電池は、アノード、電解質、およびカソードを、アノードを銅基板と接触させカソードをアルミニウム基板と接触させて、銅基板とアルミニウム基板との間に積層することによって製造される。 A conventional solid state lithium battery comprises a cathode, a solid polymer electrolyte, and an anode, as in liquid electrolyte lithium ion batteries. More specifically, solid state lithium batteries are manufactured by laminating an anode, an electrolyte, and a cathode between a copper substrate and an aluminum substrate, with the anode in contact with the copper substrate and the cathode in contact with the aluminum substrate. be.

アノードはグラファイトで構成することができ、固体ポリマー電解質は、PVDF-HFP(ポリ(フッ化ビニリデン)-コ-ポリ(ヘキサフルオロプロピレン))、LITFSI(リチウムビス(トリフルオロメチルスルホニル)イミド)、およびTEG-DME(テトラエチレングリコールジメチルエーテル)を含む化合物である。 The anode can be composed of graphite and the solid polymer electrolytes are PVDF-HFP (poly(vinylidene fluoride)-co-poly(hexafluoropropylene)), LITFSI (lithium bis(trifluoromethylsulfonyl)imide), and It is a compound containing TEG-DME (tetraethylene glycol dimethyl ether).

固体リチウム電池によって予期することができる改善にかかわらず、使用可能な電池を得る前にグラファイト電解質界面を改善することがまだ必要である。電池は、現在の状態では、利用可能である量以上にリチウムイオンを消費するグラファイト電解質界面を備え、それがリチウムイオンの移動を妨げている。この結果、SEI(固体電解質界面)が形成され、充電または放電を実施することが不可能になる。 Despite the improvements that can be expected with solid state lithium batteries, there is still a need to improve the graphite electrolyte interface before obtaining usable batteries. Batteries, in their current state, have a graphite electrolyte interface that consumes more lithium ions than is available, which impedes the migration of lithium ions. As a result, an SEI (Solid Electrolyte Interface) is formed, making it impossible to carry out charging or discharging.

加えて、剥離によって、銅基板とグラファイトアノードとの間の界面に第2の問題が存在する。グラファイト電極のプレリチウム化中に、グラファイト電極と銅基板との間の界面には溶剤がリチウムイオンと同時挿入される。この結果、プレリチウム化電極のフレーキングおよびフラグメンテーションが起こり、電極が損傷し不適切なものになる。 In addition, delamination presents a second problem at the interface between the copper substrate and the graphite anode. During prelithiation of the graphite electrode, a solvent is co-intercalated with lithium ions at the interface between the graphite electrode and the copper substrate. This results in flaking and fragmentation of the prelithiated electrode, making the electrode damaged and unsuitable.

換言すれば、リチウムイオンがグラファイトアノードと銅基板との間に挿入されて、銅基板に対するグラファイトアノードの接着が低減され、それがフレーキングにつながる。 In other words, lithium ions are intercalated between the graphite anode and the copper substrate to reduce the adhesion of the graphite anode to the copper substrate, which leads to flaking.

グラファイトアノードを構造的に損傷することに加えて、この挿入(またはインターカレーション)の作用によって、グラファイトアノードの接触抵抗がより大きくなり、充電および放電容量がさらに低減される。 In addition to structurally damaging the graphite anode, this intercalation effect results in higher graphite anode contact resistance, further reducing charge and discharge capacity.

結果として、理論的に予測される容量と比較して容量が少ないかまたは容量がない、固体リチウム電池に関する問題が存在する。 As a result, there is a problem with solid state lithium batteries that have little or no capacity compared to what is theoretically predicted.

SEIを形成するための第1のサイクル中に消費されるリチウムの量を低減するために、固体電解質電池の製造に対して、グラファイトアノードのプレリチウム化の段階が提案されてきた。電気化学プロセスを用いた、最終セルの外部におけるグラファイトアノードのプレリチウム化は、特許および科学文献によって知られている。 In order to reduce the amount of lithium consumed during the first cycle to form the SEI, a stage of prelithiation of graphite anodes has been proposed for the manufacture of solid electrolyte cells. Prelithiation of graphite anodes outside the final cell using electrochemical processes is known from the patent and scientific literature.

