JP2023179402A - Method for reusing depolymerizable copolymer - Google Patents

Method for reusing depolymerizable copolymer Download PDF

Info

Publication number
JP2023179402A
JP2023179402A JP2023128513A JP2023128513A JP2023179402A JP 2023179402 A JP2023179402 A JP 2023179402A JP 2023128513 A JP2023128513 A JP 2023128513A JP 2023128513 A JP2023128513 A JP 2023128513A JP 2023179402 A JP2023179402 A JP 2023179402A
Authority
JP
Japan
Prior art keywords
depolymerizable
copolymer
monomers
homopolymer
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023128513A
Other languages
Japanese (ja)
Inventor
稔 八木
Minoru Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2023128513A priority Critical patent/JP2023179402A/en
Publication of JP2023179402A publication Critical patent/JP2023179402A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

To provide copolymers which have a depolymerization property wherein the polymers decompose into the monomers with heat or light, and can be easily reused.SOLUTION: A depolymerizable copolymer according to the present invention is obtained through copolymerization of two or three or more monomers that make up a depolymerizable homopolymer which decomposes into the monomers with heat, light, or the like. The depolymerizable homopolymer decomposes into the monomers with heat, light, or the like, and has an extremely high monomer recovery rate of 90% or greater; the examples of the same include polymethyl methacrylate, poly α-methyl styrene, and polytetrafluoroethylene. The monomers that make up these homopolymers are methyl methacrylate (MMA), α-methyl styrene (AMS), and tetrafluoroethylene (TFE).SELECTED DRAWING: None

Description

本発明は、熱や光によって重合体(ポリマー)が単量体(モノマー)に分解する解重合性を有する共重合ポリマーに関し、特に熱により解重合した際に残渣が残りにくい解重合性を有する共重合ポリマーに関する。 The present invention relates to a copolymer that has a depolymerizable property in which the polymer is decomposed into monomers by heat or light, and in particular has a depolymerizable property that hardly leaves a residue when depolymerized by heat. Regarding copolymer polymers.

近年、プラスチック(ポリマー)は耐久性や耐熱性に優れる素材としての技術開発が進み様々な素材が市場で使用されている。一方、これらプラスチック材料は環境では分解されないことから環境への影響が指摘されているが、再利用が難しく廃棄することも多い。特に金属とプラスチックが複合化された製品が多くなってきているが、このような複合材料は、それぞれに分離することが難しく埋め立て処理しかないのが現状である。 In recent years, the technology of plastic (polymer) as a material with excellent durability and heat resistance has been developed, and various materials are being used on the market. On the other hand, it has been pointed out that these plastic materials have an impact on the environment because they do not decompose in the environment, but they are difficult to reuse and are often discarded. In particular, there are an increasing number of products that are made of composite metals and plastics, but these composite materials are currently difficult to separate into their individual parts and can only be disposed of in landfills.

このため、生分解性ポリマーなどプラスチックを分解可能としたり、プラスチックを回収して再利用したりする様々な取り組みが進められている。 For this reason, various efforts are underway to make plastics degradable, such as biodegradable polymers, and to collect and reuse plastics.

しかしながら、生分解性ポリマーは、生分解途中の物質の環境における安全性や、分解途中の物質がマイクロプラスチックとなり、これらを環境生物・海洋生物が摂取した時の影響などが明確になっていない。さらに、生分解性ポリマーは、廃棄物削減に対しては一定の効果があるものの、再利用という課題に関しては、何ら解決するものではない。さらに、廃棄物削減に限ってみても、分解するまでの時間が数カ月以上かかる場合もある、という問題点がある。 However, it is not clear whether biodegradable polymers are safe in the environment as they are in the process of being biodegraded, or the effects of microplastics that are ingested by environmental and marine organisms. Furthermore, although biodegradable polymers have a certain effect on waste reduction, they do not solve the problem of reuse. Furthermore, even when looking only at reducing waste, there is a problem in that it can take several months or more for decomposition.

また、ペットボトルなどは、リサイクルして再利用されているが、再利用するためには特殊な化学薬品などを使用してモノマーにまで分解する必要があり、多大な手間とエネルギーを必要とする、という問題点がある。さらに再利用の用途も限定される、という問題点もある。 In addition, plastic bottles and other items are recycled and reused, but in order to be reused, they must be broken down into monomers using special chemicals, which requires a great deal of effort and energy. , there is a problem. Another problem is that the applications for reuse are also limited.

そこで、熱や光などの簡単な方法でプラスチックを分解し、再利用できる素材や方法が求められている。 Therefore, there is a need for materials and methods that can reuse plastics by decomposing them using simple methods such as heat and light.

本発明は、上記課題に鑑みてなされたものであり、熱や光によって重合体(ポリマー)が単量体(モノマー)に分解する解重合性を有し、再利用することが容易な共重合ポリマーを提供することを目的とする。 The present invention has been made in view of the above problems, and is a copolymer that has depolymerizability in which a polymer is decomposed into monomers by heat or light and is easy to reuse. The purpose is to provide polymers.

上記課題を解決するために本発明は、加熱や光などでモノマーに分解する解重合性ホモポリマーを構成するモノマーを2種又は3種以上共重合させた、解重合性共重合ポリマーを提供する(発明1)。 In order to solve the above problems, the present invention provides a depolymerizable copolymer obtained by copolymerizing two or more types of monomers constituting a depolymerizable homopolymer that decomposes into monomers by heating, light, etc. (Invention 1).

かかる発明(発明1)によれば、解重合性の高いホモポリマーを構成するモノマー同士を2成分以上で共重合させることにより、リサイクルしやすく、加熱時の残渣も少なく、利便性の高い解重合性共重合ポリマーとすることができる。これは以下のような理由による。すなわち、これまで解重合性を有するホモポリマーについては知られているが、解重合性を有するホモポリマーを構成するモノマー同士を共重合したポリマーについてはその特性が明らかではなかった。そこで、本発明者らが、解重合性を有するホモポリマーを構成するモノマー同士の共重合ポリマーについて、熱分解特性を確認した結果、これらの共重合ポリマーも解重合性を有し、さらに熱分解による残渣がほとんど残らないポリマーであることを確認した。しかも、解重合性を有するホモポリマーを構成するモノマー同士を共重合することにより、元となる各解重合性ホモポリマーの特性(解重合開始温度、柔軟性、機械的強度など)を調整することができることも見出したのである。 According to this invention (Invention 1), by copolymerizing two or more monomers constituting a highly depolymerizable homopolymer, the depolymerization process is easy to recycle, leaves little residue upon heating, and is highly convenient. It can be made into a polyester copolymer. This is due to the following reasons. That is, although homopolymers having depolymerizability have been known so far, the characteristics of polymers obtained by copolymerizing monomers constituting the homopolymer having depolymerizability have not been clarified. Therefore, the present inventors confirmed the thermal decomposition characteristics of copolymerized polymers of monomers that constitute homopolymers that have depolymerizability, and found that these copolymers also have depolymerizability and that they also have thermal decomposition characteristics. It was confirmed that the polymer leaves almost no residue. Furthermore, by copolymerizing the monomers constituting the depolymerizable homopolymer, the characteristics (depolymerization initiation temperature, flexibility, mechanical strength, etc.) of each depolymerizable homopolymer can be adjusted. They also discovered that it can be done.

