JP2023518240A - 光学センサ基準系アライメントのためのシステムおよび方法 - Google Patents

光学センサ基準系アライメントのためのシステムおよび方法 Download PDF

Info

Publication number
JP2023518240A
JP2023518240A JP2022555882A JP2022555882A JP2023518240A JP 2023518240 A JP2023518240 A JP 2023518240A JP 2022555882 A JP2022555882 A JP 2022555882A JP 2022555882 A JP2022555882 A JP 2022555882A JP 2023518240 A JP2023518240 A JP 2023518240A
Authority
JP
Japan
Prior art keywords
medical device
optical
distal end
sensor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022555882A
Other languages
English (en)
Inventor
テッグ トロイ
ジョン ダリー ジェィコブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Jude Medical International Holding SARL
Original Assignee
St Jude Medical International Holding SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St Jude Medical International Holding SARL filed Critical St Jude Medical International Holding SARL
Publication of JP2023518240A publication Critical patent/JP2023518240A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • A61B5/066Superposing sensor position on an image of the patient, e.g. obtained by ultrasound or x-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7425Displaying combinations of multiple images regardless of image source, e.g. displaying a reference anatomical image with a live image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • A61B2560/0228Operational features of calibration, e.g. protocols for calibrating sensors using calibration standards
    • A61B2560/0233Optical standards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • A61B2560/0238Means for recording calibration data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0223Magnetic field sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • A61B2562/0266Optical strain gauges

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Radiology & Medical Imaging (AREA)
  • Gynecology & Obstetrics (AREA)
  • Robotics (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Endoscopes (AREA)

Abstract

一態様によれば、医療デバイスは、近位端と、遠位端と、近位端と遠位端との間に延在するシャフトとを含んでもよい。医療デバイスは、磁気センサアセンブリをさらに含んでもよく、磁気センサアセンブリは、磁気カプラと、第1および第2の磁気センサとを含んでもよく、磁気カプラは、医療デバイスの遠位端に配置されており、シャフトの内面に強固に取り付けられている。医療デバイスは、シャフトの長さに沿って延びる複数のファイバコアからなる光ファイバをさらに含んでもよく、複数のファイバコアのうちの1つまたは複数は、光ファイバの長さに沿った位置に配置された光学センサを含み、光ファイバは、光学センサに近い位置においてシャフト内で強固に支持される。

