JP2023181386A - Substrate for semiconductor device and semiconductor device - Google Patents

Substrate for semiconductor device and semiconductor device Download PDF

Info

Publication number
JP2023181386A
JP2023181386A JP2023186256A JP2023186256A JP2023181386A JP 2023181386 A JP2023181386 A JP 2023181386A JP 2023186256 A JP2023186256 A JP 2023186256A JP 2023186256 A JP2023186256 A JP 2023186256A JP 2023181386 A JP2023181386 A JP 2023181386A
Authority
JP
Japan
Prior art keywords
metal
semiconductor device
resist layer
overhang
metal part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023186256A
Other languages
Japanese (ja)
Inventor
佑也 五郎丸
Yuya Goromaru
達也 古賀
Tatsuya Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Publication of JP2023181386A publication Critical patent/JP2023181386A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Led Device Packages (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

To provide a substrate for a semiconductor device that can further reduce the size of the semiconductor device and increase the formation density of the semiconductor device.SOLUTION: A semiconductor device substrate includes a plurality of metal portions 11 serving as a semiconductor element mounting portions 11a and/or electrode portions 11b on a mother board 10. A projecting portion is formed on the metal portion 11. The projection portion is formed to overhang from the metal portion 11 in a direction perpendicular to the axial direction of the metal portion 11. The area of the upper surface of the metal portion 11 including the projection portion is formed to be larger than the area of the back surface of the metal portion 11 that is in contact with the front surface of the mother board 10. In each of the metal portions 11, the projection amount of the projecting portion on the side facing the adjacent metal portion 11 is formed to be larger than the projection amount of the projecting portion at a position other than the side facing the adjacent metal portion 11.SELECTED DRAWING: Figure 10

Description

本発明は、母型基板上に半導体素子搭載部や電極部となる金属部を備える半導体装置用基板、該半導体装置用基板を用いてなる半導体装置に関する。 The present invention relates to a semiconductor device substrate including a semiconductor element mounting portion and a metal portion serving as an electrode portion on a mother substrate, and a semiconductor device using the semiconductor device substrate.

半導体素子支持用基板(プリント基板)上に半導体素子を搭載し、半導体素子と外部導出用の端子とを電気的に接続した上で、樹脂等の保護材で半導体素子を含む基板全体を被覆した構成とされる半導体装置は、その構造上、小型化には限界があった。これに対し、半導体素子搭載部や電極部となる金属部を備え、この金属部上に半導体素子を搭載して電気的接続等の処理後、半導体素子や金属部の表面側を樹脂等の封止材で封止し、金属部が底部から露出した構成とされる半導体装置は、その高さを低くして省スペース化が図れる他、露出した金属部を通じて半導体素子で生じた熱を外部に放出でき、放熱の面でも優れるといった特長を有しており、チップサイズなど小型の半導体装置の分野で利用が進んでいる。 The semiconductor element is mounted on a semiconductor element support substrate (printed circuit board), the semiconductor element and the terminal for external output are electrically connected, and the entire board including the semiconductor element is covered with a protective material such as resin. Due to its structure, there is a limit to miniaturization of the semiconductor device. On the other hand, the semiconductor element is equipped with a metal part that becomes the semiconductor element mounting part and the electrode part, and after the semiconductor element is mounted on the metal part and processed for electrical connection, etc., the surface side of the semiconductor element and the metal part is sealed with resin or the like. Semiconductor devices that are sealed with an encapsulant and have metal parts exposed from the bottom can save space by lowering the height, and can also dissipate heat generated by the semiconductor element to the outside through the exposed metal parts. It has the characteristics of being able to release heat and is excellent in terms of heat dissipation, and its use is progressing in the field of small semiconductor devices such as chip size.

こうした半導体装置は、主に、導電性を有する母型基板上に半導体素子搭載部や電極部となる金属部を、メッキ(電鋳)により半導体装置の所望個数分まとめて形成し、半導体素子搭載、半導体素子と電極部との電気的接続等の処理を経た金属部の表面側を封止材で封止した後、母型基板のみを除去し、一体にまとまった状態の多数の半導体装置を個別に切り分ける、といった製造過程を経て製造される。このような半導体装置の製造方法の一例として、特許文献1、特許文献2に開示されている。 These semiconductor devices are mainly manufactured by forming the desired number of semiconductor devices by plating (electroforming) metal parts that serve as semiconductor element mounting parts and electrode parts on a conductive motherboard. After sealing the surface side of the metal part, which has undergone processing such as electrical connection between the semiconductor element and the electrode part, with a sealing material, only the mother board is removed, and a large number of semiconductor devices are assembled into one. It is manufactured through a manufacturing process that involves cutting it into individual pieces. Examples of methods for manufacturing such semiconductor devices are disclosed in Patent Document 1 and Patent Document 2.

特開2002-9196号公報Japanese Patent Application Publication No. 2002-9196 特開2004-214265号公報Japanese Patent Application Publication No. 2004-214265

従来の半導体装置の製造方法は前記特許文献に示されるように、母型基板上への金属部の形成にあたり、母型基板における金属部の非配置部分にレジスト層をあらかじめ形成して、金属部が電解メッキにより適切な位置に形成されるようにしていた。この金属部には、メッキによる形成に適したニッケル等の金属が使用されていた。そして、このレジスト層を溶剤等で溶解除去した上で、母型基板とその表面に形成された金属部が、半導体装置用基板として供給された。この半導体装置用基板を用いて、実際の半導体装置の製造工程において、半導体素子の搭載や配線、封止材による封止等を行うようにしていた。 As shown in the above-mentioned patent document, in the conventional manufacturing method of a semiconductor device, when forming a metal part on a mother board, a resist layer is formed in advance on the part of the mother board where the metal part is not placed, and the metal part is formed on the mother board. were formed at appropriate locations by electrolytic plating. This metal part used a metal such as nickel that was suitable for formation by plating. After this resist layer was dissolved and removed using a solvent or the like, the mother substrate and the metal portion formed on its surface were supplied as a substrate for a semiconductor device. This substrate for a semiconductor device is used to perform mounting of semiconductor elements, wiring, sealing with a sealing material, etc. in the actual manufacturing process of a semiconductor device.

本発明は、上記課題を解消するためになされたもので、半導体装置の一層の小型化が図れるとともに、半導体装置としての形成密度を高めることができる半導体装置用基板、この半導体装置用基板を用いてなる半導体装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and provides a substrate for a semiconductor device that can further reduce the size of the semiconductor device and increase the formation density of the semiconductor device. The purpose of the present invention is to provide a semiconductor device with the following characteristics.

しかしながら、従来の工程では金属部上部の張出部の張出し量を厳密に管理することは難しいため、張出部同士の間隔が後のレジスト層除去を妨げる狭小なものとならないように、金属部の配置間隔を広めに取らざるを得ず、これにより、半導体装置の更なる小型化、半導体装置用基板上での半導体装置の形成密度を高めることによる生産効率の向上が困難なものとなっていた。 However, in the conventional process, it is difficult to strictly control the amount of overhang of the overhang above the metal part, so the metal part is This makes it difficult to further miniaturize semiconductor devices and improve production efficiency by increasing the density of semiconductor devices formed on semiconductor device substrates. Ta.

本発明は、上記課題を解消するためになされたもので、半導体装置の一層の小型化が図れるとともに、半導体装置としての形成密度を高めることができる半導体装置用基板、この半導体装置用基板を用いてなる半導体装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and provides a substrate for a semiconductor device that can further reduce the size of the semiconductor device and increase the formation density of the semiconductor device. The purpose of the present invention is to provide a semiconductor device with the following characteristics.

本発明に係る半導体装置用基板は、母型基板10上に半導体素子搭載部11a及び/又は電極部11bとなる金属部11を備える。金属部11には張出部11cが形成されている。そして、この張出部11cは、金属部11の軸方向と直交する方向に平行な下面と、金属部11の上面に連続して形成される上面と、下面と上面の間に形成される側面とを有するものである。 The substrate for a semiconductor device according to the present invention includes, on a mother substrate 10, a metal portion 11 that becomes a semiconductor element mounting portion 11a and/or an electrode portion 11b. A projecting portion 11c is formed on the metal portion 11. The projecting portion 11c has a lower surface parallel to the direction orthogonal to the axial direction of the metal portion 11, an upper surface formed continuously on the upper surface of the metal portion 11, and a side surface formed between the lower surface and the upper surface. It has the following.

また、張出部11cの側面は、金属部11の軸方向と平行となっているものである。また、張出部11cの高さ寸法は、張出部11cの幅寸法と同じ、あるいはそれよりも大きいものである。 Further, the side surface of the projecting portion 11c is parallel to the axial direction of the metal portion 11. Further, the height dimension of the overhanging portion 11c is the same as or larger than the width dimension of the overhanging portion 11c.

また、金属部11の上面及び張出部11cの上面に表面金属層13が形成されており、表面金属層13の厚み分が張出部11cの側面として現れるものである。 Further, a surface metal layer 13 is formed on the upper surface of the metal portion 11 and the upper surface of the overhang portion 11c, and the thickness of the surface metal layer 13 appears as the side surface of the overhang portion 11c.

さらに、金属部11には前記張出部11c及び/又は張出部11c’が形成されており、この張出部11c’は、金属部11の軸方向と直交する方向に平行な下面と、金属部11の上面に連続して形成される上面とを有するものである。このように、金属部11には側面を有する張出部11cおよび/または側面を有さない張出部11c’が形成され、異なる張出部が混在した構成となる。 Further, the overhanging portion 11c and/or the overhanging portion 11c' is formed on the metal portion 11, and the overhanging portion 11c' has a lower surface parallel to a direction perpendicular to the axial direction of the metal portion 11, The metal part 11 has an upper surface that is continuous with the upper surface of the metal part 11 . In this way, the metal part 11 is formed with the overhang part 11c having a side surface and/or the overhang part 11c' without a side surface, resulting in a configuration in which different overhang parts are mixed.

また、本発明は、母型基板10上に半導体素子搭載部11a及び/又は電極部11bとなる金属部11を備える半導体装置用基板の製造方法であって、母型基板10上に、金属部11を形成するための所定パターンから成る第一レジスト層12を形成する工程と、第一レジスト層12上に、所定パターンから成る第二レジスト層16を形成する工程と、母型基板10の第一レジスト層12で覆われていない露出領域に対し、金属部11を形成する工程とを含み、金属部11を形成する工程において、金属部11は第一レジスト層12の厚さを越える一方、第二レジスト層16の厚さを越えない所定厚さであって、第二レジスト層16の側面に接する部位を伴いつつ形成されることで、金属部11に張出部11cが形成されるものである。 The present invention also provides a method for manufacturing a substrate for a semiconductor device, which includes a metal portion 11 serving as a semiconductor element mounting portion 11a and/or an electrode portion 11b on a mother substrate 10, wherein the metal portion 11 is provided on a mother substrate 10. 11, a step of forming a second resist layer 16 having a predetermined pattern on the first resist layer 12, and a step of forming a second resist layer 16 having a predetermined pattern, a step of forming a metal portion 11 in an exposed region not covered with the first resist layer 12; in the step of forming the metal portion 11, the metal portion 11 exceeds the thickness of the first resist layer 12; It has a predetermined thickness that does not exceed the thickness of the second resist layer 16, and is formed with a portion in contact with the side surface of the second resist layer 16, thereby forming an overhang portion 11c on the metal portion 11. It is.

また、第二レジスト層16の所定パターンの開口内面が母型基板10の面方向と直交する方向に平行となるように形成されるものである。ここで、「第二レジスト層16の所定パターンの開口内面が母型基板10の面方向と直交」とは、第二レジスト層16の所定パターンの開口内面から母型基板10面に向けて直線(仮想線)を引いた時に、直角に交差することを言う。 Further, the second resist layer 16 is formed so that the inner surface of the opening in the predetermined pattern is parallel to the direction perpendicular to the surface direction of the mother mold substrate 10 . Here, "the inner surface of the opening of the predetermined pattern of the second resist layer 16 is perpendicular to the plane direction of the mother substrate 10" means that the inner surface of the opening of the predetermined pattern of the second resist layer 16 is straight from the inner surface of the opening of the predetermined pattern toward the surface of the mother substrate 10. (imaginary lines) intersect at right angles when drawn.

