JP2023181077A - Soil disinfection material - Google Patents

Soil disinfection material Download PDF

Info

Publication number
JP2023181077A
JP2023181077A JP2023030756A JP2023030756A JP2023181077A JP 2023181077 A JP2023181077 A JP 2023181077A JP 2023030756 A JP2023030756 A JP 2023030756A JP 2023030756 A JP2023030756 A JP 2023030756A JP 2023181077 A JP2023181077 A JP 2023181077A
Authority
JP
Japan
Prior art keywords
soil
oil
clay
disinfection
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023030756A
Other languages
Japanese (ja)
Inventor
元治 竹田
Motoharu Takeda
桂子 西藤
Keiko Nishifuji
征之 前田
Masayuki Maeda
広智 大峽
Hirotomo Ohazama
暁喜 宮崎
Akiyoshi Miyazaki
靖典 村元
Yasunori Muramoto
孝司 野見山
Koji Nomiyama
一浩 中保
Kazuhiro Nakayasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Oil Mills Inc
National Agriculture and Food Research Organization
Gifu Prefecture
Niigata Prefecture
Original Assignee
J Oil Mills Inc
National Agriculture and Food Research Organization
Gifu Prefecture
Niigata Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Oil Mills Inc, National Agriculture and Food Research Organization, Gifu Prefecture, Niigata Prefecture filed Critical J Oil Mills Inc
Publication of JP2023181077A publication Critical patent/JP2023181077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

To provide a soil disinfection material that effectively controls pests in the soil even with a small amount of application, suppresses weed germination, imposes a lesser burden during application, and surpasses agrochemicals in safety during conveyance and treatment, and to provide a soil disinfection method using the same.SOLUTION: A soil disinfection material according to the present invention has an oil content.SELECTED DRAWING: None

Description

本発明は、土壌消毒用の資材、及びそれを用いた土壌消毒方法に関する。 The present invention relates to a soil disinfection material and a soil disinfection method using the same.

圃場や園芸施設において単一の作物の栽培を繰り返すと、その生育が悪くなって枯れてしまうことが多い。このような連作障害は、土壌中の植物病原菌やセンチュウによる場合が殆どであり、作物の収量及び品質の低下に繋がる。これらの土壌病害を回避し、連続した栽培を可能とするために、従来から様々な薬剤や方法が用いられている。
植物病原菌やセンチュウ等の害虫防除、及び雑草の防除方法として、クロルピクリン、D-D(1,3-ジクロルプロペン)、N-メチルジチオカルバミン酸ナトリウム、メチルイソチオシアネート、ダゾメット等の農薬を使用する方法が知られている。
When a single crop is cultivated repeatedly in a field or gardening facility, its growth often deteriorates and it dies. Such continuous cropping failures are mostly caused by plant pathogens and nematodes in the soil, leading to a decline in crop yield and quality. Various chemicals and methods have been used to avoid these soil diseases and enable continuous cultivation.
The use of pesticides such as chloropicrin, DD (1,3-dichloropropene), sodium N-methyldithiocarbamate, methylisothiocyanate, and dazomet is known as a method for controlling pests such as plant pathogens and nematodes, and weeds. It is being

しかし、例えばクロルピクリンでは催涙性や刺激性があり、作業者に対する安全性の面で課題がある。
また、D-D、N-メチルジチオカルバミン酸ナトリウム、及びメチルイソチオシアネートは、センチュウには効果を示すが、植物病原菌に対する効果は十分とは言えず、雑草防除効果も殆ど期待できない。
ダゾメット剤は、土壌水分が少ない状態で処理するとガス化が不十分で土壌中の薬剤残留期間が長くなり、定植後に薬害が生じる。
However, for example, chloropicrin has lachrymatory and irritating properties, and there are safety issues for workers.
Further, DD, sodium N-methyldithiocarbamate, and methyl isothiocyanate are effective against nematodes, but their effects against plant pathogens are not sufficient, and hardly any weed control effects can be expected.
If Dazomet is treated with low soil moisture, gasification will be insufficient and the drug will remain in the soil for a long time, causing chemical damage after planting.

これらの課題に対し、化学的防除に頼ることなく土壌消毒が可能な手法の開発が行われている。
特許文献1には、フスマや米糠などの有機物を用いた土壌充填による還元消毒法が記載されている。しかし、フスマや米糠等には窒素分が多く含まれているので、土壌消毒後の土壌は窒素量過多であり、悪臭が発生するほか、作物によっては生育に支障をきたし、栽培が困難になる。また、特許文献1に記載の土壌充填による還元消毒法において、土壌に対する有機物の重量比は、0.5重量%以上、10.0重量%以下の範囲であり、この還元消毒法を10a(アール)の圃場全体に適用するとすれば、およそ1.5~3t/10aのフスマ、米ぬかが必要となり、散布にかる労力が大きい。
To address these issues, methods are being developed that allow soil disinfection without relying on chemical control.
Patent Document 1 describes a reductive disinfection method by filling soil with organic matter such as bran and rice bran. However, since bran and rice bran contain a large amount of nitrogen, the soil after soil disinfection contains too much nitrogen, causing a bad odor and hindering the growth of some crops, making cultivation difficult. . In addition, in the reductive disinfection method by soil filling described in Patent Document 1, the weight ratio of organic matter to soil is in the range of 0.5% by weight or more and 10.0% by weight or less, and this reductive disinfection method is ), approximately 1.5 to 3 tons/10a of wheat bran and rice bran would be required, which would require a large amount of labor to spray.

特許文献2には、糖蜜水溶液を土壌に潅注し、土壌温度を25~40℃の範囲に保持し、土壌を還元化させることを特徴とする、下層土まで消毒効果が及び、下層土に存在する土壌病害菌をも有効に防除できる土壌の消毒方法が記載されている。しかし、特許文献2に記載の土壌消毒方法において、糖蜜は1.6~9.6kg/10aの量が必要となる。また、糖蜜は粘稠な液状か固形状であり、農耕地で水に溶解して希釈するのが容易でないことや、蟻が大量に発生するという課題もある。 Patent Document 2 discloses that the disinfection effect extends to the subsoil and is present in the subsoil, which is characterized in that a molasses aqueous solution is sprinkled onto the soil, the soil temperature is maintained in the range of 25 to 40°C, and the soil is reduced. A soil disinfection method is described that can effectively control soil disease-causing bacteria. However, in the soil disinfection method described in Patent Document 2, molasses is required in an amount of 1.6 to 9.6 kg/10a. Additionally, molasses is either a viscous liquid or a solid, so it is not easy to dissolve and dilute in water on agricultural land, and there are also problems in that it breeds large numbers of ants.

他方、特許文献3には、土壌にエタノール水溶液を含有させて湛水状態とし、水とエタノールの蒸発を抑制しつつ保持して該土壌を還元状態として土壌病害虫防除又は雑草の発芽抑制を行うことを特徴とする、土壌還元消毒方法が記載されている。しかしながら、特許文献3に記載の土壌消毒方法は、手作業でのエタノールの希釈、あるいは液肥混入器等による専門的な資機材が必要となるなど作業が煩雑となる他、労働負荷がかかるため、普及の妨げとなっている。 On the other hand, Patent Document 3 discloses that soil is impregnated with an ethanol aqueous solution to be in a flooded state, and water and ethanol are retained while suppressing evaporation, and the soil is brought into a reduced state to control soil pests or suppress weed germination. A soil reduction disinfection method characterized by the following is described. However, the soil disinfection method described in Patent Document 3 requires complicated work such as manual dilution of ethanol or the need for specialized equipment such as a liquid fertilizer mixer, and is labor intensive. This is hindering its spread.

特開2005-112815号公報Japanese Patent Application Publication No. 2005-112815 特開2004-323395号公報Japanese Patent Application Publication No. 2004-323395 特許第4436426号Patent No. 4436426

このような状況下において、土壌への少ない施用量でも十分に土壌中の病害虫を防除し、また、雑草の発芽を抑制することができ、かつ散布労力負荷が少なく化学農薬よりも運搬や処理時において安全である土壌消毒用資材、及びそれを用いた土壌消毒方法等の開発及び提供が望まれていた。 Under these circumstances, it is possible to sufficiently control pests and diseases in the soil even with a small amount of application to the soil, suppress weed germination, and require less labor for spraying than chemical pesticides during transportation and processing. It has been desired to develop and provide safe soil disinfection materials and soil disinfection methods using the materials.

本発明は、上記状況を考慮してなされたもので、以下に示す土壌還元消毒用資材等を提供するものである。 The present invention has been made in consideration of the above situation, and provides the following soil reduction disinfection materials and the like.

(1)油分を含む、土壌還元消毒用資材。
(2)油分吸着白土を含む、上記(1)に記載の資材。
(3)前記油分吸着白土に含まれる油分含量が20質量%以上50質量%以下である、上記(2)に記載の資材。
(1) Soil reduction disinfection material containing oil.
(2) The material described in (1) above, which includes oil-absorbing clay.
(3) The material according to (2) above, wherein the oil content contained in the oil-absorbing clay is 20% by mass or more and 50% by mass or less.