上記発明(発明1)においては、前記解重合性共重合ポリマーの解重合後のモノマーの回収率が90重量%以上であることが好ましい(発明2)。 In the above invention (Invention 1), it is preferable that the recovery rate of the monomer after depolymerization of the depolymerizable copolymer is 90% by weight or more (Invention 2).

かかる発明(発明2)によれば、解重合性の高いホモポリマーの解重合後のモノマーの回収率は90%を超えることも多く、このようなホモポリマーのモノマー同士を2成分以上共重合させた共重合体においても、加熱などにより解重合させた際にそれぞれのモノマーを高い回収率で回収することが可能となる。 According to this invention (Invention 2), the recovery rate of monomers after depolymerization of highly depolymerizable homopolymers often exceeds 90%, and the monomers of such homopolymers are copolymerized with two or more components. Even in the case of a copolymer, it is possible to recover each monomer at a high recovery rate when depolymerized by heating or the like.

上記発明(発明1)においては、前記解重合性共重合ポリマーの加熱による残渣が、該解重合性共重合ポリマー全量に対して10重量%以下であることが好ましい(発明3)。 In the above invention (Invention 1), it is preferable that the residue of the depolymerizable copolymer after heating is 10% by weight or less based on the total amount of the depolymerizable copolymer (Invention 3).

かかる発明(発明3)によれば、解重合性の高いホモポリマーを解重合した際の残渣は10重量%以下となることも多く、このようなホモポリマーのモノマー同士を2成分以上共重合させた共重合体においても、加熱などにより解重合させた際の残渣を少なくすることができる。 According to this invention (Invention 3), when a highly depolymerizable homopolymer is depolymerized, the residue is often 10% by weight or less, and the monomers of such a homopolymer are copolymerized with two or more components. Even in the case of a copolymer, it is possible to reduce the amount of residue when depolymerized by heating or the like.

上記発明(発明1~3)においては、前記解重合性のホモポリマーが、ポリメタクリル酸メチル(PMMA)、ポリα-メチルスチレン(PAMS)、ポリテトラフルオロエチレン(PTFE)から選ばれる2種以上であることが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), the depolymerizable homopolymer is two or more types selected from polymethyl methacrylate (PMMA), polyα-methylstyrene (PAMS), and polytetrafluoroethylene (PTFE). It is preferable that (Invention 4).

かかる発明(発明4)によれば、これらの解重合性のホモポリマーを構成するメタクリル酸メチル(MMA)、α-メチルスチレン(AMS)、テトラフルオロエチレン(TFE)などのモノマーを組み合わせて共重合体とすることにより、解重合性のホモポリマーの有する各種性状を相互に調整して、所望の性状の解重合性共重合ポリマーとすることができる。 According to this invention (Invention 4), monomers such as methyl methacrylate (MMA), α-methylstyrene (AMS), and tetrafluoroethylene (TFE) constituting these depolymerizable homopolymers are combined and copolymerized. By combining them, the various properties of the depolymerizable homopolymers can be mutually adjusted to produce a depolymerizable copolymer with desired properties.

本発明は、解重合性の高いホモポリマーを構成するモノマー同士を2成分以上で共重合させた解重合性共重合ポリマーであり、加熱による簡単な方法でモノマーを高収率で回収できるので、リサイクルが容易となっている。また、加熱分解後の残渣が少ないため、金属などの異種材料とこのポリマーとを組み合わせて複合材料としても、加熱するだけでポリマーを分解してモノマーを回収できるため素材の分別回収が可能となる。 The present invention is a depolymerizable copolymer obtained by copolymerizing two or more monomers constituting a highly depolymerizable homopolymer, and the monomer can be recovered in high yield by a simple method by heating. It is easy to recycle. In addition, since there is little residue after thermal decomposition, it is possible to use composite materials by combining dissimilar materials such as metals with this polymer, as the polymer can be decomposed and the monomer recovered simply by heating, making it possible to separate and recover the material. .

以下の本発明の解重合性共重合ポリマーについて、詳細に説明する。 The depolymerizable copolymer of the present invention will be explained in detail below.

(解重合性ホモポリマー及びモノマー)
本発明においては、原材料として加熱や光などでモノマーに分解する解重合性ホモポリマーを構成するモノマーを用いる。
(Depolymerizable homopolymer and monomer)
In the present invention, monomers constituting a depolymerizable homopolymer that decomposes into monomers by heating, light, etc. are used as raw materials.

この解重合性ホモポリマーは、所定の単量体(モノマー)を単独で重合させたものであり、加熱や光などでモノマーに分解して、モノマー回収率90%以上と極めて高い回収率を有するものが好ましい。このようなモノマー回収率の高い解重合性ホモポリマーとしては、ポリメタクリル酸メチル(PMMA)、ポリα-メチルスチレン(PAMS)、ポリテトラフルオロエチレン(PTFE)などが知られている(例えば、大谷肇ら:「高分子の熱分解特性」 高分子, 46, 394 (1997)、大澤善次郎ら:「高分子の熱劣化」 Materials Life,8[4], 165 (1996)など)。これらのホモポリマーを構成するモノマー(単量体成分)は、メタクリル酸メチル(MMA)、α-メチルスチレン(AMS)、テトラフルオロエチレン(TFE)である。 This depolymerizable homopolymer is made by polymerizing a specific monomer alone, and when it is decomposed into monomers by heating or light, it has an extremely high monomer recovery rate of 90% or more. Preferably. Polymethyl methacrylate (PMMA), polyα-methylstyrene (PAMS), and polytetrafluoroethylene (PTFE) are known as such depolymerizable homopolymers with a high monomer recovery rate (for example, Otani et al. Hajime et al.: “Thermal decomposition characteristics of polymers” Kobunshi, 46, 394 (1997), Zenjiro Osawa et al.: “Thermal deterioration of polymers” Materials Life, 8 [4], 165 (1996), etc.). The monomers (monomer components) constituting these homopolymers are methyl methacrylate (MMA), α-methylstyrene (AMS), and tetrafluoroethylene (TFE).

(解重合性共重合ポリマー)
本発明の解重合性共重合ポリマーは、上述したようなモノマー(単量体成分)を2種又は3種以上共重合したものである。
(Depolymerizable copolymer)
The depolymerizable copolymer of the present invention is a copolymer of two or more monomers (monomer components) as described above.