また、第一レジスト層12の所定パターンの開口内面と、第二レジスト層16の所定パターンの開口内面との間に段差部20が形成されており、段差部20の幅寸法が5μm以上に設定されているものである。なお、この段差部20が形成されていない箇所があっても良く、つまり、第一レジスト層12上に第二レジスト層16を形成しない領域があっても良く、これにより、金属部11を形成する工程において、第一レジスト層12の厚さを越えて金属層11を形成することで、金属部11に張出部11c’が形成される。 Further, a step portion 20 is formed between the inner surface of the opening in the predetermined pattern of the first resist layer 12 and the inner surface of the opening in the predetermined pattern of the second resist layer 16, and the width dimension of the step portion 20 is set to 5 μm or more. This is what is being done. Note that there may be a portion where this stepped portion 20 is not formed, that is, there may be a region on the first resist layer 12 where the second resist layer 16 is not formed, and thereby the metal portion 11 is formed. In the process of forming the metal layer 11 to a thickness exceeding the thickness of the first resist layer 12, an overhang portion 11c' is formed in the metal portion 11.

また、本発明は、半導体素子14と、半導体素子搭載部11a及び/又は電極部11bとなる金属部11とを備え、金属部11は張出部11cが形成されており、金属部11への半導体素子14の搭載及び電気的接続がなされ、封止材19によって封止された半導体装置であって、張出部11cは、金属部11の軸方向と直交する方向に平行な下面と、金属部11の上面に連続して形成される上面と、該下面と上面の間に形成される側面とを有するものである。 Further, the present invention includes the semiconductor element 14 and the metal part 11 that becomes the semiconductor element mounting part 11a and/or the electrode part 11b, and the metal part 11 is formed with an overhang part 11c, and the metal part 11 is provided with a projecting part 11c. This is a semiconductor device in which a semiconductor element 14 is mounted and electrically connected and sealed with a sealing material 19, and the overhanging portion 11c has a lower surface parallel to the direction orthogonal to the axial direction of the metal portion 11, and a metal It has an upper surface that is continuous with the upper surface of the portion 11, and a side surface that is formed between the lower surface and the upper surface.

本発明によれば、張出部11cで封止材からの抜けに対する十分な強度を得られる必要最小限の張出し量を確保しつつ、隣り合う張出部11c同士があらかじめ設定された適切な間隔をなす状態に調整できることから、母型基板10上における金属部11の配置間隔を従来に比べて小さくすることができ、半導体装置用基板1上で形成される半導体装置の一層の小型化が図れると共に、半導体装置用基板1上での半導体装置の形成密度を高められ、半導体装置の製造を効率化できる。そして、係る張出部11cは、第一レジスト層12及び第二レジスト層16を所望の形状に形成することにより、容易に得ることができる。 According to the present invention, while ensuring the necessary minimum amount of overhang for obtaining sufficient strength against the overhanging portion 11c from coming off from the sealing material, adjacent overhanging portions 11c are spaced at a preset appropriate interval. Since the metal parts 11 can be adjusted to a state in which the metal parts 11 are arranged on the master substrate 10, the spacing between the metal parts 11 on the mother board 10 can be made smaller than in the past, and the semiconductor device formed on the semiconductor device substrate 1 can be further miniaturized. At the same time, the formation density of semiconductor devices on the semiconductor device substrate 1 can be increased, and the manufacturing of semiconductor devices can be made more efficient. The projecting portion 11c can be easily obtained by forming the first resist layer 12 and the second resist layer 16 into a desired shape.

本発明の第1の実施形態に係る半導体装置用基板の部分拡大図である。FIG. 1 is a partially enlarged view of a semiconductor device substrate according to a first embodiment of the present invention. 本発明の第1の実施形態に係る半導体装置用基板の断面図である。FIG. 1 is a cross-sectional view of a semiconductor device substrate according to a first embodiment of the present invention. 本発明の第1の実施形態に係る半導体装置用基板における金属部の説明図である。FIG. 3 is an explanatory diagram of a metal portion in the semiconductor device substrate according to the first embodiment of the present invention. 本発明の第1の実施形態に係る半導体装置の説明図である。FIG. 1 is an explanatory diagram of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る半導体装置用基板の製造方法における工程説明図である。FIG. 3 is a process explanatory diagram of a method for manufacturing a semiconductor device substrate according to a first embodiment of the present invention. 本発明の第1の実施形態に係る半導体装置用基板の製造方法における工程説明図である。FIG. 3 is a process explanatory diagram of a method for manufacturing a semiconductor device substrate according to a first embodiment of the present invention. 本発明の第1の実施形態に係る半導体装置用基板における金属部の状態説明図である。FIG. 3 is a state explanatory diagram of a metal part in a semiconductor device substrate according to a first embodiment of the present invention. 本発明の第1の実施形態に係る半導体装置の製造方法における工程説明図である。FIG. 3 is a process explanatory diagram of a method for manufacturing a semiconductor device according to a first embodiment of the present invention. 本発明の他実施形態に係る半導体装置用基板における金属部の説明図である。FIG. 7 is an explanatory diagram of a metal portion in a substrate for a semiconductor device according to another embodiment of the present invention. 本発明の他実施形態に係る半導体装置の説明図である。FIG. 3 is an explanatory diagram of a semiconductor device according to another embodiment of the present invention. 本発明の他実施形態に係る半導体装置用基板の製造方法における工程説明図である。FIG. 6 is a process explanatory diagram of a method for manufacturing a semiconductor device substrate according to another embodiment of the present invention. 本発明の他実施形態に係る半導体装置用基板の説明図である。FIG. 3 is an explanatory diagram of a semiconductor device substrate according to another embodiment of the present invention. 従来の半導体装置用基板を示す断面図である。FIG. 1 is a cross-sectional view showing a conventional substrate for a semiconductor device.

(第1実施形態)
以下、本発明の第1の実施形態に係る半導体装置用基板を図1ないし図3に基づいて説明する。前記各図に示すように、本実施形態に係る半導体装置用基板1は、導電性を有する材質からなる母型基板10と、この母型基板10上に複数組形成され、本半導体装置用基板1を用いて製造される半導体装置70の半導体素子搭載部11a又は電極部11bとなる金属部11とを備える構成であり、金属部11表面にはメッキにより表面金属層13が形成されている。
(First embodiment)
DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor device substrate according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 3. As shown in each of the figures, the semiconductor device substrate 1 according to the present embodiment includes a mother substrate 10 made of a conductive material and a plurality of sets formed on the mother substrate 10. 1, and a metal portion 11 that becomes the semiconductor element mounting portion 11a or the electrode portion 11b of the semiconductor device 70 manufactured using the semiconductor device 70 manufactured using the semiconductor device 70 using the semiconductor device 70.A surface metal layer 13 is formed on the surface of the metal portion 11 by plating.

図2は、半導体装置用基板の概略構成を示すものであり、図3は、金属部11の構成を模式的に示すものであって、図3(A)は上面図、図3(B)は断面図、図3(C)は下面図、図3(D)は斜視図である。図3に示すように、金属部11の周縁、好ましくは上端周縁には張出部11cが設けられており、この張出部11cは、金属部11の軸方向と直交する方向に平行な下面Aと、金属部11の上面Dに連続して形成される上面Cと、該下面と上面の間に形成される側面Bとを有するものである。金属部11及び張出部11cは、上面視で円形状に形成されている。なお、図3において、金属部11の上面Dと張出部11cの上面Cとの境に線が描画されているが、これは金属部11の上面Dと張出部11cの上面Cの領域を明確に示すためであり、実際は、金属部11の上面Dと張出部11cの上面Cとは境のない連続する面である。 FIG. 2 shows a schematic configuration of a semiconductor device substrate, and FIG. 3 schematically shows a configuration of the metal part 11, with FIG. 3(A) being a top view and FIG. 3(B) being a top view. is a sectional view, FIG. 3(C) is a bottom view, and FIG. 3(D) is a perspective view. As shown in FIG. 3, an overhanging portion 11c is provided on the periphery of the metal portion 11, preferably on the upper end periphery. A, an upper surface C formed continuously to the upper surface D of the metal part 11, and a side surface B formed between the lower surface and the upper surface. The metal portion 11 and the protruding portion 11c are formed into a circular shape when viewed from above. In addition, in FIG. 3, a line is drawn at the boundary between the upper surface D of the metal part 11 and the upper surface C of the overhanging part 11c, but this is the area between the upper surface D of the metal part 11 and the upper surface C of the overhanging part 11c. This is to clearly show that the upper surface D of the metal part 11 and the upper surface C of the overhanging part 11c are continuous surfaces without boundaries.

また、張出部11cの上面Cは、曲面となっている。具体的には、張出部11cの上面Cは、金属部11の上面Dから張出部11cの側面Bに連続形成された曲面となっている。なお、金属部11の表面(上面D、側面、下面)及び張出部11cの表面(上面C、側面B、下面A)は凸面であっても凹面であっても良い。 Further, the upper surface C of the projecting portion 11c is a curved surface. Specifically, the upper surface C of the overhanging portion 11c is a curved surface continuously formed from the upper surface D of the metal portion 11 to the side surface B of the overhanging portion 11c. Note that the surfaces of the metal portion 11 (top surface D, side surfaces, and bottom surface) and the surfaces of the overhanging portion 11c (top surface C, side surface B, and bottom surface A) may be convex or concave.

ここで、金属部11(半導体素子搭載部11a、電極部11b)と張出部11cの寸法について説明すると、図3(B)に示すように、金属部11の幅寸法W1は50μm以上、金属部11の高さ寸法H1は20~100μm、張出部11cの幅寸法W2は5μm以上、張出部11cの高さ(厚さ)寸法H2は5~50μmの範囲が好ましい。また、張出部11cの幅寸法(張出し長さ)W2と張出部11cの高さ寸法H2は、W2≦H2の関係を満たすことが好ましい。これにより、張出部11cとしての強度を確保しつつ、金属部11の配置間隔を小さくすることができる。このような金属部11及び張出部11cの外形寸法は、後述する第一レジスト層12及び第二レジスト層16を所望の形状に形成することで容易に設定することができる。なお、本実施形態では、金属部11として、半導体素子搭載部11aの幅寸法W1を500μm、電極部11bの幅寸法W1を250μm、金属部11の高さ寸法H1を70μm、張出部11cの幅寸法W2を20μm、張出部11cの高さ(厚さ)寸法H2を30μmに設定している。 Here, to explain the dimensions of the metal part 11 (semiconductor element mounting part 11a, electrode part 11b) and the overhang part 11c, as shown in FIG. 3(B), the width dimension W1 of the metal part 11 is 50 μm or more, Preferably, the height H1 of the portion 11 is 20 to 100 μm, the width W2 of the overhang 11c is 5 μm or more, and the height (thickness) H2 of the overhang 11c is 5 to 50 μm. Further, it is preferable that the width dimension (projection length) W2 of the overhanging portion 11c and the height dimension H2 of the overhanging portion 11c satisfy the relationship W2≦H2. Thereby, the arrangement interval of the metal parts 11 can be reduced while ensuring the strength of the overhang part 11c. The external dimensions of the metal part 11 and the overhanging part 11c can be easily set by forming the first resist layer 12 and the second resist layer 16, which will be described later, into desired shapes. In this embodiment, as the metal part 11, the width dimension W1 of the semiconductor element mounting part 11a is 500 μm, the width dimension W1 of the electrode part 11b is 250 μm, the height dimension H1 of the metal part 11 is 70 μm, and the overhang part 11c is The width dimension W2 is set to 20 μm, and the height (thickness) dimension H2 of the overhang portion 11c is set to 30 μm.