(4)前記油分吸着白土は、活性白土を用いて行われる油脂の精製工程において発生する白土である、上記(2)又は(3)に記載の資材。
(5)上記油分が食用油脂である、上記(1)~(4)のいずれかに記載の資材。
ここで、上記(1)~(5)の資材は、さらに上白糖を含むものであってもよい。
(6)土壌が播種前又は定植前の作土である、上記(1)~(5)のいずれかに記載の資材。
(4) The material according to (2) or (3) above, wherein the oil adsorbing clay is clay generated in an oil and fat refining process performed using activated clay.
(5) The material according to any one of (1) to (4) above, wherein the oil is an edible fat or oil.
Here, the materials (1) to (5) above may further contain caster sugar.
(6) The material according to any one of (1) to (5) above, wherein the soil is cultivated soil before sowing or planting.

(7)前記土壌還元消毒が、土壌病害虫の防除、又は雑草の発芽抑制である、上記(1)~(6)のいずれかに記載の資材。
(8)土壌に、上記(1)~(7)のいずれかに記載の資材を含有せしめて水と混和し、水の蒸発を抑制しつつ保持した該土壌を還元状態とすることを含む、土壌還元消毒方法。
(9)土壌が播種前又は定植前の作土である、上記(8)に記載の方法。
(7) The material according to any one of (1) to (6) above, wherein the soil reduction disinfection is for controlling soil pests or controlling weed germination.
(8) Including making soil contain the material according to any one of the above (1) to (7), mixing it with water, and bringing the retained soil into a reduced state while suppressing water evaporation. Soil reduction disinfection method.
(9) The method according to (8) above, wherein the soil is cultivated soil before sowing or planting.

(10)前記土壌還元消毒における消毒が、土壌病害虫の防除、又は雑草の発芽抑制である、上記(8)又は(9)に記載の方法。
(11)土壌10aあたり前記資材を該資材中の油分が0.05t以上1.0t以下となるように混和することを含む、上記(8)~(10)のいずれかに記載の方法。
(10) The method according to (8) or (9) above, wherein the disinfection in the soil reduction disinfection is the control of soil pests or the suppression of weed germination.
(11) The method according to any one of (8) to (10) above, comprising mixing the material so that the oil content in the material is 0.05 t or more and 1.0 t or less per 10a of soil.

本発明によれば、少量の施用で土壌中の土壌病原菌やセンチュウ等の病害虫などを防除し、雑草の発芽を抑制することができ、かつ散布労力負荷が少なく、化学農薬よりも安全性の高い土壌還元消毒用資材、並びに土壌還元消毒方法などを提供することができる。 According to the present invention, it is possible to control soil pathogens and pests such as nematodes in the soil with a small amount of application, suppress the germination of weeds, and reduce the labor burden of spraying, making it safer than chemical pesticides. It is possible to provide soil reduction disinfection materials, soil reduction disinfection methods, and the like.

土壌の還元状態の推移(土壌中の2価鉄含量の測定結果)を示す図である。FIG. 2 is a diagram showing changes in the reduction state of soil (measurement results of divalent iron content in soil). 青枯病菌に対する消毒効果(土壌中の青枯病菌数の測定結果)を示す図である。It is a figure which shows the disinfection effect (measurement result of the number of bacterial wilt bacteria in soil) against bacterial wilt bacteria. トマト萎凋病菌に対する抑制効果(土壌中のトマト萎凋病菌密度の測定結果)を示す図である。FIG. 3 is a diagram showing the suppressive effect on tomato wilt fungi (measurement results of tomato wilt fungus density in soil). 土壌の還元状態の推移(土壌の酸化還元電位の測定結果)を示す図である。It is a figure showing the transition of the reduction state of soil (measurement result of the oxidation-reduction potential of soil). 土壌の還元状態の推移(土壌の酸化還元電位の測定結果)を示す図である。It is a figure showing the transition of the reduction state of soil (measurement result of the oxidation-reduction potential of soil). 油分吸着活性白土を用いた土壌還元消毒後の植物体中でのトマトかいよう病菌密度を示す図である。FIG. 3 is a diagram showing the density of tomato canker in plants after soil reduction disinfection using oil adsorption activated clay. トマト褐色根腐病の発病株率と発病度を示す図である。FIG. 3 is a diagram showing the incidence of diseased plants and the severity of tomato brown root rot. 上白糖の加用による土壌の各層の酸化還元電位(Eh値)の測定結果を示す図である。FIG. 3 is a diagram showing the measurement results of the oxidation-reduction potential (Eh value) of each layer of soil due to the addition of white sugar.

以下、本発明を詳細に説明する。なお、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。
なお、本明細書は、本願優先権主張の基礎となる特願2022-093544号(令和4年(2022年)6月9日出願)の明細書の全体を包含する。また、本明細書において引用された全ての刊行物、例えば先行技術文献、及び公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。
The present invention will be explained in detail below. It should be noted that the scope of the present invention is not limited to these descriptions, and other than the examples given below can be modified and implemented as appropriate without departing from the spirit of the present invention.
Note that this specification includes the entire specification of Japanese Patent Application No. 2022-093544 (filed on June 9, 2022), which is the basis of the priority claim of this application. In addition, all publications cited in this specification, such as prior art documents, publications, patent publications, and other patent documents, are incorporated herein by reference.

本発明に係る土壌還元消毒方法(以下、本発明の土壌消毒方法ということがある)に使用される、土壌還元消毒用資材は、油分を有効成分として含むことを特徴とする。
油分を含む上記資材を土壌に混和させることで、例えば、土壌中の微生物が、当該資材をエサとして分解しながら爆発的に増殖する際に、土壌中の酸素を一気に消費し、それにより、土壌が酸欠状態(還元状態)となり、後述する植物病原菌や土壌病害虫の防除、及び雑草の発芽抑制などを行うことができる、すなわち土壌を消毒することができる。
The soil reduction disinfection material used in the soil reduction disinfection method according to the present invention (hereinafter sometimes referred to as the soil disinfection method of the present invention) is characterized by containing oil as an active ingredient.
By mixing the above-mentioned materials containing oil into soil, for example, when microorganisms in the soil explosively proliferate while decomposing the materials as food, they consume oxygen in the soil at once, and as a result, soil is in an oxygen-deficient state (reduced state), and it is possible to control plant pathogenic bacteria and soil pests, which will be described later, and to suppress the germination of weeds, that is, it is possible to disinfect the soil.

土壌が還元状態になったかどうかは、土壌の色(黒っぽくなる)や土壌の臭い(ドブのような臭い)のほか、土壌の酸化還元電位を測定することにより判別することができる。土壌の酸化還元電位の値が小さいほど、土壌が還元状態であることを意味する。
本発明における土壌還元消毒用資材は、油分以外にも適宜その他の成分を含んでいてもよい。その他の成分の含有割合は、油分による効果が損なわれない範囲で適宜設定することができる。上記その他の成分としては、特に限定はされず、例えば、土壌を酸欠状態(還元状態)とすることができる従来公知の資材のほか、上白糖などが挙げられる。本発明における土壌還元消毒用資材に上白糖が含まれることで(つまり、上白糖も併用することで)、油分を含む資材(油分吸着活性白土等)により還元化される土壌の層よりさらに下層の土壌についても還元状態とすることができる。
Whether or not the soil is in a reduced state can be determined by measuring the soil's redox potential, as well as the color of the soil (it turns black) and the odor of the soil (it smells like gutter). The smaller the value of the oxidation-reduction potential of soil, the more reduced the soil is.
The soil reduction disinfection material in the present invention may contain other components as appropriate in addition to oil. The content ratios of other components can be appropriately set within a range that does not impair the effects of the oil content. The other components mentioned above are not particularly limited, and include, for example, conventionally known materials that can bring the soil into an oxygen-deficient state (reduced state), as well as caster sugar. By including superfine sugar in the soil reduction disinfection material of the present invention (in other words, by also using superfine sugar), the layer of soil that is further below the layer that is reduced by the oil-containing material (oil-adsorbing active clay, etc.) soil can also be brought into a reducing state.

本発明において、土壌還元消毒用資材の好ましい態様として、例えば、油分吸着白土を含む資材が挙げられる。本発明でいう油分吸着白土とは、油分を含む白土あるいは活性白土であればよく、その形態は特に限定はされない。例えば、白土(好ましくは、活性白土)に油分が加えられたものであってもよいし、油脂の精製工程で発生する白土のように油分を含有するものであってもよく、限定はされない。なお、油脂の精製工程で発生する白土は、具体的には、活性白土を用いて行われる油脂の精製工程(具体的には、油脂の脱色工程)において発生する白土であり、油脂中の色素類を吸着させた後除去される白土などが挙げられる。 In the present invention, a preferable embodiment of the soil reduction disinfection material includes, for example, a material containing oil-absorbing clay. The oil-absorbing clay used in the present invention may be any oil-containing clay or activated clay, and its form is not particularly limited. For example, it may be white clay (preferably activated clay) to which oil is added, or it may be clay that contains oil such as white clay generated in the refining process of fats and oils, but is not limited thereto. In addition, the white clay generated in the refining process of fats and oils is specifically the white clay generated in the refining process of fats and oils (specifically, the decolorization process of fats and oils) performed using activated clay, and the pigments in the fats and oils. Examples include white clay, which is removed after adsorbing substances.