Description

(関連出願の相互参照)
本出願は、2020年3月16日に出願された「SYSTEM AND METHOD FOR OPTICAL SENSOR REFERENCE FRAME ALIGNMENT」という名称の米国仮出願第62/990,154号の利益および優先権を主張し、その内容の全体が参照により本明細書に援用される。
本開示は概して、患者内の医療デバイスの位置を特定するためのシステムに関し、より詳細には、1つまたは複数の他の位置特定システムと組み合わせて、光学センサを利用することに関する。
位置特定システムを使用することによって、医師/技師は、患者に関係する像に関して医療デバイスの位置および/または向きを視覚化することができる。例えば、様々な診断、治療、および/またはマッピングおよびアブレーション心臓処置において、例えば、異所性心房頻拍、心房細動、および心房粗動を含む心房性不整脈などの状態を診断および/または是正するために、電気生理学的カテーテルが使用される。処置中、カテーテルまたはカテーテルシースは、患者の脈管構造を通じて、例えば患者の心臓内の部位などといった対象部位へと展開および操作される。処置全体および結果を改善するために、対象器官の周りの組織への物理的損傷を最小限に抑え、デバイスを確実に意図した目標に到達させるために、患者の体内でカテーテルが操作される際には、操作者がカテーテルの位置および向きを知ることが望ましい。
患者内で医療デバイスの位置を特定するための一般的な方法には、X線蛍光透視技術を使用して検出される割合の硫酸バリウム(BaSO4)を有する金属コイルまたはポリマーなどの蛍光不透過性マーカを使用するものがある。しかしながら、患者のX線への曝露を制限することが望ましいため、X線蛍光透視技術に依存しないおよび/または依存度が低いことが有益であろう。医療デバイスの位置を特定するための他の技術は、磁気技術、電気技術、および/または超音波技術のうちの1つまたは複数を含む。例えば、位置特定システムの1種は、患者の体外の体表面電極(例えば、パッチ)の1つまたは複数の対と、患者の体に取り付けられた基準センサ(例えば、別のパッチ)と、医療デバイスに取り付けられた1つまたは複数のセンサ(例えば、電極)とを含む電気インピーダンスに基づくシステムである。複数の対は、隣接するか、直線的に配置されるか、またはそのような測位システムの基準系のそれぞれの軸に関連づけられ得る。システムは、電極対に電流を印加し、デバイス電極において(すなわち、基準センサに対して)誘起されたそれぞれの電圧を測定し、次いで、測定された電圧/インピーダンスを処理して、外部電極によって規定された基準系においてデバイス電極の位置を特定することによって、位置および/または向きを特定できる。
別のシステムは、磁場に基づくシステムとして知られている。このタイプのシステムは一般に、患者のベッドまたは動作環境の他の要素に取り付けられるかまたはその近くに配置される1つまたは複数の磁場発生器と、医療デバイスに接続された1つまたは複数の磁場検出コイルと、を含む。発生器は、関心領域(すなわち、解剖学的領域)内において制御された低強度のAC磁場を提供する。磁場に応じて、検出コイルは、検知された磁場の1つまたは複数の特性を示す信号を生成する。次いで、システムは、これらの信号を処理して、コイル(ひいては、医療デバイス)に関する1つまたは複数の位置測定値および/または向き測定値を生成する。位置測定値および/または向き測定値は、通常、磁場発生器に対して取られるので、磁場発生器は、磁場ベースの測位システムの基準系の事実上の「原点」としての役割を果たす。
一態様によれば、医療デバイスは、近位端と、遠位端と、近位端と遠位端との間に延在するシャフトと、を備えてよい。医療デバイスは、磁気センサアセンブリをさらに備えてもよく、磁気センサアセンブリは、磁気カプラと、第1および第2の磁気センサとを含んでもよく、磁気カプラは、医療デバイスの遠位端に配置されており、シャフトの内面に強固に取り付けられている。医療デバイスは、シャフトの長さに沿って延びる複数のファイバコアからなる光ファイバをさらに含んでもよい。複数のファイバコアのうちの1つまたは複数は、光ファイバの長さに沿った位置に配置された光学センサを含み、光ファイバは、光学センサに近い位置においてシャフト内で強固に支持されている。
別の態様によれば、位置特定システムは、近位端および遠位端を有する医療デバイスを含んでもよい。遠位端は、少なくとも第1の位置特定センサと光学センサとを含んでもよく、第1の位置特定センサおよび光学センサは、医療デバイスの遠位端内で強固に取り付けられていてもよい。位置特定システムは、第1の位置特定センサからのフィードバックおよび光学センサからの光学フィードバックを受信するように構成されたコンピュータシステムをさらに含んでもよい。コンピュータシステムは、受信したフィードバックに基づいて、第1の基準系において医療デバイスの遠位端の位置を特定するために利用されてもよく、光学フィードバックに基づいて、第2の基準系において医療デバイスの遠位端の形状を特定してもよく、コンピュータシステムは、少なくとも部分的に医療デバイスの遠位端の位置に基づいて、医療デバイスの遠位端の形状を、第2の基準系から第1の基準系へ変換してもよい。コンピュータシステムによって生成される出力は、第1の基準系で表わされる医療デバイスの遠位端の位置および形状を含んでもよい。
別の態様によれば、患者内の医療デバイスの位置を特定する方法は、第1の位置特定センサからフィードバックを受信することと、光学センサから光学フィードバックを受信することと、を含んでもよい。本方法は、受信したフィードバックに基づいて、第1の位置特定センサの位置を算出することをさらに含んでもよく、当該位置は、第1の位置特定センサによって規定される第1の基準系に対して提供される。本方法は、光学センサからの光学フィードバックに基づいて光学センサの形状を算出することをさらに含んでもよく、当該形状は、光学センサに関して規定された第2の基準系に対して提供される。本方法は、第1の位置特定センサの位置および格納された変換係数に基づいて、光学センサの形状を、第2の基準系から第1の基準系へ変換することをさらに含んでもよい。本方法は、第1の基準系に対して医療デバイスの位置および形状を表示することをさらに含んでもよい。
別の態様によれば、医療デバイスの遠位端において磁気位置特定センサで光学センサを調整する方法は、医療デバイスの遠位端を磁場内に配置することと、医療デバイスの遠位端を第1の位置に配置することと、を含んでもよく、第1の位置は、光学センサのディフレクションを引き起こす。本方法は、磁気位置特定センサによって提供される第1の磁気位置データおよび光学センサによって提供される第1の光学データを記録し、記録されたデータを第1の基準ペアとして格納することをさらに含んでもよい。第1の磁気位置データは磁気基準系において提供され、第1の光学データは光学基準系において提供される。本方法は、医療デバイスの遠位端を、光学センサのディフレクションを引き起こす第2の位置に配置することと、磁気位置特定センサによって提供される第2の磁気位置データおよび光学センサによって提供される第2の光学データを記録し、記録されたデータを第2の基準ペアとして格納することと、をさらに含んでもよく、磁気位置データは磁気基準系において提供され、光学データは光学基準系において提供される。本方法は、光学形状データを光学基準系から磁気基準系へ変換するために、第1および第2の基準ペアに基づいて変換を算出することと、算出された変換を格納することと、をさらに含んでもよい。
別の態様によれば、医療デバイスは、近位端と、遠位端と、近位端に接続されたハンドルと、近位端と遠位端との間に延在するシャフトと、を含んでもよい。医療デバイスは、ハンドル内に配置された第1および第2の磁気センサと、ハンドルから医療デバイスの遠位端まで延びる複数のファイバコアからなる光ファイバと、をさらに含んでもよい。光ファイバは、1つまたは複数のファイバコアから構成されてもよく、ファイバコアのうちの1つまたは複数は、ハンドルから医療デバイスの遠位端まで互いにほぼ隣接して配置された複数のファイバブラッググレーティング(FBG)センサを含む。
いくつかの実施形態による、光学に基づくシステムと第1の医療位置特定システム(例えば、磁場ベースのシステム)を組み合わせて使用する位置特定システムのアイソメトリック図である。
いくつかの実施形態による、外側シャフトを有するカテーテルの遠位端のアイソメトリック図であり、カテーテルの遠位端内の光ファイバおよび磁気センサの位置を示すために、外側シャフトは透明で示される。
いくつかの実施形態による、カテーテルの遠位端の等角断面図であり、カテーテルの遠位端内の光学センサおよび磁気センサの位置を示す。
いくつかの実施形態による、マルチコア光ファイバの等角断面図である。
いくつかの実施形態による、光学センサ、磁気センサ、およびそれぞれに関連する基準系のアイソメトリック図である。
いくつかの実施形態による、光学センサを第1の医療位置特定システムにレジストレーションするために使用されるレジストレーションシステムのブロック図である。
いくつかの実施形態による、光学センサを第1の医療位置特定システムにレジストレーションする方法を示すフローチャートである。
いくつかの実施形態による、磁気センサを含むハンドルアセンブリのアイソメトリック図である。
本開示は、第1の位置特定システムに関連する基準系において、光学センサから受信された形状情報を関連づける/表示するシステムおよび方法を提供する。このようにして、医療デバイスの形状が、第1の位置特定システムの基準系に表示される。医療デバイス(例えば、介入性または外科用のカテーテル、イントロデューサ、および他の細長い医療デバイス)は、患者の体内で医療デバイスの位置を特定するために、磁気に基づく、電気インピーダンスに基づく、および/または超音波に基づくシステムなどの第1の位置特定システムによって利用される1つまたは複数のセンサを備える。さらに、医療デバイスは、形状および/または医療デバイスまたは光学センサを含む医療デバイスの少なくとも一部に加えられる力を検出するのに利用される、ファイバブラッググレーティング(FBG)センサおよび/または光学干渉計遠位力センサなどの1つまたは複数の光学検知技術を備える。一般に、医療デバイス上に配置された光学センサは、光信号を伝達可能な光ファイバ、マルチコアファイバなどを介して光入力を受信するように構成されており、光学センサの位置、向き、および/または形状に関する情報は、センサによって反射された光から特定される。本開示は、第1の位置特定システムに関連する基準系において、光学センサから受信された形状情報を関連づける/表示するシステムおよび方法を提供する。
図1は、患者Pに対して医療処置を実施する際に利用されるシステム100のアイソメトリック図である。図1に示される実施形態では、システム100は、図1に示されるカテーテル102などの医療デバイス、イントロデューサ、または少なくとも一部が患者Pの体内に位置する他の外科デバイスを含む。カテーテル102は、近位端104と、遠位端106と、ハンドル108と、を含む。外科的処置中、遠位端106は、例えば患者の脈管構造内などの患者内の関心領域内に配置され、ハンドル108上に配置された制御部を介して医師/技師によって体内の所望の位置へと進められる。以下でより詳細に説明するように、例えば、カテーテル102の遠位端106などのカテーテル102上に配置された1つまたは複数のセンサから受信されるセンサフィードバックによって、コンピュータシステム116は、カテーテル102の位置、向き、および/または形状を特定でき、ディスプレイ124を介してこの情報を医師/技師に表示することができる。いくつかの実施形態では、カテーテル102の位置、向き、および/または形状は、患者の像(例えば、MRI画像、マッピングカテーテル、超音波カテーテルなどから作成された幾何学的形状)に対して表示される。例えば、図1に示される実施形態では、患者PのX線像を生成するために利用され得るC-ARMアセンブリ126が示されている。しかしながら、他の実施形態では、C-Arm126などの外部撮像デバイスを用いずに、カテーテル102が利用されてもよい。
いくつかの実施形態において、カテーテル102は、患者内におけるカテーテル102の遠位端106の位置および/または向きを検出するために磁気ベースの位置特定システムで使用される磁気センサ(図2~図5に示される210a、210b)を含む。いくつかの実施形態では、磁気センサは、カテーテル102の遠位端106に配置される(例えば、図2、図3、および図5に示される)。他の実施形態では、磁気センサは、ハンドル108内(例えば、図8に示されるハンドル808内)に配置される。磁気に基づく位置特定システムを利用する実施形態では、磁場が生成され、磁気センサと相互作用しなければならない。例えば、いくつかの実施形態では、磁気センサと相互作用するのに必要な磁場を生成するために、磁気伝送アセンブリ127がテーブル129の下側に取り付けられる。磁気センサがカテーテル102のハンドル108内に配置される実施形態では、磁場が生成されるエリア内(すなわち、患者に隣接するエリア内)で、ハンドル108が操作されなければならない。いくつかの実施形態では、磁気伝送アセンブリ127は、低レベル磁場を生成する。カテーテル102(例えば、遠位端106、ハンドル108など)に配置された1つまたは複数の磁気センサは、低レベル磁場と相互作用し、それに応じてフィードバックを生成する。このフィードバックは、磁場によって規定された領域内での磁気センサの位置および/または向きを特定するのに使用することができる。磁気センサによって生成されたフィードバックは、磁気センサケーブル114を介してコンピュータシステム116に提供される。コンピュータシステム116は、受信したデータを解釈し、ディスプレイ124を介して医師/技師が患者の身体像内におけるカテーテル102の位置および向きを視認できるような表示を生成する。いくつかの実施形態では、患者像内で磁気センサの位置を特定し、この情報をディスプレイ124に提供するための基準が、(磁気伝送アセンブリ127によって生成される)外部磁場によって提供される。他の実施形態では、他のタイプの周知の位置特定システム(例えば、電気インピーダンスに基づくシステム、超音波に基づくシステムなど)が利用されてもよい。