係る半導体装置用基板1を用いて製造される半導体装置70は、図4に示すように、半導体装置用基板1から得られる金属部11及び表面金属層13に加えて、金属部11のうち半導体素子搭載部11aに搭載される半導体素子14と、この半導体素子14と金属部11のうちの電極部11bとを電気的に接続するワイヤ15と、半導体素子14やワイヤ15を含む金属部11の表面側を覆って封止する封止材19とを備える構成である。 As shown in FIG. 4, a semiconductor device 70 manufactured using such a substrate 1 for a semiconductor device includes, in addition to the metal portion 11 and the surface metal layer 13 obtained from the substrate 1 for a semiconductor device, a semiconductor portion of the metal portion 11. A semiconductor element 14 mounted on the element mounting part 11a, a wire 15 that electrically connects the semiconductor element 14 and the electrode part 11b of the metal part 11, and a wire 15 that electrically connects the semiconductor element 14 and the electrode part 11b of the metal part 11. This configuration includes a sealing material 19 that covers and seals the front surface side.

この半導体装置70は、その底部において、金属部11の裏面が電極や放熱パッド等として封止材19から露出した状態となっている(図4(B)参照)。また、この露出する金属部11の裏面側と、装置外装の一部として現れる封止材19の裏面側とが略同一平面上に位置する構成である。半導体装置70における底部以外の各面は、装置外装をなす封止材19のみがそれぞれ現れた状態となっている。なお、これに限らず、半導体装置70における上部を除く各面(正面、背面、左右側面、底面 )に、金属部11の一部(金属部11の側部)が露出されていても良い。 At the bottom of this semiconductor device 70, the back surface of the metal portion 11 is exposed from the sealing material 19 as an electrode, a heat dissipation pad, etc. (see FIG. 4(B)). Further, the back side of the exposed metal portion 11 and the back side of the sealing material 19 appearing as a part of the device exterior are located on substantially the same plane. Each surface of the semiconductor device 70 other than the bottom is in a state where only the sealing material 19 forming the device exterior is exposed. Note that the present invention is not limited to this, and a part of the metal part 11 (side part of the metal part 11) may be exposed on each surface (front, back, left and right side surfaces, and bottom surface) of the semiconductor device 70 except for the upper part.

半導体装置用基板1は、母型基板10上に金属部11の非配置部分に対応する第一レジスト層12を形成するのに続いて、金属部11の上部形状(張出部11cの張出し量)を調整制御する第二レジスト層16を形成し、その後、メッキで金属部11を形成して、第一レジスト層12及び第二レジスト層16を除去することで製造されるものである。表面金属層13は、金属部11の形成に続いて、張出部11c表面を含む金属部11表面にメッキすることで形成できる。ここで、表面金属層13を張出部11の上面Cに形成することで、表面金属層13の厚み分、張出部11cの側面Bに現れるが、表面金属層13を張出部11cの側面B全面に形成するようにしても良い。これにより、張出部11cとしての強度と金属部11の配置間隔を確保しながら、ワイヤ15との接合性に優れる領域をより拡げることができる。また、表面金属層13を張出部11cの側面B全面に形成すれば、表面金属層13の厚み分、張出部11cの下面Aに現れることになる。このように、表面金属層13は、張出部11の上面Cだけでなく、張出部11の側面B及び下面Aの一部または全面に形成しても良い。 The semiconductor device substrate 1 is manufactured by forming the first resist layer 12 corresponding to the non-arranged portion of the metal portion 11 on the mother substrate 10, and then forming the upper shape of the metal portion 11 (the amount of overhang of the overhang portion 11c). ) is formed, the metal portion 11 is formed by plating, and the first resist layer 12 and the second resist layer 16 are removed. The surface metal layer 13 can be formed by plating the surface of the metal portion 11 including the surface of the overhang portion 11c subsequent to the formation of the metal portion 11. Here, by forming the surface metal layer 13 on the upper surface C of the overhanging part 11, the thickness of the surface metal layer 13 appears on the side surface B of the overhanging part 11c. It may be formed on the entire side surface B. This makes it possible to further expand the region with excellent bondability to the wire 15 while ensuring the strength of the overhang portion 11c and the arrangement interval of the metal portions 11. Moreover, if the surface metal layer 13 is formed on the entire side surface B of the overhanging part 11c, the thickness of the surface metal layer 13 will appear on the lower surface A of the overhanging part 11c. In this way, the surface metal layer 13 may be formed not only on the upper surface C of the overhanging portion 11 but also on a part or the entire surface of the side surface B and lower surface A of the overhanging portion 11.

また、この半導体装置用基板1を用いた半導体装置の製造の際は、この半導体装置用基板1に対し、金属部11表面側への半導体素子14の搭載及び配線、封止材19による封止がなされた後、半導体装置部分(封止材による封止部分)から母型基板10を除去して半導体装置70を得る仕組みである。 In addition, when manufacturing a semiconductor device using this semiconductor device substrate 1, the semiconductor element 14 is mounted on the surface side of the metal part 11, wiring, and sealed with the sealing material 19. After this is done, the mother substrate 10 is removed from the semiconductor device portion (the portion sealed with the sealing material) to obtain the semiconductor device 70.

母型基板10は、厚さ約0.1mmのステンレス(SUS430等)やアルミニウム、銅等の導電性の金属板で形成され、半導体装置の製造工程で除去されるまで、半導体装置用基板1の要部をなすものであり、半導体装置用基板製造工程の各段階で、表面側に第一レジスト層12、第二レジスト層16、金属部11が形成され、また裏面側にレジスト層18が配設される。金属部11の形成の際には、この母型基板10を介した通電がなされることで、母型基板10表面の第一レジスト層12及び第二レジスト層16に覆われない通電可能な部分に電解メッキで金属部11が形成されることとなる。また、表面金属層13も電解メッキで形成する場合には、母型基板10を介して通電がなされる。 The mother board 10 is made of a conductive metal plate made of stainless steel (SUS430, etc.), aluminum, copper, etc. with a thickness of approximately 0.1 mm, and is used as a base for the semiconductor device substrate 1 until it is removed in the semiconductor device manufacturing process. A first resist layer 12, a second resist layer 16, and a metal part 11 are formed on the front side at each stage of the semiconductor device substrate manufacturing process, and a resist layer 18 is arranged on the back side. will be established. When forming the metal part 11, electricity is supplied through the mother substrate 10, so that the portion of the surface of the mother substrate 10 that is not covered by the first resist layer 12 and the second resist layer 16 and which can be energized is The metal portion 11 is then formed by electrolytic plating. Further, when the surface metal layer 13 is also formed by electrolytic plating, electricity is applied through the mother board 10.

金属部11は、電解メッキに適したニッケルや銅、又はニッケル-コバルト等のニッケル合金からなり、母型基板10上の第一レジスト層12のない部分に、電解メッキで形成される構成である。半導体装置用基板1において、金属部11は、母型基板10表面で、半導体素子搭載部11aとその近傍に配置される電極部11bの組み合わせを一つの単位として、この組み合わせを製造する半導体装置の数だけ多数整列状態で並べられた形態で形成されることとなる。 The metal part 11 is made of nickel, copper, or a nickel alloy such as nickel-cobalt, which is suitable for electrolytic plating, and is formed by electrolytic plating on a portion of the mother substrate 10 where the first resist layer 12 is not provided. . In the semiconductor device substrate 1, the metal portion 11 is formed on the surface of the mother substrate 10, with the combination of the semiconductor element mounting portion 11a and the electrode portion 11b disposed in the vicinity thereof as one unit, and the metal portion 11 is formed on the surface of the mother substrate 10. They are formed in a form in which a large number of them are arranged in an array.

この金属部11は、第一レジスト層12の厚さを越える厚さ(例えば、厚さ約20~100μm)で、且つ上端周縁には第二レジスト層16側に向かって張出した略庇状の張出部11cを有する形状として形成される。張出部11cは、電解メッキの際、金属部11を第一レジスト層12の厚さまで形成した後も電解メッキを継続することで、金属部11の成長を厚さ方向(金属部11の軸方向)に加えて第二レジスト層16に向かう方向(金属部11の軸方向に直交する方向)にも進行させることで、第一レジスト層12を越えた金属部11上端部から第二レジスト層16側へ張出した形状として得られるものである。ここで、電解メッキによる金属部11の第二レジスト層16に向かう方向への成長は、第二レジスト層16が存在することで、係る方向へそれ以上成長することを規制でき、金属部11間の間隔を一定にすることができる。なお、この張出部11cは、封止材19による封止に伴って、封止材19で挟まれて固定された状態となる。 This metal part 11 has a thickness that exceeds the thickness of the first resist layer 12 (for example, about 20 to 100 μm thick), and has a substantially eave-like shape extending toward the second resist layer 16 at the upper edge. It is formed in a shape having a projecting portion 11c. The overhanging portion 11c is formed by continuing electrolytic plating even after the metal portion 11 has been formed to the thickness of the first resist layer 12 during electrolytic plating, thereby controlling the growth of the metal portion 11 in the thickness direction (the axis of the metal portion 11). direction) and also in the direction toward the second resist layer 16 (direction perpendicular to the axial direction of the metal part 11), the second resist layer is moved from the upper end of the metal part 11 beyond the first resist layer 12. This is obtained in a shape that extends toward the 16 side. Here, the presence of the second resist layer 16 can restrict the growth of the metal part 11 in the direction toward the second resist layer 16 due to electrolytic plating, and the growth between the metal parts 11 can be regulated by the presence of the second resist layer 16. The interval can be made constant. Note that, as the projecting portion 11c is sealed with the sealing material 19, it is sandwiched and fixed by the sealing material 19.

この他、金属部11のうち、半導体素子搭載部11aには、半導体装置製造の際に半導体素子14を挿入して搭載可能な凹部を設けることができる。この凹部に半導体素子14が挿入配設されると、その凹部の深さの分、従来のように半導体素子搭載部の上面に搭載される場合と比べて、半導体素子14の配設位置を下げることができる。この凹部は、凹部の下側に半導体素子搭載部11aが必要な強度を維持する厚さを十分確保可能な程度の深さとされる。また、電極部11bにも凹部を設けることができる。この凹部に封止材19が封止されると、その凹部の分、電極部上面と半導体装置の封止材とが広く接触することとなり、半導体装置における電極部の支持強度が向上し、耐久性を高めることができる。また、半導体装置の実装上の必要等から、電極部を底部だけでなく側面にも露出させる構造を採用する場合に、電極部11bに凹部を設け、この凹部を切断して切り分けることで、その凹部の深さの分、切断位置が下がり、切断加工における金属の切断量を減らすことができ、切断に伴う切断加工用装置の負担を減らし、刃部の劣化を抑えられる。なお、凹部の形状は有底に限らず、貫通形成されたものであっても良い。 In addition, the semiconductor element mounting part 11a of the metal part 11 can be provided with a recess into which the semiconductor element 14 can be inserted and mounted during semiconductor device manufacturing. When the semiconductor element 14 is inserted and arranged in this recess, the arrangement position of the semiconductor element 14 is lowered by the depth of the recess than when it is mounted on the upper surface of the semiconductor element mounting part as in the past. be able to. The depth of this recess is sufficient to ensure that the semiconductor element mounting portion 11a has a sufficient thickness below the recess to maintain the necessary strength. Moreover, a recessed portion can also be provided in the electrode portion 11b. When the sealing material 19 is sealed in this recess, the upper surface of the electrode part and the sealing material of the semiconductor device come into contact with each other widely due to the recess, which improves the supporting strength of the electrode part in the semiconductor device and improves durability. You can increase your sexuality. In addition, when adopting a structure in which the electrode part is exposed not only at the bottom but also at the side surface due to the necessity of mounting a semiconductor device, it is possible to provide a recess in the electrode part 11b and cut the recess to separate the parts. The cutting position is lowered by the depth of the recess, and the amount of metal to be cut during the cutting process can be reduced, the load on the cutting device associated with cutting can be reduced, and deterioration of the blade part can be suppressed. Note that the shape of the recess is not limited to one with a bottom, and may be formed through the recess.