特に、文献US 5 759 715 Aは、最新技術によって知られており、このプレリチウム化段階を第1の電池セルで実施し、プレリチウム化されたアノードを取り除き、次に最終セルをプレリチウム化アノードとともに組み立てるためのプロセスを記載している。 In particular, the document US 5 759 715 A is known from the state of the art, performing this prelithiation step on the first battery cell, removing the prelithiated anode and then prelithiating the final cell. A process for assembly with an anode is described.

文献US 5 759 715 Aは、最終セルまたは電池を組み立てる前に、「前駆」セルでプレリチウム化された少なくとも1つの電極を有する、電気化学セルを構築するためのプロセスを開示している。好ましくは、活物質V13もしくはグラファイト、または両方の粒子は、最終セルを組み立てる前に、プレリチウム化によって「前駆」セル内で作製される。かかるプレリチウム化は、リチウムイオンをグラファイト電極に化学的または電気化学的に挿入することによって得られる。 Document US 5 759 715 A discloses a process for constructing an electrochemical cell having at least one electrode prelithiated in a "precursor" cell prior to assembly of the final cell or battery. Preferably, the particles of active material V 6 O 13 or graphite, or both, are made in the “precursor” cell by prelithiation before assembling the final cell. Such prelithiation is obtained by chemically or electrochemically inserting lithium ions into graphite electrodes.

しかしながら、これらの文献はいずれも、上記に特定した技術的課題に対処していない。 However, none of these documents address the technical problems identified above.

本発明の主題は、エッチングされた銅基板、グラファイト層、電解質、ならびにニッケル、マンガン、およびコバルトの酸化物の層を積層することによって形成され、電解質が、グラファイト層ならびにニッケル、マンガン、およびコバルトの酸化物の層と接触しており、銅基板が電池セルのアノードを形成し、ニッケル、マンガン、およびコバルトの酸化物の層が電池セルのカソードを形成する、固体リチウム電池セルである。電解質は固体リチウム系電解質であり、グラファイト層は、液体リチウム系電解質を用いたプレリチウム化中に生成される第1の固体電解質界面と、固体リチウム系電解質を用いたプレリチウム化中に生成される第2の固体電解質界面とを呈する。 The subject matter of the present invention is formed by laminating an etched copper substrate, a graphite layer, an electrolyte, and layers of oxides of nickel, manganese, and cobalt, wherein the electrolyte comprises a graphite layer and nickel, manganese, and cobalt oxides. A solid state lithium battery cell in contact with a layer of oxide, with a copper substrate forming the anode of the battery cell and a layer of oxides of nickel, manganese and cobalt forming the cathode of the battery cell. The electrolyte is a solid lithium-based electrolyte, and the graphite layer is formed at a first solid electrolyte interface formed during prelithiation with a liquid lithium-based electrolyte and during prelithiation with a solid lithium-based electrolyte. and a second solid electrolyte interface.

固体リチウム電解質は、リチウムビス(トリフルオロメチルスルホニル)イミドで改良したポリ(フッ化ビニリデン)-ポリ(ヘキサフルオロプロピレン)で作られた多孔質膜電解質であることができる。 The solid lithium electrolyte can be a porous membrane electrolyte made of poly(vinylidene fluoride)-poly(hexafluoropropylene) modified with lithium bis(trifluoromethylsulfonyl)imide.

銅基板およびグラファイト層は機械的に統合することができる。 The copper substrate and graphite layer can be mechanically integrated.

ニッケル、マンガン、およびコバルトの酸化物の層は、化学式LiNiMnCoを有することができ、式中、x、y、およびzは原子パーセント値を表し、xは0.3から0.8の間、yは0.1から0.3の間、zは0.1から0.3の間である。 The layer of oxides of nickel, manganese, and cobalt can have the chemical formula LiNixMnyCozO2 , where x , y , and z represent atomic percent values , and x ranges from 0.3 to is between 0.8, y is between 0.1 and 0.3, and z is between 0.1 and 0.3.

