JP2023176800A - ショベル及びショベルの管理システム - Google Patents

ショベル及びショベルの管理システム Download PDF

Info

Publication number
JP2023176800A
JP2023176800A JP2022089281A JP2022089281A JP2023176800A JP 2023176800 A JP2023176800 A JP 2023176800A JP 2022089281 A JP2022089281 A JP 2022089281A JP 2022089281 A JP2022089281 A JP 2022089281A JP 2023176800 A JP2023176800 A JP 2023176800A
Authority
JP
Japan
Prior art keywords
bucket
coordinates
tip
boom
end attachment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022089281A
Other languages
English (en)
Inventor
圭二 本田
Keiji Honda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2022089281A priority Critical patent/JP2023176800A/ja
Publication of JP2023176800A publication Critical patent/JP2023176800A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

【課題】エンドアタッチメントの所定部位の位置をより正確に算出できるショベルを提供すること。【解決手段】ショベル100は、下部走行体1と、下部走行体1に搭載された上部旋回体3と、上部旋回体3に取り付けられた、ブーム4、アーム5、及びバケット6を含むアタッチメントATと、アタッチメントATの姿勢を検出する姿勢検出装置と、姿勢検出装置の出力に基づいてバケット6の爪6aの先端の推定位置を算出するように構成されたコントローラ30と、を備える。コントローラ30は、ブームフートピンから所定の方向に既知の距離DSだけ離れた基準位置RPに爪6aの先端が位置付けられたときの姿勢検出装置の出力に基づき、爪6aの先端の推定位置と基準位置RPとの間の位置ズレを算出するように構成されている。【選択図】図6

Description

本開示は、ショベル及びショベルの管理システムに関する。
従来、既知のブーム長、アーム長、及びバケット長と、角度センサで測定したブーム角度、アーム角度、及びバケット角度とに基づいてバケットの先端部位の座標位置を算出するショベルが知られている(特許文献1参照。)。このショベルは、ブーム角度及びアーム角度を不変としながらバケットを開閉させてバケットの先端を第1位置及び第2位置のそれぞれに接触させ、第1位置と第2位置との間の距離の実測値とその距離の算出値との間の差に基づいてバケット角度の計測誤差を導き出すように構成されている。
特開平7-150596号公報
しかしながら、上述の構成は、第1位置と第2位置との間の距離の実測値とその距離の算出値との間の差がバケット角度の計測誤差によって生じることを前提としている。そのため、アームに取り付けられていたバケットが別の形状を有するバケットに交換された場合、ショベルは、バケットの先端部位の座標位置を正確に算出することができなくなってしまう。バケットの形状の違いによって生じる差がバケット角度の計測誤差によって生じる差であると認識されてしまうためである。
そこで、エンドアタッチメントの所定部位の位置をより正確に算出できるショベルを提供することが望まれる。
本発明の一実施形態に係るショベルは、下部走行体と、前記下部走行体に搭載された上部旋回体と、前記上部旋回体に取り付けられた、ブーム、アーム、及びエンドアタッチメントを含むアタッチメントと、前記アタッチメントの姿勢を検出する姿勢検出装置と、前記姿勢検出装置の出力に基づいて前記エンドアタッチメントの所定部位の推定位置を算出するように構成された制御装置と、を備え、前記制御装置は、ブームフートピンから所定の方向に既知の距離だけ離れた第1位置に前記エンドアタッチメントの所定部位が位置付けられたときの前記姿勢検出装置の出力に基づき、前記エンドアタッチメントの所定部位の推定位置と前記第1位置との間の位置ズレを算出するように構成されている。
上述のショベルは、エンドアタッチメントの所定部位の位置をより正確に算出できる。
本発明の実施例に係るショベルの側面図である。 ショベルの駆動系の構成例を示す図である。 ショベルの管理システムの構成例を示す図である。 基準座標系を示すショベルの側面図である。 基準座標系を示すショベルの上面図である。 情報取得処理の一例の流れを示すフローチャートである。 情報取得処理の一例を実行するショベルの側面図である。 情報取得処理の別の一例を実行するショベルの側面図である。