金属部11は、大部分を電解メッキに適したニッケルやニッケル合金等で形成されるが、金属部11の裏面側には、半導体装置実装時のハンダ付けを適切に行えるようにするために、ニッケル等の主材質部よりハンダぬれ性の良好な金属、例えば、金、錫、パラジウム、ハンダ等の薄膜11dが配設される構成である(図6(B)参照)。この薄膜11dの厚さは0.01~1μm程度とするのが好ましい。また、薄膜11dには、母型基板10のエッチング除去の際に、エッチング液による金属部11の侵食劣化を防ぐ機能を与えることもでき、その場合、金や銀、錫などの薄膜を配設するのが好ましい。なお、この金属部11裏面側の薄膜形成は、電解メッキで金属部11主材質部を形成する前に限られるものではなく、半導体装置70の完成後、メッキにより金属部11の露出した裏面側に薄膜11dを形成するようにしてもかまわない。 The metal part 11 is mostly made of nickel, nickel alloy, etc. suitable for electrolytic plating, but on the back side of the metal part 11, in order to enable proper soldering when mounting a semiconductor device, This is a configuration in which a thin film 11d of a metal having better solder wettability than the main material such as nickel, such as gold, tin, palladium, or solder, is disposed (see FIG. 6(B)). The thickness of this thin film 11d is preferably about 0.01 to 1 μm. Further, the thin film 11d can have a function of preventing erosion and deterioration of the metal part 11 caused by the etching solution when the mother substrate 10 is removed by etching, and in that case, a thin film of gold, silver, tin, etc. may be provided. It is preferable to do so. Note that the formation of a thin film on the back side of the metal part 11 is not limited to before forming the main material part of the metal part 11 by electrolytic plating, but after the completion of the semiconductor device 70, the thin film can be formed on the exposed back side of the metal part 11 by plating. The thin film 11d may be formed on the surface.

表面金属層13は、配線用のワイヤ15をなす金線等との接合性に優れる金属、例えば、金や銀等からなるメッキ膜として形成される。この表面金属層13は、母型基板10ごとのメッキ浴により金属部11及び張出部11cの表面に所定の厚さ、例えば、金メッキの場合は約0.1~1μm、銀メッキの場合は約1~10μmの厚さのメッキとして形成される。この表面金属層13のメッキの際、母型基板10の裏面側はレジスト層18で覆われていることから、メッキの付着等は生じない(図6(D)参照)。このように、金属部11の上面Dと張出部11cの上面Cに表面金属層13を形成することで、表面金属層13の厚み分、張出部11cの側面Bとして現れることになるので、ワイヤ15との接合性に優れる表面金属層13の表面積を大きくすることができる。なお、この表面金属層13へのメッキに際しては、金属部11のメッキの場合とはメッキ液を異ならせるなど、メッキの金属に対応するメッキ液を使用することとなる。 The surface metal layer 13 is formed as a plating film made of a metal, such as gold or silver, that has excellent bonding properties with the gold wire or the like forming the wiring wire 15. This surface metal layer 13 is applied to the surface of the metal part 11 and the overhanging part 11c by a plating bath for each mother board 10 to a predetermined thickness, for example, about 0.1 to 1 μm in the case of gold plating, and about 0.1 to 1 μm in the case of silver plating. It is formed as a plating with a thickness of about 1 to 10 μm. At the time of plating this surface metal layer 13, since the back side of the mother board 10 is covered with the resist layer 18, adhesion of plating etc. does not occur (see FIG. 6(D)). In this way, by forming the surface metal layer 13 on the upper surface D of the metal part 11 and the upper surface C of the overhanging part 11c, the thickness of the surface metal layer 13 will appear as the side surface B of the overhanging part 11c. , the surface area of the surface metal layer 13, which has excellent bonding properties with the wire 15, can be increased. Note that when plating the surface metal layer 13, a plating solution corresponding to the metal to be plated is used, such as a different plating solution from that used for plating the metal portion 11.

この表面金属層13をメッキ形成する際、メッキが付着しにくい場合、表面金属層13のメッキの前にあらかじめ金属部11表面に下地メッキ(銅ストライクメッキ、銀ストライクメッキ、又は金ストライクメッキ)を行い、表面金属層13の金属部11への密着性を高めることが望ましい。 When plating the surface metal layer 13, if the plating is difficult to adhere, apply base plating (copper strike plating, silver strike plating, or gold strike plating) to the surface of the metal part 11 before plating the surface metal layer 13. It is desirable to improve the adhesion of the surface metal layer 13 to the metal portion 11 by performing the following steps.

次に、本実施形態に係る半導体装置用基板の製造方法及び半導体装置用基板を用いた半導体装置の製造方法について説明する。 Next, a method for manufacturing a semiconductor device substrate and a method for manufacturing a semiconductor device using the semiconductor device substrate according to the present embodiment will be described.

半導体装置用基板の製造方法としては、母型基板10の表裏にレジスト層12、18をそれぞれ形成する工程と、さらに第一レジスト層12の上側で、張出部11cとして形成される金属部11の形成を抑えたい位置に対応させて、第二レジスト層16を形成する工程と、母型基板10表面の第一レジスト層12及び第二レジスト層16で覆われていない部分に金属部11を所定厚さまで形成する工程と、金属部11の表面に表面金属層13を形成する工程と、母型基板10表面側の第一レジスト層12、第二レジスト層16、及び裏面側のレジスト層18をそれぞれ除去する工程とを含むものであるといえる。以下にこれらの半導体装置用基板製造の各工程について具体的に説明する。 The method for manufacturing a substrate for a semiconductor device includes a step of forming resist layers 12 and 18 on the front and back sides of a mother substrate 10, respectively, and a step of forming a metal portion 11 formed as an overhang portion 11c on the upper side of the first resist layer 12. A process of forming a second resist layer 16 corresponding to a position where the formation of the metal part 11 is desired to be suppressed, and a step of forming a metal part 11 on a portion of the surface of the mother substrate 10 that is not covered with the first resist layer 12 and the second resist layer 16. a step of forming a surface metal layer 13 on the surface of the metal part 11, a step of forming the surface metal layer 13 to a predetermined thickness, a step of forming the first resist layer 12 on the surface side of the mother substrate 10, a second resist layer 16, and a resist layer 18 on the back surface side. It can be said that the method includes a step of removing each of. Each step of manufacturing these semiconductor device substrates will be specifically explained below.

はじめに、母型基板10上に金属部11をメッキ形成するために、金属部11の配置部分を露出(金属部11の非配置部分に対応)するように母型基板10に第一レジスト層12を形成する。具体的には、母型基板10の表面側に、感光性レジスト12aを、形成する金属部11に対応する所定厚さ(例えば約50μm)となるようにして形成する(図5(A)参照)。感光性レジスト12aに対しては、金属部11の配置位置に対応する所定パターンのマスクフィルムを載せた状態で、紫外線照射による露光での硬化、非照射部分のレジストを除去する現像等の処理を行い、金属部11の非配置部分に対応する開口パターンを有する第一レジスト層12を形成する(図5(B)参照)。また、母型基板10の裏面側にも、感光性レジストを表面側同様に形成し、そのまま全面に対する露光等の処理を経て、裏面全面にわたりレジスト層18を形成する。 First, in order to form the metal portion 11 on the mother substrate 10 by plating, a first resist layer 12 is applied to the mother substrate 10 so as to expose the portion where the metal portion 11 is placed (corresponding to the portion where the metal portion 11 is not placed). form. Specifically, a photosensitive resist 12a is formed on the surface side of the mother substrate 10 to a predetermined thickness (for example, about 50 μm) corresponding to the metal portion 11 to be formed (see FIG. 5(A)). ). The photosensitive resist 12a is subjected to treatments such as curing by exposure to ultraviolet rays and development to remove non-irradiated portions while a mask film with a predetermined pattern corresponding to the placement position of the metal portion 11 is placed on the photosensitive resist 12a. Then, a first resist layer 12 having an opening pattern corresponding to the non-arranged portion of the metal portion 11 is formed (see FIG. 5B). Further, a photosensitive resist is formed on the back side of the mother substrate 10 in the same manner as on the front side, and the entire surface is subjected to a process such as exposure to form a resist layer 18 over the entire back surface.

続いて、第二レジスト層16を形成する工程では、最初に形成された第一レジスト層12の上に、金属部11の形成を抑えたい範囲に対応させて第二レジスト層16を配設する。具体的には、母型基板10と第一レジスト層12の表面側に、感光性レジスト16aを、所定厚さ(例えば約40μm)となるようにして密着配設する(図5(C)参照)。この感光性レジスト16aに対し、張出部11cの形成を抑えたい位置に対応する所定パターンのマスクフィルムを載せた状態で、紫外線照射による露光での硬化、非照射部分のレジスト剤を除去する現像等の処理を行い、金属部11を形成させない箇所に対応する開口パターンを有する第二レジスト層16を形成する(図6(A)参照)。この第二レジスト層16の存在により、金属部11をメッキ形成する際に、張出部11cの張出量を規制することができる。なお、第一レジスト層12の所定パターンの開口内面と、第二レジスト層16の所定パターンの開口内面との間には段差部20が形成されており(図6(A)参照)、この段差部20の幅寸法を設定することで、所望の張出量とすることができる。段差部20の幅寸法は、5μm以上が好ましく、本実施形態では、20μmとしている。段差部20の幅寸法が5μm未満であると、十分な張出量とならず、張出部11cとしての効果が得られにくい。 Subsequently, in the step of forming the second resist layer 16, the second resist layer 16 is disposed on the first resist layer 12 formed first, corresponding to the range where the formation of the metal part 11 is desired to be suppressed. . Specifically, a photosensitive resist 16a is closely disposed on the surface sides of the mother substrate 10 and the first resist layer 12 to a predetermined thickness (for example, about 40 μm) (see FIG. 5(C)). ). With a mask film of a predetermined pattern corresponding to the position where the formation of the overhanging portion 11c is to be suppressed placed on the photosensitive resist 16a, the resist is cured by exposure to ultraviolet rays, and developed to remove the resist agent in non-irradiated areas. A second resist layer 16 is formed having an opening pattern corresponding to a portion where the metal portion 11 is not formed (see FIG. 6A). Due to the presence of this second resist layer 16, when forming the metal portion 11 by plating, the amount of overhang of the overhang portion 11c can be regulated. Note that a step portion 20 is formed between the inner surface of the opening in the predetermined pattern of the first resist layer 12 and the inner surface of the opening in the predetermined pattern of the second resist layer 16 (see FIG. 6(A)). By setting the width dimension of the portion 20, a desired amount of protrusion can be achieved. The width dimension of the stepped portion 20 is preferably 5 μm or more, and in this embodiment, it is 20 μm. If the width dimension of the stepped portion 20 is less than 5 μm, there will not be a sufficient amount of overhang, and it will be difficult to obtain the effect of the overhang portion 11c.

第二レジスト層16を形成したら、母型基板10表面の第一レジスト層12並びに第二レジスト層16で覆われていない露出領域に対し、めっき前処理(酸浸漬、陰極電解、化学エッチング、ストライクメッキなど)を行う。その後、この露出領域にメッキ等によりハンダぬれ性改善用の金の薄膜11dを、例えば0.01~1μm厚で形成する(図6(B)参照)。そして、この薄膜11d上に、電解メッキによりニッケルを積層して金属部11を形成する(図6(C)参照)。 After forming the second resist layer 16, the exposed areas on the surface of the mother substrate 10 that are not covered with the first resist layer 12 and the second resist layer 16 are subjected to plating pretreatment (acid immersion, cathodic electrolysis, chemical etching, strike plating, etc.). Thereafter, a thin gold film 11d for improving solder wettability is formed on this exposed region by plating or the like, with a thickness of, for example, 0.01 to 1 μm (see FIG. 6(B)). Then, on this thin film 11d, nickel is laminated by electrolytic plating to form the metal part 11 (see FIG. 6(C)).

この金属部11の形成工程で、金属部11は、第一レジスト層12の厚さを越える一方、第二レジスト層16の上面を越えない所定厚さ(例えば、厚さ約60μm)として形成され、第一レジスト層12寄りの金属部11上端周縁には、第一レジスト層12側に張出した略庇状の張出部11cが、第二レジスト層16の側面に接する部位を伴いつつ形成される(図6(C)参照)。この張出部11cの形成範囲は、金属部11が形成されないように配置された第二レジスト層16で規制されることから、張出部11cの張出し量はあらかじめ設定されたものとなる。また、金属部11は、母型基板10表面において、半導体素子搭載部11aとその近傍に複数配置される電極部11bの組合せを一つの単位として、製造する半導体装置の数だけ前記組合せが多数整列状態で並べられた形態で形成されることとなる。 In this step of forming the metal part 11, the metal part 11 is formed to have a predetermined thickness (for example, about 60 μm thick) that exceeds the thickness of the first resist layer 12 but does not exceed the upper surface of the second resist layer 16. A substantially eave-shaped projecting portion 11c projecting toward the first resist layer 12 side is formed on the upper edge of the metal portion 11 near the first resist layer 12, with a portion in contact with the side surface of the second resist layer 16. (See Figure 6(C)). Since the formation range of the overhanging portion 11c is regulated by the second resist layer 16 arranged so that the metal portion 11 is not formed, the amount of overhanging of the overhanging portion 11c is set in advance. Further, in the metal part 11, on the surface of the mother board 10, a combination of a semiconductor element mounting part 11a and a plurality of electrode parts 11b arranged in the vicinity thereof is taken as one unit, and as many combinations as the number of semiconductor devices to be manufactured are arranged. It will be formed in a form arranged in a state.