固体リチウム電池は、並列に嵌め込まれた、上述したものなどの電池セルを少なくとも2つ備えることができる。 A solid state lithium battery can comprise at least two battery cells, such as those described above, fitted in parallel.

本発明の別の主題は、
レリーフパターンを得るために、銅基板のウェットエッチングを実施する段階と、
エッチングされた銅基板上にグラファイト層を配置する段階と、
エッチングされた銅基板上のグラファイト層と、ニッケル、マンガン、およびコバルトの酸化物の層と、グラファイト層ならびにニッケル、マンガン、およびコバルトの酸化物の層の両方と接触している液体リチウム系電解質とを備える第1の電池セルを組み立てる段階と、
第1の電池セルのグラファイト層のプレリチウム化を実施する段階と、
第1の電池セルから、エッチングされた銅基板に固定されたプレリチウム化グラファイト層を取り除く段階と、
エッチングされた銅基板上のプレリチウム化グラファイト層と、ニッケル、マンガン、およびコバルトの酸化物の層と、プレリチウム化グラファイト層ならびにニッケル、マンガン、およびコバルトの酸化物の層と接触している固体リチウム系電解質とを備える第2の電池セルを組み立てる段階と、
少なくとも2つの第2の電池セルを並列で備える固体リチウム電池を組み立てる段階と、を含む、上述したような固体リチウム電池を製造する製造プロセスである。
Another subject of the invention is
performing a wet etching of the copper substrate to obtain a relief pattern;
placing a graphite layer on an etched copper substrate;
A layer of graphite on an etched copper substrate, a layer of nickel, manganese and cobalt oxides, and a liquid lithium-based electrolyte in contact with both the graphite layer and the layer of nickel, manganese and cobalt oxides. assembling a first battery cell comprising
performing prelithiation of the graphite layer of the first battery cell;
removing the prelithiated graphite layer fixed to the etched copper substrate from the first battery cell;
A layer of prelithiated graphite and a layer of oxides of nickel, manganese and cobalt on an etched copper substrate and a solid in contact with the layer of prelithiated graphite and a layer of oxides of nickel, manganese and cobalt assembling a second battery cell comprising a lithium-based electrolyte;
assembling a solid state lithium battery comprising at least two second battery cells in parallel.

第1の電池セルのプレリチウム化は、放電サイクルを用いて、周囲温度および電圧ウィンドウOCV -10mVで0.05Cの定電流定電圧モードで実施することができる。 Prelithiation of the first battery cell can be performed in constant current constant voltage mode at 0.05 C at ambient temperature and voltage window OCV -10 mV using discharge cycles.

銅基板のエッチングは、
FeCl、HCl、およびHOの溶液を30秒間適用する段階と、
銅基板を炭酸水素アンモニウムNHHCO溶液で、次に水で洗浄する段階と、
銅基板を熱板の上で80℃で乾燥させる段階と、を含むことができる。
Etching the copper substrate
applying a solution of FeCl 3 , HCl, and H 2 O for 30 seconds;
washing the copper substrate with an ammonium bicarbonate NH 4 HCO 3 solution and then with water;
drying the copper substrate on a hot plate at 80°C.

固体リチウム系電解質は乾燥ポリマー電解質であることができる。 The solid lithium-based electrolyte can be a dry polymer electrolyte.

固体リチウム系電解質は、リチウムビス(トリフルオロメチルスルホニル)イミドで改良したポリ(フッ化ビニリデン)-ポリ(ヘキサフルオロプロピレン)で作られた多孔質膜電解質であることができる。 The solid lithium-based electrolyte can be a porous membrane electrolyte made of poly(vinylidene fluoride)-poly(hexafluoropropylene) modified with lithium bis(trifluoromethylsulfonyl)imide.

本発明のより良い理解は、完全な非現定例を用いて考察され添付図面によって例証される多数の実施形態の詳細な説明を検討することで得られるであろう。 A better understanding of the present invention will be obtained from a consideration of the detailed description of a number of embodiments discussed using a complete non-current example and illustrated by the accompanying drawings.