図1は、本発明の実施例に係る建設機械の一例である掘削機としてのショベル100を示す側面図である。ショベル100の下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載される。上部旋回体3にはブーム4が取り付けられる。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられる。エンドアタッチメントとして田面バケット、法面バケット、幅広バケット、又は幅狭バケット等が取り付けられていてもよい。
ブーム4、アーム5、及びバケット6は、アタッチメントATの一例である掘削アタッチメントを構成する。そして、ブーム4はブームシリンダ7によって駆動され、アーム5はアームシリンダ8によって駆動され、バケット6はバケットシリンダ9によって駆動される。ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケットリンクにはバケット角度センサS3が取り付けられる。
ブーム角度センサS1は、ブーム4の回動角度を検出するセンサである。図示例では、ブーム角度センサS1は、重力加速度を検出することで水平面に対するブーム4の傾斜角を検出する加速度センサである。図示例では、ブーム角度センサS1は上部旋回体3とブーム4とを連結するブームフートピンの回りのブーム4の回動角度をブーム角度として検出する。
アーム角度センサS2は、アーム5の回動角度を検出するセンサである。図示例では、アーム角度センサS2は、重力加速度を検出することで水平面に対するアーム5の傾斜角を検出する加速度センサである。図示例では、アーム角度センサS2はブーム4とアーム5とを連結するアームピンの回りのアーム5の回動角度をアーム角度として検出する。
バケット角度センサS3は、バケット6の回動角度を検出するセンサである。図示例では、バケット角度センサS3は、重力加速度を検出することで水平面に対するバケット6の傾斜角を検出する加速度センサである。図示例では、バケット角度センサS3はアーム5とバケット6を連結するバケットピンの回りのバケット6の回動角度をバケット角度として検出する。
ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3の少なくとも一つは、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ等であってもよい。或いは、ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3の少なくとも一つは、加速度センサと角速度センサ(ジャイロセンサ)とを組み合わせた慣性計測装置であってもよい。そして、ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3は、アタッチメントATの姿勢を算出するための姿勢検出装置として機能する。
上部旋回体3にはキャビン10が設けられ且つエンジン11等の動力源が搭載される。また、上部旋回体3には機体傾斜センサS4、旋回角速度センサS5、及び測位装置S6が取り付けられる。キャビン10内には、入力装置D1、音出力装置D2、表示装置D3、記憶装置D4、コントローラ30、及び操作支援装置50が搭載される。
コントローラ30は、ショベル100の駆動制御を行う制御装置である。図示例では、コントローラ30は、CPU及び内部メモリを含む演算処理装置(処理回路)で構成される。そして、コントローラ30の各種機能はCPUが内部メモリに格納されたプログラムを実行することで実現される。
操作支援装置50は操作者によるショベル100の操作を支援する装置である。図示例では、操作支援装置50は、操作者が設定した目標地形の表面とバケット6の先端(爪先)位置との鉛直方向における距離を視覚的に且つ聴覚的に操作者に知らせることで操作者によるショベル100の操作をガイドする機能を実行する。以下では、この機能は「マシンガイダンス機能」と称される。操作支援装置50は、その距離を視覚的に操作者に知らせるのみであってもよく、聴覚的に操作者に知らせるのみであってもよい。具体的には、操作支援装置50は、コントローラ30と同様、コントローラの一つとして、CPU及び内部メモリを含む演算処理装置で構成される。そして、操作支援装置50の各種機能はCPUが内部メモリに格納されたプログラムを実行することで実現される。また、操作支援装置50はコントローラ30に一体的に組み込まれていてもよい。
或いは、操作支援装置50は、操作者によるショベル100の手動操作を自動的に支援する機能を実行してもよい。以下では、この機能は「マシンコントロール機能」と称される。マシンコントロール機能では、操作支援装置50は、例えば、予め設定された目標軌道に沿ってバケット6の爪6aの先端を移動させるために、操作者によるブーム4、アーム5、及びバケット6の少なくとも一つに対する手動操作が行われた場合に、ブーム4、アーム5、及びバケット6の少なくとも一つを自動的に動作させてもよい。具体的には、操作支援装置50は、操作者がアーム閉じ操作を行っているときに、ブームシリンダ7を自動的に伸張させてブーム4を上昇させてもよい。