油分吸着白土中の油分の含有割合は、限定はされないが、例えば、20質量%以上50質量%以下であることが好ましく、また25質量%以上~45質量%以下であってもよい。
本発明において、油分(油分吸着白土に含まれる油分も含む)となる油脂の種類は、限定はされないが、好ましくは食用油脂であり、例えば、菜種油、大豆油、コーン油、ヤシ油、パーム油、パーム核油、サル脂、カカオ脂、シア脂、米油、綿実油、紅花油、ヒマワリ油、オリーブ油、亜麻仁油、落花生油及び胡麻油などの植物油脂、牛脂、豚脂、鶏脂、乳脂及び魚油などの動物油脂、並びに、中鎖脂肪酸トリグリセリドなどの合成油脂が挙げられる。
The oil content in the oil adsorbing clay is not limited, but is preferably, for example, 20% by mass or more and 50% by mass or less, and may be 25% by mass or more and 45% by mass or less.
In the present invention, the type of oil that becomes the oil (including the oil contained in the oil-absorbing clay) is not limited, but is preferably an edible oil, such as rapeseed oil, soybean oil, corn oil, coconut oil, or palm oil. , vegetable oils and fats such as palm kernel oil, monkey fat, cocoa butter, shea butter, rice oil, cottonseed oil, safflower oil, sunflower oil, olive oil, linseed oil, peanut oil and sesame oil, beef tallow, pork fat, chicken fat, milk fat and fish oil. and synthetic oils and fats such as medium-chain fatty acid triglycerides.

本発明において土壌消毒の対象となる土壌は、限定はされないが、具体的には、植物、作物(果菜類、葉菜類、根菜類などの野菜、花卉、果樹等)を育てるための土壌であればよく、農耕地、田畑、ビニールハウス内の作土;花壇、鉢、プランター、温室内の土壌等で使用する土壌;培養土調製用の土壌が例示される。消毒効果の点で、植物、作物等が生育している土壌や作土よりも、播種前又は定植前の土壌あるいは作土であることが好ましい。なお、作土の深さは、土壌混和あるいは耕起が可能な範囲であればよく、例えば、概ね20cm以内であることが好ましいが、特に限定はされない。 The soil to be disinfected in the present invention is not limited, but specifically, soil for growing plants and crops (vegetables such as fruit vegetables, leafy vegetables, and root vegetables, flowers, fruit trees, etc.) Common examples include soil used in agricultural land, fields, and greenhouses; soil used in flower beds, pots, planters, and greenhouses; and soil for preparing culture soil. In terms of disinfection effect, it is preferable to use soil or cultivated soil before sowing or planting than soil or cultivated soil where plants, crops, etc. are growing. Note that the depth of the cultivated soil may be within a range that allows soil mixing or tillage, and is preferably within about 20 cm, for example, but is not particularly limited.

本発明における土壌消毒により、例えば、植物病原菌の防除、土壌病害虫の防除、及び雑草の発芽抑制などを行うことができる。当該土壌消毒の対象は、限定はされないが、土壌病害虫または雑草の種子などが挙げられる。
土壌病害虫としては、限定はされないが、土壌中の植物病原菌、センチュウ(例えば、ネコブセンチュウ等)、植物病原菌、昆虫の幼虫、昆虫の成虫、植物ウイルスなどが挙げられる。
By soil disinfection in the present invention, it is possible to control, for example, plant pathogens, soil pests, and weed germination. Targets of soil disinfection include, but are not limited to, soil pests and weed seeds.
Examples of soil pests include, but are not limited to, plant pathogenic bacteria in the soil, nematodes (eg, cat nematode, etc.), plant pathogenic bacteria, insect larvae, insect adults, and plant viruses.

植物病原菌としては、土壌を媒体として伝染するものであれば、限定はされないが、例えば、トマト、キュウリ、ナス、ウリ、カボチャ等の野菜や、花き類、穀物類などに対する植物病原菌が挙げられる。より具体的には、例えば、青枯病菌(Ralstonia solanacearum)、軟腐病菌(Erwinia carotovora)、苗立枯病菌(Pythium spp.)、疫病菌(Phytophthora spp.)、半身萎凋病菌(Verticillium dahliae)、つる割病菌(Fusarium oxysporum)、萎凋病菌(Fusarium oxysporum)、根こぶ病菌(Plasmodiophora brassicae)、立枯病菌(Gaeumanomyces gramineum)、白絹病菌(Athelia rolfsii)、紫紋羽病菌(Helicobasidium mompa)、白紋羽病菌(Rosellinia necatrix)、根腐病菌(Aphanomyces euteiches)、根くびれ病菌(Aphanomyces raphani)、黒腐菌核病菌(Sclerotium cepivorum)、粉状そうか病菌(Spongospora subterranea)、そうか病菌(Steptomyces scabies)、根頭がんしゅ病菌(Agrobacterium tumefaciens)、条斑病菌(Cephaosporium gramineum)、落葉病菌(Cephalosporium gregatum)、葉枯病菌(Helminthosporium sativum)、黒根病菌(Thielaviopsis basicola)、苗立枯病菌(Rhizoctonia solani)、かいよう病菌(例えば、トマトかいよう病菌(Clavibacter michiganensis subsp. mishiganensis)等)などが挙げられる。 Examples of plant pathogenic bacteria include, but are not limited to, those that can be transmitted through soil, and include, for example, plant pathogenic bacteria against vegetables such as tomatoes, cucumbers, eggplants, gourds, and pumpkins, flowers, and grains. More specifically, for example, Ralstonia solanacearum, Erwinia carotovora, Pythium spp., Phytophthora spp., Verticillium dahliae, and vine. Fusarium oxysporum, Fusarium oxysporum, Plasmodiophora brassicae, Gaeumanomyces gramineum, Athelia rolfsii, Helicobasidium mompa, White crest Disease fungus (Rosellinia necatrix), root rot fungus (Aphanomyces euteiches), root constriction fungus (Aphanomyces raphani), black rot fungus (Sclerotium cepivorum), powdery scab fungus (Spongospora subterranea), scab fungus (Steptomyces scabies), Agrobacterium tumefaciens, Cephaosporium gramineum, Cephalosporium gregatum, Helminthosporium sativum, Thielaviopsis basicola, Rhizoctonia solani, Examples include canker pathogens (for example, tomato canker pathogen (Clavibacter michiganensis subsp. mishiganensis), etc.).

植物ウイルスとしては、限定はされないが、例えば、線虫媒介ウイルス、微生物媒介ウイルス、土壌伝染性ウイルスなどが挙げられる。
昆虫としては、限定はされないが、ハリガネムシ、ネキリムシ、コガネムシ、ハムシなどが例示される。
センチュウとしては、限定はされないが、ネコブセンチュウ、ネグサレセンチュウなどが例示される。
Examples of plant viruses include, but are not limited to, nematode-borne viruses, microbe-borne viruses, soil-borne viruses, and the like.
Examples of insects include, but are not limited to, hedge beetles, bedbugs, scarab beetles, potato beetles, and the like.
Examples of the nematode include, but are not limited to, the Negusa nematode, the Negusare nematode, and the like.

発芽抑制の対象となる雑草は、日本国内や外国の農耕地や園芸場、家庭菜園等で生育している雑草であればよく、限定はされないが、広葉雑草、例えば、イチビ(Abutilon theophrasti)、アオビユ(Amaranthus retroflexus)、センダングサ(Bidens pilosa)、シロザ(Chenoposium album)、ヤエムグラ(Galium aparine)、マルバアサガオ(Ipomoea purpurea)などのヒルガオ属(Ipomoea spp.)、セスバニア(Sesbania exaltata)、Sinapis arvensis、イヌホオヅキ(Solanum nigrum)及びオナモミ(Xanthium strumarium);イネ科雑草、例えば、スズメノテッポウ(Alopecurus mosuroides)、カラスムギ(Avena fatus)、メヒシバ(Digitaria sanguinalls)、イヌビエ(Echinochloa crus-galli)、オヒシバ(Eleusine indica)、並びにアキノエノコログサ(Setaria faberii)及びエノコログサ(Setaria 、viridis)などのエノコログサ属(Setaria spp.);カヤツリグサ科雑草、例えば、カヤツリグサ(Cyperusesculentus)が例示される。 Weeds to be targeted for germination suppression may be those that grow in agricultural land, garden farms, home gardens, etc. in Japan or abroad, and include, but are not limited to, broad-leaved weeds such as Abutilon theophrasti, Ipomoea spp., including Amaranthus retroflexus, Bidens pilosa, Chenoposium album, Gallium aparine, and Ipomoea purpurea, Sesbania exaltata, Sinapis arvensis, and Ipomoea purpurea. (Solanum nigrum) and Xanthium strumarium; grass weeds such as Alopecurus mosuroides, Avena fatus, Digitaria sanguinals, Echinochloa crus-galli, Eleusine indica; Examples include Setaria spp., such as Setaria faberii and Setaria, viridis; weeds of the Cyperaceae family, such as Cyperus esculentus.