本発明による製造プロセスの主要段階を示す図である。1 shows the main stages of the manufacturing process according to the invention; FIG. 本発明による二層SEI電池セルの主要部分を示す図である。FIG. 2 shows the main parts of a dual-layer SEI battery cell according to the invention;

銅基板上のグラファイト層のフレーキングの問題を解決するために、グラファイト層の形成前に、銅基板の化学エッチングが実施される。このエッチングは、特に銅基板の表面のくぼみにより、レリーフパターンを形成するように設計される。グラファイト層のコーティング中に、くぼみがグラファイトで充填されることにより、相互の機械的係止によってグラファイト層の取付けが可能になる。換言すれば、接着力が生じる総表面積が増加する。 In order to solve the problem of flaking of the graphite layer on the copper substrate, chemical etching of the copper substrate is performed before forming the graphite layer. This etch is specifically designed to form a relief pattern by recessing the surface of the copper substrate. Filling of the depressions with graphite during the coating of the graphite layers allows attachment of the graphite layers by mutual mechanical locking. In other words, the total surface area over which adhesion forces occur increases.

エッチングは、FeCl、HCl、およびHOの溶液を用いたウェットエッチングの形態で実施される。エッチング溶液は、30秒間にわたって銅基板に適用される。続いて、銅基板は、炭酸水素アンモニウムNHHCO溶液で、次に水で連続して洗浄される。続いて、銅基板は、熱板の上で80℃で乾燥される。 Etching is performed in the form of a wet etch using a solution of FeCl3 , HCl and H2O . The etching solution is applied to the copper substrate for 30 seconds. Subsequently, the copper substrate is washed successively with an ammonium bicarbonate NH 4 HCO 3 solution and then with water. The copper substrate is then dried on a hot plate at 80°C.

SEIの問題を解決するために、二層SEIが設計された。 A two-layer SEI was designed to solve the SEI problem.

第1の段階中に、ニッケル、マンガン、およびコバルト(NMC)の酸化物の層と、グラファイト層と、それらの間の液体リチウム系電解質とを備える層の積層体が形成される。ニッケル、マンガン、およびコバルトの酸化物の層は、化学式LiNiMnCoであり、式中、x、y、およびzは原子パーセント値を表し、xは0.3から0.8の間、yは0.1から0.3の間、zは0.1から0.3の間である。 During the first stage, a stack of layers is formed comprising a layer of oxides of nickel, manganese and cobalt (NMC), a layer of graphite and a liquid lithium-based electrolyte therebetween. The layer of oxides of nickel, manganese, and cobalt has the chemical formula LiNixMnyCozO2 , where x , y , and z represent atomic percent values, and x is 0.3 to 0.8. , y is between 0.1 and 0.3, and z is between 0.1 and 0.3.

グラファイト電極のプレリチウム化後、第1のSEIが形成される。続いて、電池セルは、液体電解質/グラファイト電極SEIを取り除くために切断される。 After prelithiation of the graphite electrode, a first SEI is formed. The battery cell is then cut to remove the liquid electrolyte/graphite electrode SEI.

第2の段階中に、第1の電池セルから取り除かれた液体電解質/グラファイト電極SEIで第2の電池セルが構築される。第2の電池セルは、第1の電池セルと類似しているが、液体リチウム系電解質の代わりにポリマーリチウム系電解質を含む構造を備える。第2の電池セルのグラファイト層をプレリチウム化した後、液体電解質SEIと固体ポリマー電解質との間の界面に第2のSEIが形成される。 During the second phase, a second battery cell is constructed with the liquid electrolyte/graphite electrode SEI removed from the first battery cell. The second battery cell is similar to the first battery cell, but has a structure that includes a polymeric lithium-based electrolyte instead of a liquid lithium-based electrolyte. After prelithiation of the graphite layer of the second battery cell, a second SEI is formed at the interface between the liquid electrolyte SEI and the solid polymer electrolyte.

得られた二層SEIにより、安定したグラファイトと電解質との間でのイオンの移動が可能になる。 The resulting bilayer SEI allows ionic transfer between the stable graphite and the electrolyte.

固体リチウム電池を製造するためのプロセスは、以下の段階を含む。 A process for manufacturing a solid state lithium battery includes the following steps.