或いは、操作支援装置50は、ショベル100を自動的に動作させる機能を実行してもよい。以下では、この機能は、「自律制御機能」と称される。自律制御機能では、操作支援装置50は、例えば、予め設定された目標軌道に沿ってバケット6の爪6aの先端を移動させるために、ブーム4、アーム5、及びバケット6の少なくとも一つを自動的に動作させてもよい。具体的には、操作支援装置50は、操作者が手動操作を行っていないときに、ブーム4、アーム5、及びバケット6を自動的に動作させてもよい。
なお、マシンガイダンス機能及びマシンコントロール機能は、ショベル100の外部にある操作装置26を利用して遠隔操作される遠隔操作式のショベルで利用されてもよい。また、自律制御機能は、操作装置26を備えていない自律式のショベルで利用されてもよい。
機体傾斜センサS4は、水平面に対する上部旋回体3の傾斜角を検出するセンサである。図示例では、重力加速度を検出することで上部旋回体3の前後軸の水平面に対する傾斜角(以下、「機体ピッチ角度」とする。)、及び、上部旋回体3の左右軸の水平面に対する傾斜角(以下、「機体ロール角度」とする。)を検出する加速度センサである。なお、機体傾斜センサS4は、アタッチメントATの姿勢を算出するための姿勢検出装置を構成してもよい。
旋回角速度センサS5は、旋回軸回りに旋回(回転)する上部旋回体3の角速度を検出するセンサである。図示例では、旋回角速度センサS5は、上部旋回体3の角速度を検出するロータリエンコーダである。なお、旋回角速度センサS5は、アタッチメントATの姿勢を算出するための姿勢検出装置を構成してもよい。
測位装置S6は、ショベル100の位置を測定する装置である。図示例では、測位装置S6は、二つのGNSS受信機を含む電子コンパスであり、操作支援装置50に対して世界測地系における測位装置S6の位置座標(緯度、経度、高度)及び向き(方位)に関する情報を出力する。世界測地系は、地球の重心に原点をおき、X軸をグリニッジ子午線と赤道との交点の方向にとり、Y軸を東経90度の方向にとり、そしてZ軸を北極の方向にとる三次元直交XYZ座標系である。
入力装置D1は、ショベル100の操作者が各種情報を入力するための装置である。図示例では、入力装置D1は表示装置D3の表示画面の周辺に設けられハードウェアスイッチである。ショベル100の操作者は入力装置D1を通じて操作支援装置50に各種情報を入力する。入力装置D1はタッチパネルであってもよい。また、入力装置D1はUSBメモリであってもよい。この場合、操作者はキャビン10内に設置されたUSBコネクタにUSBメモリを差し込むことでUSBメモリ内に記憶された情報を操作支援装置50に入力できる。
音出力装置D2は、コントローラ30又は操作支援装置50からの音出力指令に応じて各種音情報を出力する装置である。図示例では、音出力装置D2は、操作支援装置50に直接接続される車載スピーカである。音出力装置D2は、ブザーであってもよい。
表示装置D3は、コントローラ30又は操作支援装置50からの指令に応じて各種画像情報を表示する装置である。図示例では、表示装置D3は、操作支援装置50に直接接続される車載液晶ディスプレイである。
記憶装置D4は、各種情報を記憶するための装置である。図示例では、記憶装置D4は半導体メモリ等の不揮発性記憶媒体であり、操作支援装置50等が出力する各種情報を記憶する。
図2は、図1のショベル100の駆動系の構成例を示す図である。図2において、機械的動力系は二重線、作動油ラインは太実線、パイロットラインは破線、電気駆動・制御系は細実線でそれぞれ示される。
エンジン11はショベル100の駆動源である。図示例では、エンジン11は、エンジン負荷の増減にかかわらずエンジン回転数を一定に維持するアイソクロナス制御を採用するディーゼルエンジンである。
エンジン11には油圧ポンプとしてのメインポンプ14及びパイロットポンプ15が接続される。メインポンプ14には作動油ラインを介してコントロールバルブユニット17が接続される。
コントロールバルブユニット17は、ショベル100の油圧系の制御を行う油圧制御装置である。図示例では、コントロールバルブユニット17は、左側走行用油圧モータ1L、右側走行用油圧モータ1R、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、及び旋回用油圧モータ21等の複数の油圧アクチュエータのそれぞれに対応する複数の制御弁を含む。複数の油圧アクチュエータのそれぞれは、作動油ラインを介してコントロールバルブユニット17における対応する制御弁に接続されている。