さらに、1つまたは複数の光学センサが、ファイバコアケーブル112を介して、コンピュータシステム116にフィードバックを提供する。以下でより詳細に説明されるように、光学フィードバックは、カテーテル102の位置、向き、形状、および/または温度を特定するために利用される。特に、光学センサによって提供される形状情報は、磁気に基づく位置特定システムによって提供されない情報を提供する。しかしながら、光学センサから受信される光学フィードバックは、どんな外部場も基準とせず、それ自体のみを基準とする。光学センサによって提供される形状情報を利用するために、光学フィードバックから特定された位置、向き、および/または形状情報は、第1の位置特定システム(例えば、磁気に基づくシステム)によって利用される基準系へ変換される。以下でより詳細に説明するように、いくつかの実施形態では、光学センサに関する光学基準系は、磁気センサ(または他のタイプのセンサ)によって利用される基準系にレジストレーションされ、こうすることで、光学フィードバックが、磁気に基づく位置特定システムによって規定される基準系を利用することが可能になる。このようにして、光学センサによって提供される位置、向き、および/または形状情報は、患者の像データのコンテキスト内でカテーテル102の位置、向き、形状を表示することが可能な基準系へ変換される(すなわち、基準とする)。
いくつかの実施形態では、コンピュータシステム116は、電子制御ユニット(ECU)118と、メモリ/ストレージ120と、入力/出力デバイス122と、ディスプレイ124と、を含む。メモリ/ストレージ120は、磁気位置特定モジュール130および光学位置特定モジュール132を含む1つまたは複数のモジュールを実現するためにプロセッサ118によって実行可能な指示を格納する。別の実施形態では、磁気位置特定システムの代わりにまたは磁気位置特定システムと併せて、電気インピーダンスベースのシステム、超音波システム、ならびに他の周知の位置特定システムのうちの1つまたは複数を含む別の位置特定システムを利用してもよい。
磁気位置特定モジュール130は、カテーテル102の遠位端106に配置された磁気センサからフィードバックを受信する。磁気センサによって提供されるフィードバックは、1つまたは複数の磁気センサが磁気伝送アセンブリ127によって生成された低レベル磁場と相互作用した結果である。いくつかの実施形態では、磁気センサの位置は、本明細書では磁気基準系と呼ばれる3次元(3D)基準系内で特定される。磁気位置特定モジュール130によって提供される出力は、磁気座標系内での磁気センサの位置および/または向きである。カテーテル102に配置された1つまたは複数の光学センサから受信された光学センサデータは、光学位置特定モジュール132に提供される。いくつかの実施形態では、1つまたは複数の光学センサは、カテーテル102の遠位端106に配置される。他の実施形態では、光学センサは、カテーテル102に関する複数の位置に配置されてもよく、カテーテル102の長さに沿って(すなわち、遠位端106から近位端104に向かって、場合によってはハンドル108までの全長に沿って)互いに隣接またはほぼ隣接して配置されてもよい。さらに、光学位置特定モジュール132は、磁気座標系内の磁気センサの位置に関する入力と、格納された変換係数と、を受信する。いくつかの実施形態では、光学センサを磁気センサにレジストレーションし、光学基準系から磁気基準系へ位置を変換するのに利用される変換係数を生成するために、レジストレーション処理を利用する。光学センサデータ、磁気基準系における磁気センサの位置、および格納された変換係数に基づいて、光学位置特定モジュール132は、磁気基準系内での光学センサの位置、向き、および/または形状を提供する出力を生成する。このようにして、磁気センサおよび光学センサに関して提供される位置特定出力は両方とも、磁気基準系で表わされ、ディスプレイ124に提供される患者の像データに対して位置が特定される。以下でより詳細に説明するように、磁気センサの位置によって、磁気基準系に対して光学センサの位置、向き、および/または形状を表すために必要な光学センサの数と位置が決められてもよい。
図2~図5および図8を参照すると、1つまたは複数の磁気センサ(例えば、図2に示される磁気センサ210a、210b、図8に示される磁気センサ810a、810b)から受信した入力と、例えばファイバブラッググレーティング(FBG)などの1つまたは複数の光学センサ(例えば、図3に示される光学センサ300a、300b、300c)から受信した入力と、に基づいて、医療デバイスの位置、向き、形状が、磁気基準系312(図3に示す)において特定される。以下でより詳細に説明するように、磁気基準系は、磁気センサ210a、210b(または図8に示す810a、810b)と外部に生じた磁場との相互作用に基づく。したがって、磁気センサ210a、210bの位置および向きは、磁気基準系内で分かり、追加の入力なしで特定することができる。対照的に、光学基準系314は、光学センサ自体のみを基準とし、どんな外部磁場(または、電気インピーダンスに基づく位置特定の場合、患者上に配置された表面電極)をも基準としない。光学基準系314に関する外部基準点の欠如を是正するために、光学基準系314は、磁気基準系312にレジストレーションされる。いくつかの実施形態において、レジストレーション処理の出力は、レジストレーションされた医療デバイスに固有の1組の変換係数であり、これらの変換係数は、1つまたは複数の光学センサ300a、300b、300cから受信したフィードバックを、光学基準系314から磁気基準系312へ変換するために使用される。より詳細に後述するように、1つまたは複数の光学センサ300a、300b、300cによって利用される光学基準系314を、磁気基準系312にレジストレーションすることは、患者の像においてカテーテル102の位置を特定するために利用される磁気基準系312に、1つまたは複数の光学センサ(例えば、FBG300a、300b、300c)によって提供される位置/形状情報を表示することを可能にすることを含む。
図3に示される実施形態では、複数の光学センサ300a、300b、300cは、マルチコアファイバ206の一部に沿って長手方向に配置されており、マルチコアファイバ206内のコアのうち1つまたは複数のコアが、1つまたは複数の光学センサ300a、300b、300cを含んでもよい。いくつかの実施形態において、1つまたは複数の光学センサ300a、300b、300cは、加えられた力、歪み、および/または気温の変化を検出可能な光学センサの一種であるファイバブラッググレーティング(FBG)センサである。いくつかの実施形態では、マルチコアファイバ206の単一のコアが、複数の光学センサ300a、300b、300cの各々を含む。さらに、1つまたは複数の光学センサは、複数の異なる機能のために利用されてもよい。例えば、光学センサ300aのうちの1つが形状検知に使用されてもよく、光学センサのうちの他の1つが温度に関して使用されてもよい。上述のように、いくつかの実施形態では、カテーテル102の長さに沿って(遠位端106から近位端104に向かって、場合によってはハンドル108へと延びて)、追加の光学センサを配置してもよく、複数のセンサから受信されるフィードバックによって、カテーテルの長さの形状を算出することが可能になる。他の実施形態では、複数の光学センサ300a、300b、300cの各々が、形状検知に使用されてもよく、複数の光学センサは、カテーテル102の遠位端106からカテーテル102の近位端104、または、カテーテル102のハンドル108まで延びる。このように、アブレーション先端202およびシャフト204の位置および/または向きが特定されてもよい。
上記のように、いくつかの実施形態では、1つまたは複数の光学センサ300a、300b、300cは、ファイバコアの屈折率の周期的な変化を含む分布ブラッグ反射器の一種であるファイバブラッググレーティングセンサである。屈折率の各変化の界面は、入射光の反射をもたらす。反射のほとんどは比較的弱く、これらの波長の光は、ほとんどは、ファイバブラッググレーティングを透過する。しかしながら、屈折率の周期的変化に関係する特定の共鳴波長の光は、ファイバブラッググレーティングによって反射される。反射光とファイバコアの屈折率の周期的変化との関係は、次のように定義される。
Figure 2023518240000002
ここで、Λはグレーティングの周期であり、neffはファイバコアの実効屈折率であり、λβは共鳴が生じるブラッグ波長である。このように、コアに沿ってファイバブラッググレーティングに送られる光信号は、ファイバブラッググレーティングの周期的変化に関係する共鳴波長λβの反射をもたらす。ファイバグレーティングに加えられる力、歪み、および/または温度の変化は、グレーティングの周期変化をもたらし、次いで、反射光の波長変化を引き起こす。ファイバブラッググレーティングによって反射された波長のシフトを検出することによって、センサに加えられた力、歪み、および/または温度変化に関する情報、および/またはセンサの形状(すなわち、曲げ)に関する情報を検出することができる。本開示ではカテーテル102に加えられる力および/または形状の検出に焦点が当てられるが、いくつかの実施形態では、1つまたは複数のファイバコアを利用して温度変化を検出してもよい。力の検出は、カテーテルの軸に沿ってアブレーション先端に加えられる力ならびにカテーテル102の屈曲を引き起こすディフレクション力を含んでもよい。1つまたは複数のFBGの位置に応じて、カテーテル102の特定の部分(例えば、1つまたは複数のFBG300a、300b、300cの配置によって示されるカテーテルの遠位端106)に関してまたはカテーテル102の長さに沿って、形状情報が収集されてもよい。例えば、複数のFBGは、近位端104またはハンドル108から遠位端106まで延びるカテーテル102の長さに沿って配置されてもよい。
軸方向の力またはディフレクション力がファイバグレーティングに加えられると、それに応じてグレーティングの周期とファイバの実効屈折率の両方が変化するので、ブラッグ波長(例えば、反射して戻ってくる光の波長)が一方向または他方向にシフトする。ブラッグ波長のシフトを測定することによって、力および形状検知(並びに温度検知)のためにFBGを使用することができる。1つの利点は、波長シフトを測定する際の情報符号化の絶対的性質に由来し、これは、変動する光パワーまたはコネクタ損失とセンサを無関係にさせる。加えられる歪みをεとし、周囲温度変化をdTとすると、ブラッグ波長のシフトは、数式2に示すように数式1の微分を取ることによって得られる。
Figure 2023518240000003
ここで、ρiは、光弾性定数であり、純石英ガラスの場合ρe=0.22である。
Figure 2023518240000004
αは線膨張係数であり、ξは熱光学係数であり、dTは温度変化である。dTは温度変化である。
Figure 2023518240000005
Figure 2023518240000006
dTは温度変化である。波長1550nmでのグレーティングの場合、波長のシフトは、通常、歪みに関して~1pm/μεのオーダーであり、温度に関して10pm/℃のオーダーである。
ヤング率Eは、次のように定められる。
Figure 2023518240000007
ここで、Fは力であり、A0はファイバ断面の面積であり、L0はファイバ長さであり、ΔLは加えられた力に起因する応力を受けた長さである。力は、数6から次のように導出することができる。
Figure 2023518240000008
ここで、ε=ΔL/Lは歪みである。125umの径を有する単一モードファイバの場合、グラス材のヤング率は70×10N/m2であり、ファイバ歪みに関する力は次のように得られる。
Figure 2023518240000009
周囲温度がdT=0のまま変化しない場合、純粋なガラスに関して、数7および数2に従って、ブラッグ波長のシフトに関して加えられた力は次のように得られる。
Figure 2023518240000010
1550nmの波長帯における0.01nmブラッグ波長シフトの分解能に関して、力分解能は、式6により、0.7グラムと求められる。数6および数2によれば、加えられた力および温度変化に対するブラッグ波長のシフトは、次のように表される。
Figure 2023518240000011
ここで、Δλはブラッグ波長のシフトであり、ΔTは温度変化であり、Fは加えられた力であり、Eはヤング率であり、A0はファイバ断面の面積であり、ρは光弾性定数であり、αは線膨張係数であり、ξは熱光学係数である。