第1の段階1の間に、銅基板が、FeCl、HCl、およびHO(FeCl:0.5~1g、36%HCl:3~5ml、HO:12~15ml)の溶液でウェットエッチングされる。 During the first stage 1, the copper substrate was immersed in a solution of FeCl 3 , HCl and H 2 O (FeCl 3 : 0.5-1 g, 36% HCl: 3-5 ml, H 2 O: 12-15 ml). is wet etched.

第2の段階2の間に、グラファイト層がエッチングされた銅基板に適用される。 During the second step 2, a graphite layer is applied to the etched copper substrate.

第3の段階3の間に、エッチングされた銅基板上のグラファイト層と、NMC層と、グラファイト層およびNMC層の両方と接触している液体リチウム系電解質とを備える、第1の電池セルが組み立てられる。 During a third stage 3, a first battery cell comprising a graphite layer on an etched copper substrate, an NMC layer, and a liquid lithium-based electrolyte in contact with both the graphite layer and the NMC layer Assembled.

第4の段階4の間に、グラファイト層のプレリチウム化が、周囲温度および電圧ウィンドウOCV -10mVで0.05Cの定電流定電圧(CCCV)モードで、放電サイクルを用いて第1の電池セルで実施される。 During the fourth stage 4, the prelithiation of the graphite layer was performed on the first battery cell using a discharge cycle in constant current constant voltage (CCCV) mode at 0.05 C at ambient temperature and voltage window OCV −10 mV. carried out in

第5の段階5の間に、電池セルが開かれ、エッチングされた銅基板上にあるプレリチウム化グラファイト層が取り除かれる。 During the fifth step 5, the battery cell is opened and the prelithiated graphite layer on the etched copper substrate is removed.

第6の段階6の間に、エッチングされた銅基板上のプレリチウム化グラファイト層と、NMC層と、プレリチウム化グラファイト層およびNMC層と接触している固体リチウム系電解質とを備える、第2の電池セルが組み立てられる。固体リチウム系電解質は、PVDF-HFP LiTFSIの名称でも知られる、リチウムビス(トリフルオロメチルスルホニル)イミド(LiTFSI)で改良したポリ(フッ化ビニリデン)-ポリ(ヘキサフルオロプロピレン)(PVDH-HFP)で作られた多孔質膜電解質などの、乾燥ポリマー電解質である。第2の固体電解質界面層は第1の充電中に形成される。 During a sixth stage 6, a second of battery cells are assembled. The solid lithium-based electrolyte is poly(vinylidene fluoride)-poly(hexafluoropropylene) (PVDH-HFP) modified with lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), also known as PVDF-HFP LiTFSI. Dry polymer electrolytes, such as fabricated porous membrane electrolytes. A second solid electrolyte interfacial layer is formed during the first charge.

第7の段階7の間に、少なくとも2つの電池セルを並列で備える固体リチウム電池が組み立てられる。 During a seventh stage 7 a solid state lithium battery comprising at least two battery cells in parallel is assembled.

図2は、製造プロセスを用いて得られる第2の電池セルを表している。第2の電池セル10は、NMC層11と、固体リチウム系電解質12と、二層SEI 13と、グラファイト層14と、銅基板15とを備える。二層SEI 13は、グラファイト層14と接触している液体電解質SEI 17と、固体リチウム系電解質12と接触している固体電解質SEI 16とを備える。NMC層11は第2の電池セルのカソードを形成し、プレリチウム化グラファイトはアノードを形成する。
FIG. 2 represents a second battery cell obtained using the manufacturing process. A second battery cell 10 comprises an NMC layer 11 , a solid lithium-based electrolyte 12 , a bilayer SEI 13 , a graphite layer 14 and a copper substrate 15 . The bilayer SEI 13 comprises a liquid electrolyte SEI 17 in contact with the graphite layer 14 and a solid electrolyte SEI 16 in contact with the solid lithium-based electrolyte 12 . The NMC layer 11 forms the cathode of the second battery cell and the prelithiated graphite forms the anode.