この解重合性共重合ポリマーにおけるモノマーの配合割合は特に制限はないが、例えば、解重合性共重合ポリマーが2種のモノマーからなる場合、第一のモノマー20~80重量部、好ましくは40~60重量部と、第二のモノマー80~20重量部、好ましくは60~40重量部とを配合して共重合させればよい。また、3種のモノマーからなる場合、第一のモノマー20~80重量部と、第二のモノマー20~80重量部と、第三のホモポリマー20~80重量部とを配合して共重合させればよい。 The blending ratio of monomers in this depolymerizable copolymer is not particularly limited, but for example, when the depolymerizable copolymer consists of two types of monomers, the first monomer is 20 to 80 parts by weight, preferably 40 to 80 parts by weight. 60 parts by weight and 80 to 20 parts by weight, preferably 60 to 40 parts by weight of the second monomer may be blended and copolymerized. In the case of three types of monomers, 20 to 80 parts by weight of the first monomer, 20 to 80 parts by weight of the second monomer, and 20 to 80 parts by weight of the third homopolymer are blended and copolymerized. That's fine.

このように2種又は3種以上の解重合性のホモポリマーを構成するモノマーを共重合させることにより、元となる各解重合性のホモポリマーの特性を調整することができる。この特性としては、例えば、解重合開始温度、柔軟性、機械的強度などであり、モノマーの配合比に応じて適宜調整することが可能となる。 By copolymerizing two or more types of monomers constituting a depolymerizable homopolymer in this way, the characteristics of each depolymerizable homopolymer as the base can be adjusted. These characteristics include, for example, depolymerization initiation temperature, flexibility, mechanical strength, etc., and can be adjusted as appropriate depending on the blending ratio of monomers.

この解重合性共重合ポリマーは、解重合により解重合性ホモポリマーを構成するモノマーの90重量%以上と極めて高い回収率を有し、リサイクル効率に優れたものが好ましい。さらに、解重合性共重合ポリマーの加熱による残渣が、解重合性共重合ポリマー全量に対して10重量%以下であり、取扱い性にも優れていることが好ましい。 The depolymerizable copolymer preferably has an extremely high recovery rate of 90% by weight or more of the monomers constituting the depolymerizable homopolymer upon depolymerization, and is excellent in recycling efficiency. Further, it is preferable that the amount of residue after heating of the depolymerizable copolymer is 10% by weight or less based on the total amount of the depolymerizable copolymer, and that the depolymerizable copolymer has excellent handling properties.

上述したような2種又は3種以上の解重合性のホモポリマーを構成するモノマーを共重合させた解重合性共重合ポリマーとしては、メタクリル酸メチル(MMA)と、α-メチルスチレン(AMS)とを共重合したものが好ましく、特にメタクリル酸メチル(MMA):α-メチルスチレン(AMS)が20:80~80:20(重量比)、好ましくは40:60~60:40(重量比)で構成される共重合ポリマーが好ましい。この解重合性共重合ポリマーは、その配合割合により200~300℃程度の範囲で解重合開始温度を変動させることができるので、ポリマーの回収が容易である。さらに、その配合割合により得られる解重合性共重合ポリマーの柔軟性や機械的強度を調整することもできる。 Examples of the depolymerizable copolymer obtained by copolymerizing two or more types of monomers constituting the depolymerizable homopolymer as described above include methyl methacrylate (MMA) and α-methylstyrene (AMS). A copolymer of methyl methacrylate (MMA) and α-methylstyrene (AMS) is preferably 20:80 to 80:20 (weight ratio), preferably 40:60 to 60:40 (weight ratio). A copolymer composed of is preferred. The depolymerization start temperature of this depolymerizable copolymer can be varied within a range of about 200 to 300°C depending on the blending ratio, so the polymer can be easily recovered. Furthermore, the flexibility and mechanical strength of the resulting depolymerizable copolymer can be adjusted by changing the blending ratio.

上記解重合性共重合ポリマーには、必要に応じて、任意の適切な添加剤を配合してもよい。この添加剤としては、例えば、架橋剤、粘着付与剤、可塑剤(例えば、トリメリット酸エステル系可塑剤、ピロメリット酸エステル系可塑剤等)、顔料、染料、充填剤、老化防止剤、導電材、帯電防止剤、紫外線吸収剤、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤等が挙げられる。 Any appropriate additives may be added to the depolymerizable copolymer, if necessary. These additives include, for example, crosslinking agents, tackifiers, plasticizers (e.g., trimellitic acid ester plasticizers, pyromellitic acid ester plasticizers, etc.), pigments, dyes, fillers, anti-aging agents, conductive materials, antistatic agents, ultraviolet absorbers, light stabilizers, release modifiers, softeners, surfactants, flame retardants, antioxidants, and the like.

(解重合性共重合ポリマーの製造方法)
上記解重合性共重合ポリマーの製造方法に特に制限はないが、例えば、ラジカル重合反応により共重合させればよい。具体的には、原材料となるモノマーをラジカル重合開始剤、架橋剤などを混合した溶媒とともに不活性ガス雰囲気下に密封し、長時間攪拌を継続して共重合させ、貧溶媒に析出させて回収することにより製造することができる。
(Method for producing depolymerizable copolymer)
There is no particular restriction on the method for producing the above-mentioned depolymerizable copolymer, but for example, copolymerization may be carried out by a radical polymerization reaction. Specifically, the raw material monomer is sealed in an inert gas atmosphere with a solvent mixed with a radical polymerization initiator, a crosslinking agent, etc., copolymerized by continuous stirring for a long time, and recovered by precipitation in a poor solvent. It can be manufactured by

以上、本発明の解重合性共重合ポリマーについて説明してきたが、本発明は、2種以上の解重合性のホモポリマーを構成するモノマーを共重合させたものであり、高い解重合性を有していればよく、種々の解重合性のホモポリマーを原材料として用いることができる。上述したような解重合性共重合ポリマーは、従来はリサイクルが困難であった金属などの異種材料との成形体としても加熱により容易にモノマーを回収することができるので、リサイクル性に優れており、その産業上の利用性は極めて大きい。 The depolymerizable copolymer of the present invention has been explained above, but the present invention is a copolymerizable monomer constituting two or more types of depolymerizable homopolymer, and has high depolymerizability. Various depolymerizable homopolymers can be used as raw materials. The depolymerizable copolymer described above has excellent recyclability because the monomer can be easily recovered by heating even when molded with dissimilar materials such as metals, which were previously difficult to recycle. , its industrial applicability is extremely large.

以下の具体的な実施例に基づき本発明をさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。 The present invention will be explained in more detail based on the following specific examples, but the present invention is not limited to the following examples.

[実施例1]
(解重合性共重合ポリマーの合成)
5Lの4つ口フラスコにイオン交換水2152.97g、炭酸ナトリウム2.20g、KSソープ(固形分90%)を投入し、攪拌しながら溶解させた。溶解後、α-メチルスチレン(AMS)795.08g、メタクリル酸メチル(MMA)274.12gを加えて150rpmで攪拌しながら系内をアルゴンガスで置換した。
[Example 1]
(Synthesis of depolymerizable copolymer)
2152.97 g of ion-exchanged water, 2.20 g of sodium carbonate, and KS soap (solid content 90%) were placed in a 5 L four-necked flask and dissolved with stirring. After dissolving, 795.08 g of α-methylstyrene (AMS) and 274.12 g of methyl methacrylate (MMA) were added, and the system was purged with argon gas while stirring at 150 rpm.