3次元でディフレクション力を感知するために、1つの実施形態では、複数の独立した光学センサを使用してもよい。例えば、図4を参照すると、マルチコアファイバ206は、図示されるように402a~402gを付された複数の(例えば、7個の)個別のファイバコアを含んでおり、各ファイバコアは、少なくとも1つのFBG(図4では不図示)を含む。いくつかの実施形態では、少なくとも第1の複数のファイバコア(例えば、ファイバコア400a~400f)が、マルチコアファイバ206の外周に沿って等距離に配置される。マルチコアファイバに加えられたディフレクション力によって、光ファイバのうちのいくつかが伸ばされ、光ファイバのうちのいくつかが圧縮されるので、FBGのうちのいくつかによって提供されるフィードバックは、FBGの圧縮(すなわち、短縮)に対応する波長のシフトを示し、FBGのうちの少なくともいくつかは、FBGの伸長に対応する波長のシフトを示す。フィードバックに基づいて、ディフレクション量およびディフレクションの形状を特定することができる。図4には7つの個別のファイバコアが示されているが、他の実施形態では、必要とされるファイバコアの数は、それより少なくてもよい。例えば、いくつかの実施形態では、マルチコアファイバ206の外周に沿って配置され、かつ互いから等距離に離間された(例えば、120°離れた)3つの個別のファイバコアによって、力および形状検知が提供される。さらに、マルチコアファイバ206に7つを超えるファイバコアが存在することも考えられる。
いくつかの実施形態において、外周に沿って配置された複数のファイバコア400a~400fはそれぞれ、FBGに加えられるディフレクション力を検出するために利用される。他の実施形態では、縁部に沿って配置された第1の複数のファイバコア(例えば、ファイバコア400a、400c、400e)は形状検知に使用され、縁部に沿って配置された第2の複数のファイバコア(例えば、ファイバコア400b、400d、400f)は軸方向の力の検知に使用される。一般に、センサの形状に関して最大量の情報を提供するためには、複数のコアがマルチコアファイバの縁部に沿って等距離に離間されていることが望ましい。いくつかの実施形態においては、中心ファイバコア400gも、軸方向の力および/またはディフレクション力を含む力の検出のために使用される。他の実施形態では、中心ファイバコア400gは、温度補償/内部歪み監視に使用される。ディフレクション力、軸方向の力、および/または温度変化を検出するために、他の様々な構成を利用してもよい。
上記のように、いくつかの実施形態では、マルチコアファイバの長さに沿った特定の場所に、例えば図2および図3に示されるアブレーション先端202の一部として、1つまたは複数の光学センサ300a、300b、300c(例えば、FBG)を配置するよりもむしろ、ファイバコア402a~402gのうちの1つまたは複数が、ファイバコアの軸長に沿って配置された複数のFBGを含んでよい。例えば、ファイバコア400aは、複数のFBGを含んでもよく、各FBGは、固有のグレーティング周期で特徴づけられる。いくつかの実施形態では、複数のFBGは、隣接するFBGとの間にほとんどまたは全く間隔を伴わずに、互いに隣接して配置される(例えば、端と端が接続されて積層される)。各FBGは、FBGに加えられる力に関するフィードバックを提供し、複数のFBGを端と端を接続して積層することで、カテーテル102のより長い長さに関して形状情報が提供される。いくつかの実施形態では、複数のFBGを連続して配置することによって、カテーテル102の軸方向長さに関して形状情報が収集されてもよい。いくつかの実施形態では、複数のFBGは、カテーテル102の遠位端106からハンドル108に向かって延びてもよく、いくつかの実施形態では、カテーテル102の遠位端106からハンドル108に至るまで延びてもよい。いくつかの実施形態では、同じファイバコアに沿って接続された複数のFBGの各々によって提供される反射を区別するために、FBGの各々は異なるグレーティング周期で特徴付けられなければならず、その結果、同じファイバ上で受信される反射がFBGのうちの1つに確実に割り当てられる。このようにして、光学センサ300は、光学センサ300の形状を特定するために利用されるフィードバックを提供する。
図3は、図2に示される線3-3に沿ったカテーテル102の遠位端106の断面図である。いくつかの実施形態において、磁気センサアセンブリは、磁気カプラ208と、第1および第2の磁気センサ210a、210bと、を含む。磁気カプラ208は、シャフト204の内面に強固に取り付けられる。第1および第2の磁気センサ210a、210bは、磁気カプラ208に取り付けられ、磁気カプラ208は、磁気センサ210a、210bをシャフト204に対してならびに互いに対して固定された場所に保持する。この図では示されていないが、第1および第2の磁気センサ210a、210bによって検出される磁気信号は、磁気センサケーブル114(図1に示される)を介してコンピュータシステム116に伝えられる。カテーテル102の遠位端106内での磁気センサ210a、210bの強固な接続および磁気センサ210a、210bの互いに対して固定された位置に基づいて、磁気基準系312に関するカテーテル102の遠位端106の位置と向きが分かる。図3に示す実施形態では、磁気基準系312は、主軸(例えば、mX、mY、mZ)によって規定され、これらの軸の周りの配向(例えば、ヨー、ピッチロール)はθとして表される。磁気センサ210a、210bにより提供されるフィードバックに基づいて、磁気基準系312におけるカテーテルの遠位端106の絶対的な位置および/または向きが分かる。
いくつかの実施形態では、光ファイバ206は、外側シャフト204の内部を通ってカテーテル102の遠位端106に向かって延在する。いくつかの実施形態では、光ファイバ206は、複数のファイバコアを含むマルチコアファイバである(図4に示す)。光ファイバ206は、第1のファイバ管支持部304、第2のファイバ管支持部306、および第3のファイバ管支持部308として示されるファイバ管支持部材によって、カテーテル102の遠位端106内で強固に固定される。いくつかの実施形態では、第1のファイバ管支持部304、第2のファイバ管支持部306、および第3のファイバ管支持部は、一体である(すなわち、単一の管である)。他の実施形態では、第1、第2、および第3のファイバ管支持部は、互いに別体である。いくつかの実施形態では、第1のファイバ管支持部304、第2のファイバ管支持部306、および第3のファイバ管支持部308は、カテーテル102の遠位端106内で光ファイバ206を強固に固定するように働く。図3に示す実施形態では、第1のファイバ管支持部304、第2のファイバ管支持部306、および第3のファイバ管支持部308は、カテーテル102の遠位端106内のほぼ中央の位置で光ファイバ206を支持するように働く。他の実施形態では、光ファイバ206の位置がカテーテル102に対して固定されたままである限り、光ファイバ206は、カテーテル102の非中心位置で保持されてもよい。
アブレーション先端202において、可撓性先端壁316とばね302とは、アブレーション先端202の軸方向の圧縮を可能にする。いくつかの実施形態では、可撓性先端壁316とばね302とは、アブレーション先端202の非軸方向のディフレクション(例えば、曲がる)も可能にする。いくつかの実施形態では、可撓性先端壁316は、ばね302を含まずに利用されてもよい。第1、第2、第3のファイバ管支持部304、306、308は、カテーテル102に光ファイバ206を強固に固定して、光ファイバ206、特に光学センサ300をアブレーション先端202の向き/形状に追従させる。さらに、いくつかの実施形態では、光ファイバ206とカテーテル102との間の強固性を保証するために、第1のファイバ管支持部304、第2のファイバ管支持部306、および/または第3のファイバ管支持部308のうちの1つまたは複数に光ファイバ206が接合されて、シャフト204内における光学センサの剛性接続を保証する。その結果、光ファイバ206は、カテーテル102の動きおよび形状に追従するので、光学センサ300から受信される光学フィードバックはカテーテル102の形状および/または幾何学的形状を表す。
いくつかの実施形態では、複数の個別の光学センサ300a、300b、300c(例えば、FBG)を、複数のコアの各々に関連付けられた1つまたは複数の内部で使用してもよい。図3に示される実施形態では、光学センサ300aは、光ファイバ206の最遠位端に配置され、光学センサ300bは、光学センサ300aに隣接して配置され、光学センサ300cは、光学センサ300bに隣接して配置されている。いくつかの実施形態では、光学センサ300a、300b、または300cのうちの1つまたは複数が、形状検知または力検知に使用されてもよい。例えば、いくつかの実施形態では、光学センサ300aが力検知に使用されてよく、光学センサ300b、300cが形状検知に使用される。他の実施形態では、光学センサ300a、300b、300cの各々が、形状検知に使用される。光学センサ300a、300b、300cの各々が同一のファイバコアに配置される実施形態において、複数のFBGの各々は、異なる波長で働くように設計されてもよく、これによって検知された歪み/力に関するフィードバックを提供することができる。いくつかの実施形態において、光学センサ300a~300cは、アブレーション先端202内の領域またはアブレーション先端202に隣接する領域に制限されなくてもよい。例えば、いくつかの実施形態では、複数の光学センサまたはFBGは、アブレーション先端202から磁気センサ210a、210bまで、端部と端部が接するようにファイバコアの1つまたは複数に沿って配置されてもよい(例えば、図5に示される実施形態では、複数の光学センサ300a、300b、300c、300d、300eは、カテーテルの遠位先端(300a)から磁気センサ210a、210bに隣接する領域まで延在している)。他の実施形態では、複数の光学センサ(例えば、FBGセンサ)は、アブレーション先端202からカテーテル102の長さに沿ってハンドル108まで、端部と端部が接するように1つまたは複数のファイバコアに沿って配置されてもよい。図5に示された実施形態に関して、複数のFBG300a~300eの各々は、同一のファイバコア上で働く場合、互いに異なる波長で働いてもよく、その結果、複数のFBGの各々によって感知される歪み/力が他のFBGと区別可能な光の反射を提供する。このように、FBGによって提供されるフィードバックを使って、磁気センサ210a、210bからカテーテルの先端までの形状情報を特定することができる。
光学センサ300から読み出された形状および/または位置情報(光学基準系314に対して提供される)は、磁気基準系312に1つまたは複数の光学センサ300a~300cをレジストレーションすることにより、磁気基準系312へ変換される。いくつかの実施形態では、磁気センサ210a、210bがカテーテル102の遠位端106に強固に取り付けられているので、磁気センサ210a、210bおよび磁気基準系312はカテーテル102の動きに追従せざるを得ない。したがって、カテーテル102の位置/向き(形状ではない)は、磁気センサ210a、210bから導出することができ、磁気基準系312に対して表すことができる。同様に、1つまたは複数の光学センサ300a~300cは、カテーテル012の遠位端106に強固に取り付けられており、光学センサ300a~300cもカテーテル102の動きに追従せざるを得ない。磁気基準系312に対して1つまたは複数の光学センサ300a~300cをレジストレーションすることにより、磁気基準系312を1つまたは複数の光学センサ300a~300cの基準点として使用することが可能となる。すなわち、磁気センサ210a、210bの位置および向きに対して、1つまたは複数の光学センサ300a~300cの位置、形状、および向きが分かる。
図3に示される実施形態では、磁気センサ210a、210bは、カテーテル102の遠位端106に配置されている。図8に示される実施形態などの他の実施形態では、磁気センサ810a、810bは、カテーテルのハンドル808に配置されている。この実施形態では、磁気基準系は、ハンドル808の位置に基づく。カテーテルの遠位端の位置および/または向きは、ハンドル808とカテーテルの遠位端との間のカテーテルの長さに沿って配される複数の光学センサ(例えば、FBG)の配置に基づいて特定されてもよい。上述のように、隣接するFBGセンサの各々が異なる波長で動作することによって、各々がフィードバックを提供することができる。特に、複数の光学センサにより提供される形状データの基準をハンドル108に配置された磁気センサによって規定される磁気基準系にすることによって、カテーテル102の遠位端106の位置および向きを知ることができる。
図6および図7を参照して、光学基準系314を磁気基準系312と関連付けるためのレジストレーション処理が説明される。磁気基準系312について言及されるが、他の実施形態では、他の位置特定システムおよび対応する基準系を利用してもよい。いくつかの実施形態では、レジストレーション処理は、製造時に実行される。他の実施形態では、レジストレーション処理は、磁気基準系312で光学基準系314を再調整するために、毎回使用の前に実行される。特に、図6は、いくつかの実施形態による光学センサ606をレジストレーションするために利用されるシステム600を示すブロック図であり、図7は、いくつかの実施形態によるレジストレーション処理のステップを示すフローチャートである。
システム600は、プロセッサ612とメモリ614とを備えるコンピュータシステム610を含む。メモリ614は、レジストレーションモジュール616を実現するためにプロセッサ612によって実行可能な指示を格納するように構成されている。コンピュータシステム610は、磁気センサ604と、光学センサ606と、不揮発性メモリ608と、を含む医療デバイス602からフィードバックを受信するように構成されている。いくつかの実施形態では、磁気センサ604は、医療デバイス602が磁場内に配置されることに応じて、医療デバイス602の位置および/または向きを特定するために利用されるフィードバックを提供する。光学センサ606は同様に、光学センサ606の位置、向き、および/または形状を特定するために利用されるフィードバックを生成する。図2~図5に関して上述したように、磁気センサ604から受信したフィードバックは、印加された外部磁場に基づいて提供され、磁気基準系(mX、mY、mZ)に対して表される。