Claims (10)

エッチングされた銅基板(15)、グラファイト層(14)、電解質(12)、ならびにニッケル、マンガン、およびコバルトの酸化物の層(11)を積層することによって形成され、前記電解質(12)が、前記グラファイト層(14)ならびに前記ニッケル、マンガン、およびコバルトの酸化物の層(11)と接触しており、前記銅基板(15)が電池セルのアノードを形成し、前記ニッケル、マンガン、およびコバルトの酸化物の層(11)が電池セルのカソードを形成する、固体リチウム電池セルであって、前記電解質(12)が固体リチウム系電解質であり、前記グラファイト層(14)が、液体リチウム系電解質を用いたプレリチウム化中に生成される第1の固体電解質界面(16)と、前記固体リチウム系電解質を用いたプレリチウム化中に生成される第2の固体電解質界面(17)とを呈する、固体リチウム電池セル。 formed by stacking an etched copper substrate (15), a graphite layer (14), an electrolyte (12) and a layer (11) of oxides of nickel, manganese and cobalt, said electrolyte (12) comprising: in contact with said graphite layer (14) and said oxide layer (11) of nickel, manganese and cobalt, said copper substrate (15) forming the anode of a battery cell, said nickel, manganese and cobalt A solid lithium battery cell, wherein a layer (11) of oxide of (11) forms the cathode of the battery cell, said electrolyte (12) is a solid lithium-based electrolyte and said graphite layer (14) is a liquid lithium-based electrolyte and a second solid electrolyte interface (17) produced during prelithiation with said solid lithium-based electrolyte. , solid-state lithium battery cells. 前記固体リチウム系電解質(12)が、リチウムビス(トリフルオロメチルスルホニル)イミドで改良したポリ(フッ化ビニリデン)-ポリ(ヘキサフルオロプロピレン)で作られた多孔質膜電解質である、請求項1に記載の固体リチウム電池セル。 2. The method of claim 1, wherein the solid lithium-based electrolyte (12) is a porous membrane electrolyte made of poly(vinylidene fluoride)-poly(hexafluoropropylene) modified with lithium bis(trifluoromethylsulfonyl)imide. Solid state lithium battery cell as described. 前記銅基板および前記グラファイト層が機械的に統合される、請求項1または2に記載の固体リチウム電池セル。 3. The solid state lithium battery cell of claim 1 or 2, wherein said copper substrate and said graphite layer are mechanically integrated. 前記ニッケル、マンガン、およびコバルトの酸化物の層(11)が、化学式LiNiMnCoのものであり、式中、x、y、およびzが原子パーセント値を表し、xが0.3から0.8の間、yが0.1から0.3の間、zが0.1から0.3の間である、請求項1から3のいずれか一項に記載の固体リチウム電池セル。 Said nickel, manganese and cobalt oxide layer (11) is of the chemical formula LiNixMnyCozO2 , where x, y and z represent atomic percentage values and x is 0 Solid state lithium according to any one of claims 1 to 3, wherein y is between 0.1 and 0.3 and z is between 0.1 and 0.3. battery cell. 請求項1から4のいずれか一項に記載の電池セルを少なくとも2つ備え、前記電池セルが並列に嵌め込まれた、固体リチウム電池。 A solid state lithium battery comprising at least two battery cells according to any one of claims 1 to 4, said battery cells being fitted in parallel. 請求項5に記載の固体リチウム電池を製造する製造プロセスであって、
レリーフパターンを得るために、銅基板のウェットエッチングを実施する段階と、
エッチングされた前記銅基板上にグラファイト層を配置する段階と、
前記エッチングされた銅基板上の前記グラファイト層と、ニッケル、マンガン、およびコバルトの酸化物の層と、前記グラファイト層ならびに前記ニッケル、マンガン、およびコバルトの酸化物の層の両方と接触している液体リチウム系電解質とを備える第1の電池セルを組み立てる段階と、
前記第1の電池セルの前記グラファイト層のプレリチウム化を実施する段階と、
前記第1の電池セルから、前記エッチングされた銅基板に固定された、プレリチウム化された前記グラファイト層を取り除く段階と、
前記エッチングされた銅基板上の前記プレリチウム化されたグラファイト層と、ニッケル、マンガン、およびコバルトの酸化物の層と、前記プレリチウム化されたグラファイト層ならびに前記ニッケル、マンガン、およびコバルトの酸化物の層と接触している固体リチウム系電解質とを備える第2の電池セルを組み立てる段階と、
少なくとも2つの第2の電池セルを並列で備える固体リチウム電池を組み立てる段階と、
を含む、製造プロセス。
A manufacturing process for manufacturing the solid state lithium battery of claim 5, comprising:
performing a wet etching of the copper substrate to obtain a relief pattern;