フラスコ内の温度が3~4℃になったことを確認したら、亜ニチオン酸ナトリウム0.6437g、エチレンジアミン四酢酸鉄ナトリウム三水和物0.1107g、エチレンジアミン四酢酸四ナトリウム四水和物0.2751g、ナトリウムホルムアルデヒドスホキシレート0.4179g、及びクメンハイドロパーオキサイド(80%)2.1615gを順次添加して、3~4℃にフラスコ内の温度を保持しながら63時間攪拌を行った。 After confirming that the temperature inside the flask has reached 3 to 4°C, add 0.6437 g of sodium dithionite, 0.1107 g of sodium iron ethylenediaminetetraacetate trihydrate, and 0.2751 g of tetrasodium ethylenediaminetetraacetate tetrahydrate. , 0.4179 g of sodium formaldehyde sulfoxylate, and 2.1615 g of cumene hydroperoxide (80%) were sequentially added, and the mixture was stirred for 63 hours while maintaining the temperature inside the flask at 3 to 4°C.

63時間の攪拌後、2,6-ジ-t-ブチル-4-メチルフェノール5.50gを添加し、反応を停止させた。 After stirring for 63 hours, 5.50 g of 2,6-di-t-butyl-4-methylphenol was added to stop the reaction.

上記反応液を15Lのメタノールに滴下し、析出した白色固体をろ過により回収した。得られた白色固体を簡易乾燥後、テトラヒドロフラン(THF)に溶解した(溶液総重量1500g)。この溶液を17Lのメタノールに滴下し、析出した固体をろ過により回収した。得られた白色固体を50℃で48時間減圧乾燥し最終物を得た(収量:259.16g)。 The above reaction solution was added dropwise to 15 L of methanol, and the precipitated white solid was collected by filtration. The obtained white solid was briefly dried and then dissolved in tetrahydrofuran (THF) (total solution weight: 1500 g). This solution was added dropwise to 17 L of methanol, and the precipitated solid was collected by filtration. The obtained white solid was dried under reduced pressure at 50° C. for 48 hours to obtain the final product (yield: 259.16 g).

得られた共重合ポリマーのモノマー比をNMRにより分析したところ、AMS:MMA=58:42(モル比)であった。また、この共重合ポリマーに分子量をGPC分析したところ、数平均分子量(Mn):116427、重量平均分子量(Mw):262908、分子量分布(Mw/Mn):2.3であった。さらに、得られた共重合ポリマーを画像観察可能な熱重量示差熱分析装置(TG-DTA)で分析(N環境、昇温速度10℃/分)したところ、分解開始温度は約200℃、分解終了温度は約350℃であった。一般的なポリマーは継続的な加熱により、ポリマー分子の末端から徐々に分解していくために変色が起こり最終的には黒色の残渣が残るが、実施例1の共重合ポリマーはそのような分解に伴う変色がなく、モノマーに完全に分解していく様子が確認され、解重合性が高いことが確認された。 When the monomer ratio of the obtained copolymer was analyzed by NMR, it was found that AMS:MMA=58:42 (molar ratio). Further, when the molecular weight of this copolymer was analyzed by GPC, it was found that the number average molecular weight (Mn): 116427, the weight average molecular weight (Mw): 262908, and the molecular weight distribution (Mw/Mn): 2.3. Furthermore, when the obtained copolymer was analyzed using a thermogravimetric differential thermal analyzer (TG-DTA) capable of image observation ( N2 environment, heating rate 10°C/min), the decomposition initiation temperature was approximately 200°C. The decomposition end temperature was about 350°C. Conventional polymers gradually decompose from the end of the polymer molecule due to continuous heating, causing discoloration and eventually leaving a black residue, but the copolymer of Example 1 does not undergo such decomposition. It was confirmed that there was no discoloration associated with the depolymerization, and that the monomer was completely decomposed, confirming that the depolymerization property was high.

[比較例1]
(ポリカーボネートのTG-DTA分析
解重合性が低いポリマーの一例として、ポリカーボネートのTG-DTA分析(N環境、昇温速度10℃/分)を行った結果、分解開始温度は約400℃であり徐々に黒色に変化し、分解終了温度は約550℃で、分解は約70%まで進むが約30%は分解されずに残渣として残ることが観察された。
[Comparative example 1]
(TG-DTA analysis of polycarbonate As an example of a polymer with low depolymerizability, TG-DTA analysis of polycarbonate ( N2 environment, temperature increase rate 10°C/min) was performed, and the decomposition initiation temperature was approximately 400°C. It was observed that the color gradually changed to black, the decomposition end temperature was about 550° C., and decomposition progressed to about 70%, but about 30% remained as a residue without being decomposed.

[実施例2]
実施例1で得られたAMSとMMAの共重合ポリマーに対し、以下の条件で熱分解ガスクロマトグラフ質量分析(PY-GC/MS)を行った。その結果、加熱により気化する成分として、AMSとMMAが主成分として検出された。以下、PY-GC/MS分析の条件を下記表1~3に示す。
[Example 2]
The copolymer of AMS and MMA obtained in Example 1 was subjected to pyrolysis gas chromatography mass spectrometry (PY-GC/MS) under the following conditions. As a result, AMS and MMA were detected as the main components that vaporize upon heating. The conditions for PY-GC/MS analysis are shown in Tables 1 to 3 below.

Figure 2023179402000001
Figure 2023179402000001

Figure 2023179402000002
Figure 2023179402000002

Figure 2023179402000003
Figure 2023179402000003

[実施例3]
実施例1で得られたAMSとMMAの共重合ポリマーを、N環境下、昇温速度10℃/分で400℃まで温度上昇させ、気化した成分を室温に冷却して液体成分が得た。この液体成分を実施例1と同様にしてポリマー合成した結果、実施例1と同様のAMSとMMAの共重合ポリマーが得られ、反復利用が可能であることが確認できた。
[Example 3]
The copolymer of AMS and MMA obtained in Example 1 was heated to 400°C at a heating rate of 10°C/min in an N2 environment, and the vaporized component was cooled to room temperature to obtain a liquid component. . As a result of polymer synthesis using this liquid component in the same manner as in Example 1, a copolymer of AMS and MMA similar to that in Example 1 was obtained, and it was confirmed that repeated use was possible.

本発明は、熱によって重合体(ポリマー)が単量体(モノマー)に分解する解重合性を有する共重合ポリマーの再利用方法に関し、特に熱により解重合した際に残渣が残りにくい解重合性を有する共重合ポリマーの再利用方法に関する。 The present invention relates to a method for recycling a copolymer having a depolymerizable property in which the polymer is decomposed into monomers by heat , and in particular, a depolymerization method that does not leave a residue when depolymerized by heat. The present invention relates to a method for recycling a copolymer having properties.