パイロットポンプ15は、パイロットライン25を介してコントロールバルブユニット17における複数の制御弁のそれぞれのパイロットポートに作動油を供給するように構成されている。図示例では、パイロットポンプ15は、固定容量型油圧ポンプである。パイロットポンプ15は省略されてもよい。この場合、パイロットポンプ15が担っていた機能は、メインポンプ14によって実現されてもよい。すなわち、メインポンプ14は、コントロールバルブユニット17に作動油を供給する機能とは別に、絞り等により作動油の圧力を低下させた後で油圧制御機器に作動油を供給する機能を備えていてもよい。
操作装置26は、油圧アクチュエータを操作するための装置であり、操作レバー26A、操作レバー26B、操作ペダル26Cを含む。操作センサ29は、操作装置26の操作内容を検出するセンサであり、検出値をコントローラ30に対して出力する。
次に、図3を参照し、ショベル100の管理システムSYSについて説明する。図3は、管理システムSYSの構成例を示す図である。管理システムSYSは、ショベル100を管理するシステムであり、主に、コントローラ30及び操作支援装置50を含む。
図示例では、操作支援装置50は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、旋回角速度センサS5、測位装置S6、入力装置D1、及びコントローラ30からの出力を受け、音出力装置D2、表示装置D3、及び記憶装置D4のそれぞれに対して各種指令を出力する。また、操作支援装置50は、座標取得部51、計算部52、音出力処理部53、及び表示処理部54を有する。コントローラ30及び操作支援装置50は、CAN(Controller Area Network)を通じて互いに接続されている。
座標取得部51は、アタッチメントATの所定部位の座標を取得するように構成されている。図示例では、座標取得部51は、機体傾斜センサS4及び測位装置S6のそれぞれの検出値に基づいて基準座標系の原点座標(緯度、経度、高度)を導き出す。基準座標系はショベル100を基準とする座標系であり、例えば、アタッチメントATの延在方向をX軸としショベル100の旋回軸をZ軸とする3次元直交座標系である。基準座標系の原点座標と測位装置S6の取り付け位置の座標(以下、「測位装置座標」とする。)との位置関係は相対的に不変である。そのため、座標取得部51は、機体傾斜センサS4及び測位装置S6のそれぞれの検出値から世界測地系における基準座標系の原点座標を一意に導き出すことができる。
具体的には、座標取得部51は、測位装置S6の検出値である世界測地系における測位装置S6の位置座標及び方位に基づいて世界測地系における基準座標系の原点座標を導き出す。
また、座標取得部51は、機体傾斜センサS4の検出値である機体ロール角度及び機体ピッチ角度に基づいて基準座標系を回転させて基準座標系の3軸を世界測地系の3軸に合わせるための回転行列を導き出す。
これにより、座標取得部51は、基準座標系における任意の点の座標が決まれば、世界測地系における基準座標系の原点座標と回転行列とに基づいてその任意の点に関する世界測地系における座標を導き出すことができる。
なお、座標取得部51は、測位装置S6の検出値のみに基づき、ブームフートピン等の上部旋回体3上の所定部位に関する世界測地系における座標を導き出すように構成されていてもよい。
また、座標取得部51は、ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3のそれぞれの検出値に基づいてアタッチメントATの姿勢を導き出す。アタッチメントAT上の各点に対応する基準座標系における座標を導出できるようにするためであり、ひいては各点に対応する世界測地系における座標を導出できるようにするためである。アタッチメントAT上の各点はバケットピンの位置及びバケット6の先端位置を含む。
計算部52は、バケット6の先端の現在位置と目標位置との間のずれを導き出す。図示例では、計算部52は、座標取得部51が取得したバケット6の先端位置の座標と目標地形情報とに基づいてバケット6の先端の現在位置と目標位置との間のずれを導き出す。目標地形情報は施工完了時の地形に関する情報であり、目標地形を表す座標群を含む。また、目標地形情報は入力装置D1を通じて入力され且つ記憶装置D4に記憶される。
例えば、計算部52は、バケット6の先端位置と目標地形の表面との鉛直方向における距離をずれ量として導き出す。ずれ量は、バケット6の先端位置と目標地形の表面との水平方向における距離であってもよく、バケット6の先端位置と目標地形の表面との間の最短距離であってもよい。
音出力処理部53は音出力装置D2から出力させる音を制御する。音出力処理部53は、例えば、音出力装置D2から出力させる音の属性(高さ、大きさ、及び音色)を調整する。図示例では、音出力処理部53は計算部52が導き出したずれ量が所定値以下となった場合に音出力装置D2からガイダンス音としての断続音を出力させる。また、音出力処理部53は、そのずれ量が小さくなるほど断続音の出力間隔(無音部分の長さ)を短くする。音出力処理部53は、そのずれ量がゼロの場合、すなわち、バケット6の先端位置と目標地形の表面とが一致する場合、音出力装置D2から連続音(出力間隔がゼロの断続音)を出力させてもよい。また、音出力処理部53は、そのずれ量の正負が反転した場合、断続音の高さ(周波数)を変化させてもよい。ずれ量は、例えば、バケット6の先端位置が目標地形の表面より鉛直上方にある場合に正値となる。