金属部11を所定厚さまで形成した後は、金属部11の表面に、表面金属層13を所定の厚さ、例えば銀メッキの場合、厚さ約1~10μmとなるように形成する(図6(D)参照)。メッキ浴に用いられるメッキ液に対し、第一レジスト層12及び第二レジスト層16は十分な耐性を有しているため、変質等が生じることはなく、レジスト層としての機能を維持し、金属部11等必要箇所以外へのメッキ付着を防ぐことができる。また、この表面金属層13のメッキの際、母型基板10の裏面側はレジスト層18で覆われていることから、メッキの付着はない。 After forming the metal part 11 to a predetermined thickness, a surface metal layer 13 is formed on the surface of the metal part 11 to a predetermined thickness, for example, in the case of silver plating, the thickness is about 1 to 10 μm (FIG. 6 (See (D)). The first resist layer 12 and the second resist layer 16 have sufficient resistance to the plating solution used in the plating bath, so they do not undergo deterioration, maintain their function as a resist layer, and retain the metal It is possible to prevent plating from adhering to parts other than the necessary parts, such as the part 11. Further, when plating the surface metal layer 13, since the back side of the mother board 10 is covered with the resist layer 18, no plating is attached.

表面金属層13形成後、母型基板10表面側の第一レジスト層12、第二レジスト層16、及び裏面側のレジスト層18を所定の除去剤で溶解させてそれぞれ除去すると、図2に示す半導体装置用基板1が完成する。 After forming the surface metal layer 13, the first resist layer 12, the second resist layer 16, and the resist layer 18 on the back surface side of the mother substrate 10 are dissolved and removed using a predetermined removing agent, as shown in FIG. The semiconductor device substrate 1 is completed.

このように、金属部11が第一レジスト層12の厚さを越えて形成されることで、第一レジスト層12寄りの金属部11の上端周縁には第一レジスト層12側に張出した略庇状の張出部11cが形成される(図6(C)参照)。この時、第一レジスト層12上に第二レジスト層16が配設されていることで、張出部11cは、その形成範囲を第二レジスト層16で規制され、第二レジスト層16の側面に接する部位を伴いつつ形成される。結果として、張出部11cの張出し量は、あらかじめ設定された第二レジスト層16の配置に基づいた所定量に管理されることとなる。この場合、母型基板10上で隣り合う金属部11のそれぞれが上部に張出部11cを備えつつ、これら張出部11c同士があらかじめ設定された適切な間隔をなす状態に調整できることから、母型基板10上における金属部の配置間隔を従来に比べて小さくすることができる。すなわち、従来の工程では金属部の張出部の張出し量を厳密に管理できないため、張出部同士の間隔が後のレジスト除去を妨げる狭小なものとならないように金属部11の配置間隔を広めにとる必要があったのに対し、本実施形態では、張出部11cの張出し量を第二レジスト層16の配置で調整できることから、金属部11の配置間隔を詰めた場合でも、張出部11cの張出し量をレジスト除去が問題なく行える程度に抑えて、隣り合う金属部11の最小間隔を適切な量とすることができる。また、半導体装置(封止材19)の側面と対向位置関係にある金属部11において、張出部としての張出し量を調整することで、封止材19から金属部11がはみ出すことを防止できる。なお、金属部11の配置間隔は、張出部11cで抜けに対する十分な強度を得られる必要最小限の張出し量を確保でき、且つ金属部11間に第一レジスト層12の除去剤が到達して第一レジスト層12が適切に除去できる状態が維持される範囲で、小さくすることができる(図7参照)。そして、張出部11cの側面Bを金属部11の軸方向と平行とすることで、金属部11の配置間隔をより正確かつ適切なものとすることができる。これにより、半導体装置用基板1上で形成される半導体装置の一層の小型化が図れると共に、半導体装置用基板1上での半導体装置の形成密度を高められ、半導体装置の製造を効率化できる。 As described above, since the metal part 11 is formed to exceed the thickness of the first resist layer 12, the upper edge of the metal part 11 near the first resist layer 12 has a substantially overhanging part on the first resist layer 12 side. An eave-like overhang 11c is formed (see FIG. 6(C)). At this time, since the second resist layer 16 is disposed on the first resist layer 12, the formation range of the overhang portion 11c is regulated by the second resist layer 16, and the side surface of the second resist layer 16 is It is formed with a part in contact with. As a result, the amount of overhang of the overhang portion 11c is managed to be a predetermined amount based on the preset arrangement of the second resist layer 16. In this case, each of the metal parts 11 adjacent to each other on the mother board 10 has an overhang 11c on the upper part, and these overhangs 11c can be adjusted to form an appropriate preset interval. The spacing between the metal parts on the mold substrate 10 can be made smaller than in the past. In other words, in the conventional process, it is not possible to strictly control the amount of overhang of the overhang of the metal part, so the spacing between the overhangs is widened so that the interval between the overhangs does not become so narrow that it impedes later resist removal. However, in this embodiment, since the amount of overhang of the overhang 11c can be adjusted by the arrangement of the second resist layer 16, even when the arrangement interval of the metal parts 11 is narrowed, the overhang By suppressing the overhang amount of 11c to such an extent that resist removal can be performed without problems, the minimum interval between adjacent metal parts 11 can be set to an appropriate amount. In addition, by adjusting the amount of overhang as the overhang in the metal part 11 that is positioned opposite to the side surface of the semiconductor device (the encapsulant 19), it is possible to prevent the metal part 11 from protruding from the encapsulant 19. . Note that the spacing between the metal parts 11 is such that the necessary minimum amount of overhang can be secured to obtain sufficient strength against pull-out in the overhang parts 11c, and the removal agent for the first resist layer 12 can reach between the metal parts 11. The first resist layer 12 can be made smaller as long as the first resist layer 12 can be appropriately removed (see FIG. 7). By making the side surface B of the overhanging portion 11c parallel to the axial direction of the metal portion 11, the arrangement interval of the metal portion 11 can be made more accurate and appropriate. Thereby, the semiconductor device formed on the semiconductor device substrate 1 can be further miniaturized, and the density of semiconductor devices formed on the semiconductor device substrate 1 can be increased, so that the manufacturing of the semiconductor device can be made more efficient.

また、母型基板10上に第一レジスト層12を形成する工程に続いて、第二レジスト層16を形成し、その後に金属部11を形成するようにすることで、第一レジスト層12上側に達する金属部11(張出部11c)の形成範囲を制御できることに加え、各レジスト層12・16を先にまとめて形成し、金属部11の形成を一工程(1回のメッキ)で行うことができ、生産効率の向上が図れることとなる。なお、上記説明では、第一レジスト層12及び第二レジスト層16を形成するにあたり、第一レジスト層12を形成してから第二レジスト層16を形成しているが、第一レジスト層12を形成する工程において、感光性レジスト12aに対して所定パターンで露光後、現像を行わずに、引き続き感光性レジスト12a上に感光性レジスト16aを形成し、感光性レジスト16aに対して所定パターンで露光した後に、感光性レジスト12a及び感光性レジスト16a(未露光部)を併せて現像するようにしても良い。この場合、感光性レジスト16a(第二レジスト層16)は、母型基板10の一面に形成した感光性レジスト12a上に形成するので、感光性レジスト16aの形成が容易になるとともに、現像処理を1回で済ませることができる。さらに、感光性レジスト12aと感光性レジスト16aとで露光感度が異なるものを使用して形成することもでき、例えば、母型基板10上に感光性レジスト12aと、感光性レジスト12aよりも露光感度が低い感光性レジスト16aとを順に積層すれば、1回の露光・現像処理より、図6(A)に示す、第一レジスト層12上に第二レジスト層16を形成した状態を得ることができる。また、感光性レジスト12a及び感光性レジスト16aに対する露光は、所定パターンが形成されたマスクを用いて行っているが、直描露光装置を用いて直接露光するようにしても良い。 Further, by forming the second resist layer 16 after the step of forming the first resist layer 12 on the mother substrate 10, and then forming the metal part 11, the upper side of the first resist layer 12 can be In addition to being able to control the formation range of the metal part 11 (overhanging part 11c) that reaches the area of 100 m, the resist layers 12 and 16 are formed together first, and the metal part 11 is formed in one step (one plating). This makes it possible to improve production efficiency. In the above description, when forming the first resist layer 12 and the second resist layer 16, the first resist layer 12 is formed and then the second resist layer 16 is formed. In the forming step, after exposing the photosensitive resist 12a in a predetermined pattern, a photosensitive resist 16a is subsequently formed on the photosensitive resist 12a without developing, and the photosensitive resist 16a is exposed in a predetermined pattern. After that, the photosensitive resist 12a and the photosensitive resist 16a (unexposed area) may be developed together. In this case, since the photosensitive resist 16a (second resist layer 16) is formed on the photosensitive resist 12a formed on one surface of the mother substrate 10, the formation of the photosensitive resist 16a is facilitated, and development processing is not required. It can be done in one time. Further, the photosensitive resist 12a and the photosensitive resist 16a may be formed using materials having different exposure sensitivities. If the photosensitive resists 16a with low resistivity are laminated in order, it is possible to obtain the state in which the second resist layer 16 is formed on the first resist layer 12 as shown in FIG. 6(A) by one exposure and development process. can. Further, although the photosensitive resist 12a and the photosensitive resist 16a are exposed using a mask on which a predetermined pattern is formed, direct exposure may be performed using a direct exposure device.

続いて、得られた半導体装置用基板1を用いた半導体装置の製造方法について説明すると、まず、半導体装置用基板1における金属部11のうち半導体素子搭載部11aに、接着剤を介在させた上で半導体素子14を搭載し、接着固定状態とし、さらに、半導体素子14表面の電極と、これに対応する各電極部11bとを、金線等のワイヤ15によって接合し、半導体素子14と各電極部11bとを電気的接続状態とする(図8(A)参照)。この配線による電気的接続は、超音波ボンディング装置等により実施される。電極部11bの表面には表面金属層13が形成されているため、ワイヤ15との接合を確実なものとすることができ、接続の信頼性を高められる。この半導体素子14は、微細な電子回路が形成されたいわゆるチップである。なお、接着材としては、固体状、粘体状、液体状のものがあり、例えば、銀ペースト、樹脂ペースト、ダイアタッチフィルムが挙げられる。また、半導体素子14と電極部11bとの電気的接続をワイヤボンディング方式で行っているが、フリップチップ方式で行ってもよい。 Next, a method for manufacturing a semiconductor device using the obtained substrate 1 for a semiconductor device will be explained. First, the semiconductor element mounting portion 11a of the metal portion 11 of the substrate 1 for a semiconductor device is coated with an adhesive. The semiconductor element 14 is mounted and fixed with adhesive, and further, the electrodes on the surface of the semiconductor element 14 and the corresponding electrode parts 11b are joined with wires 15 such as gold wires, and the semiconductor element 14 and each electrode are bonded together. The portion 11b is brought into an electrically connected state (see FIG. 8(A)). This electrical connection by wiring is performed using an ultrasonic bonding device or the like. Since the surface metal layer 13 is formed on the surface of the electrode portion 11b, the bonding with the wire 15 can be ensured, and the reliability of the connection can be improved. This semiconductor element 14 is a so-called chip on which a minute electronic circuit is formed. Note that the adhesive may be solid, viscous, or liquid, and examples thereof include silver paste, resin paste, and die attach film. Further, although the semiconductor element 14 and the electrode portion 11b are electrically connected by a wire bonding method, it may be performed by a flip chip method.