本発明の土壌消毒方法、すなわち土壌還元消毒方法は、上述した本発明に係る土壌還元消毒用資材と水とを、土壌に混和し、該土壌を還元状態とすることを含む方法である。
本発明の土壌消毒方法における、土壌還元消毒用資材の施用量(土壌への混和量)は、限定はされないが、土壌10aあたり、該資材中の油分が、1.0t、0.9t、0.8t、0.7t、0.6t、若しくは0.5tとなる量を上限とすることが好ましく、及び/又は、0.05t、0.08t、0.1t、0.2t、0.3t、若しくは0.4tとなる量を下限とすることが好ましい。なお、上記列挙した上限と下限の数値は、任意に組み合わせて数値範囲を設定することもできる。当該数値範囲としては、例えば、土壌10aあたり、該資材中の油分が、0.05t以上1.0t以下、0.08t以上0.9t以下、0.1t以上0.8t以下、0.2t以上0.7t以下、又は0.4t以上0.7t以下となる量が好ましく挙げられる。
The soil disinfection method of the present invention, that is, the soil reduction disinfection method is a method that includes mixing the above-described soil reduction disinfection material according to the present invention and water with soil to bring the soil into a reduced state.
In the soil disinfection method of the present invention, the amount of soil reduction disinfection material applied (the amount mixed into the soil) is not limited, but the oil content in the material per 10a of soil is 1.0 t, 0.9 t, 0. The upper limit is preferably .8t, 0.7t, 0.6t, or 0.5t, and/or 0.05t, 0.08t, 0.1t, 0.2t, 0.3t, Alternatively, it is preferable to set the amount to 0.4 t as the lower limit. Note that the numerical values of the upper and lower limits enumerated above can be arbitrarily combined to set a numerical range. The numerical ranges include, for example, per 10a of soil, the oil content in the material is 0.05t or more and 1.0t or less, 0.08t or more and 0.9t or less, 0.1t or more and 0.8t or less, and 0.2t or more. Preferably, the amount is 0.7 t or less, or 0.4 t or more and 0.7 t or less.

本発明の土壌消毒方法において、土壌に混和させる水は、例えば、農業用水、井戸水、水道水、雨水、河川の水、湖沼などの水が挙げられ、植物、作物の生育に適した水であれば特に限定はされない。
また、土壌に混和させる水の量は、例えば、土壌10kgあたり、3L以上7L以下であることが好ましい。ただし、圃場の地下推移の状況、土質、含水量、最大吸水量等により変動するため、あくまで水量は目安であり、各方法の意図に応じ特に限定はされない。
In the soil disinfection method of the present invention, the water to be mixed with the soil includes, for example, agricultural water, well water, tap water, rainwater, river water, lake water, etc., and any water suitable for the growth of plants and crops. There are no particular limitations.
Further, the amount of water mixed into the soil is preferably, for example, 3 L or more and 7 L or less per 10 kg of soil. However, since it varies depending on the underground transition situation of the field, soil quality, water content, maximum water absorption, etc., the water amount is only a guideline and is not particularly limited depending on the intention of each method.

また、本発明の土壌消毒方法においては、土壌が作土であるときは、例えば、作土の底部から地表まで湛水状態にすること、すなわち土壌に圃場容水量以上の水を含有するように、数日間以上保持することにより、土壌をより還元状態とすることができる。還元状態にするための保持日数は、気温や地温によって変化し、気温や地温が高くなるに従って保持日数は短くなるが、目安として、保持温度15℃以上40℃以下程度である場合、必要な保持日数は7日から30日程度である。また、土壌の還元状態を保持することにより、センチュウや植物病原菌などの防除、雑草の種子の発芽抑制が効果的になる。 In addition, in the soil disinfection method of the present invention, when the soil is cultivated soil, for example, the cultivated soil is flooded from the bottom to the surface, that is, the soil contains water in excess of the field capacity. By holding the soil for several days or more, the soil can be brought into a more reduced state. The number of days for retention to achieve a reduced state varies depending on the air temperature and soil temperature, and the higher the air temperature and soil temperature, the shorter the retention period, but as a guide, if the retention temperature is between 15℃ and 40℃, the required retention The number of days is approximately 7 to 30 days. In addition, by maintaining the soil in a reduced state, it becomes effective in controlling nematodes and plant pathogens, and suppressing the germination of weed seeds.

なお、上記の圃場容水量とは、「多量の降雨若しくは潅水し、重力による水の下降運動が非常に小さくなったときの含水量」や、「重力水を除いた、土壌の保持し得る最大の容水量」として定義される。つまり、十分な降雨あるいは灌水後1日以上経過すると排水がほとんど終わり、表面蒸発を抑えておくと土壌水分は一定になる。この一定の水分が圃場容水量である。さらに詳細に説明すると、土壌が水によって完全に飽和した状態(φ=0kPa,pF=0)における水分保持量(最大容水量に相当)から、24時間以内で排出される水を重力水といい、このとき、重力水の排出によってできた空気の孔隙(粗孔隙)がある状態の水分保持量を、圃場容水量(φ=-6kPa,pF=1.8)として定義される。ここで、φは土壌水における水の表面張力や土粒子の吸着力によるマトリックスポテンシャルに相当し、当該マトリックスポテンシャルφの負の常用対数をとったものをpF(=log(-10.2φ))として表すことが慣習である。 The above-mentioned field water capacity refers to ``the water content when the downward movement of water due to gravity becomes extremely small due to heavy rainfall or irrigation,'' or ``the maximum amount that the soil can hold, excluding gravity water.'' water capacity. In other words, if there is sufficient rainfall or one day or more has passed after irrigation, most of the drainage will be finished, and if surface evaporation is suppressed, the soil moisture will remain constant. This constant water content is the field water capacity. To explain in more detail, gravity water is the water that is discharged within 24 hours from the amount of water retained (corresponding to the maximum water capacity) when the soil is completely saturated with water (φ = 0 kPa, pF = 0). , At this time, the amount of water retained in a state where there are air pores (coarse pores) created by gravity water discharge is defined as the field water capacity (φ = -6 kPa, pF = 1.8). Here, φ corresponds to the matrix potential due to the surface tension of water in soil water and the adsorption force of soil particles, and the negative common logarithm of the matrix potential φ is pF (= log (-10.2φ)) It is customary to express it as

本発明の土壌消毒方法においては、土壌から水の蒸発を抑制し、及び/又は地温保持をするうえで、例えば、土壌表面をプラスチックフィルム又はシートで被覆することが好ましい。また、花壇、鉢、プランター等で使用する土壌や、培養土調製用の土壌のように、比較的少量の場合は、そのままでは水が蒸発しやすいため、例えば、プラスチックフィルム袋に入れて密封し、数日保持することが好ましい。なお、土壌が還元状態になったことについては、土壌の色が灰色から黒色化することや、還元臭を確認することで判断できるほか、酸化還元電位等による計測においても確認することができる。 In the soil disinfection method of the present invention, it is preferable to cover the soil surface with a plastic film or sheet, for example, in order to suppress evaporation of water from the soil and/or maintain soil temperature. In addition, in the case of relatively small amounts of soil, such as soil used in flower beds, pots, planters, etc., or soil for preparing culture soil, the water tends to evaporate if left as is, so for example, place it in a plastic film bag and seal it. , preferably for several days. In addition, it can be determined that the soil is in a reduced state by not only changing the color of the soil from gray to black, but also by observing the odor of reduction, and also by measuring the oxidation-reduction potential.

前記プラスチックフィルムやシートは、限定はされないが、臭化メチルやクロルピクリン等の土壌くん蒸剤の蒸発を抑制するために使用されているプラスチックフィルムやシートが好ましく挙げられる。好適なプラスチックとしては、例えば、ポリエチレン、ポリプロピレン、これら以外のポリオレフィン、ポリ塩化ビニル、ナイロン、これらの積層体が例示されるが、安価であり、環境安全性が高いポリエチレンがより好適である。あるいは、水を透過させないその他のシート(ゴム引き布)、袋(ゴム引き袋)や容器(プラスチック容器、金属容器)を用いてもよい。 The plastic film or sheet is preferably a plastic film or sheet used for suppressing evaporation of soil fumigants such as methyl bromide or chloropicrin, although it is not limited thereto. Suitable plastics include, for example, polyethylene, polypropylene, polyolefins other than these, polyvinyl chloride, nylon, and laminates thereof, but polyethylene is more suitable because it is inexpensive and has high environmental safety. Alternatively, other sheets (rubber coated cloth), bags (rubber coated bags), or containers (plastic containers, metal containers) that do not allow water to pass through may be used.

本発明の土壌消毒方法において、土壌を消毒する際は、気温や地温が低すぎると、土壌中の微生物の活動が低下して、還元状態になる速度が低下し、著しく日数を要することもある。そのため、気温や地温は、少なくとも5℃であることが好ましく、また10℃以上であることや、15℃以上であることがより好ましい。また、高熱によりセンチュウや植物病原菌等が死滅しやすいため、地温は、上限を50℃程度とすることが好ましい。 When disinfecting soil in the soil disinfection method of the present invention, if the air temperature or soil temperature is too low, the activity of microorganisms in the soil will decrease, and the speed at which the soil will reach a reduced state will decrease, and it may take a considerable number of days. . Therefore, the air temperature and soil temperature are preferably at least 5°C, more preferably 10°C or higher, and more preferably 15°C or higher. Furthermore, since nematodes, plant pathogens, and the like are easily killed by high heat, it is preferable that the upper limit of the soil temperature is about 50°C.