近年、プラスチック(ポリマー)は耐久性や耐熱性に優れる素材としての技術開発が進み様々な素材が市場で使用されている。一方、これらプラスチック材料は環境では分解されないことから環境への影響が指摘されているが、再利用が難しく廃棄することも多い。特に金属とプラスチックが複合化された製品が多くなってきているが、このような複合材料は、それぞれに分離することが難しく埋め立て処理しかないのが現状である。 In recent years, the technology of plastic (polymer) as a material with excellent durability and heat resistance has been developed, and various materials are being used on the market. On the other hand, it has been pointed out that these plastic materials have an impact on the environment because they do not decompose in the environment, but they are difficult to reuse and are often discarded. In particular, there are an increasing number of products that are made of composite metals and plastics, but these composite materials are currently difficult to separate into their individual parts and can only be disposed of in landfills.

このため、生分解性ポリマーなどプラスチックを分解可能としたり、プラスチックを回収して再利用したりする様々な取り組みが進められている。 For this reason, various efforts are underway to make plastics degradable, such as biodegradable polymers, and to collect and reuse plastics.

しかしながら、生分解性ポリマーは、生分解途中の物質の環境における安全性や、分解途中の物質がマイクロプラスチックとなり、これらを環境生物・海洋生物が摂取した時の影響などが明確になっていない。さらに、生分解性ポリマーは、廃棄物削減に対しては一定の効果があるものの、再利用という課題に関しては、何ら解決するものではない。さらに、廃棄物削減に限ってみても、分解するまでの時間が数カ月以上かかる場合もある、という問題点がある。 However, it is not clear whether biodegradable polymers are safe in the environment as they are in the process of being biodegraded, or the effects of microplastics that are ingested by environmental and marine organisms. Furthermore, although biodegradable polymers have a certain effect on waste reduction, they do not solve the problem of reuse. Furthermore, even when looking only at reducing waste, there is a problem in that it can take several months or more for decomposition.

また、ペットボトルなどは、リサイクルして再利用されているが、再利用するためには特殊な化学薬品などを使用してモノマーにまで分解する必要があり、多大な手間とエネルギーを必要とする、という問題点がある。さらに再利用の用途も限定される、という問題点もある。 In addition, plastic bottles and other items are recycled and reused, but in order to be reused, they must be broken down into monomers using special chemicals, which requires a great deal of effort and energy. , there is a problem. Another problem is that the applications for reuse are also limited.

そこで、熱により簡単な方法でプラスチックを分解し、再利用できる素材や方法が求められている。 Therefore, there is a need for materials and methods that can easily decompose plastics using heat and reuse them.

本発明は、上記課題に鑑みてなされたものであり、熱によって重合体(ポリマー)が単量体(モノマー)に分解する解重合性を有し、再利用することが容易な解重合性共重合ポリマーの再利用方法を提供することを目的とする。 The present invention has been made in view of the above problems, and has a depolymerizable property in which a polymer is decomposed into monomers by heat , and can be easily reused. The purpose of this invention is to provide a method for reusing copolymerized polymers.

上記課題を解決するために本発明は、加熱によりモノマーに分解する解重合性ホモポリマーを構成するモノマー2種を共重合させた解重合性共重合ポリマーの再利用方法であって、前記2種のモノマーが、メタクリル酸メチル(MMA)及びα-メチルスチレン(AMS)で、前記メタクリル酸メチル(MMA)及び前記α-メチルスチレン(AMS)の重量比が20:80~80:20であり、前記解重合性のホモポリマーが、ポリメタクリル酸メチル(PMMA)、及びポリα-メチルスチレン(PAMS)であり、前記解重合性共重合ポリマーを200~300℃の解重合開始温度に加熱して解重合し、この解重合により得られる液体成分から前記解重合性共重合ポリマーを再度合成する、解重合性共重合ポリマーの再利用方法を提供する(発明1)。 In order to solve the above problems, the present invention provides a method for recycling a depolymerizable copolymer obtained by copolymerizing two types of monomers constituting a depolymerizable homopolymer that decomposes into monomers by heating, the method comprising: The monomers are methyl methacrylate (MMA) and α-methylstyrene (AMS), and the weight ratio of the methyl methacrylate (MMA) and the α-methylstyrene (AMS) is 20:80 to 80:20, The depolymerizable homopolymers are polymethyl methacrylate (PMMA) and polyα-methylstyrene (PAMS), and the depolymerizable copolymer is heated to a depolymerization initiation temperature of 200 to 300°C. Provided is a method for recycling a depolymerizable copolymer, which comprises depolymerizing and resynthesizing the depolymerizable copolymer from a liquid component obtained by this depolymerization (Invention 1).

上記発明(発明1)においては、前記解重合性共重合ポリマーの加熱による解重合における温度の上限が約350℃であり、この解重合性共重合ポリマーの加熱による残渣が、該解重合性共重合ポリマー全量に対して10重量%以下であることが好ましい(発明2)。 In the above invention (invention 1) , the upper limit of the temperature in the depolymerization by heating of the depolymerizable copolymer is about 350°C, and the residue of the depolymerizable copolymer by heating is The amount is preferably 10% by weight or less based on the total amount of polymerized polymer (Invention 2).

本発明は、解重合性の高いホモポリマーを構成するモノマー同士を2成分以上で共重合させた解重合性共重合ポリマーであり、加熱による簡単な方法でモノマーを高収率で回収できるので、リサイクルが容易となっている。また、加熱分解後の残渣が少ないため、金属などの異種材料とこのポリマーとを組み合わせて複合材料としても、加熱するだけでポリマーを分解してモノマーを回収できるため素材の分別回収が可能となる。 The present invention is a depolymerizable copolymer obtained by copolymerizing two or more monomers constituting a highly depolymerizable homopolymer, and the monomer can be recovered in high yield by a simple method by heating. It is easy to recycle. In addition, since there is little residue after thermal decomposition, it is possible to use composite materials by combining dissimilar materials such as metals with this polymer, as the polymer can be decomposed and the monomer recovered simply by heating, making it possible to separate and recover the material. .

以下の本発明の解重合性共重合ポリマーの再利用方法について、詳細に説明する。 The method for recycling the depolymerizable copolymer of the present invention will be described in detail below.

(解重合性ホモポリマー及びモノマー)
本発明においては、原材料として加熱によりモノマーに分解する解重合性ホモポリマーを構成するモノマーを用いる。
(Depolymerizable homopolymer and monomer)
In the present invention, monomers constituting a depolymerizable homopolymer that decomposes into monomers by heating are used as raw materials.