placing a graphite layer on the etched copper substrate;
a liquid in contact with both the graphite layer, the nickel, manganese and cobalt oxide layer and the nickel, manganese and cobalt oxide layer on the etched copper substrate; assembling a first battery cell comprising a lithium-based electrolyte;
performing prelithiation of the graphite layer of the first battery cell;
removing the prelithiated graphite layer fixed to the etched copper substrate from the first battery cell;
said prelithiated graphite layer on said etched copper substrate; a layer of oxides of nickel, manganese and cobalt; said prelithiated graphite layer and said oxides of nickel, manganese and cobalt; assembling a second battery cell comprising a solid lithium-based electrolyte in contact with a layer of
assembling a solid state lithium battery comprising at least two second battery cells in parallel;
manufacturing process, including;
前記第1の電池セルの前記プレリチウム化が、周囲温度および電圧ウィンドウOCV -10mVで0.05Cの定電流定電圧モードで、放電サイクルを用いて実施される、請求項6に記載の固体リチウム電池を製造する製造プロセス。 7. Solid state lithium according to claim 6, wherein said prelithiation of said first battery cell is carried out using a discharge cycle in constant current constant voltage mode at 0.05 C at ambient temperature and voltage window OCV -10 mV. The manufacturing process that makes batteries. 前記銅基板の前記エッチングが、
FeCl、HCl、およびHOの溶液を30秒間適用する段階と、
前記銅基板を炭酸水素アンモニウムNHHCO溶液で、次に水で洗浄する段階と、
前記銅基板を熱板の上で80℃で乾燥させる段階と、
を含む、請求項6または7に記載の固体リチウム電池を製造する製造プロセス。
The etching of the copper substrate comprises:
applying a solution of FeCl 3 , HCl, and H 2 O for 30 seconds;
washing the copper substrate with an ammonium bicarbonate NH 4 HCO 3 solution and then with water;
drying the copper substrate on a hot plate at 80° C.;
A manufacturing process for manufacturing a solid state lithium battery according to claim 6 or 7, comprising:
前記固体リチウム系電解質が乾燥ポリマー電解質である、請求項6から8のいずれか一項に記載の固体リチウム電池を製造する製造プロセス。 A manufacturing process for manufacturing a solid state lithium battery according to any one of claims 6 to 8, wherein the solid state lithium based electrolyte is a dry polymer electrolyte. 前記固体リチウム系電解質が、リチウムビス(トリフルオロメチルスルホニル)イミドで改良したポリ(フッ化ビニリデン)-ポリ(ヘキサフルオロプロピレン)で作られた多孔質膜電解質である、請求項9に記載の固体リチウム電池を製造する製造プロセス。
The solid state of claim 9, wherein the solid state lithium-based electrolyte is a porous membrane electrolyte made of poly(vinylidene fluoride)-poly(hexafluoropropylene) modified with lithium bis(trifluoromethylsulfonyl)imide. The manufacturing process that produces lithium batteries.
JP2022579026A 2020-07-10 2021-07-06 Solid state lithium battery cell, battery comprising said battery cell, and manufacturing process for manufacturing said battery Pending JP2023532438A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
IN202041029482 2020-07-10
IN202041029482 2020-07-10
FR2008647 2020-08-24
FR2008647A FR3113541B1 (en) 2020-08-24 2020-08-24 Solid lithium cell, battery comprising said cells and manufacturing method for manufacturing said battery
PCT/EP2021/068652 WO2022008506A1 (en) 2020-07-10 2021-07-06 Solid lithium cell, battery comprising said cells and manufacturing process for manufacturing said battery