光学センサ606から受信されるフィードバックは、それ自体に関してのみ提供され、光学基準系(oX、oY、oZ)に対して表される。コンピュータシステム610によって実現されるレジストレーションモジュール616は、磁気センサ604から位置および向きデータ(mX、mY、mZ、mθ)を収集し、光学センサ606から位置、向き、および形状情報(oX、oY、oZ、oθ)を収集し、収集したデータを利用して、光学基準系から磁気基準系への変換データを決定する。
図7を参照すると、第1の位置特定センサ604によって利用される基準系において、光学位置特定/形状センサ606をレジストレーションする処理が示されている。いくつかの実施形態では、光学センサ606の位置/形状が第1の位置特定センサ604(例えば、磁気センサ)に対して変更され、両方のセンサからのフィードバックが基準ペアとして格納される。このデータを収集する様々な方法が利用可能であるが、ここでの説明の目的では、医療デバイスは、第1の位置特定センサ604の位置を相対的に固定した状態で維持する固定具内に保持され、光学センサ606の位置/形状が、第1の位置特定センサ604に対して変更される。他の実施形態では、光学センサ606が相対的に固定されて保持されてもよく、第1の位置特定センサ604が光学センサに対して変更されてもよい。
ステップ702では、医療デバイス602が固定具(不図示)に配置され、固定具が磁場に配置される(第1の位置特定センサが磁気センサを含むと想定する)。
ステップ704では、光学センサ606を含む医療デバイスの一部(例えば、図2~図5に示されるカテーテル102の遠位端106)が、第1の位置特定センサ604に対して第1の位置に配置される。後続のステップでは、磁気基準系と光学基準系との間の関係を表す追加のデータ点を収集するために、光学センサ606を含む医療デバイス602の一部の位置が第1の位置特定センサ604に対して変更される。これは、光学センサ602の位置を変更しながら、第1の位置特定センサ604をほぼ静止状態に維持することによって実現され得る。一実施形態では、1つまたは複数の光学センサ606を収容する医療デバイス602の一部(例えば、図2~図5に示す例におけるカテーテル102の遠位端106)に力が加えられ、医療デバイスの当該部分が第1の位置特定センサに対してディフレクションさせられる。例えば、一実施形態では、医療デバイスの遠位端にウェイトを取り付けることによって、所望の力が生成されてもよい。他の実施形態では、他の手段を使って、医療デバイス602の所望の部位をディフレクションさせてもよい。光学基準系の基準を第1の基準系としやすくするために光学センサ606が圧縮されて/歪まされるように、医療デバイス602がディフレクションされることが望ましい。
ステップ706では、第1の位置特定センサ604から受信したフィードバックを利用して、第1の基準系(例えば、磁気基準系)において第1の位置特定センサ604の位置および/または向き(mX、mY、mZ、mθ)を特定する。ステップ706ではさらに、光学センサ606から受信したフィードバックを利用して、光学基準系において光学センサ606の位置、向き、および/または形状(oX、oY、oZ、oθ)を特定する。図2~図5に関して上述したように、いくつかの実施形態では、複数のファイバコアが利用され、ファイバコアに加えられた力は、複数のファイバコアの各々に配置された光学センサ(例えば、ファイバブラッググレーティング)の圧縮/歪みを介して検出される。光学基準系は、図4に示される中心コア400gなどの複数のファイバコアのうちの1つに沿って中心に配置されてもよい。他の実施形態では、光学基準系は、光学コンジットの外縁に配置された複数のファイバコアのうちの1つ(例えば、ファイバコア400a)に対して中心に配置される。
ステップ707では、位置データ(mX、mY、mZ、mθ)および光学ベースの形状/位置データ(oX、oY、oZ、oθ)が、基準ペアとして格納される。
ステップ708では、十分な数の基準ペアが収集されたかどうかの判断が行われる。
いくつかの実施形態では、これは、格納された基準ペアの総数を閾値と比較して、追加の基準ペアが必要であるかどうかを判断することを含む。他の実施形態では、所定数の位置が必要とされ、必要とされる位置の各々から基準ペアが収集されるまで処理が継続する。いくつかの実施形態では、(十分に異なる位置で収集された)所定の閾値数の基準ペアが収集される。例えば、測定毎に医療デバイスが約90度回転されると、データの基準ペアが4つ収集される。他の実施形態では、医療デバイスは45度回転され、8つの基準ペアが収集される。他の実施形態では、より少ないまたはより多い数の基準ペアが収集される。
十分な数の基準ペアが収集されると、方法はステップ712へと進み、ステップ712では、複数の基準ペアを利用して、光学基準系から第1の基準系(例えば、磁気基準系)への変換が算出される。十分な数の基準ペアが収集されていない場合、方法はステップ710へと進む。
ステップ710では、光学センサを含む医療デバイス602の一部(例えば、図2~図5に示される実施形態における遠位端106)の位置が、第1の位置特定センサ604(例えば、磁気センサ)の位置に対して変更される。いくつかの実施形態では、位置の変更は、既知の量(例えば、90度)だけ医療デバイス602の位置を回転させることを含み、これによって光学センサ606と第1の位置特定センサ604との両方が回転される。いくつかの実施形態では、固定具内で医療デバイス602が回転され、他の実施形態では、医療デバイス602を保持する固定具全体が回転される。第1の位置特定センサ604に対して光学センサ606をディフレクションさせるために、光学センサ606を含む医療デバイス602の一部に力が再び加えられる。いくつかの実施形態では、前の位置で加えられたのと同じ力がこの位置でも加えられ、各位置でほぼ等しい医療デバイス606のディフレクションがもたらされる。例えば、ウェイトを医療デバイス606の遠位端に取り付けて所望のディフレクション力を提供する実施形態では、第1の位置で適用された同じウェイトが第2の位置でも適用される。他の実施形態では、力が加えられることによって第1の位置特定センサ604に対して光学センサ606が少なくともいくらかディフレクションする限り、加えられる力は異なってもよい。さらに他の実施形態では、光学センサ606を含む医療デバイス602の一部は、第1の位置特定センサ604に対して新しい位置へと動かされる。
ステップ710において医療デバイスの位置を変更した後、ステップ706において、第1の位置特定センサ604から受信したフィードバックを利用して、第1の位置特定センサ604の位置および/または向き(例えば、mX、mY、mZ、mθ)を特定し、同様に、光学センサ606から受信したフィードバックを利用して、光学センサ606の位置、向きおよび/または形状(例えば、oX、oY、oZ、oθ)を特定し、これらは別の基準ペアとして格納される。磁気センサに対する光学センサの位置を変更し、それぞれの位置を測定する処理は、複数の基準ペアが収集されるまで続けられる。
ステップ712では、第1の基準系(例えば、mX、mY、mZ)において光学センサ606から収集された位置、向き、および/または形状情報を表すために必要な変換が、複数の基準ペアに基づいて決定される。いくつかの実施形態では、光学基準系(例えば、oX、oY、oZ)から第1の基準系(例えば、mX、mY、mZ)への変換を決定する際に、複数の基準ペアに加えて、追加の情報が利用されてもよい。例えば、いくつかの実施形態では、磁気センサ(210a、210b)と光学センサとの間の距離d(図5に示される)を変換に利用して、磁気基準系に対する光学センサの位置を特定する。このようにして、光学センサ606によって収集された位置/形状情報が、第1の基準系(例えば、磁気基準系)において表される。
ステップ714では、複数の基準ペアに基づいて算出された変換が、医療デバイス602に格納される。いくつかの実施形態では、医療デバイス602は、変換を格納するために利用される不揮発性メモリ608を含む。医療デバイス602の操作使用中、不揮発性メモリ608に格納された変換データは、コンピュータシステム(例えば、図1に示されるコンピュータシステム116)にダウンロードされるかまたは他の方法で提供され、光学センサ606によって提供される位置/形状情報を第1の基準系(例えば、磁気基準系)に変換するためにコンピュータシステムによって利用され、その結果、光学センサの位置、向き、および/または形状が、第1の基準系において正確に表示される。
図8を参照すると、いくつかの実施形態に係る磁気センサ810a、810bを含むハンドルアセンブリ808が図示されている。上記で簡単に述べたように、いくつかの実施形態では、磁気センサ810a、810bは、カテーテルの遠位端(不図示)をガイドするために使用されるハンドルアセンブリ808内に配置されてもよい。この実施形態では、ハンドルアセンブリ808は、例えば図1に示される磁気伝送アセンブリ127によって生成される磁場内などの磁場内に配置されなければならない。磁気センサ810a、810bによって提供されるフィードバックに基づいて、ハンドル808の位置および/または向きが、磁場内(すなわち、磁気基準系内)で特定されてもよい。他の実施形態では、磁気センサではなく、1つまたは複数の他のタイプの位置特定システムを使って、ハンドルアセンブリ808の位置を特定してもよい。
いくつかの実施形態では、ファイバコア806が、近位端から遠位端(図1に示す)までシャフトの長さに沿って、ハンドル808から延在する。いくつかの実施形態では、マルチコアファイバ806は複数のファイバコアを含み、ファイバコアのうちの1つまたは複数は1つまたは複数の光学センサを含んでもよい。例えば、一実施形態では、ファイバブラッググレーティング(FBG)センサが、ハンドル808からカテーテルの遠位端までシャフトの長さに沿って、互いに隣接して配置される。複数のFBGセンサから受信されるフィードバックによって、ハンドル808から遠位端までシャフトの形状を算出することが可能となる。上述のように、複数のFBGによって提供される位置および形状情報は、FBGの基準系(すなわち、光学基準系)からハンドルアセンブリ808の磁気基準系へ変換することができる。このように、ハンドルから遠位端までのカテーテルの位置、形状、および/または向きを知ることができ、磁気基準系に表示することができる。
(考えられうる実施形態の考察)
以下は、本発明の考えられうる実施形態の非排他的な説明である。
一態様によれば、医療デバイスは、近位端と、遠位端と、近位端と遠位端との間に延在するシャフトと、を含んでもよい。医療デバイスは、磁気センサアセンブリをさらに含んでもよく、磁気センサアセンブリは、磁気カプラと、第1および第2の磁気センサとを含んでもよく、磁気カプラは、医療デバイスの遠位端に配置されており、シャフトの内面に強固に固定されている。医療デバイスは、シャフトの長さに沿って延びる複数のファイバコアからなる光ファイバをさらに含んでもよく、複数のファイバコアのうちの1つまたは複数は、光ファイバの長さに沿う位置に配置された光学センサを含み、光ファイバは、光学センサに近い位置においてシャフト内で強固に支持される。
前段落の医療デバイスは、追加的および/または代替的に、以下の特徴、構成、および/または追加の要素のうちのいずれか1つまたは複数を任意で含んでもよい。
例えば、いくつかの態様では、医療デバイスは、光ファイバを受け入れてシャフト内で支持するための中央開口を有する光ファイバ支持部をさらに含んでもよく、光ファイバ支持部は、光学センサに近接して配置される。
いくつかの態様では、光ファイバは、光ファイバ支持部を介して光学センサを含む光ファイバの一部をシャフトに強固に固定するために、光ファイバ支持部に接合されてもよい。
いくつかの態様では、医療デバイスは、遠位端に配置された可撓性先端を有するカテーテルであってもよい。
いくつかの態様では、光学センサは、ファイバブラッググレーティングを含んでもよく、複数のファイバコアのうちの少なくともいくつかは、少なくとも1つのファイバブラッググレーティングを含む。
いくつかの態様では、複数のファイバコアのうちの少なくとも1つは、ファイバコアの長さに沿って延在する複数のファイバブラッググレーティングを含んでもよく、特定のファイバコアに関連するファイバブラッググレーティングの各々は、同じファイバコア上に配置された他のファイバブラッググレーティングに対して固有のグレーティング周期によって特徴づけられる。
別の態様によれば、位置特定システムは、近位端と遠位端とを有する医療デバイスを含んでもよく、遠位端は、少なくとも第1の位置特定センサと光学センサとを含んでもよく、第1の位置特定センサおよび光学センサは、医療デバイスの遠位端内で強固に取り付けられてもよい。位置特定システムは、第1の位置特定センサからのフィードバックおよび光学センサからの光学フィードバックを受信するように構成されたコンピュータシステムをさらに含んでもよく、コンピュータシステムは、受信したフィードバックに基づいて第1の基準系において医療デバイスの遠位端の位置を特定するために利用されてもよく、光学フィードバックに基づいて第2の基準系において医療デバイスの遠位端の形状を特定してもよく、コンピュータシステムは、少なくとも部分的に医療デバイスの遠位端の位置に基づいて、第2の基準系から第1の基準系へ医療デバイスの遠位端の形状を変換してもよい。コンピュータシステムによって生成される出力は、第1の基準系で表わされる医療デバイスの遠位端の位置および形状を含んでもよい。
前段落の位置特定システムは、追加的および/または代替的に、以下の特徴、構成、および/または追加の要素のうちのいずれか1つまたは複数を任意で含んでもよい。