半導体素子14と各電極部11bとの接続が完了したら、母型基板10の表面側における金属部11等のある半導体装置となる範囲を、物理的強度の高い熱硬化性エポキシ樹脂等の封止材19で封止し、半導体素子14やワイヤ15を外部から隔離した保護状態とする(図8(B)参照)。詳細には、母型基板10の表面側を上型となるモールド金型に装着し、母型基板10に下型の役割を担わせつつ、モールド金型内に封止材19となる硬化前のエポキシ樹脂を圧入するという過程で封止が実行され、母型基板10上では、一つの半導体装置となる半導体素子搭載部11aと複数の電極部11bとの組合せが多数整列状態のままで一様に封止され、半導体装置が多数つながった状態で現れることとなる。なお、半導体素子14がLED等の発光素子の場合は、透光性の材質が用いられる。 After the connection between the semiconductor element 14 and each electrode part 11b is completed, the area on the front surface side of the mother board 10 where the metal part 11, etc. will become the semiconductor device is sealed with a thermosetting epoxy resin or the like having high physical strength. The semiconductor element 14 and the wire 15 are sealed with a material 19 to be in a protected state isolated from the outside (see FIG. 8(B)). In detail, the surface side of the mother substrate 10 is attached to a mold die serving as an upper mold, and while the mother substrate 10 is made to play the role of a lower mold, the hardening material 19 which becomes the sealing material 19 is placed inside the mold die. Sealing is performed in the process of press-fitting the epoxy resin, and a large number of combinations of the semiconductor element mounting portion 11a and the plurality of electrode portions 11b, which form one semiconductor device, remain aligned on the mother board 10. The device is sealed in a similar manner, and a large number of semiconductor devices appear connected together. Note that when the semiconductor element 14 is a light emitting element such as an LED, a translucent material is used.

この多数つながった状態の半導体装置が得られたら、母型基板10を除去し、各半導体装置の底部に金属部11の裏面側が露出した状態を得る(図8(C)参照)。ステンレス材製である母型基板10の除去には、半導体装置側から母型基板10を物理的に引き剥がして除去する方法を用いる。母型基板10として強度及び剥離性に優れるステンレス材を用いることで、半導体装置側から母型基板10を引き剥がして速やかに分離除去することができる。この時、封止材19を十分な物理的強度を有するものとすることで、母型基板10を引き剥がし除去する場合にも、割れ等の破損もなく金属部11との一体化状態を維持することができる。 Once a large number of connected semiconductor devices are obtained, the mother substrate 10 is removed, leaving the back side of the metal portion 11 exposed at the bottom of each semiconductor device (see FIG. 8C). To remove the motherboard 10 made of stainless steel, a method is used in which the motherboard 10 is physically peeled off from the semiconductor device side. By using a stainless steel material with excellent strength and peelability as the mother substrate 10, the mother substrate 10 can be peeled off from the semiconductor device side and quickly separated and removed. At this time, by making the sealing material 19 have sufficient physical strength, even when the mother board 10 is peeled off and removed, the state of integration with the metal part 11 is maintained without damage such as cracks. can do.

この他、母型基板10が他の金属材、例えば、銅材である場合には、母型基板10を除去する方法として、母型基板10をエッチング液に浸漬して溶解させる方法を用いることもできる。このエッチングの場合、母型基板10は溶解するが金属部11や表面金属層13の材質が冒されないような選択エッチング性を有するエッチング液を用いることとなる。溶解させて除去する場合では、半導体装置側に過大な力が加わらないため、母型基板10の除去に伴って悪影響が生じる確率を小さくできる。 In addition, when the mother substrate 10 is made of another metal material, for example, copper, the method of removing the mother substrate 10 may be to immerse the mother substrate 10 in an etching solution and dissolve it. You can also do it. In the case of this etching, an etching solution having a selective etching property that dissolves the mother substrate 10 but does not damage the material of the metal portion 11 or the surface metal layer 13 is used. In the case of removing by melting, excessive force is not applied to the semiconductor device side, so that the probability that an adverse effect will occur due to the removal of the mother substrate 10 can be reduced.

母型基板10を除去された半導体装置の底部では、露出する金属部11の裏面側と、封止材19の裏面側とが略同一平面上に位置する状態となっている。母型基板10の除去後、多数つながった状態の半導体装置を一つ一つ切り離せば、半導体装置70としての完成となる。 At the bottom of the semiconductor device from which the mother substrate 10 has been removed, the back side of the exposed metal portion 11 and the back side of the sealing material 19 are located on substantially the same plane. After removing the mother substrate 10, a large number of connected semiconductor devices are separated one by one to complete the semiconductor device 70.

得られた半導体装置70内部において、金属部11の上端周縁を張出部11cとして略庇状に張り出し形成し、封止材19による封止状態で、この張出部11cが硬化した封止材19に囲まれて固定されていることから、樹脂同士で密着し強固に一体化した封止材19に張出部11cが食込んで、金属部11に加わる外力に対する抵抗体の役割を果すこととなり、母型基板10にステンレス材等を用い、半導体装置側から母型基板10を物理的に引き剥がして除去する場合など、金属部11裏面側に装置外装から引離そうとする外力が加わっても、張出部11cが金属部11の移動を妨げ、金属部11の他部分に対するずれ等をなくすことができ、製造時における歩留りを向上させられると共に、半導体装置としての強度を高められ、使用時の耐久性や半導体装置動作の信頼性も高められる。 Inside the obtained semiconductor device 70, the upper end periphery of the metal portion 11 is formed to protrude into a substantially eave-like shape as an overhanging portion 11c, and in a sealed state with the encapsulant 19, the overhanging portion 11c is cured as the encapsulant. Since the projecting portion 11c is surrounded by and fixed to the metal portion 19, the overhanging portion 11c bites into the sealing material 19, which is tightly integrated with the resin, and serves as a resistor against external force applied to the metal portion 11. Therefore, when the mother substrate 10 is made of stainless steel or the like and the mother substrate 10 is physically peeled off and removed from the semiconductor device side, an external force is applied to the back side of the metal part 11 to try to separate it from the device exterior. However, the protruding portion 11c prevents the movement of the metal portion 11 and eliminates misalignment of the metal portion 11 with respect to other portions, thereby improving the yield during manufacturing and increasing the strength of the semiconductor device. Durability during use and reliability of semiconductor device operation can also be improved.

第一レジスト層12、第二レジスト層16、及びレジスト層18は、金属部11のメッキや表面金属層13のメッキで使用するメッキ液に対する耐溶解性を備えた絶縁性材で形成されている。また、第一レジスト層12、第二レジスト層16、及びレジスト層18は、例えば、アルカリ現像タイプの感光性フィルムレジストを熱圧着等により配設し、露光や現像等の各処理を経て、形成することができる。なお、この第一レジスト層12、第二レジスト層16、及びレジスト層18については、上記した感光性レジストに限られるものではなく、メッキ液に対し変質せず強度の高い塗膜が得られる塗料を、母型基板10上における金属部11の非配置部分や張出部11cの形成を規制したい位置に、電着塗装等により必要な塗膜厚さとなるように塗装して形成することもできる。 The first resist layer 12, the second resist layer 16, and the resist layer 18 are made of an insulating material that is resistant to dissolution in the plating solution used in plating the metal portion 11 and plating the surface metal layer 13. . Further, the first resist layer 12, the second resist layer 16, and the resist layer 18 are formed by, for example, disposing an alkali-developed type photosensitive film resist by thermocompression bonding or the like, and performing various treatments such as exposure and development. can do. Note that the first resist layer 12, second resist layer 16, and resist layer 18 are not limited to the above-mentioned photosensitive resists, but may be paints that do not change in quality with the plating solution and can provide a high-strength coating film. It can also be formed by applying it to the required coating thickness by electrodeposition coating etc. on the part of the mother board 10 where the metal part 11 is not arranged or the position where it is desired to restrict the formation of the overhanging part 11c. .

また、上記実施形態では、金属部11は円柱状としているが、これに限らず、図9に示す四角柱状、その他にも三角柱状など種々の形状であっても良い。また、金属部11の下部分(第一レジスト層12の厚さ内に形成される部分)の外形と金属部11の上部分及び張出部11c(第二レジスト層16の厚さ内に形成される部分)の外形との形状を異ならせても良く、例えば、金属部11の下部分を四角柱状に、金属部11の上部分及び張出部11cを円柱状に形成することができる。係る形状は、第一レジスト層12における開口パターンを四角状に形成し、第二レジスト層16における開口パターンを円状に形成することで得られる。このように、金属部11及び張出部11cの形状は、第一レジスト層12及び第二レジスト層16の開口パターンを所望の形状にすることで自由に設定することができる。 Further, in the embodiment described above, the metal part 11 has a cylindrical shape, but is not limited to this, and may have various shapes such as a quadrangular prism shape shown in FIG. 9, or a triangular prism shape. In addition, the outer shape of the lower part of the metal part 11 (the part formed within the thickness of the first resist layer 12), the upper part of the metal part 11, and the overhanging part 11c (the part formed within the thickness of the second resist layer 16). For example, the lower part of the metal part 11 can be formed into a quadrangular prism shape, and the upper part of the metal part 11 and the overhanging part 11c can be formed into a cylindrical shape. Such a shape is obtained by forming the opening pattern in the first resist layer 12 in a square shape and forming the opening pattern in the second resist layer 16 in a circular shape. In this way, the shapes of the metal part 11 and the overhanging part 11c can be freely set by making the opening patterns of the first resist layer 12 and the second resist layer 16 into desired shapes.

また、張出部11cの張出し量を規制するために第一レジスト層12上に形成している第二レジスト層16は部分的に形成しても良い。これは、金属部11(半導体素子搭載部11a)上に半導体素子14を搭載する際に使用する接着剤(ペースト)が金属部11(半導体素子搭載部11a)表面から落ちないようにするために、金属部11(半導体素子搭載部11a)表面の面積をできるだけ大きく確保することが求められているが、半導体装置としての形状・寸法及び半導体装置の底部(封止材19の裏面)から外部電極や放熱パッドなどとして露出する金属部11の裏面の位置・形状・寸法は仕様として決まっているため、金属部11の表面の形状・寸法を金属部11の裏面の形状・寸法と同じにしてしまうと、金属部11の表面積は小さいものとなってしまう。そこで、張出部として側面Bを有するものと有さないものが混在する構成、具体的には、図10に示すように、半導体装置(封止材19)の側面と対向位置関係にある張出部11cのみが側面Bを有する構成とすることにより、金属部11の表面積を大きく確保することができる。係る構成は、第二レジスト層16を部分的に形成すること、つまり、金属部11cにおいて、半導体装置(封止材19)の側面と対向する側では張出部11cの張出し量を規制し、金属部11と隣接する側では張出部11cの張出し量を規制しないようにしている。以下に、係る構成の半導体装置用基板の製造方法を図11に基づいて説明する。 Further, the second resist layer 16 formed on the first resist layer 12 in order to regulate the amount of overhang of the overhang portion 11c may be formed partially. This is to prevent the adhesive (paste) used when mounting the semiconductor element 14 onto the metal part 11 (semiconductor element mounting part 11a) from falling off the surface of the metal part 11 (semiconductor element mounting part 11a). Although it is required to secure as large a surface area as possible for the metal part 11 (semiconductor element mounting part 11a), the shape and dimensions of the semiconductor device and the external electrodes from the bottom of the semiconductor device (the back surface of the sealing material 19) Since the position, shape, and dimensions of the back surface of the metal part 11 exposed as a heat dissipation pad, etc. are determined as specifications, the shape and dimensions of the front surface of the metal part 11 are made the same as the shape and dimensions of the back surface of the metal part 11. Therefore, the surface area of the metal portion 11 becomes small. Therefore, as shown in FIG. 10, a configuration in which a projecting part has a side surface B and a projecting part without a side surface B is mixed. Specifically, as shown in FIG. By configuring only the protruding portion 11c to have the side surface B, a large surface area of the metal portion 11 can be ensured. Such a configuration involves partially forming the second resist layer 16, that is, regulating the amount of overhang of the overhang portion 11c on the side facing the side surface of the semiconductor device (sealing material 19) in the metal portion 11c; On the side adjacent to the metal part 11, the amount of overhang of the overhang part 11c is not restricted. A method for manufacturing a semiconductor device substrate having such a configuration will be described below with reference to FIG. 11.