表示処理部54は、表示装置D3に表示させる各種画像情報の内容を制御する。図示例では、表示処理部54は、座標取得部51が取得したバケット6の先端位置の座標と目標地形を表す座標群との関係を表示装置D3に表示させる。具体的には、表示処理部54は、バケット6及び目標地形の断面を側方(Y軸方向)から見たCG画像、及び、バケット6及び目標地形の断面を後方(X軸方向)から見たCG画像を表示装置D3に表示させる。表示処理部54は計算部52が導き出したずれ量の大きさをバーグラフで表示してもよい。
次に、図4A及び図4Bを参照しながら、三次元直交座標系である基準座標系について説明する。図4Aはショベル100の側面図であり、図4Bはショベル100の上面図である。
図4A及び図4Bに示すように、基準座標系のZ軸はショベル100の旋回軸PCに相当し、基準座標系の原点Oは旋回軸PCとショベル100の接地面との交点に相当する。
Z軸と直交するX軸はアタッチメントATの延在方向に伸び、同じくZ軸と直交するY軸はアタッチメントATの延在方向に垂直な方向に伸びる。すなわち、X軸及びY軸はショベル100の旋回とともにZ軸回りを回転する。
また、図4Aに示すように、上部旋回体3に対するブーム4の取り付け位置は、ブーム回転軸としてのブームフートピンの位置であるブームフートピン位置P1で表される。同様に、ブーム4に対するアーム5の取り付け位置は、アーム回転軸としてのアームピンの位置であるアームピン位置P2で表される。アーム5に対するバケット6の取り付け位置は、バケット回転軸としてのバケットピンの位置であるバケットピン位置P3で表される。バケット6の爪6aの先端位置はバケット先端位置P4で表される。
ブームフートピン位置P1とアームピン位置P2とを結ぶ線分SG1の長さはブーム長さとして所定値Lで表され、アームピン位置P2とバケットピン位置P3とを結ぶ線分SG2の長さはアーム長さとして所定値Lで表され、バケットピン位置P3とバケット先端位置P4とを結ぶ線分SG3の長さはバケット長さとして所定値Lで表される。所定値L、L、Lは記憶装置D4等に予め記憶されている。
また、線分SG1と水平面との間に形成されるブーム角度はβで表され、線分SG2と水平面との間に形成されるアーム角度はβで表され、線分SG3と水平面との間に形成されるバケット角度はβで表される。図4Aにおいて、ブーム角度β、アーム角度β、バケット角度βは、X軸に平行な線に関し反時計回り方向をプラス方向とする。
ここで、ブームフートピン位置P1の三次元座標を(X、Y、Z)=(H0X、0、H0Z)とし、バケット先端位置P4の三次元座標を(X、Y、Z)=(X、Y、Z)とすると、X、Zはそれぞれ式(1)及び式(2)で表される。
=H0X+Lcosβ+Lcosβ+Lcosβ・・・(1)
=H0Z+Lsinβ+Lsinβ+Lsinβ・・・(2)
は0となる。バケット先端位置P4はXZ平面上に存在するためである。また、ブームフートピン位置P1が原点Oに対して相対的に不変であるため、ブーム角度βが決まればアームピン位置P2の座標が一意に決まる。同様に、ブーム角度β及びアーム角度βが決まればバケットピン位置P3の座標が一意に決まり、ブーム角度β、アーム角度β、及びバケット角度βが決まれば、バケット先端位置P4の座標が一意に決まる。
また、座標取得部51は、基準座標系におけるブームフートピン位置P1、アームピン位置P2、バケットピン位置P3、及びバケット先端位置P4のそれぞれの座標が決まれば、世界測地系におけるブームフートピン位置P1、アームピン位置P2、バケットピン位置P3、及びバケット先端位置P4のそれぞれの座標を一意に導き出すことができる。測位装置S6の位置とブームフートピン位置P1との間の相対的な位置関係が既知のためである。
しかしながら、バケット6の爪6aは、交換可能な消耗部品の一例であり、使用により摩耗する。そのため、上述の式(1)及び式(2)を用いて算出されるバケット先端位置P4の三次元座標(X、Y、Z)=(X、Y、Z)は、爪6aの摩耗が進むにつれて実際のバケット先端位置の三次元座標から乖離する。その結果、座標取得部51はバケット先端位置P4の正確な座標を取得できなくなり、操作支援装置50はショベル100の操作を正確に支援できなくなる。
そこで、図示例では、コントローラ30は、後述の情報取得処理を実行することでバケット先端位置P4の正確な座標を導き出し、爪6aが摩耗したときであってもショベル100の操作を正確に支援できるようにする。
具体的には、コントローラ30は、座標推定部31及び位置ズレ算出部32を有する。