なお、本発明においては、例えば、以下の発明:
土壌還元消毒のために使用される油分(例えば油分吸着白土)に係る発明;
油分(例えば油分吸着白土)を含む、土壌還元消毒用組成物に係る発明;
土壌還元消毒のための油分(例えば油分吸着白土)の使用に係る発明;
土壌還元消毒用資材を製造するための油分(例えば油分吸着白土)の使用に係る発明;及び
土壌還元消毒用組成物を製造するための油分(例えば油分吸着白土)の使用係る発明
なども包含されるものとする。
In addition, in the present invention, for example, the following inventions:
Inventions related to oils used for soil reduction disinfection (e.g. oil-absorbing white clay);
An invention related to a soil reduction disinfection composition containing oil (for example, oil-absorbing clay);
Inventions related to the use of oil (for example, oil-absorbing clay) for soil reduction disinfection;
Inventions relating to the use of oil (e.g., oil-adsorbing clay) for producing soil-reducing disinfection materials; and inventions relating to the use of oil (e.g., oil-adsorbing clay) for producing soil-reducing and disinfecting compositions are also included. shall be

以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail below with reference to Examples, but the present invention is not limited thereto.

土壌の還元状態への影響(1)
<目的>
土壌に、油分吸着活性白土及び水を含有させた場合の、土壌の還元状態を測定した。
Impact on soil reduction status (1)
<Purpose>
The reduction state of the soil was measured when the soil contained oil adsorption active clay and water.

<方法>
ラミジップ袋(10cm×15cm)中に土壌115gと、油分吸着白土(1t/10a相当、0.7t/10a相当、及び0.4t/10a相当)及び水(蒸留水)を25mlとを混和して湛水状態とし密封した。その後、地温30℃環境下を作るため、30℃のインキュベーター内に静置し、3、7、15日後の土壌中の2価鉄含量を測定した(実施例1-1~1-3)。なお、本実施例で用いた油分吸着活性白土は、菜種油の脱色工程後の活性白土(油脂含量:326g/kg-wet(32.6質量%))である。なお、比較例として、水処理のみ(蒸留水のみ)のものについても、上記と同様に、2価鉄含量を測定した(比較例1)。
<Method>
Mix 115g of soil, oil adsorption clay (equivalent to 1t/10a, 0.7t/10a, and 0.4t/10a) and 25ml of water (distilled water) in a Lamizip bag (10cm x 15cm) and submerge it. Condition and sealed. Thereafter, in order to create an environment with a soil temperature of 30°C, the soil was placed in an incubator at 30°C, and the divalent iron content in the soil was measured after 3, 7, and 15 days (Examples 1-1 to 1-3). The oil adsorption activated clay used in this example is activated clay (oil content: 326 g/kg-wet (32.6% by mass)) after decolorizing rapeseed oil. As a comparative example, the divalent iron content was also measured in the same manner as above for a sample that was treated with water only (distilled water only) (Comparative Example 1).

<結果>
表1及び図1に示した通り、油分吸着白土0.4t~1t/10a相当の処理で、2価鉄の含量が増加し、土壌還元力を有することが実証された。
<Results>
As shown in Table 1 and Figure 1, treatment with oil adsorption clay equivalent to 0.4t to 1t/10a increased the content of divalent iron, proving that it has soil reducing power.

土壌の還元状態への影響(2)
<目的>
土壌に、油分吸着活性白土と水とを混和し、土壌内の還元状態を調査した。
Impact on soil reduction status (2)
<Purpose>
Oil adsorption active clay and water were mixed with soil, and the reduction state within the soil was investigated.

<方法>
ラミジップ袋(18cm×26cm)中に土壌300gと、油分吸着白土(1t/10a相当、0.7t/10a相当、及び0.4t/10a相当)を混和し、蒸留水200mlを加え湛水状態とし密封した。その後、地温15℃、22.5℃、30℃の環境下を作るため、各温度帯のインキュベーター内に静置し、3、7、15、30日後の酸化還元電位を測定した(実施例2-1~2-9)。なお、本実施例で用いた油分吸着活性白土は、菜種油の脱色工程後の活性白土(油脂含量:326g/kg-wet(32.6質量%))である。なお、比較例として、水処理のみ(蒸留水のみ)のものについても、上記と同様に、酸化還元電位を測定した(比較例2-1~2-3)。
酸化還元電位の測定は、東亜電波工業社製のポータブルORP計「RM-20P」及び電極「PST-2729C」を用いて行った。以下、本願の各実施例においても同様である。
<Method>
300 g of soil and oil-absorbing clay (equivalent to 1 t/10 a, 0.7 t/10 a, and 0.4 t/10 a) were mixed in a Lamizip bag (18 cm x 26 cm), and 200 ml of distilled water was added to the bag to make it flooded and sealed. . Thereafter, in order to create an environment with a soil temperature of 15°C, 22.5°C, and 30°C, the soil was placed in an incubator at each temperature range, and the redox potential was measured after 3, 7, 15, and 30 days (Example 2-1 ~2-9). The oil adsorption activated clay used in this example is activated clay (oil content: 326 g/kg-wet (32.6% by mass)) after decolorizing rapeseed oil. As a comparative example, the oxidation-reduction potential was also measured in the same manner as above for those treated with water only (distilled water only) (Comparative Examples 2-1 to 2-3).
The oxidation-reduction potential was measured using a portable ORP meter "RM-20P" and electrode "PST-2729C" manufactured by Toa Denpa Kogyo. The same applies to each embodiment of the present application.

<結果>
表2に示す通り、地温15℃、22.5℃、30℃いずれの環境下においても、酸化還元電位(Eh値)がマイナスとなった。すなわち、油分吸着白土0.4t~1t/10a相当で土壌還元力を有していた。特に、0.7t~1t/10a処理でより高い土壌還元力を有することが明らかとなった。
<Results>
As shown in Table 2, the oxidation-reduction potential (Eh value) was negative under any of the soil temperatures of 15°C, 22.5°C, and 30°C. In other words, it had soil reducing power equivalent to 0.4t to 1t/10a of oil adsorption clay. In particular, it was revealed that the soil reducing power was higher when treated with 0.7t to 1t/10a.

青枯病菌に対する消毒効果
<目的>
青枯病菌を予め接種した土壌に、油分吸着活性白土及び水を含有させた場合の消毒効果を調べた。
Disinfectant effect against bacterial wilt bacteria <Purpose>
The disinfection effect was investigated when oil-adsorbing active clay and water were added to soil that had been inoculated with bacterial wilt bacteria in advance.

<方法>
予め青枯病菌(リファンピシン耐性8107株)を6CFU/g土壌になるように接種した100gの土壌に、油分吸着活性白土0.5g及び1gを混和し、バイアル瓶(日東電工SV-100、100ml)に詰め、圃場用水量になるように蒸留水35mlを加えた。30℃のインキュベーター内に静置し、1、2、3週間後にバイアル瓶中の土壌を採取し、青枯病菌密度を、土壌希釈平板法により測定した(実施例3-1及び3-2)。本実施例で用いた油分吸着活性白土は、菜種油の脱色工程後の活性白土(油脂含量:326g/kg-wet(32.6質量%))である。
なお、比較例として、油分吸着活性白土の代わりに、糖含有珪藻土0.5g及び1g、並びに廃糖蜜(0.6%水溶液)を混和したものや、水処理のみ(蒸留水のみ)や無処理のものについても、上記と同様に、青枯病菌密度を測定した(比較例3-1及び3-2)。
<Method>
Mix 0.5 g and 1 g of oil-adsorbing activated clay to 100 g of soil inoculated with bacterial wilt bacteria (rifampicin-resistant 8107 strain) at a concentration of 6 CFU/g soil, and place in a vial (Nitto Denko SV-100, 100 ml). Fill it and add 35 ml of distilled water to the amount needed for field use. The soil was left in an incubator at 30°C, and the soil in the vial was collected after 1, 2, and 3 weeks, and the density of bacterial wilt bacteria was measured by the soil dilution plate method (Examples 3-1 and 3-2) . The oil adsorption activated clay used in this example is activated clay (oil content: 326 g/kg-wet (32.6% by mass)) after decolorizing rapeseed oil.
In addition, as comparative examples, instead of oil adsorption active clay, 0.5g and 1g of sugar-containing diatomaceous earth, and blackstrap molasses (0.6% aqueous solution) were mixed, and water treated only (distilled water only) and untreated. Also, bacterial densities of bacterial wilt were measured in the same manner as above (Comparative Examples 3-1 and 3-2).

<結果>
表3及び図2に示した通り、0.5g及び1gの油分吸着活性白土により、土壌中の青枯病菌に対する消毒効果が認められることが実証された。なお、図1では、「油分吸着活性白土」は「新規資材」と表記した。
<Results>
As shown in Table 3 and Figure 2, it was demonstrated that 0.5g and 1g of oil adsorption activated clay had a disinfecting effect on bacterial wilt bacteria in soil. In addition, in FIG. 1, "oil adsorption active clay" is written as "new material".

トマト萎凋病菌に対する抑制効果
<目的>
トマト萎凋病に対して、油分吸着活性白土を用いた土壌還元消毒効果を室内試験及び温室・圃場試験により検証する。
Inhibitory effect on tomato wilt fungus <Purpose>
The effectiveness of soil reduction disinfection using oil-adsorbing active clay against tomato wilt will be verified through laboratory tests and greenhouse/field tests.