例えば、一態様では、コンピュータシステムは、第2の基準系を第1の基準系に関連付ける変換にさらに基づいて、第2の基準系から第1の基準系へ医療デバイスの遠位端の形状を変換してもよい。
別の態様では、位置特定システムは、変換係数を格納するための不揮発性メモリを含んでもよく、変換係数は、光学センサの位置を第1の位置特定センサの位置と関連付けるレジストレーション段階中に、一意的に決定される。
別の態様では、光学センサは、医療デバイスの長さに沿って延びる光ファイバの一部に沿って配置された1つまたは複数のファイバブラッググレーティングを含んでもよい。
別の態様では、第1の位置特定センサは、医療デバイスの遠位端に強固に取り付けられた磁気カプラ内に収容された磁気センサであってもよい。
別の態様によれば、患者内の医療デバイスの位置を特定する方法は、第1の位置特定センサからフィードバックを受信することと、光学センサから光学フィードバックを受信することと、を含んでもよい。本方法は、受信されたフィードバックに基づいて第1の位置特定センサの位置を算出することをさらに含んでもよく、当該位置は、第1の位置特定センサによって規定される第1の基準系に関して提供される。本方法は、光学センサからの光学フィードバックに基づいて光学センサの形状を算出することをさらに含んでもよく、当該形状は、光学センサに関して規定された第2の基準系に関して提供される。本方法は、第1の位置特定センサの位置および格納された変換係数に基づいて、光学センサの形状を第2の基準系から第1の基準系へ変換することをさらに含んでもよい。本方法は、第1の基準系に関する医療デバイスの位置および形状を表示することをさらに含んでもよい。
前段落の方法は、追加的および/または代替的に、以下の特徴、構成、および/または追加の要素のうちのいずれか1つまたは複数を任意で含んでもよい。
例えば、一態様では、医療デバイスの位置および形状を表示するステップは、患者の像に対して医療デバイスの位置および形状を表示することを含んでもよい。
別の態様によれば、医療デバイスの遠位端において磁気位置特定センサを用いて光学センサを調整する方法は、医療デバイスの遠位端を磁場内に配置することと、医療デバイスの遠位端を第1の位置に配置することと、を含んでもよく、第1の位置は、光学センサのディフレクションを引き起こす。本方法は、磁気位置特定センサによって提供される第1の磁気位置データおよび光学センサによって提供される第1の光学データを記録し、記録されたデータを第1の基準ペアとして格納することをさらに含んでもよく、第1の磁気位置データは磁気基準系において提供され、第1の光学データは光学基準系において提供される。本方法は、医療デバイスの遠位端を第2の位置に配置することであって、第2の位置は光学センサのディフレクションを引き起こす、第2の位置に配置することと、磁気位置特定センサによって提供される第2の磁気位置データおよび光学センサによって提供される第2の光学データを記録し、記録されたデータを第2の基準ペアとして格納することとを含んでもよく、磁気位置データは磁気基準系において提供され、光学データは光学基準系において提供される。本方法は、光学形状データを光学基準系から磁気基準系へ変換するために、第1および第2の基準ペアに基づいて変換を算出することと、算出された変換を格納することと、をさらに含んでもよい。
前段落の方法は、追加的および/または代替的に、以下の特徴、構成、および/または追加の要素のうちのいずれか1つまたは複数を任意で含んでもよい。
例えば、一態様では、医療デバイスの遠位端を第1の位置に配置することは、遠位端にディフレクションを生じさせるように医療デバイスの遠位端に第1の力を加えることを含んでもよい。
別の態様では、医療デバイスの遠位端に第1の力を加えることは、医療デバイスの遠位端にウェイトを適用することを含んでもよい。
別の態様では、医療デバイスの遠位端を第2の位置に配置することは、医療デバイスの遠位端に第2の力を加えることを含んでもよく、第2の力は、第1の力とは異なる方向に加えられる。
別の態様では、算出された変換を格納することは、医療デバイスに含まれる不揮発性メモリに算出された変換を格納することを含んでもよい。
別の態様によれば、医療デバイスは、近位端と、遠位端と、近位端に接続されたハンドルと、近位端と遠位端との間に延在するシャフトと、を含んでもよい。医療デバイスは、ハンドル内に配置された第1および第2の磁気センサと、ハンドルから医療デバイスの遠位端まで延びる複数のファイバコアからなる光ファイバと、をさらに含んでもよい。光ファイバは、1つまたは複数のファイバコアから構成されてもよく、ファイバコアのうちの1つまたは複数は、ハンドルから医療デバイスの遠位端まで互いにほぼ隣接して配置された複数のファイバブラッググレーティング(FBG)センサを含む。
前段落の医療デバイスは、追加的および/または代替的に、以下の特徴、構成、および/または追加の要素のうちのいずれか1つまたは複数を任意で含んでもよい。
例えば、一態様では、同じファイバコアに沿って配置された複数のFBGセンサの各々は、同じファイバコアに配置された他のファイバブラッググレーティングに対して固有のグレーティング周期によって特徴づけられる。
例えば、一態様では、同じファイバコアに沿って配置された複数のFBGセンサの各々は、同じファイバコアに配置された他のファイバブラッググレーティングに対して固有のグレーティング周期によって特徴づけられる。
本明細書の特徴を列挙する。
(特徴1)
医療デバイスであって、
近位端と、
遠位端と、
前記近位端と前記遠位端との間に延在するシャフトと、
磁気カプラと、第1の磁気センサおよび第2の磁気センサと、を含む磁気センサアセンブリであって、前記磁気カプラは、前記医療デバイスの前記遠位端に配置され、前記シャフトの内面に強固に取り付けられている、磁気センサアセンブリと、
前記シャフトの長さに沿って延びる複数のファイバコアから構成される光ファイバであって、前記複数のファイバコアのうちの1つまたは複数は、前記光ファイバの長さに沿う位置に配置される光学センサを含み、前記光ファイバは、前記光学センサに近い位置において前記シャフト内で強固に支持されている、光ファイバと、を備える医療デバイス。
(特徴2)
前記光ファイバを受け入れて前記シャフト内で支持するための中央開口を有する光ファイバ支持部をさらに備え、
前記光ファイバ支持部は、前記光学センサに近接して配置される、特徴1に記載の医療デバイス。
(特徴3)
前記光ファイバ支持部を介して前記光学センサを含む前記光ファイバの一部を前記シャフトに強固に固定するために、前記光ファイバは、前記光ファイバ支持部に接合される、特徴2に記載の医療デバイス。
(特徴4)
前記医療デバイスは、前記遠位端に配置される可撓性先端を有するカテーテルである、特徴1に記載の医療デバイス。
(特徴5)
前記光学センサは、ファイバブラッググレーティングを含み、
前記複数のファイバコアのうちの少なくともいくつかは、少なくとも1つのファイバブラッググレーティングを含む、特徴1に記載の医療デバイス。
(特徴6)
前記複数のファイバコアのうちの少なくとも1つは、前記ファイバコアの長さに沿って延在する複数のファイバブラッググレーティングを含み、
特定のファイバコアに関連するファイバブラッググレーティングの各々は、同じファイバコア上に配置された他のファイバブラッググレーティングに対して固有のグレーティング周期によって特徴づけられる、特徴5に記載の医療デバイス。
(特徴7)
位置特定システムであって、
近位端と遠位端とを有する医療デバイスであって、前記遠位端は、少なくとも第1の位置特定センサと光学センサとを含み、前記第1の位置特定センサおよび前記光学センサは、前記医療デバイスの前記遠位端内で強固に取り付けられている、医療デバイスと、
前記第1の位置特定センサからのフィードバックおよび前記光学センサからの光学フィードバックを受信するように構成されたコンピュータシステムであって、前記コンピュータシステムは、受信した前記フィードバックに基づいて第1の基準系において前記医療デバイスの前記遠位端の位置を特定し、前記光学フィードバックに基づいて第2の基準系において前記医療デバイスの前記遠位端の形状を特定し、前記コンピュータシステムは、前記医療デバイスの前記遠位端の前記位置に少なくとも部分的に基づいて、前記医療デバイスの前記遠位端の前記形状を前記第2の基準系から前記第1の基準系へ変換し、前記コンピュータシステムによって生成される出力は、前記第1の基準系で表される前記医療デバイスの前記遠位端の位置および形状を含む、コンピュータシステムと、を備える位置特定システム。
(特徴8)
前記コンピュータシステムは、前記第2の基準系を前記第1の基準系に関連付ける変換にさらに基づいて、前記医療デバイスの前記遠位端の前記形状を前記第2の基準系から前記第1の基準系へ変換する、特徴7に記載の位置特定システム。
(特徴9)
前記医療デバイスは、変換係数を格納するための不揮発性メモリを含み、
前記変換係数は、前記光学センサの位置を前記第1の位置特定センサの位置と関連付けるレジストレーション段階中に、一意に決定される、特徴7に記載の位置特定システム。
(特徴10)
前記光学センサは、前記医療デバイスの長さに沿って延びる光ファイバの一部に沿って配置された1つまたは複数のファイバブラッググレーティングを含む、特徴7に記載の位置特定システム。
(特徴11)
前記第1の位置特定センサは、前記医療デバイスの前記遠位端に強固に取り付けられた磁気カプラ内に収容された磁気センサである、特徴7に記載の位置特定システム。
(特徴12)
患者内の医療デバイスの位置を特定する方法であって、
第1の位置特定センサからフィードバックを受信することと、
光学センサから光学フィードバックを受信することと、
受信された前記フィードバックに基づいて、前記第1の位置特定センサの位置を算出することであって、前記位置は、前記第1の位置特定センサによって規定される第1の基準系に関して提供される、位置を算出することと、
前記光学センサからの前記光学フィードバックに基づいて、前記光学センサの形状を算出することであって、前記形状は、前記光学センサに関して規定された第2の基準系に関して提供される、形状を算出することと、
前記第1の位置特定センサの前記位置および格納された変換係数に基づいて、前記光学センサの前記形状を前記第2の基準系から前記第1の基準系へ変換することと、
前記第1の基準系に関して前記医療デバイスの位置および形状を表示することと、を含む、方法。
(特徴13)
前記医療デバイスの位置および形状を表示することは、前記患者の像に対して前記医療デバイスの位置および形状を表示することを含む、特徴12に記載の方法。
(特徴14)
医療デバイスの遠位端において、磁気位置特定センサで光学センサを調整する方法であって、
医療デバイスの前記遠位端を磁場内に配置することと、
前記医療デバイスの前記遠位端を第1の位置に配置することであって、前記第1の位置は、前記光学センサのディフレクションを引き起こす、第1の位置に配置することと、
前記磁気位置特定センサによって提供される第1の磁気位置データおよび前記光学センサによって提供される第1の光学データを記録し、記録された前記データを第1の基準ペアとして格納することであって、前記第1の磁気位置データは磁気基準系において提供され、前記第1の光学データは光学基準系において提供される、第1の基準ペアとして格納することと、
前記医療デバイスの前記遠位端を第2の位置に配置することであって、前記第2の位置は、前記光学センサのディフレクションを引き起こす、第2の位置に配置することと、
前記磁気位置特定センサによって提供される第2の磁気位置データおよび前記光学センサによって提供される第2の光学データを記録し、記録された前記データを第2の基準ペアとして格納することであって、磁気位置データは前記磁気基準系において提供され、前記光学データは前記光学基準系において提供される、第2の基準ペアとして記録することと、
光学形状データを前記光学基準系から前記磁気基準系へ変換するために、前記第1の基準ペアおよび前記第2の基準ペアに基づいて変換を算出することと、
算出された前記変換を格納することと、を含む方法。
(特徴15)
前記医療デバイスの前記遠位端を第1の位置に配置することは、前記遠位端にディフレクションを生じさせるように前記医療デバイスの前記遠位端に第1の力を加えることを含む、特徴14に記載の方法。
(特徴16)
前記医療デバイスの前記遠位端に前記第1の力を加えることは、前記医療デバイスの前記遠位端にウェイトを適用することを含む、特徴15に記載の方法。
(特徴17)
前記医療デバイスの前記遠位端を第2の位置に配置することは、前記医療デバイスの前記遠位端に第2の力を加えることを含み、
前記第2の力は、前記第1の力とは異なる方向に加えられる、特徴15に記載の方法。
(特徴18)
算出された変換を格納することは、前記医療デバイスに含まれる不揮発性メモリに算出された前記変換を格納することを含む、特徴14に記載の方法。
(特徴19)
医療デバイスであって、
近位端と、
遠位端と、
前記近位端に接続されたハンドルと、
前記近位端と前記遠位端との間に延在するシャフトと、
前記ハンドル内に配置された第1の磁気センサおよび第2の磁気センサと、
前記ハンドルから前記医療デバイスの前記遠位端まで延びる複数のファイバコアから構成される光ファイバと、を備え、
前記光ファイバは、1つまたは複数のファイバコアから構成され、
前記ファイバコアのうちの1つまたは複数は、前記ハンドルから前記医療デバイスの前記遠位端まで互いにほぼ隣接して配置された複数のファイバブラッググレーティング(FBG)センサを含む、医療デバイス。
(特徴20)
同じファイバコアに沿って配置された前記複数のFBGセンサの各々は、前記同じファイバコア上に配置された他のファイバブラッググレーティングに対して固有のグレーティング周期によって特徴づけられる、特徴19に記載の医療デバイス。