この解重合性ホモポリマーは、所定の単量体(モノマー)を単独で重合させたものであり、加熱によりモノマーに分解して、モノマー回収率90%以上と極めて高い回収率を有するものが好ましい。このようなモノマー回収率の高い解重合性ホモポリマーとしては、ポリメタクリル酸メチル(PMMA)、ポリα-メチルスチレン(PAMS)、ポリテトラフルオロエチレン(PTFE)などが知られている(例えば、大谷肇ら:「高分子の熱分解特性」 高分子, 46, 394 (1997)、大澤善次郎ら:「高分子の熱劣化」 Materials Life,8[4], 165 (1996)など)。これらのホモポリマーを構成するモノマー(単量体成分)は、メタクリル酸メチル(MMA)、α-メチルスチレン(AMS)、テトラフルオロエチレン(TFE)である。 This depolymerizable homopolymer is obtained by polymerizing a predetermined monomer alone, and preferably has an extremely high monomer recovery rate of 90% or more when it is decomposed into monomers by heating. . Polymethyl methacrylate (PMMA), polyα-methylstyrene (PAMS), and polytetrafluoroethylene (PTFE) are known as such depolymerizable homopolymers with a high monomer recovery rate (for example, Otani et al. Hajime et al.: “Thermal decomposition characteristics of polymers” Kobunshi, 46, 394 (1997), Zenjiro Osawa et al.: “Thermal deterioration of polymers” Materials Life, 8 [4], 165 (1996), etc.). The monomers (monomer components) constituting these homopolymers are methyl methacrylate (MMA), α-methylstyrene (AMS), and tetrafluoroethylene (TFE).

(解重合性共重合ポリマー)
本発明の解重合性共重合ポリマーは、上述したようなモノマー(単量体成分)を2種又は3種以上共重合したものである。
(Depolymerizable copolymer)
The depolymerizable copolymer of the present invention is a copolymer of two or more monomers (monomer components) as described above.

この解重合性共重合ポリマーにおけるモノマーの配合割合は特に制限はないが、例えば、解重合性共重合ポリマーが2種のモノマーからなる場合、第一のモノマー20~80重量部、好ましくは40~60重量部と、第二のモノマー80~20重量部、好ましくは60~40重量部とを配合して共重合させればよい The blending ratio of monomers in this depolymerizable copolymer is not particularly limited, but for example, when the depolymerizable copolymer consists of two types of monomers, the first monomer is 20 to 80 parts by weight, preferably 40 to 80 parts by weight. 60 parts by weight and 80 to 20 parts by weight, preferably 60 to 40 parts by weight of the second monomer may be blended and copolymerized .

このように2種の解重合性のホモポリマーを構成するモノマーを共重合させることにより、元となる各解重合性のホモポリマーの特性を調整することができる。この特性としては、例えば、解重合開始温度、柔軟性、機械的強度などであり、モノマーの配合比に応じて適宜調整することが可能となる。 By copolymerizing the monomers constituting two types of depolymerizable homopolymers in this way, the characteristics of each of the base depolymerizable homopolymers can be adjusted. These characteristics include, for example, depolymerization initiation temperature, flexibility, mechanical strength, etc., and can be adjusted as appropriate depending on the blending ratio of monomers.

この解重合性共重合ポリマーは、解重合により解重合性ホモポリマーを構成するモノマーの90重量%以上と極めて高い回収率を有し、リサイクル効率に優れたものが好ましい。さらに、解重合性共重合ポリマーの加熱による残渣が、解重合性共重合ポリマー全量に対して10重量%以下であり、取扱い性にも優れていることが好ましい。 The depolymerizable copolymer preferably has an extremely high recovery rate of 90% by weight or more of the monomers constituting the depolymerizable homopolymer upon depolymerization, and is excellent in recycling efficiency. Further, it is preferable that the amount of residue after heating of the depolymerizable copolymer is 10% by weight or less based on the total amount of the depolymerizable copolymer, and that the depolymerizable copolymer has excellent handling properties.

上述したような2種の解重合性のホモポリマーを構成するモノマーを共重合させた解重合性共重合ポリマーとしては、メタクリル酸メチル(MMA)と、α-メチルスチレン(AMS)とを共重合したものであり、好ましくはメタクリル酸メチル(MMA):α-メチルスチレン(AMS)が20:80~80:20(重量比)、特に40:60~60:40(重量比)で構成される共重合ポリマーである。この解重合性共重合ポリマーは、その配合割合により200~300℃程度の範囲で解重合開始温度を変動させることができるので、ポリマーの回収が容易である。さらに、その配合割合により得られる解重合性共重合ポリマーの柔軟性や機械的強度を調整することもできる。 A depolymerizable copolymer obtained by copolymerizing the monomers constituting the two types of depolymerizable homopolymers described above is a copolymer of methyl methacrylate (MMA) and α-methylstyrene (AMS). It is preferably composed of methyl methacrylate (MMA):α-methylstyrene (AMS) in a ratio of 20:80 to 80:20 (weight ratio), particularly 40:60 to 60:40 (weight ratio). It is a copolymer. The depolymerization start temperature of this depolymerizable copolymer can be varied within a range of about 200 to 300°C depending on the blending ratio, so the polymer can be easily recovered. Furthermore, the flexibility and mechanical strength of the resulting depolymerizable copolymer can be adjusted by changing the blending ratio.

上記解重合性共重合ポリマーには、必要に応じて、任意の適切な添加剤を配合してもよい。この添加剤としては、例えば、架橋剤、粘着付与剤、可塑剤(例えば、トリメリット酸エステル系可塑剤、ピロメリット酸エステル系可塑剤等)、顔料、染料、充填剤、老化防止剤、導電材、帯電防止剤、紫外線吸収剤、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤等が挙げられる。 Any appropriate additives may be added to the depolymerizable copolymer, if necessary. These additives include, for example, crosslinking agents, tackifiers, plasticizers (e.g., trimellitic acid ester plasticizers, pyromellitic acid ester plasticizers, etc.), pigments, dyes, fillers, anti-aging agents, conductive materials, antistatic agents, ultraviolet absorbers, light stabilizers, release modifiers, softeners, surfactants, flame retardants, antioxidants, and the like.

(解重合性共重合ポリマーの製造方法)
上記解重合性共重合ポリマーの製造方法に特に制限はないが、例えば、ラジカル重合反応により共重合させればよい。具体的には、原材料となるモノマーをラジカル重合開始剤、架橋剤などを混合した溶媒とともに不活性ガス雰囲気下に密封し、長時間攪拌を継続して共重合させ、貧溶媒に析出させて回収することにより製造することができる。
(Method for producing depolymerizable copolymer)
There is no particular restriction on the method for producing the above-mentioned depolymerizable copolymer, but for example, copolymerization may be carried out by a radical polymerization reaction. Specifically, the raw material monomer is sealed in an inert gas atmosphere with a solvent mixed with a radical polymerization initiator, a crosslinking agent, etc., copolymerized by continuous stirring for a long time, and recovered by precipitation in a poor solvent. It can be manufactured by

以上、本発明の解重合性共重合ポリマーの再利用方法について説明してきたが、本発明は、特定の種の解重合性のホモポリマーを構成するモノマーを共重合させたものである。上述したような解重合性共重合ポリマーは、従来はリサイクルが困難であった金属などの異種材料との成形体としても加熱により容易にモノマーを回収することができるので、リサイクル性に優れており、その産業上の利用性は極めて大きい。 The method for recycling the depolymerizable copolymer of the present invention has been described above, but the present invention involves copolymerizing monomers constituting two specific types of depolymerizable homopolymers . The depolymerizable copolymer described above has excellent recyclability because the monomer can be easily recovered by heating even when molded with dissimilar materials such as metals, which were previously difficult to recycle. , its industrial applicability is extremely large.