座標推定部31は、エンドアタッチメントの先端の座標を推定するように構成されている。図示例では、座標推定部31は、世界測地系上の既知の一座標である基準位置にバケット6の爪6aの先端を接触させたときに座標取得部51が取得するバケットピン位置P3の座標とバケット角度センサS3が検出するバケット角度とに基づいて世界測地系におけるバケット先端位置P4の座標を導き出す。基準位置は、例えば、ブームフートピンから所定の方向に既知の距離だけ離れた位置である。図示例では、ブームフートピン位置P1から斜め下前方に距離DSだけ離れた位置である。距離DSは、予め登録された距離であってもよく、位置ズレを算出する前に動的に設定される距離であってもよい。
位置ズレ算出部32は、エンドアタッチメントの所定部位の推定座標と実座標との間の位置ズレを算出するように構成されている。図示例では、位置ズレ算出部32は、バケット6の爪6aの先端を基準位置に接触させたときに座標推定部31が算出したバケット先端位置P4の座標(推定座標)とGNSS受信機等を用いて事前に測定されている基準位置の座標(実座標)との間の位置ズレを算出する。具体的には、位置ズレ算出部32は、実座標に対して推定座標がどの方向にどれだけ離れているかを算出する。なお、バケット6の爪6aの先端を基準位置に接触させたときには、基準位置の座標は、バケット先端位置P4の実座標に相当する。
ここで図5及び図6を参照し、コントローラ30が爪6aの先端の位置ズレに関する情報を取得する処理(以下、「情報取得処理」とする。)の一例について説明する。図5は情報取得処理の一例の流れを示すフローチャートである。また、図6は情報取得処理の一例を実行するショベル100の側面図である。具体的には、図6はバケット6の爪6aの先端を基準位置RPに接触させたときのショベル100の状態を示す。
基準位置RPは、所定の測地系の座標を有する位置であり、基準杭等の測量用標識によって表される座標を有する位置を含む。図示例では基準位置RPは世界測地系の座標を有する。基準位置RPの座標(X、Y、Z)はコントローラ30及び操作支援装置50にとって既知である。
基準位置RPは、ショベル100の駐機場における水平な地面に描画された線であってもよい。この線は、例えば、バケット6の横幅と略同じ大きさの長さを有する。この場合、ショベル100の操作者は、ショベル100を走行させて下部走行体1を所定の位置で停止させる。所定の位置は、例えば、地面に描画された矩形枠で表される位置である。基準位置RPを表す線は、矩形枠の前辺から所定の距離だけ離れた位置にその前辺と平行となるように描画されている。その後、ショベル100の操作者は、操作装置26を操作してアタッチメントATを動かし、バケット6の爪6aの先端を基準位置RPに接触させる。この時点において、コントローラ30は、情報取得処理を実行する。
最初に、コントローラ30は、基準位置RPの座標(X、Y、Z)を取得する(ステップST1)。図示例では、操作者は入力装置D1を介して基準位置RPの座標(X、Y、Z)を入力することによってコントローラ30に基準位置RPの座標(X、Y、Z)を与える。基準位置RPの座標(X、Y、Z)は、USBメモリ又は無線通信等を介してコントローラ30に入力されてもよい。なお、基準位置RPの座標(X、Y、Z)は、操作者がバケット6の爪6aの先端を基準位置RPに接触させたときには、バケット先端位置P4の実座標に相当する。
その後、コントローラ30の座標推定部31は操作者がバケット6の爪6aの先端を基準位置RPに接触させたときのバケット先端位置P4の座標(X、Y、Z)を推定する(ステップST2)。
具体的には、ショベル100の操作者は、ブーム操作レバー、アーム操作レバー、バケット操作レバー、旋回操作レバー、走行ペダル等の操作装置26を操作してバケット6の爪6aの先端を基準位置RPに接触させる。そして、操作者は入力装置D1としてのタッチパネルを利用してそのときのバケット先端位置P4の座標を推定座標として記憶するよう座標推定部31を介して操作支援装置50に指示を与える。操作支援装置50の座標取得部51はその指示に応じてバケット先端位置P4の座標を推定座標として記憶装置D4に記憶する。
図6に示す例では、座標取得部51は、機体傾斜センサS4及び測位装置S6のそれぞれの出力に基づいて世界測地系におけるセンサ位置Psの座標(X、Y、Z)と上部旋回体3の向きとを導き出す。そして、座標取得部51は、世界測地系におけるセンサ位置Psの座標(X、Y、Z)と上部旋回体3の向きとに基づき、世界測地系におけるブームフートピン位置P1の座標(X、Y、Z)を導き出す。その上で、座標取得部51は、ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3の出力に基づき、破線で示す爪先方向においてブームフートピン位置P1から距離DS(値DS1)だけ隔てた位置にあるバケット先端位置P4の座標(X、Y、Z)を算出する。なお、図6に示す例では、爪先方向は、水平面との間に角度θ1を形成するように設定されている。
ショベル100の操作者はアタッチメントATの姿勢を変えながらバケット6の爪6aの先端を複数回に亘って基準位置RPに接触させ、その接触の度にバケット先端位置P4の座標を推定座標として別々に記憶するよう座標推定部31を介して操作支援装置50に指示を与えてもよい。