Claims (20)

  1. 医療デバイスであって、
    近位端と、
    遠位端と、
    前記近位端と前記遠位端との間に延在するシャフトと、
    磁気カプラと、第1の磁気センサおよび第2の磁気センサと、を含む磁気センサアセンブリであって、前記磁気カプラは、前記医療デバイスの前記遠位端に配置され、前記シャフトの内面に強固に取り付けられている、磁気センサアセンブリと、
    前記シャフトの長さに沿って延びる複数のファイバコアから構成される光ファイバであって、前記複数のファイバコアのうちの1つまたは複数は、前記光ファイバの長さに沿う位置に配置される光学センサを含み、前記光ファイバは、前記光学センサに近い位置において前記シャフト内で強固に支持されている、光ファイバと、を備える医療デバイス。
  2. 前記光ファイバを受け入れて前記シャフト内で支持するための中央開口を有する光ファイバ支持部をさらに備え、
    前記光ファイバ支持部は、前記光学センサに近接して配置される、請求項1に記載の医療デバイス。
  3. 前記光ファイバ支持部を介して前記光学センサを含む前記光ファイバの一部を前記シャフトに強固に固定するために、前記光ファイバは、前記光ファイバ支持部に接合される、請求項2に記載の医療デバイス。
  4. 前記医療デバイスは、前記遠位端に配置される可撓性先端を有するカテーテルである、請求項1に記載の医療デバイス。
  5. 前記光学センサは、ファイバブラッググレーティングを含み、
    前記複数のファイバコアのうちの少なくともいくつかは、少なくとも1つのファイバブラッググレーティングを含む、請求項1に記載の医療デバイス。
  6. 前記複数のファイバコアのうちの少なくとも1つは、前記ファイバコアの長さに沿って延在する複数のファイバブラッググレーティングを含み、
    特定のファイバコアに関連するファイバブラッググレーティングの各々は、同じファイバコア上に配置された他のファイバブラッググレーティングに対して固有のグレーティング周期によって特徴づけられる、請求項5に記載の医療デバイス。
  7. 位置特定システムであって、
    近位端と遠位端とを有する医療デバイスであって、前記遠位端は、少なくとも第1の位置特定センサと光学センサとを含み、前記第1の位置特定センサおよび前記光学センサは、前記医療デバイスの前記遠位端内で強固に取り付けられている、医療デバイスと、
    前記第1の位置特定センサからのフィードバックおよび前記光学センサからの光学フィードバックを受信するように構成されたコンピュータシステムであって、前記コンピュータシステムは、受信した前記フィードバックに基づいて第1の基準系において前記医療デバイスの前記遠位端の位置を特定し、前記光学フィードバックに基づいて第2の基準系において前記医療デバイスの前記遠位端の形状を特定し、前記コンピュータシステムは、前記医療デバイスの前記遠位端の前記位置に少なくとも部分的に基づいて、前記医療デバイスの前記遠位端の前記形状を前記第2の基準系から前記第1の基準系へ変換し、前記コンピュータシステムによって生成される出力は、前記第1の基準系で表される前記医療デバイスの前記遠位端の位置および形状を含む、コンピュータシステムと、を備える位置特定システム。
  8. 前記コンピュータシステムは、前記第2の基準系を前記第1の基準系に関連付ける変換にさらに基づいて、前記医療デバイスの前記遠位端の前記形状を前記第2の基準系から前記第1の基準系へ変換する、請求項7に記載の位置特定システム。
  9. 前記医療デバイスは、変換係数を格納するための不揮発性メモリを含み、
    前記変換係数は、前記光学センサの位置を前記第1の位置特定センサの位置と関連付けるレジストレーション段階中に、一意に決定される、請求項7に記載の位置特定システム。
  10. 前記光学センサは、前記医療デバイスの長さに沿って延びる光ファイバの一部に沿って配置された1つまたは複数のファイバブラッググレーティングを含む、請求項7に記載の位置特定システム。
  11. 前記第1の位置特定センサは、前記医療デバイスの前記遠位端に強固に取り付けられた磁気カプラ内に収容された磁気センサである、請求項7に記載の位置特定システム。
  12. 患者内の医療デバイスの位置を特定する方法であって、
    第1の位置特定センサからフィードバックを受信することと、
    光学センサから光学フィードバックを受信することと、
    受信された前記フィードバックに基づいて、前記第1の位置特定センサの位置を算出することであって、前記位置は、前記第1の位置特定センサによって規定される第1の基準系に関して提供される、位置を算出することと、
    前記光学センサからの前記光学フィードバックに基づいて、前記光学センサの形状を算出することであって、前記形状は、前記光学センサに関して規定された第2の基準系に関して提供される、形状を算出することと、
    前記第1の位置特定センサの前記位置および格納された変換係数に基づいて、前記光学センサの前記形状を前記第2の基準系から前記第1の基準系へ変換することと、
    前記第1の基準系に関して前記医療デバイスの位置および形状を表示することと、を含む、方法。
  13. 前記医療デバイスの位置および形状を表示することは、前記患者の像に対して前記医療デバイスの位置および形状を表示することを含む、請求項12に記載の方法。
  14. 医療デバイスの遠位端において、磁気位置特定センサで光学センサを調整する方法であって、
    医療デバイスの前記遠位端を磁場内に配置することと、
    前記医療デバイスの前記遠位端を第1の位置に配置することであって、前記第1の位置は、前記光学センサのディフレクションを引き起こす、第1の位置に配置することと、
    前記磁気位置特定センサによって提供される第1の磁気位置データおよび前記光学センサによって提供される第1の光学データを記録し、記録された前記データを第1の基準ペアとして格納することであって、前記第1の磁気位置データは磁気基準系において提供され、前記第1の光学データは光学基準系において提供される、第1の基準ペアとして格納することと、
    前記医療デバイスの前記遠位端を第2の位置に配置することであって、前記第2の位置は、前記光学センサのディフレクションを引き起こす、第2の位置に配置することと、
    前記磁気位置特定センサによって提供される第2の磁気位置データおよび前記光学センサによって提供される第2の光学データを記録し、記録された前記データを第2の基準ペアとして格納することであって、磁気位置データは前記磁気基準系において提供され、前記光学データは前記光学基準系において提供される、第2の基準ペアとして記録することと、
    光学形状データを前記光学基準系から前記磁気基準系へ変換するために、前記第1の基準ペアおよび前記第2の基準ペアに基づいて変換を算出することと、
    算出された前記変換を格納することと、を含む方法。
  15. 前記医療デバイスの前記遠位端を第1の位置に配置することは、前記遠位端にディフレクションを生じさせるように前記医療デバイスの前記遠位端に第1の力を加えることを含む、請求項14に記載の方法。
  16. 前記医療デバイスの前記遠位端に前記第1の力を加えることは、前記医療デバイスの前記遠位端にウェイトを適用することを含む、請求項15に記載の方法。
  17. 前記医療デバイスの前記遠位端を第2の位置に配置することは、前記医療デバイスの前記遠位端に第2の力を加えることを含み、
    前記第2の力は、前記第1の力とは異なる方向に加えられる、請求項15に記載の方法。
  18. 算出された変換を格納することは、前記医療デバイスに含まれる不揮発性メモリに算出された前記変換を格納することを含む、請求項14に記載の方法。
  19. 医療デバイスであって、
    近位端と、
    遠位端と、
    前記近位端に接続されたハンドルと、
    前記近位端と前記遠位端との間に延在するシャフトと、
    前記ハンドル内に配置された第1の磁気センサおよび第2の磁気センサと、
    前記ハンドルから前記医療デバイスの前記遠位端まで延びる複数のファイバコアから構成される光ファイバと、を備え、
    前記光ファイバは、1つまたは複数のファイバコアから構成され、
    前記ファイバコアのうちの1つまたは複数は、前記ハンドルから前記医療デバイスの前記遠位端まで互いにほぼ隣接して配置された複数のファイバブラッググレーティング(FBG)センサを含む、医療デバイス。
  20. 同じファイバコアに沿って配置された前記複数のFBGセンサの各々は、前記同じファイバコア上に配置された他のファイバブラッググレーティングに対して固有のグレーティング周期によって特徴づけられる、請求項19に記載の医療デバイス。
JP2022555882A 2020-03-16 2021-03-15 光学センサ基準系アライメントのためのシステムおよび方法 Pending JP2023518240A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202062990154P 2020-03-16 2020-03-16
US62/990,154 2020-03-16
PCT/IB2021/052143 WO2021186330A1 (en) 2020-03-16 2021-03-15 System and method for optical sensor reference frame alignment