<方法>
トマト萎凋病菌(菌類病、病原菌Fusarium oxysporum f.sp. lycopersici)のnit変異株(硝酸塩利用能欠損変異株)の土壌米ぬか培地培養菌体を、不織布に10g詰めて、地下15cmに埋設した。
上記菌体を埋設した土壌に、油分吸着活性白土を1t/10aとなるように散布した(実施例4)。油分吸着活性白土の散布を行わない(無処理の)試験区を比較例とした(比較例4)。
本実施例で用いた油分吸着活性白土は、菜種油の脱色工程後の活性白土(油脂含量:326g/kg-wet(32.6質量%))である。
<Method>
10 g of soil rice bran medium cultured cells of a nit mutant strain (mutant strain lacking nitrate utilization ability) of tomato wilt disease fungus (fungal disease, pathogenic fungus Fusarium oxysporum f.sp. lycopersici) was packed in a non-woven cloth and buried 15 cm underground.
Oil-absorbing active clay was sprinkled on the soil in which the above-mentioned bacterial cells were buried at a rate of 1 t/10 a (Example 4). A test plot in which oil adsorption active clay was not sprayed (untreated) was used as a comparative example (Comparative Example 4).
The oil adsorption activated clay used in this example is activated clay (oil content: 326 g/kg-wet (32.6% by mass)) after decolorizing rapeseed oil.

上記散布後、土壌を耕起し、農ポリフィルムで土壌表面を被覆した後、灌水して、3週間(21日間)土壌の還元処理を行った。
上記還元処理後、埋設したトマト萎凋病菌含有の不織布を掘り上げ、希釈平板法により菌数(菌密度)を測定した。具体的には、土壌米ぬか培地培養菌体について萎凋病菌nit変異株を選択的に検出できるCMP培地を用いて希釈平板法により菌数の測定(菌密度)を行った。なお、土壌に埋設する前の菌数(菌密度)についても予め同様に測定しておいた。
After the above-mentioned spraying, the soil was plowed, the soil surface was covered with agricultural polyethylene film, and then watered and the soil was subjected to a reduction treatment for 3 weeks (21 days).
After the above reduction treatment, the buried nonwoven fabric containing tomato wilt bacteria was dug up and the number of bacteria (bacterial density) was measured by the dilution plate method. Specifically, the number of bacteria (bacterial density) was measured by the dilution plate method using a CMP medium that can selectively detect the nit mutant strain of the bacterial wilt fungus in soil rice bran culture medium. In addition, the number of bacteria (bacteria density) before burying in the soil was also measured in the same way.

<結果>
表4及び図3に示す通り、無処理の試験区(対照区)では菌密度がやや増加したのに対して、油分吸着活性白土を散布した試験区(還元消毒区)では、菌密度が処理前の1/250~1/700に減少しており、油分吸着活性白土を用いた土壌還元消毒による、トマト萎凋病菌に対する消毒効果が認められることが実証された。
<Results>
As shown in Table 4 and Figure 3, the bacterial density increased slightly in the untreated test area (control area), whereas the bacterial density increased slightly in the test area sprayed with oil-adsorbing activated clay (reduction disinfection area). This has decreased to 1/250 to 1/700 of the previous level, demonstrating that soil reduction disinfection using oil-absorbing activated clay has a disinfecting effect on tomato wilt fungi.

<目的>
土壌に、油分としての各種油脂と水とを混和し、土壌内の還元状態を調査した。
<Purpose>
Various types of oils and fats were mixed with water to investigate the reduction state within the soil.

<方法>
ラミジップ袋(18cm×26cm)中に土壌300gと、油分としての各種油脂(なたね油、こめ油、ごま油、オリーブオイル;それぞれ上記土壌に対して0.5質量%)とを混和し、蒸留水200mlを加え再度混和し、湛水状態とし密封した。その後、30℃のインキュベーター内に静置し、1、2、3、4週間後の土壌の酸化還元電位を測定した。なお、比較例として、水処理のみ(蒸留水のみ)のものについても、上記と同様に、酸化還元電位を測定した。
<Method>
Mix 300g of soil and various oils (rapeseed oil, rice bran oil, sesame oil, olive oil; each 0.5% by mass based on the above soil) in a lami-zip bag (18cm x 26cm), add 200ml of distilled water and re-mix. The mixture was mixed, submerged in water, and sealed. Thereafter, the soil was placed in an incubator at 30°C, and the redox potential of the soil was measured after 1, 2, 3, and 4 weeks. In addition, as a comparative example, the oxidation-reduction potential was also measured in the same manner as above for those treated with water only (distilled water only).

<結果>
図4に示す通り、いずれの油分(なたね油、こめ油、ごま油、オリーブオイル)を使用した場合も、土壌の酸化還元電位(Eh値)は有意にマイナスとなり、土壌を還元状態にするのに有効であることが実証された。
<Results>
As shown in Figure 4, no matter which oil (rapeseed oil, rice oil, sesame oil, olive oil) is used, the oxidation-reduction potential (Eh value) of the soil becomes significantly negative, and it is effective in bringing the soil into a reduced state. It has been proven that

<目的>
土壌に、油分としてのなたね油と水とを混和し、土壌内の還元状態を調査した。
<Purpose>
Rapeseed oil and water were mixed into the soil, and the reduction state within the soil was investigated.

<方法>
ラミジップ袋(18cm×26cm)中に土壌300gと、油分としてのなたね油(上記土壌に対して0.1質量%、0.2質量%、0.3質量%、0.4質量%、0.5質量%、1質量%、5質量%、10質量%の各量で使用)とを混和し、蒸留水200mlを加え再度混和し、湛水状態とし密封した。その後、30℃のインキュベーター内に静置し、1、2、3、4週間後の土壌の酸化還元電位を測定した。なお、比較例として、水処理のみ(蒸留水のみ)のものについても、上記と同様に、酸化還元電位を測定した。
<Method>
300g of soil in a Lamizip bag (18cm x 26cm) and rapeseed oil as oil (0.1% by mass, 0.2% by mass, 0.3% by mass, 0.4% by mass, 0.5% by mass, 1% by mass, 5% by mass based on the above soil) , used in an amount of 10% by mass), 200 ml of distilled water was added and mixed again, and the mixture was submerged in water and sealed. Thereafter, the soil was placed in an incubator at 30°C, and the redox potential of the soil was measured after 1, 2, 3, and 4 weeks. In addition, as a comparative example, the oxidation-reduction potential was also measured in the same manner as above for those treated with water only (distilled water only).

<結果>
図5に示す通り、なたね油をいずれの混和量で使用した場合も、土壌の酸化還元電位(Eh値)は有意にマイナスとなり、土壌を還元状態にするのに有効であることが実証された。
<Results>
As shown in Figure 5, the oxidation-reduction potential (Eh value) of the soil was significantly negative when rapeseed oil was used in any amount, demonstrating that it is effective in bringing the soil into a reduced state.

トマトかいよう病に対する抑制効果
<目的>
細菌病であるトマトかいよう病に対して、油分吸着活性白土を用いた土壌還元消毒効果を室内試験により検証した。
Inhibitory effect on tomato canker disease <Purpose>
We conducted laboratory tests to verify the soil reduction disinfection effect of oil-adsorbing active clay against tomato canker, a bacterial disease.