まず、母型基板10の表面側に感光性レジスト12aを形成し、この感光性レジスト12aに対して、露光・現像等の処理を行って第一レジスト層12を形成した後、母型基板10と第一レジスト層12の表面側に感光性レジスト16aを形成する。また、母型基板10の裏面側にもレジスト層18を形成する。ここまでの工程は上記実施形態(図5参照)と同じなので、具体的な説明は省略するが、感光性レジスト12aを20~40μm(ここでは25μm)の厚さで形成し、感光性レジスト16aを30~80μm(ここでは45μm)の厚さで形成する。次に、感光性レジスト16aに対して、張出部11cの形成を抑えたい位置に対応する所定パターンのマスクフィルムを載せた状態で、紫外線照射による露光での硬化、非照射部分のレジストを除去する現像等の処理を行い、金属部11を形成させない箇所に対応する開口パターンを有する第二レジスト層16を形成する(図11(A)参照)。この第二レジスト層16の存在により、金属部11をメッキ形成する際に、張出部11cの張出量を規制することができ、ここでは、半導体装置(封止材19)の側面と対向する位置にあたる箇所に第二レジスト層16を形成する。なお、第一レジスト層12の所定パターンの開口内面と、第二レジスト層16の所定パターンの開口内面との間には段差部20が形成され、この段差部20の幅寸法が張出部11cの張出し量となり、段差部20の幅寸法は、5μm以上が好ましい。 First, a photosensitive resist 12a is formed on the front surface side of the mother substrate 10, and the photosensitive resist 12a is subjected to treatments such as exposure and development to form a first resist layer 12. A photosensitive resist 16a is formed on the surface side of the first resist layer 12. Further, a resist layer 18 is also formed on the back side of the mother substrate 10. The steps up to this point are the same as those in the above embodiment (see FIG. 5), so a detailed explanation will be omitted, but the photosensitive resist 12a is formed with a thickness of 20 to 40 μm (here, 25 μm), and the photosensitive resist 16a is is formed with a thickness of 30 to 80 μm (here, 45 μm). Next, with a mask film of a predetermined pattern corresponding to the position where the formation of the overhang 11c is to be suppressed placed on the photosensitive resist 16a, the resist is cured by exposure to ultraviolet rays and the resist in non-irradiated areas is removed. A process such as development is performed to form a second resist layer 16 having an opening pattern corresponding to a portion where the metal portion 11 is not formed (see FIG. 11(A)). Due to the presence of the second resist layer 16, when forming the metal part 11 by plating, it is possible to control the amount of overhang of the overhang part 11c. A second resist layer 16 is formed at a location corresponding to the position. Note that a step portion 20 is formed between the inner surface of the opening of the predetermined pattern of the first resist layer 12 and the inner surface of the opening of the predetermined pattern of the second resist layer 16, and the width dimension of the step portion 20 is equal to the width of the overhang portion 11c. The width of the stepped portion 20 is preferably 5 μm or more.

第二レジスト層16を形成したら、母型基板10表面の第一レジスト層12並びに第二レジスト層16で覆われていない露出領域に対し、めっき前処理(酸浸漬、陰極電解、化学エッチング、ストライクメッキなど)を行った後、この露出領域に薄膜11dと金属部11とを積層形成する(図11(B)参照)。ここでは、薄膜11dとして金を0.01~1μm厚でめっき形成し、この薄膜11d上に、金属部11としてニッケルを50~100μm厚でめっき形成する。この時、金属部11は、第一レジスト層12の厚さを越えて形成され、第二レジスト層16が形成されている領域では、第二レジスト層16の上面を越えない所定厚さ(ここでは60μm)として形成され、第一レジスト層12寄りの金属部11上端周縁には、第一レジスト層12側に張出した略庇状の張出部11cが、第二レジスト層16の側面に接する部位を伴いつつ形成される。なお、第二レジスト層16が形成されている領域と形成されていない領域とでは張出部の形状が異なるものであり、特徴として、第二レジスト層16が形成されている領域では側面Bを有する張出部11cが形成され、第二レジスト層16が形成されていない領域では側面Bを有さない張出部11c’が形成されることとなる。 After forming the second resist layer 16, the exposed areas on the surface of the mother substrate 10 that are not covered with the first resist layer 12 and the second resist layer 16 are subjected to plating pretreatment (acid immersion, cathodic electrolysis, chemical etching, strike After plating, etc.), the thin film 11d and the metal portion 11 are laminated in this exposed area (see FIG. 11(B)). Here, gold is plated to a thickness of 0.01 to 1 μm as the thin film 11d, and nickel is plated to a thickness of 50 to 100 μm as the metal portion 11 on this thin film 11d. At this time, the metal part 11 is formed to exceed the thickness of the first resist layer 12, and in the region where the second resist layer 16 is formed, the metal part 11 has a predetermined thickness that does not exceed the upper surface of the second resist layer 16 (here At the upper end periphery of the metal part 11 near the first resist layer 12, a substantially eave-shaped overhang 11c extending toward the first resist layer 12 comes into contact with the side surface of the second resist layer 16. It is formed along with the parts. Note that the shape of the overhang is different between the region where the second resist layer 16 is formed and the region where it is not formed, and as a feature, the side surface B is different in the region where the second resist layer 16 is formed. In the region where the second resist layer 16 is not formed, a projecting portion 11c' having no side surface B is formed.

金属部11を形成した後は、金属部11の表面に、表面金属層13を形成する(図11(C)参照)。ここでは、表面金属層13として銀を1~10μm厚でめっき形成する。表面金属層13を形成した後、母型基板10表裏の第一レジスト層12、第二レジスト層16、及びレジスト層18を除去することで、半導体装置用基板1が完成する(図11(D)参照)。 After forming the metal part 11, a surface metal layer 13 is formed on the surface of the metal part 11 (see FIG. 11(C)). Here, the surface metal layer 13 is formed by plating silver to a thickness of 1 to 10 μm. After forming the surface metal layer 13, the first resist layer 12, second resist layer 16, and resist layer 18 on the front and back sides of the mother substrate 10 are removed to complete the semiconductor device substrate 1 (see FIG. 11(D) )reference).

こうして得られた半導体装置用基板1を用いた半導体装置の製造方法については、上記実施形態(図8参照)のように、半導体素子搭載部11a上に半導体素子14を搭載し、この半導体素子14の電極と、これに対応する各電極部11bとをワイヤ15によって接合して半導体素子14と各電極部11bとを電気的接続した後、封止材19によって封止し、母型基板10を除去して半導体装置として一つ一つ切り出すことで半導体装置用が完成する。これにより、半導体装置の底部(封止材19の裏面)において、露出する金属部11の裏面が外部電極や放熱パッドとして位置・形状・寸法が仕様として決められていても、金属部11の表面形状を自由に設定でき、金属部11の表面積を大きく確保することができる。 Regarding the method of manufacturing a semiconductor device using the semiconductor device substrate 1 thus obtained, as in the above embodiment (see FIG. 8), the semiconductor element 14 is mounted on the semiconductor element mounting portion 11a, and the semiconductor element 14 is mounted on the semiconductor element mounting portion 11a. After electrically connecting the semiconductor element 14 and each electrode part 11b by joining the corresponding electrode parts 11b with the wires 15, the semiconductor element 14 and each electrode part 11b are sealed with a sealing material 19, and the mother board 10 is sealed. A semiconductor device is completed by removing it and cutting it out one by one as a semiconductor device. As a result, even if the position, shape, and dimensions of the exposed back surface of the metal part 11 are determined as external electrodes or heat dissipation pads as specifications at the bottom of the semiconductor device (the back surface of the encapsulant 19), the surface of the metal part 11 The shape can be freely set, and a large surface area of the metal part 11 can be secured.

なお、第二レジスト層16の形状(幅寸法)を小さくする(段差部20の幅寸法を大きくする)ことでも、金属部11の表面積を大きくすることはできるが、第二レジスト層16の形状(幅寸法)を小さくし過ぎると、第二レジスト層16の下部に形成されている第一レジスト層12の除去が困難となるおそれがあるので、生産性も考慮すると、図11に示す製造方法が好ましい。また、図10に示す半導体装置及び図11(D)に示す半導体装置用基板では、第二レジスト層16を部分的に形成し、半導体装置(封止材19)の側面と対向する側における張出部11cの張出し量を規制しているが、図12に示すように、金属部11が隣接する側において張出部11cの張出し量を規制するようにしても良い。この場合、金属部11(半導体素子搭載部11aや電極部11b)が隣接する側を規制することで、金属部11の配置間隔を小さくできつつ、金属部11の表面積を大きく確保することができる。 Note that the surface area of the metal part 11 can also be increased by reducing the shape (width dimension) of the second resist layer 16 (increasing the width dimension of the stepped portion 20); (width dimension) is too small, it may become difficult to remove the first resist layer 12 formed under the second resist layer 16. Therefore, considering productivity, the manufacturing method shown in FIG. is preferred. In addition, in the semiconductor device shown in FIG. 10 and the semiconductor device substrate shown in FIG. Although the amount of overhang of the overhang portion 11c is regulated, as shown in FIG. 12, the amount of overhang of the overhang portion 11c may be restricted on the side where the metal portion 11 is adjacent. In this case, by restricting the side where the metal parts 11 (semiconductor element mounting part 11a and electrode part 11b) are adjacent to each other, it is possible to reduce the arrangement interval of the metal parts 11 and secure a large surface area of the metal parts 11. .

1 半導体装置用基板
10 母型基板
11 金属部
11a 半導体素子搭載部
11b 電極部
11c 張出部(第一張出部)
11c’ 張出部(第二張出部)
11d 薄膜
12 第一レジスト層
13 表面金属層
14 半導体素子
15 ワイヤ
16 第二レジスト層
18 レジスト層
19 封止材
20 段差部
70 半導体装置
1 Semiconductor device substrate 10 Mother substrate 11 Metal part 11a Semiconductor element mounting part 11b Electrode part 11c Overhanging part (first overhanging part)
11c' Overhanging part (second overhanging part)
11d Thin film 12 First resist layer 13 Surface metal layer 14 Semiconductor element 15 Wire 16 Second resist layer 18 Resist layer 19 Sealing material 20 Step portion 70 Semiconductor device

Claims (4)