Publications (1)

Publication Number Publication Date
JP2023518240A true JP2023518240A (ja) 2023-04-28

Family

ID=75108692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022555882A Pending JP2023518240A (ja) 2020-03-16 2021-03-15 光学センサ基準系アライメントのためのシステムおよび方法

Country Status (5)

Country Link
US (1) US20210282867A1 (ja)
EP (1) EP4090239A1 (ja)
JP (1) JP2023518240A (ja)
CN (1) CN115279263A (ja)
WO (1) WO2021186330A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217041033U (zh) * 2020-11-24 2022-07-26 巴德阿克塞斯***股份有限公司 用于将医疗器械***患者体内的医疗器械***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10912523B2 (en) * 2014-03-24 2021-02-09 Intuitive Surgical Operations, Inc. Systems and methods for anatomic motion compensation
JP6691602B2 (ja) * 2016-01-07 2020-04-28 セント・ジュード・メディカル・インターナショナル・ホールディング・エスエーアールエルSt. Jude Medical International Holding S.a,r.l. 光学的感知のためのマルチ・コア・ファイバを有する医療デバイス
JP6360929B1 (ja) * 2017-02-15 2018-07-18 株式会社フジクラ 光ファイバセンサ
US20190038228A1 (en) * 2017-08-02 2019-02-07 St. Jude Medical International Holding S.À R.L. Optical force sensing catheter system
US11857268B2 (en) * 2018-05-02 2024-01-02 Koninklijke Philips N.V. Optical shape sensing device with integrated force sensing region and tip integration
WO2020131576A1 (en) * 2018-12-18 2020-06-25 Mako Surgical Corp. Systems and methods for fiber optic tracking

Also Published As

Publication number Publication date
US20210282867A1 (en) 2021-09-16
WO2021186330A1 (en) 2021-09-23
EP4090239A1 (en) 2022-11-23
CN115279263A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US11206999B2 (en) Flexible instrument channel insert for scope with real-time position tracking
US9693707B2 (en) Optical shape sensing fiber for tip and shape characterization of medical instruments
RU2577509C2 (ru) Интервенционные инструменты с поддержкой оптического зондирования для быстрых распределенных измерений биофизических параметров
RU2628638C2 (ru) Информация о вводе и выводе медицинского устройства с использованием распределенного измерения температуры оптическим волокном
CN102119871B (zh) 基于致动器的压敏导管校正***
JP6655594B2 (ja) 光学形状検出システムにおける開始ポイント特定のための参照マーカー
RU2589625C2 (ru) Устройство, система и способ для визуализации и лечения с использованием оптического определения положения
JP6226751B2 (ja) インターベンショナル環境内への光ファイバ形状検知の統合
US8649847B1 (en) Steerable shape sensing biopsy needle and catheter
US11555692B2 (en) Calculation of redundant bend in multi-core fiber for safety
EP3027138A1 (en) Shape sensor systems with redundant sensing
CA2325036A1 (en) Optical fiber navigation system
JP2023518240A (ja) 光学センサ基準系アライメントのためのシステムおよび方法
WO2016008038A1 (en) Tip deformation measuring apparatus for medical procedures
Padmanabhan et al. Force sensing technologies for catheter ablation procedures
JP2015529494A (ja) カテーテルの特定を改善するためのプローブのたわみの定量化
Qi et al. Shape sensing and feedback control of the catheter robot for interventional surgery
Cheng et al. Optical Fiber-Based Needle Shape Sensing: Three-channel Single Core vs. Multicore Approaches
Mandala et al. Calibration of a needle tracking device with fiber Bragg grating sensors

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240521