<方法>
トマトかいよう病菌(病原菌Clavibacter michiganensis subsp. mishiganensis)のリファンピシン耐性菌株301040R01を1.0×108cfu/mLに調整した後、菌液を注射針に浸し、トマト(品種:ポンテローザ)の播種後50日苗の茎に3か所接種した。気温23℃の人工気象器で40日間栽培してかいよう病を発病した植物体を接種源とした。
土壌(農研機構圃場由来、茨城県つくば市、水分含量31%)200gに油分吸着活性白土1g(1t/10a相当)をよく混和し、アルミ蒸着袋(福助工業、VM規格袋、No. 5)に詰めた。1cmに切った罹病植物の茎を土壌に5本埋め込み、蒸留水40mL加えて、袋をもんで土壌を十分にぬかるませた(水分含量43%)。業務用密封包装機(旭化成パックス、SQ-303W)を用いて、約10秒間脱気した後、袋の口を熱溶着して密封した(還元消毒区)。対照として、1)土壌に油分吸着活性白土を混和せず、罹病植物茎を接種して、加水および脱気密封しなかった区(無処理区)、2)土壌に油分吸着活性白土を混和せず、罹病植物茎を接種して、加水および脱気密封した区(開放区)を設けた。これらのアルミ蒸着袋を30℃一定の人工気象器内で3週間静置し、処理を実施した。
本実施例で用いた油分吸着活性白土は、菜種油の脱色工程後の活性白土(油脂含量:32 6g/kg-wet(32.6質量%))である。
3週間の処理終了後、罹病植物茎を取り出して土壌を洗い流し、乳鉢内で磨砕して、蒸留水で段階希釈した。適当な濃度に希釈した磨砕液100μLをYPG-RC寒天培地(蒸留水1Lに対して、イーストエクストラクト5g、ペプトン10g、塩化ナトリウム5g、グルコース5g寒天松15gを溶解し、121℃、20分間加圧滅菌後、液温50℃~60℃でリファンピシン50mgおよびシクロヘキシミド50mgを添加し固化)に展開して、25℃で5日間培養する希釈平板法により、植物茎中のトマトかいよう病菌密度を測定し、還元消毒による効果を判定した。
<Method>
After adjusting the rifampicin-resistant strain 301040R01 of the tomato canker bacterium (pathogenic fungus Clavibacter michiganensis subsp. mishiganensis) to 1.0 × 10 8 cfu/mL, the bacterial solution was immersed in a syringe needle, and 50 days after sowing of tomato (variety: Ponterosa) seedlings. The stem was inoculated in three places. Plants that developed canker disease after being cultivated for 40 days in an artificial climate chamber at a temperature of 23°C were used as inoculum sources.
Thoroughly mix 1 g of oil-absorbing active white clay (equivalent to 1 t/10 a) with 200 g of soil (derived from the farm of the National Agriculture and Food Research Organization, Tsukuba City, Ibaraki Prefecture, moisture content 31%), and use an aluminum vapor-deposited bag (Fukusuke Kogyo, VM standard bag, No. 5). ). Five stems of diseased plants cut into 1 cm pieces were embedded in the soil, 40 mL of distilled water was added, and the bag was kneaded to make the soil sufficiently wet (moisture content 43%). After degassing for about 10 seconds using a commercial sealing packaging machine (Asahi Kasei Pax, SQ-303W), the opening of the bag was sealed by heat welding (reduction disinfection area). As controls, 1) soil with oil adsorption active clay was not mixed, diseased plant stems were inoculated, and water was not added and air sealed (untreated area); 2) oil adsorption active clay was mixed with soil. First, diseased plant stems were inoculated, water was added, and a deaerated and sealed area (open area) was established. These aluminum vapor-deposited bags were left standing in an artificial climate chamber at a constant temperature of 30°C for 3 weeks to carry out the treatment.
The oil adsorption activated clay used in this example is activated clay (oil content: 326 g/kg-wet (32.6% by mass)) after decolorizing rapeseed oil.
After 3 weeks of treatment, diseased plant stems were removed, the soil washed away, ground in a mortar, and serially diluted with distilled water. Pour 100 μL of the homogenate diluted to an appropriate concentration onto YPG-RC agar medium (dissolve 5 g of yeast extract, 10 g of peptone, 5 g of sodium chloride, 5 g of glucose, and 15 g of agar pine per 1 L of distilled water, and heat at 121℃ for 20 minutes. After autoclaving, the density of tomato canker bacteria in plant stems was measured using the dilution plate method, which was developed by adding 50 mg of rifampicin and 50 mg of cycloheximide at a liquid temperature of 50°C to 60°C and solidified, and culturing at 25°C for 5 days. , the effectiveness of reductive disinfection was determined.

<結果>
表5及び図6に示す通り、還元消毒区ではかいよう病菌が検出されず、無処理区に対して菌密度が減少した。一方、開放区では無処理区と同程度の菌密度であった。以上より、油分吸着活性白土を用いた土壌還元消毒は、トマトかいよう病菌に対する消毒効果を有することが実証された。
<Results>
As shown in Table 5 and FIG. 6, no canker bacteria were detected in the reduction disinfection area, and the bacterial density decreased compared to the untreated area. On the other hand, the bacterial density in the open area was similar to that in the untreated area. From the above, it was demonstrated that soil reduction disinfection using oil adsorption active clay has a disinfecting effect against tomato canker bacterium.

トマト褐色根腐病に対する抑制効果
<目的>
トマト褐色根腐病に対して、油分吸着活性白土を用いた土壌還元消毒効果を検証した。
Inhibitory effect on tomato brown root rot <Purpose>
We verified the soil reduction disinfection effect of oil-adsorbing active clay against tomato brown root rot.

<方法>
前作で褐色根腐病害が見られたビニールハウス内において、油分吸着活性白土による土壌還元消毒を行った。
油分吸着活性白土0.7t/10aの施用量で土壌表層に均一に散布した後、トラクターで耕起して混和し、ハウス内に灌水チューブを約1m間隔で設置し、土壌表面をビニールで被覆した。その後、圃場内が湛水状態になるまで灌水し、ハウスを1か月密閉して、消毒した。
1区は21.6m2(3.6m×8m)とし、油分吸着活性白土の施用の有無それぞれについて3反復試験を行った。
消毒終了後、トマト(品種「麗容」)に台木(品種「Bバリア」)を接いだ接ぎ木苗を1区あたり48株ずつ栽植した。
栽培終了時に全株を掘り上げ、根部の発病度を調査した。発病程度は4段階の指数で評価し、発病度、発病株率を算出した。
<Method>
In a plastic greenhouse where brown root rot disease was observed in the previous crop, soil reduction disinfection was performed using oil-absorbing activated clay.
After uniformly spreading the oil-adsorbing activated clay over the soil surface at a rate of 0.7t/10a, it was plowed and mixed with a tractor, irrigation tubes were installed in the greenhouse at approximately 1m intervals, and the soil surface was covered with vinyl. . Afterwards, the field was watered until it was flooded, and the greenhouse was sealed and disinfected for one month.
The first section was 21.6 m 2 (3.6 m x 8 m), and three repeated tests were conducted with and without the application of oil-absorbing active clay.
After disinfection, 48 grafted seedlings of tomatoes (variety ``Reirong'') grafted with rootstock (variety ``B Barrier'') were planted per plot.
At the end of cultivation, all plants were dug up and the severity of disease at the roots was investigated. The degree of disease onset was evaluated using a four-level index, and the degree of disease onset and the rate of diseased strains were calculated.

発病指数 指数0:発病なし;指数1:病斑面積が根の25%以下;指数2:同26~50%以下;指数3:同51~75%以下;指数4:同76%以上 Disease index Index 0: No disease onset; Index 1: Lesion area is 25% or less of the root area; Index 2: 26-50% or less of the root area; Index 3: 51-75% or less of the root area; Index 4: 76% or more of the root area

発病度={Σ(発病指数×指数別株数)÷(4×調査株数)}×100 Disease severity = {Σ (sickness index x number of strains by index) ÷ (4 x number of investigated strains)} x 100

<結果>
油分吸着活性白土を用いた土壌還元消毒区では、発病度および発病株率が、いずれも大きく低下した。その結果を図7に示した。これにより褐色根腐病への抑制効果が実証された。
<Results>
In the soil reduction disinfection area using oil-adsorbing activated clay, both the disease severity and the incidence of diseased plants decreased significantly. The results are shown in FIG. This demonstrated the inhibitory effect on brown root rot.

ネコブセンチュウによる被害抑制効果
<目的>
土壌還元消毒に用いる油分吸着活性白土の施用量が、ネコブセンチュウによる被害抑制効果に与える影響について調査した。
Damage control effect caused by cat nematode <Purpose>
We investigated the effect of the application amount of oil-adsorbing active white clay used for soil reduction disinfection on the damage control effect caused by Nematode nematode.

<方法>
チャック式ビニール袋(40cm×28cm×厚さ0.08mm)にネコブセンチュウ汚染土壌3Lに各資材を所定量混和し、水道水2Lを加え再混和した後、平均気温35~40℃の無遮光ガラス温室内で1ヶ月静置し、土壌の還元化を行った。
なお、用いたネコブセンチュウは、キュウリ(品種:北進)の根を加害することを確認したサツマイモネコブセンチュウ(未同定)とし、継代飼育により得られた個体群が混和された土壌(10頭/土1g)を汚染土壌とした。
還元終了後、1週間程度風乾し、4号ポリポットに土詰めを行い、キュウリ苗(品種:北進)を定植し、約1ヶ月後の根こぶ発生指数について調査した。
なお、根こぶ発生指数は、下記の根こぶ被害程度を調査し、次式により算出し、対無処理比により被害抑制効果を評価した。
<Method>
Mix the specified amount of each material with 3L of soil contaminated with cat nematode in a zipper-type plastic bag (40cm x 28cm x 0.08mm thickness), add 2L of tap water, mix again, and then store in a non-shading glass greenhouse with an average temperature of 35 to 40℃. The soil was left undisturbed for one month to reduce the soil.
The nematode used was a sweet potato nematode (unidentified) that has been confirmed to damage the roots of cucumbers (variety: Hokushin). ) was considered contaminated soil.
After completion of the reduction, the soil was air-dried for about a week, then filled with soil in a No. 4 polypot, cucumber seedlings (variety: Hokushin) were planted, and the index of root gall occurrence was investigated after about a month.
The root gall occurrence index was calculated using the following formula after investigating the degree of root gall damage described below, and the damage suppression effect was evaluated based on the ratio to no treatment.

<根こぶ被害程度>
1:根こぶを全く認めない
2:細根に根こぶを僅かに認める
3:細根に中程度の根こぶを認める
4:細根の殆どに根こぶを認める
5:主根に根こぶを認める、あるいは枯死
<Extent of root gall damage>
1: No root galls observed at all 2: Root galls slightly observed on the fine roots 3: Moderate root galls observed on the fine roots 4: Root galls observed on most of the fine roots 5: Root galls observed on the taproot or withering

<根こぶ指数>
根こぶ指数=Σ(根こぶ被害程度×株数)÷(4×調査株数)×100
<Knot index>
Root gall index = Σ (root gall damage level x number of plants) ÷ (4 x number of plants surveyed) x 100

<結果・考察>
還元消毒資材の施用量(混和量)ごとの、根こぶ被害程度と根こぶ指数の結果を、表6にまとめて示す。
<Results/Discussion>
Table 6 summarizes the results of the degree of root gall damage and root gall index for each application amount (mixed amount) of the reducing disinfection material.