母型基板(10)上に半導体素子搭載部(11a)及び/又は電極部(11b)となる金属部(11)を複数備える半導体装置用基板であって、
前記金属部(11)には張出部が形成され、
前記張出部は、前記金属部(11)の軸方向と直交する方向に前記金属部(11)から張出し形成されており、
前記張出部を含めた前記金属部(11)の上面の面積は、前記母型基板(10)の表面と接する前記金属部(11)の裏面の面積より大きく形成され、
前記各金属部(11)において、隣接する前記金属部(11)と対向する側における前記張出部の張出し量は、隣接する前記金属部(11)と対向する側を除く位置における前記張出部の張出し量より大きく形成されていることを特徴とする半導体装置用基板。
A semiconductor device substrate comprising a plurality of metal parts (11) serving as a semiconductor element mounting part (11a) and/or an electrode part (11b) on a mother board (10),
A projecting portion is formed on the metal portion (11),
The overhanging portion is formed to overhang from the metal portion (11) in a direction perpendicular to the axial direction of the metal portion (11),
The area of the upper surface of the metal part (11) including the overhang is formed to be larger than the area of the back surface of the metal part (11) in contact with the front surface of the mother board (10),
In each of the metal parts (11), the overhang amount of the overhang on the side facing the adjacent metal part (11) is equal to the overhang amount at a position other than the side facing the adjacent metal part (11). 1. A substrate for a semiconductor device, characterized in that the substrate is formed to be larger than the amount of overhang of the portion.
前記金属部(11)には形状が異なる張出部が形成されており、
第一張出部(11c)は、前記金属部(11)の軸方向と直交する方向に平行な下面と、前記金属部(11)の上面に連続して形成される上面と、該下面と上面の間に形成される側面とを有し、
第二張出部(11c’)は、前記金属部(11)の軸方向と直交する方向に平行な下面と、前記金属部(11)の上面に連続して形成される上面とを有しており、
前記各金属部(11)において、隣接する前記金属部(11)と対向する側に前記第二張出部(11c’)が形成され、隣接する前記金属部(11)と対向する側を除く位置に前記第一張出部(11c)が形成されていることを特徴とする請求項1に記載の半導体装置用基板。
The metal part (11) is formed with a protruding part having a different shape,
The first projecting portion (11c) has a lower surface parallel to a direction orthogonal to the axial direction of the metal portion (11), an upper surface continuous to the upper surface of the metal portion (11), and a lower surface. and a side surface formed between the top surfaces;
The second projecting portion (11c') has a lower surface parallel to a direction orthogonal to the axial direction of the metal portion (11), and an upper surface that is continuous with the upper surface of the metal portion (11). and
In each of the metal parts (11), the second overhang part (11c') is formed on the side facing the adjacent metal part (11), excluding the side facing the adjacent metal part (11). The substrate for a semiconductor device according to claim 1, wherein the first protruding portion (11c) is formed at a position.
半導体素子(14)と、半導体素子搭載部(11a)及び/又は電極部(11b)となる金属部(11)とを備え、前記金属部(11)を複数有し、前記半導体素子(14)と前記金属部(11)とが電気的に接続され、封止材(19)によって封止された半導体装置であって、
前記金属部(11)には張出部が形成され、
前記張出部は、前記金属部(11)の軸方向と直交する方向に前記金属部(11)から張出し形成されており、
前記張出部を含めた前記金属部(11)の上面の面積は、前記封止材(19)の底面から露出する前記金属部(11)の裏面の面積より大きく形成され、
前記各金属部(11)において、隣接する前記金属部(11)と対向する側における前記張出部の張出し量は、隣接する前記金属部(11)と対向する側を除く位置における前記張出部の張出し量より大きく形成されていることを特徴とする半導体装置。
The semiconductor element (14) includes a semiconductor element (14) and a metal part (11) that becomes a semiconductor element mounting part (11a) and/or an electrode part (11b), has a plurality of said metal parts (11), and has a plurality of said semiconductor elements (14). and the metal part (11) are electrically connected and sealed with a sealing material (19),
A projecting portion is formed on the metal portion (11),
The overhanging portion is formed to overhang from the metal portion (11) in a direction perpendicular to the axial direction of the metal portion (11),
The area of the top surface of the metal part (11) including the protruding part is formed to be larger than the area of the back surface of the metal part (11) exposed from the bottom surface of the sealing material (19),
In each of the metal parts (11), the overhang amount of the overhang on the side facing the adjacent metal part (11) is equal to the overhang amount at a position other than the side facing the adjacent metal part (11). A semiconductor device characterized in that the semiconductor device is formed to be larger than the amount of overhang of the portion.
前記金属部(11)には形状が異なる張出部が形成されており、
第一張出部(11c)は、前記金属部(11)の軸方向と直交する方向に平行な下面と、前記金属部(11)の上面に連続して形成される上面と、該下面と上面の間に形成される側面とを有し、
第二張出部(11c’)は、前記金属部(11)の軸方向と直交する方向に平行な下面と、前記金属部(11)の上面に連続して形成される上面とを有しており、
前記各金属部(11)において、隣接する前記金属部(11)と対向する側に前記第二張出部(11c’)が形成され、隣接する前記金属部(11)と対向する側を除く位置に前記第一張出部(11c)が形成されていることを特徴とする請求項3に記載の半導体装置。
The metal part (11) is formed with a protruding part having a different shape,
The first projecting portion (11c) has a lower surface parallel to a direction orthogonal to the axial direction of the metal portion (11), an upper surface continuous to the upper surface of the metal portion (11), and a lower surface. and a side surface formed between the top surfaces;
The second projecting portion (11c') has a lower surface parallel to a direction orthogonal to the axial direction of the metal portion (11), and an upper surface that is continuous with the upper surface of the metal portion (11). and
In each of the metal parts (11), the second overhang part (11c') is formed on the side facing the adjacent metal part (11), excluding the side facing the adjacent metal part (11). 4. The semiconductor device according to claim 3, wherein the first projecting portion (11c) is formed at a position.
JP2023186256A 2014-12-27 2023-10-31 Substrate for semiconductor device and semiconductor device Pending JP2023181386A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014266803 2014-12-27
JP2014266803 2014-12-27
JP2020174744A JP2021005739A (en) 2014-12-27 2020-10-16 Semiconductor device substrate and manufacturing method thereof, and semiconductor device
JP2022096196A JP7426440B2 (en) 2014-12-27 2022-06-15 Substrates for semiconductor devices and semiconductor devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022096196A Division JP7426440B2 (en) 2014-12-27 2022-06-15 Substrates for semiconductor devices and semiconductor devices

Publications (1)

Publication Number Publication Date
JP2023181386A true JP2023181386A (en) 2023-12-21

Family

ID=56359832

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2015199424A Active JP6681165B2 (en) 2014-12-27 2015-10-07 Substrate for semiconductor device, method for manufacturing substrate for semiconductor device, and semiconductor device
JP2019106695A Active JP6838104B2 (en) 2014-12-27 2019-06-07 Substrates for semiconductor devices and semiconductor devices
JP2020174744A Pending JP2021005739A (en) 2014-12-27 2020-10-16 Semiconductor device substrate and manufacturing method thereof, and semiconductor device
JP2022096196A Active JP7426440B2 (en) 2014-12-27 2022-06-15 Substrates for semiconductor devices and semiconductor devices
JP2023186256A Pending JP2023181386A (en) 2014-12-27 2023-10-31 Substrate for semiconductor device and semiconductor device

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2015199424A Active JP6681165B2 (en) 2014-12-27 2015-10-07 Substrate for semiconductor device, method for manufacturing substrate for semiconductor device, and semiconductor device
JP2019106695A Active JP6838104B2 (en) 2014-12-27 2019-06-07 Substrates for semiconductor devices and semiconductor devices
JP2020174744A Pending JP2021005739A (en) 2014-12-27 2020-10-16 Semiconductor device substrate and manufacturing method thereof, and semiconductor device
JP2022096196A Active JP7426440B2 (en) 2014-12-27 2022-06-15 Substrates for semiconductor devices and semiconductor devices

Country Status (1)

Country Link
JP (5) JP6681165B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6681165B2 (en) * 2014-12-27 2020-04-15 マクセルホールディングス株式会社 Substrate for semiconductor device, method for manufacturing substrate for semiconductor device, and semiconductor device
EP3474219A4 (en) 2016-06-28 2019-07-03 Konica Minolta, Inc. Nursing/care item input device, nursing/care item input method, and nursing/care item management system
JP2018085487A (en) * 2016-11-25 2018-05-31 マクセルホールディングス株式会社 Method of manufacturing semiconductor device and semiconductor device
JP7323116B2 (en) * 2018-12-11 2023-08-08 株式会社Ssテクノ Semiconductor package manufacturing method and semiconductor package

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626075B2 (en) * 2000-06-20 2005-03-02 九州日立マクセル株式会社 Manufacturing method of semiconductor device
JP2002289739A (en) * 2001-03-23 2002-10-04 Dainippon Printing Co Ltd Resin sealed type semiconductor device, and circuit member for semiconductor device and its manufacturing method
JP2003124421A (en) * 2001-10-15 2003-04-25 Shinko Electric Ind Co Ltd Lead frame, manufacturing method therefor, and manufacturing method of semiconductor device using lead frame
JP2004214265A (en) * 2002-12-27 2004-07-29 Kyushu Hitachi Maxell Ltd Semiconductor device and its manufacturing method
JP3897704B2 (en) * 2003-01-16 2007-03-28 松下電器産業株式会社 Lead frame
JP2006148003A (en) * 2004-11-24 2006-06-08 Toshiba Corp Manufacturing method of semiconductor device and semiconductor device
JP4091050B2 (en) * 2005-01-31 2008-05-28 株式会社三井ハイテック Manufacturing method of semiconductor device
US7579137B2 (en) * 2005-12-24 2009-08-25 International Business Machines Corporation Method for fabricating dual damascene structures
US8089159B1 (en) * 2007-10-03 2012-01-03 Amkor Technology, Inc. Semiconductor package with increased I/O density and method of making the same
US20090114345A1 (en) * 2007-11-07 2009-05-07 Sumitomo Metal Mining Co., Ltd. Method for manufacturing a substrate for mounting a semiconductor element
JP2009135417A (en) * 2007-11-07 2009-06-18 Sumitomo Metal Mining Co Ltd Method for manufacturing substrate for mounting semiconductor element
JP4984253B2 (en) * 2007-12-25 2012-07-25 大日本印刷株式会社 Manufacturing method of semiconductor device and manufacturing method of substrate for semiconductor device
CN202275822U (en) * 2010-04-28 2012-06-13 先进封装技术私人有限公司 Semiconductor encapsulation piece and its substrate
JP2012243840A (en) * 2011-05-17 2012-12-10 Renesas Electronics Corp Semiconductor device and manufacturing method of the same
CN102324413B (en) * 2011-09-13 2013-03-06 江苏长电科技股份有限公司 Sequentially etched and plated lead frame structure with island prepacked plastic sealed material and producing method thereof
JP5979495B2 (en) * 2013-03-19 2016-08-24 Shマテリアル株式会社 Manufacturing method of semiconductor device mounting substrate
JP6352009B2 (en) * 2013-04-16 2018-07-04 ローム株式会社 Semiconductor device
JP6681165B2 (en) * 2014-12-27 2020-04-15 マクセルホールディングス株式会社 Substrate for semiconductor device, method for manufacturing substrate for semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
JP2021005739A (en) 2021-01-14
JP6838104B2 (en) 2021-03-03
JP2019169729A (en) 2019-10-03
JP6681165B2 (en) 2020-04-15
JP2016127261A (en) 2016-07-11
JP2022120854A (en) 2022-08-18
JP7426440B2 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP7426440B2 (en) Substrates for semiconductor devices and semiconductor devices
KR100665150B1 (en) Circuit device and manufacturing method thereof
JP2015185619A (en) Substrate for semiconductor device, manufacturing method of substrate, semiconductor device and semiconductor device manufacturing method
JP2005244033A (en) Electrode package and semiconductor device
JP2023164634A (en) Substrate for semiconductor device, manufacturing method thereof, and semiconductor device
JP2011108818A (en) Manufacturing method of lead frame and manufacturing method of semiconductor device
JP6626639B2 (en) Method of manufacturing substrate for semiconductor device
JP6846484B2 (en) Substrates for semiconductor devices and their manufacturing methods, semiconductor devices
JP6806436B2 (en) Substrates for semiconductor devices, their manufacturing methods, and semiconductor devices
JP7412376B2 (en) Substrate for semiconductor devices
JP6644978B2 (en) Semiconductor element mounting substrate, semiconductor device, and manufacturing method thereof
JP7339231B2 (en) Substrates for semiconductor devices, semiconductor devices
JP7256303B2 (en) Substrates for semiconductor devices and semiconductor devices
JP6489615B2 (en) Semiconductor element mounting substrate, semiconductor device and manufacturing method thereof
JP2023060010A (en) Substrate of semiconductor device and semiconductor device
JP2024003147A (en) Substrate for semiconductor device, method of manufacturing the same, and semiconductor device
JP6579666B2 (en) Semiconductor device substrate, method of manufacturing the substrate, and semiconductor device
JP6579667B2 (en) Semiconductor device substrate manufacturing method and semiconductor device manufacturing method
TW201826480A (en) Lead frame
JP7011685B2 (en) Semiconductor device
JP6460407B2 (en) Semiconductor element mounting substrate, semiconductor device and manufacturing method thereof
JP2022046334A (en) Lead frame, semiconductor device, and manufacturing method of lead frame
JP2019161238A (en) Semiconductor device substrate, method for manufacturing the same, and semiconductor device
JP2011108943A (en) Semiconductor device, substrate for semiconductor device and method for manufacturing them
JP2012084938A (en) Substrate for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231031