その後、コントローラ30の位置ズレ算出部32は、バケット先端位置P4の実座標と推定座標との間の位置ズレに関する情報を取得する(ステップST3)。図示例では、コントローラ30は、ステップST1で取得した基準位置RPの座標(X、Y、Z)をバケット先端位置P4の実座標として取得する。そして、コントローラ30は、その実座標とステップST2で記憶装置D4に記憶したバケット先端位置P4の推定座標との間の位置ズレに関する情報を取得する。
位置ズレに関する情報は、例えば、バケット先端位置P4の推定座標と実座標との間の距離、水平距離、若しくは鉛直距離、又は、実座標から見た推定座標の方向等である。
バケット先端位置P4の推定座標が複数記憶されている場合には、位置ズレ算出部32は、複数の推定座標のそれぞれと実座標との間の位置ズレに関する情報を取得してもよい。この場合、位置ズレに関する情報は、複数の推定座標のそれぞれと実座標との間の距離の統計値(平均値、最大値、又は最小値)であってもよい。水平距離若しくは鉛直距離、又は、実座標から見た推定座標の方向等についても同様である。
その後、コントローラ30は、位置ズレに関する情報に基づいて補正量を算出する(ステップST4)。補正量は、操作支援装置50がマシンガイダンス機能、マシンコントロール機能、又は自律制御機能等を実行しているときに座標取得部51が算出するバケット先端位置P4の座標を補正するために利用される。補正量は、例えば、バケット6の爪6aの摩耗量である。
この構成により、コントローラ30は、既知の一座標である基準位置RPにバケット6の爪6aを接触させたときに座標取得部51が取得するバケット先端位置P4の座標に基づき、その後に実行される各種機能で算出されるバケット先端位置P4の座標を補正するための補正量を導き出す。そのため、コントローラ30は、情報取得処理の実行後であれば、バケット6の爪6aの摩耗の有無にかかわらず、バケット先端位置P4の座標を正確に導き出すことができる。図示例では、コントローラ30は、バケット先端位置P4の誤差が±50mm以内となるようにバケット先端位置P4を補正する。
次に、図5及び図7を参照し、情報取得処理の別の一例について説明する。図7は情報取得処理の別の一例を実行するショベル100の側面図である。具体的には、図7はバケット6の爪6aの先端を突出部材PMの先端に接触させたときのショベル100の状態を示す。
突出部材PMは、バケット6の爪6aの先端が接触可能なように上部旋回体3を構成する旋回フレームから前方へ突出するように設けられる部材である。図示例では、突出部材PMは、伸縮可能な棒状の部材であり、一端が旋回フレームの下面に取り付けられ、引っ込められて下部走行体1と上部旋回体3との間に収納されるように構成されている。但し、突出部材PMは、旋回フレームに着脱可能となるように構成されていてもよい。この場合、突出部材PMは、情報取得処理が実行される直前に旋回フレームに取り付けられ、情報取得処理が完了した後で、ショベル100による通常の作業が開始される前に取り外される。なお、突出部材PMは、板状の部材であってもよく、複数の部材に分解可能なように構成されていてもよい。
図7に示すショベル100で実行される情報取得処理は、測位装置S6の出力を用いない点で、図6に示すショベル100で実行される測位装置S6の出力を用いる情報取得処理と異なる。そのため、図7に示すショベル100では測位装置S6が省略されてもよい。但し、図7に示すショベル100で実行される情報取得処理は、図6に示すショベル100で実行される情報取得処理と同様に、図5に示す流れに沿って実行される。
図7に示すショベル100で実行される情報取得処理では、最初に、コントローラ30は、基準位置RPの座標(X、Y、Z)を取得する(ステップST1)。図7に示す例では、基準位置RPの座標(X、Y、Z)は、既知のサイズを有する突出部材PMの先端に位置する座標であり、記憶装置D4に予め登録されている。また、基準位置RPの座標(X、Y、Z)は、世界測地系ではなく、ショベル100を基準とする基準座標系における座標である。ブームフートピン位置P1の座標(X、Y、Z)、及び、バケット先端位置P4の座標(X、Y、Z)等についても同様である。操作者は入力装置D1を介して基準位置RPの座標(X、Y、Z)を入力することによってコントローラ30に基準位置RPの座標(X、Y、Z)を与えてもよい。なお、図7に示すショベル100で実行される情報取得処理においても、基準位置RPの座標(X、Y、Z)は、操作者がバケット6の爪6aの先端を基準位置RPに接触させたときには、バケット先端位置P4の実座標に相当する。
その後、コントローラ30の座標推定部31は操作者がバケット6の爪6aの先端を基準位置RPに接触させたときのバケット先端位置P4の座標(X、Y、Z)を推定する(ステップST2)。
具体的には、ショベル100の操作者は、ブーム操作レバー、アーム操作レバー、バケット操作レバー、旋回操作レバー、走行ペダル等の操作装置26を操作してバケット6の爪6aの先端を基準位置RPに接触させる。そして、操作者は入力装置D1としてのタッチパネルを利用してそのときのバケット先端位置P4の座標を推定座標として記憶するよう座標推定部31を介して操作支援装置50に指示を与える。操作支援装置50の座標取得部51はその指示に応じてバケット先端位置P4の座標を推定座標として記憶装置D4に記憶する。