Publications (1)

Publication Number Publication Date
JP2023532438A true JP2023532438A (en) 2023-07-28

Family

ID=76765181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022579026A Pending JP2023532438A (en) 2020-07-10 2021-07-06 Solid state lithium battery cell, battery comprising said battery cell, and manufacturing process for manufacturing said battery

Country Status (6)

Country Link
US (1) US20230282887A1 (en)
EP (1) EP4179582A1 (en)
JP (1) JP2023532438A (en)
KR (1) KR20230038258A (en)
CN (1) CN115836401A (en)
WO (1) WO2022008506A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022205467B3 (en) 2022-05-31 2023-08-31 Volkswagen Aktiengesellschaft Process for producing a solid electrolyte for a solid battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759715A (en) 1995-09-26 1998-06-02 Valence Technology, Inc. Lithium ion batteries containing pre-lithiated electrodes
US20060032046A1 (en) * 2002-10-17 2006-02-16 Menachem Nathan Thin-film cathode for 3-dimensional microbattery and method for preparing such cathode
US20160172710A1 (en) * 2014-12-10 2016-06-16 The Regents Of The University Of California Electrolyte and negative electrode structure
CN110010964B (en) * 2018-01-04 2020-12-22 中国科学院苏州纳米技术与纳米仿生研究所 Porous membrane reinforced polymer-plastic crystal solid electrolyte membrane, and preparation method and application thereof
KR102379223B1 (en) * 2018-09-12 2022-03-28 주식회사 엘지에너지솔루션 Methods for preparing negative electrode for lithium secondary battery and lithium secondary battery
CN109841796B (en) * 2019-02-27 2021-01-12 中国第一汽车股份有限公司 Electrode preparation method and battery
CN111224154B (en) * 2020-02-17 2021-09-10 中国科学院化学研究所 Mesoporous nanoparticle gel composite electrolyte with lithium ion conduction and preparation method and application thereof

Also Published As

Publication number Publication date
US20230282887A1 (en) 2023-09-07
WO2022008506A1 (en) 2022-01-13
EP4179582A1 (en) 2023-05-17
KR20230038258A (en) 2023-03-17
CN115836401A (en) 2023-03-21

Similar Documents

Publication Publication Date Title
JP3604118B2 (en) Current collector for lithium ion battery and method of manufacturing the same
US8323839B2 (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
WO2012115050A1 (en) Electrode foil, current collector, electrode, and energy storage element using same
US20060035155A1 (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
EP0797846B1 (en) Electrolytic cell and electrolytic process
KR20150039878A (en) Flexible thin film solid state lithium ion batteries
JP2016532280A (en) Method for producing electrode for lithium ion battery
US11205800B2 (en) Polymer and molten ion conductive salt and silicon interface for decreased interfacial resistance
JP2018200873A (en) Artificial SEI transplantation
KR20150051046A (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
JP3244291B2 (en) Battery
JP2023532438A (en) Solid state lithium battery cell, battery comprising said battery cell, and manufacturing process for manufacturing said battery
US11309585B2 (en) Molten ion conductive salt/silicon interface for decreased interfacial resistance
JP3407130B2 (en) Electrode, secondary battery and manufacturing method thereof
WO2023280103A1 (en) Lithium ion battery
CN116314585A (en) Negative electrode plate of sodium ion battery and dry preparation method thereof
US11575122B2 (en) Electrode with enhanced state of charge estimation
KR101507497B1 (en) Anode foil for magnesium secondary battery and its fabrication method
KR100359054B1 (en) Metal oxide electrodes modified by conductive slurries and lithium secondary batteries
KR102557568B1 (en) Anode-free all solid state battery comprising solid electrolyte having high ion conductivity and surface-roughened anode current collector
CN111816882B (en) Low-temperature electrode plate, preparation method thereof and low-temperature lithium battery
US20240113304A1 (en) Cathode for lithium secondary battery, method of manufacturing same, and lithium secondary battery including same
US20230420664A1 (en) Doped silicon anode for lithium-ion batteries
US20230067263A1 (en) Separator coating layer for lithium metal battery, separator for lithium metal battery, and lithium metal battery comprising the same
FR3113541A1 (en) Solid lithium cell, battery comprising said cells and manufacturing method for manufacturing said battery