以下の具体的な実施例に基づき本発明をさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。 The present invention will be explained in more detail based on the following specific examples, but the present invention is not limited to the following examples.

[実施例1]
(解重合性共重合ポリマーの合成)
5Lの4つ口フラスコにイオン交換水2152.97g、炭酸ナトリウム2.20g、KSソープ(固形分90%)を投入し、攪拌しながら溶解させた。溶解後、α-メチルスチレン(AMS)795.08g、メタクリル酸メチル(MMA)274.12gを加えて150rpmで攪拌しながら系内をアルゴンガスで置換した。
[Example 1]
(Synthesis of depolymerizable copolymer)
2152.97 g of ion-exchanged water, 2.20 g of sodium carbonate, and KS soap (solid content 90%) were placed in a 5 L four-necked flask and dissolved with stirring. After dissolving, 795.08 g of α-methylstyrene (AMS) and 274.12 g of methyl methacrylate (MMA) were added, and the system was purged with argon gas while stirring at 150 rpm.

フラスコ内の温度が3~4℃になったことを確認したら、亜ニチオン酸ナトリウム0.6437g、エチレンジアミン四酢酸鉄ナトリウム三水和物0.1107g、エチレンジアミン四酢酸四ナトリウム四水和物0.2751g、ナトリウムホルムアルデヒドスホキシレート0.4179g、及びクメンハイドロパーオキサイド(80%)2.1615gを順次添加して、3~4℃にフラスコ内の温度を保持しながら63時間攪拌を行った。 After confirming that the temperature inside the flask has reached 3 to 4°C, add 0.6437 g of sodium dithionite, 0.1107 g of sodium iron ethylenediaminetetraacetate trihydrate, and 0.2751 g of tetrasodium ethylenediaminetetraacetate tetrahydrate. , 0.4179 g of sodium formaldehyde sulfoxylate, and 2.1615 g of cumene hydroperoxide (80%) were sequentially added, and the mixture was stirred for 63 hours while maintaining the temperature inside the flask at 3 to 4°C.

63時間の攪拌後、2,6-ジ-t-ブチル-4-メチルフェノール5.50gを添加し、反応を停止させた。 After stirring for 63 hours, 5.50 g of 2,6-di-t-butyl-4-methylphenol was added to stop the reaction.

上記反応液を15Lのメタノールに滴下し、析出した白色固体をろ過により回収した。得られた白色固体を簡易乾燥後、テトラヒドロフラン(THF)に溶解した(溶液総重量1500g)。この溶液を17Lのメタノールに滴下し、析出した固体をろ過により回収した。得られた白色固体を50℃で48時間減圧乾燥し最終物を得た(収量:259.16g)。 The above reaction solution was added dropwise to 15 L of methanol, and the precipitated white solid was collected by filtration. The obtained white solid was briefly dried and then dissolved in tetrahydrofuran (THF) (total solution weight: 1500 g). This solution was added dropwise to 17 L of methanol, and the precipitated solid was collected by filtration. The obtained white solid was dried under reduced pressure at 50° C. for 48 hours to obtain the final product (yield: 259.16 g).

得られた共重合ポリマーのモノマー比をNMRにより分析したところ、AMS:MMA=58:42(モル比)であった。また、この共重合ポリマーに分子量をGPC分析したところ、数平均分子量(Mn):116427、重量平均分子量(Mw):262908、分子量分布(Mw/Mn):2.3であった。さらに、得られた共重合ポリマーを画像観察可能な熱重量示差熱分析装置(TG-DTA)で分析(N環境、昇温速度10℃/分)したところ、分解開始温度は約200℃、分解終了温度は約350℃であった。一般的なポリマーは継続的な加熱により、ポリマー分子の末端から徐々に分解していくために変色が起こり最終的には黒色の残渣が残るが、実施例1の共重合ポリマーはそのような分解に伴う変色がなく、モノマーに完全に分解していく様子が確認され、解重合性が高いことが確認された。 When the monomer ratio of the obtained copolymer was analyzed by NMR, it was found that AMS:MMA=58:42 (molar ratio). Further, when the molecular weight of this copolymer was analyzed by GPC, it was found that the number average molecular weight (Mn): 116427, the weight average molecular weight (Mw): 262908, and the molecular weight distribution (Mw/Mn): 2.3. Furthermore, when the obtained copolymer was analyzed using a thermogravimetric differential thermal analyzer (TG-DTA) capable of image observation ( N2 environment, heating rate 10°C/min), the decomposition initiation temperature was approximately 200°C, The decomposition end temperature was about 350°C. Conventional polymers gradually decompose from the end of the polymer molecule due to continuous heating, causing discoloration and eventually leaving a black residue, but the copolymer of Example 1 does not undergo such decomposition. It was confirmed that there was no discoloration associated with the depolymerization, and that the monomer was completely decomposed, confirming that the depolymerization property was high.

[比較例1]
(ポリカーボネートのTG-DTA分析
解重合性が低いポリマーの一例として、ポリカーボネートのTG-DTA分析(N環境、昇温速度10℃/分)を行った結果、分解開始温度は約400℃であり徐々に黒色に変化し、分解終了温度は約550℃で、分解は約70%まで進むが約30%は分解されずに残渣として残ることが観察された。
[Comparative example 1]
(TG-DTA analysis of polycarbonate As an example of a polymer with low depolymerizability, TG-DTA analysis of polycarbonate ( N2 environment, temperature increase rate 10°C/min) was performed, and the decomposition initiation temperature was approximately 400°C. It was observed that the color gradually changed to black, the decomposition end temperature was about 550° C., and decomposition progressed to about 70%, but about 30% remained as a residue without being decomposed.

[実施例2]
実施例1で得られたAMSとMMAの共重合ポリマーに対し、以下の条件で熱分解ガスクロマトグラフ質量分析(PY-GC/MS)を行った。その結果、加熱により気化する成分として、AMSとMMAが主成分として検出された。以下、PY-GC/MS分析の条件を下記表1~3に示す。
[Example 2]
The copolymer of AMS and MMA obtained in Example 1 was subjected to pyrolysis gas chromatography mass spectrometry (PY-GC/MS) under the following conditions. As a result, AMS and MMA were detected as the main components that vaporize upon heating. The conditions for PY-GC/MS analysis are shown in Tables 1 to 3 below.