油分吸着活性白土を用いた土壌還元区はその施用量に関わらず、無処理(水)に対し高い根こぶ形成抑制効果を示した。 The soil reduction plot using oil-adsorbing active clay showed a higher effect on inhibiting root gall formation than untreated water, regardless of the application amount.

上白糖の加用による還元土壌域の拡大
<目的>
油分吸着活性白土に水溶性の高い炭素源として上白糖を加用することで還元土壌域への影響を調査した。
詳しくは、油分吸着活性白土による土壌還元消毒では、混和した層のみを還元化する傾向があるが、防除対象とする病害虫種によっては、混和層以下(つまり該混和層より下層)についても還元化が望まれる場合があるため、水溶性の高い炭素源として上白糖を加用した際の還元土壌域を調査した。
Expansion of reduced soil area by adding refined sugar <Purpose>
We investigated the effect on reduced soil areas by adding white sugar as a highly water-soluble carbon source to oil adsorption activated clay.
Specifically, soil reduction disinfection using oil-absorbing active clay tends to reduce only the mixed layer, but depending on the pest species to be controlled, it may also reduce the layer below the mixed layer (that is, the layer below the mixed layer). In some cases, this is desired, so we investigated the reduced soil area when refined sugar was added as a highly water-soluble carbon source.

<方法>
塩ビ管(硬質ポリ塩化ビニル管;内径14.5cm×高さ10cm)を4個積み上げたカラムに土壌を充填し、一番上の塩ビ管に所定量の各資材を混和後、水道水を加え、地温平均30℃条件下で1ヶ月静置した。
その後、積み上げたカラムを分離し、各層の酸化還元電位(Eh値)を測定した。酸化還元電位の測定は、東亜電波工業社製のポータブルORP計「RM-20P」および電極「PST-2729C」を用いて行った。
<Method>
A column made by stacking four PVC pipes (hard polyvinyl chloride pipes; inner diameter 14.5 cm x height 10 cm) is filled with soil, and after mixing the specified amount of each material into the top PVC pipe, tap water is added. It was left standing for one month at an average soil temperature of 30°C.
After that, the stacked columns were separated and the redox potential (Eh value) of each layer was measured. The oxidation-reduction potential was measured using a portable ORP meter "RM-20P" and an electrode "PST-2729C" manufactured by Toa Denpa Kogyo.

<結果・考察>
図8に示すとおり、上白糖単用では、濃度依存的に下層(40cm)の酸化還元電位(Eh値;図8のグラフの縦軸の値)が高くなる一方、上層(20cm)は十分に還元化しなかった。また、油分吸着活性白土単用では、上層は還元化され、下層は還元化しなかった。これに対し、油分吸着活性白土と上白糖の混用では、上層および下層のいずれについても還元化された。
よって、油分吸着活性白土と上白糖の混用により、双方の特性を打ち消すことなく還元土壌域が広がることが明らかとなった。
<Results/Discussion>
As shown in Figure 8, when using pure white sugar, the redox potential (Eh value; the value on the vertical axis of the graph in Figure 8) in the lower layer (40cm) increases in a concentration-dependent manner, while the upper layer (20cm) is sufficiently It was not reduced. In addition, in the case of using oil adsorption activated clay alone, the upper layer was reduced, but the lower layer was not reduced. On the other hand, when oil adsorption active clay and white sugar were used together, both the upper and lower layers were reduced.
Therefore, it has become clear that the mixed use of oil adsorption active clay and white sugar can expand the range of reduced soil without canceling out the properties of both.

Claims (11)

油分を含む、土壌還元消毒用資材。 Soil reduction disinfection material containing oil. 油分吸着白土を含む、請求項1に記載の資材。 The material according to claim 1, comprising oil-absorbing clay. 前記油分吸着白土に含まれる油分含量が20質量%以上50質量%以下である、請求項2に記載の資材。 The material according to claim 2, wherein the oil content contained in the oil-absorbing clay is 20% by mass or more and 50% by mass or less. 前記油分吸着白土は、活性白土を用いて行われる油脂の精製工程において発生する白土である、請求項2又は3に記載の資材。 The material according to claim 2 or 3, wherein the oil adsorbing clay is clay generated in an oil and fat refining process performed using activated clay. 上記油分が食用油脂である、請求項1又は2に記載の資材。 The material according to claim 1 or 2, wherein the oil is an edible fat or oil. 土壌が播種前又は定植前の作土である、請求項1又は2に記載の資材。 The material according to claim 1 or 2, wherein the soil is cultivated soil before sowing or planting. 前記土壌還元消毒が、土壌病害虫の防除、又は雑草の発芽抑制である、請求項1又は2に記載の資材。 The material according to claim 1 or 2, wherein the soil reduction disinfection is for controlling soil diseases and pests or suppressing weed germination. 土壌に、請求項1又は2に記載の資材を含有せしめて水と混和し、水の蒸発を抑制しつつ保持した該土壌を還元状態とすることを含む、土壌還元消毒方法。 A method for soil reduction disinfection, which comprises making soil contain the material according to claim 1 or 2 and mixing it with water, and bringing the retained soil into a reduced state while suppressing evaporation of the water. 土壌が播種前又は定植前の作土である、請求項8に記載の方法。 9. The method according to claim 8, wherein the soil is cultivated soil before sowing or planting. 前記土壌還元消毒における消毒が、土壌病害虫の防除、又は雑草の発芽抑制である、請求項8に記載の方法。 9. The method according to claim 8, wherein the disinfection in the soil reduction disinfection is the control of soil diseases and pests or the suppression of weed germination. 土壌10aあたりに、前記資材を該資材中の油分が0.05t以上1.0t以下となるように混和することを含む、請求項8に記載の方法。
The method according to claim 8, comprising mixing the material into the soil 10a so that the oil content in the material is 0.05 t or more and 1.0 t or less.
JP2023030756A 2022-06-09 2023-03-01 Soil disinfection material Pending JP2023181077A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022093544 2022-06-09
JP2022093544 2022-06-09

Publications (1)

Publication Number Publication Date
JP2023181077A true JP2023181077A (en) 2023-12-21

Family

ID=89306965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023030756A Pending JP2023181077A (en) 2022-06-09 2023-03-01 Soil disinfection material

Country Status (1)

Country Link
JP (1) JP2023181077A (en)

Similar Documents

Publication Publication Date Title
US10674731B2 (en) Package for plant antimicrobial treatment
Abbasi et al. Effect of neem cake soil amendment on reduction of damping-off severity and population densities of plant-parasitic nematodes and soilborne plant pathogens
Edwards Pesticide residues in soil and water
JP2010540622A (en) Composition for improving surface microbial density and use thereof
JP5299264B2 (en) Soil reduction disinfection method, soil reduction disinfectant, soil wetting disinfection method, soil wetting disinfectant and soil disinfectant irrigation system
van Overbeek et al. Anaerobic disinfestation of tare soils contaminated with Ralstonia solanacearum biovar 2 and Globodera pallida
Giannakou et al. Effects of a non-chemical nematicide combined with soil solarization for the control of root-knot nematodes
Gurtler Pathogen decontamination of food crop soil: a review
CN107164262A (en) A kind of microbial bacterial agent and its bacterial manure available for controlling crop diseases and insect pests
JP2023181077A (en) Soil disinfection material
Porter et al. Non-chemical alternatives to methyl bromide for soil treatment in strawberry production
Triky-Dotan et al. Accelerated degradation of metam-sodium in soil and consequences for root-disease management
CN103371155A (en) Azadirachtin hydrosolvent for treating fruit tree meloidogynosis and preparation method thereof
CN105638657A (en) Insect and bacterium killing agent, preparation method and application method thereof
Runia et al. Inundation as tool for management of Globodera pallida and Verticillium dahlia
WO2021230175A1 (en) Plant disease control agent and plant disease control method
CN112154833B (en) Method for preventing and controlling onion fly larvae in garlic cultivation in northern areas
Duniway et al. Some chemical, cultural, and biological alternatives to methyl bromide fumigation of soil for strawberry
Khatri Use of Metam Potassium in Florida Plasticulture Production
JP2004323395A (en) Method for soil disinfection
Enebak et al. Effect of methyl bromide alternatives on seedling quality, nematodes and pathogenic soil fungi at the Jesup and Glennville nurseries in Georgia: 2007 to 2008
Ownley et al. 16 Soilborne Plant Pathogens
Johnson Evaluation of a Steam Injection Auger System for the Management of Replant Problems in California Almonds (Prunus dulcis)
JP4676180B2 (en) Composition for disinfecting fusarium-contaminated soil and method for disinfecting the soil
Wright et al. Effects of wounding, inoculation with Erwinia carotovora subsp. carotovora, water-logging, and temperature on incidence of bacterial soft rot in calla plants

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328