Figure 2023179402000004
Figure 2023179402000004

Figure 2023179402000005
Figure 2023179402000005

Figure 2023179402000006
Figure 2023179402000006

[実施例3]
実施例1で得られたAMSとMMAの共重合ポリマーを、N環境下、昇温速度10℃/分で400℃まで温度上昇させ、気化した成分を室温に冷却して液体成分が得た。この液体成分を実施例1と同様にしてポリマー合成した結果、実施例1と同様のAMSとMMAの共重合ポリマーが得られ、反復利用が可能であることが確認できた。
[Example 3]
The copolymer of AMS and MMA obtained in Example 1 was heated to 400°C at a heating rate of 10°C/min in an N2 environment, and the vaporized component was cooled to room temperature to obtain a liquid component. . As a result of polymer synthesis using this liquid component in the same manner as in Example 1, a copolymer of AMS and MMA similar to that in Example 1 was obtained, and it was confirmed that repeated use was possible.

Claims (4)

加熱や光などでモノマーに分解する解重合性ホモポリマーを構成するモノマーを2種又は3種以上共重合させた、解重合性共重合ポリマー。 A depolymerizable copolymer made by copolymerizing two or more types of monomers that constitute a depolymerizable homopolymer that decomposes into monomers by heating, light, etc. 前記解重合性共重合ポリマーの解重合後のモノマーの回収率が90重量%以上である、請求項1に記載の解重合性共重合ポリマー。 The depolymerizable copolymer according to claim 1, wherein the recovery rate of the monomer after depolymerization of the depolymerizable copolymer is 90% by weight or more. 前記解重合性共重合ポリマーの加熱による残渣が、該解重合性共重合ポリマー全量に対して10重量%以下である、請求項1に記載の解重合性共重合ポリマー。 2. The depolymerizable copolymer according to claim 1, wherein a residue of the depolymerizable copolymer after heating is 10% by weight or less based on the total amount of the depolymerizable copolymer. 前記解重合性のホモポリマーが、ポリメタクリル酸メチル(PMMA)、ポリα-メチルスチレン(PAMS)、ポリテトラフルオロエチレン(PTFE)から選ばれる2種以上である、請求項1~3のいずれか1項に記載の解重合性共重合ポリマー。 Any one of claims 1 to 3, wherein the depolymerizable homopolymer is two or more types selected from polymethyl methacrylate (PMMA), poly α-methylstyrene (PAMS), and polytetrafluoroethylene (PTFE). The depolymerizable copolymer according to item 1.
JP2023128513A 2022-06-07 2023-08-07 Method for reusing depolymerizable copolymer Pending JP2023179402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023128513A JP2023179402A (en) 2022-06-07 2023-08-07 Method for reusing depolymerizable copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022092563A JP2023179310A (en) 2022-06-07 2022-06-07 Depolymerizable copolymer
JP2023128513A JP2023179402A (en) 2022-06-07 2023-08-07 Method for reusing depolymerizable copolymer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022092563A Division JP2023179310A (en) 2022-06-07 2022-06-07 Depolymerizable copolymer

Publications (1)

Publication Number Publication Date
JP2023179402A true JP2023179402A (en) 2023-12-19

Family

ID=89118090

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022092563A Pending JP2023179310A (en) 2022-06-07 2022-06-07 Depolymerizable copolymer
JP2023128513A Pending JP2023179402A (en) 2022-06-07 2023-08-07 Method for reusing depolymerizable copolymer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022092563A Pending JP2023179310A (en) 2022-06-07 2022-06-07 Depolymerizable copolymer

Country Status (2)

Country Link
JP (2) JP2023179310A (en)
WO (1) WO2023238559A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4851086A (en) * 1971-10-29 1973-07-18
JPS6070442A (en) * 1983-09-28 1985-04-22 Fujitsu Ltd Formation of pattern
JPS61249049A (en) * 1985-04-26 1986-11-06 Kuraray Co Ltd Method for developing resist
JP4361393B2 (en) * 2004-03-03 2009-11-11 株式会社クラレ Methacrylic resin composition for optical member and optical member using the same
JP5010184B2 (en) * 2006-06-07 2012-08-29 電気化学工業株式会社 Optical molded body

Also Published As

Publication number Publication date
WO2023238559A1 (en) 2023-12-14
JP2023179310A (en) 2023-12-19

Similar Documents

Publication Publication Date Title
JP4189815B2 (en) Process for the production and use of impact-resistant materials comprising block copolymers obtained by controlled radical polymerization in the presence of nitroxides
US6191231B1 (en) Grafting of polymers with fluorocarbon compounds
US6380304B1 (en) Mass polymerized rubber-modified monovinylidene aromatic copolymer compositions
JP2005515281A6 (en) Method for producing and using impact resistant materials comprising block copolymers obtained by controlled radical polymerization in the presence of nitroxides
KR102023226B1 (en) Method for the preparation of styrenic fluoropolymers
US9371446B2 (en) Monovinylaromatic polymer composition comprising a polymer made from renewable resources as a dispersed phase
CN110891991A (en) Rubbery polymer, graft copolymer and thermoplastic resin composition
FI59606C (en) POLYMER SHEET METAL FOR THERMOPLASTIC MATERIALS
EP1572802B1 (en) Styrenic polymer composites
Zhu et al. Core–shell particles of poly (methyl methacrylate)‐block‐poly (n‐butyl acrylate) synthesized via reversible addition–fragmentation chain‐transfer emulsion polymerization and the polymer's application in toughening polycarbonate
JP2023179402A (en) Method for reusing depolymerizable copolymer
JPS5855183B2 (en) Manufacturing method of resin composition
Kwak et al. Synthesis of mono functional carboxylic acid poly (methyl methacrylate) in aqueous medium using sur-iniferter. Application to the synthesis of graft copolymers polyethylene-g-poly (methyl methacrylate) and the compatibilization of LDPE/PVDF blends
Domenichelli et al. Styrene and substituted styrene grafted functional polyolefins via nitroxide mediated polymerization
CN114667314B (en) Thermoplastic resin composition, method for preparing thermoplastic resin composition, and molded article comprising thermoplastic resin composition
JP3472308B2 (en) Impact resistant methacrylic resin
Kroeze et al. Synthesis of Segmented (PB (PS-block-PB) n) and (PB (SAN-block-PB) n) Block Copolymers via Polymeric Thermal Iniferters
JPS6020905A (en) Novel thermoplastic polymer
Li et al. Graft reaction of styrene-acrylonitrile onto metallocene-based polyethylene-octene elastomer and its toughening effect on SAN
CN112334502B (en) Polymerized silicone and acrylic monomers
JPH0425303B2 (en)
Lü et al. New synthesis of amphiphilic copolymers PE-g-PEO via esterfication
Xiong et al. Suspension grafting copolymerization of EPM-g-MAN and its toughening effect on SAN resin
Ponnupandian Macromolecular Engineering with Tailor-made Functional Fluoropolymers via RAFT Polymerization and Diels-Alder Reaction
JP3662054B2 (en) Styrenic resin composition and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528