図7に示す例では、座標取得部51は、ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3の出力に基づき、破線で示す爪先方向においてブームフートピン位置P1から距離DS(値DS2)だけ隔てた位置にあるバケット先端位置P4の座標(X、Y、Z)を算出する。なお、図7に示す例では、座標(0、0、0)の原点と座標(X、Y、Z)のブームフートピン位置P1との間の相対的な位置関係は記憶装置D4に予め登録されている。また、爪先方向は、水平面との間に角度θ2を形成するように設定されている。
ショベル100の操作者はアタッチメントATの姿勢を変えながらバケット6の爪6aの先端を複数回に亘って基準位置RPに接触させ、その接触の度にバケット先端位置P4の座標を推定座標として別々に記憶するよう座標推定部31を介して操作支援装置50に指示を与えてもよい。
その後、コントローラ30の位置ズレ算出部32は、バケット先端位置P4の実座標と推定座標との間の位置ズレに関する情報を取得する(ステップST3)。図示例では、コントローラ30は、ステップST1で取得した基準位置RPの座標(X、Y、Z)をバケット先端位置P4の実座標として取得する。そして、コントローラ30は、その実座標とステップST2で記憶装置D4に記憶したバケット先端位置P4の推定座標との間の位置ズレに関する情報を取得する。
その後、コントローラ30は、位置ズレに関する情報に基づいて補正量を算出する(ステップST4)。補正量は、操作支援装置50がマシンガイダンス機能、マシンコントロール機能、又は自律制御機能等を実行しているときに座標取得部51が算出するバケット先端位置P4の座標を補正するために利用される。補正量は、例えば、バケット6の爪6aの摩耗量である。
この構成により、コントローラ30は、既知の一座標である基準位置RPにバケット6の爪6aを接触させたときに座標取得部51が取得するバケット先端位置P4の座標に基づき、その後に実行される各種機能で算出されるバケット先端位置P4の座標を補正するための補正量を導き出す。そのため、コントローラ30は、情報取得処理の実行後であれば、バケット6の爪6aの摩耗の有無にかかわらず、バケット先端位置P4の座標を正確に導き出すことができる。
上述のように、本発明の実施形態に係るショベル100は、図1に示すように、下部走行体1と、下部走行体1に搭載された上部旋回体3と、上部旋回体3に取り付けられた、ブーム4、アーム5、及びエンドアタッチメント(バケット6)を含むアタッチメントAT(掘削アタッチメントと、アタッチメントATの姿勢を検出する姿勢検出装置と、姿勢検出装置の出力に基づいてエンドアタッチメントの所定部位(バケット6の爪6aの先端)の推定位置を算出するように構成された制御装置(コントローラ30)と、を備えている。姿勢検出装置は、図1に示す例では、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、及び旋回角速度センサS5を含む。そして、制御装置(コントローラ30)は、図6又は図7に示すように、ブームフートピンの位置であるブームフートピン位置P1から所定の方向(破線で表される方向)に既知の距離DSだけ離れた第1位置(基準位置RP)にエンドアタッチメントの所定部位(バケット6の爪6aの先端)が位置付けられたときの姿勢検出装置の出力に基づき、エンドアタッチメントの所定部位(バケット6の爪6aの先端)の推定位置と第1位置(基準位置RP)との間の位置ズレを算出するように構成されている。なお、位置ズレがゼロであれば、バケット6の爪6aの先端の推定位置と基準位置RPとは同じである。
この構成は、エンドアタッチメントの所定部位の位置がより正確に算出できるようになるという効果をもたらす。
また、ショベル100は、ショベル100の位置を測定する測位装置S6を備えていてもよい。この場合、コントローラ30は、図6に示すように、位置ズレを算出する前に、測位装置S6の出力に基づいてブームフートピン位置P1と基準位置RPとの間の距離DSの値を算出するように構成されていてもよい。距離DSが所定の距離となっているか否かを確認するためである。所定の距離は、位置ズレの算出に適した距離であり、ある程度の幅を有していてもよい。
この構成は、コントローラ30が爪6aの先端の位置ズレに関する情報を取得する処理である情報取得処理を実行する際の事前準備を簡略化できるという効果をもたらす。事前準備は、例えば、図7に示す例における突出部材PMの設置等である。
すなわち、測位装置S6を搭載しているショベル100では、図7に示すような突出部材PMを用いずに、公共基準点又は公共基準点に基づいて設定された基準点にバケット6の爪6aの先端を接触させるだけで、バケット6の爪6aの先端の推定位置(推定座標)と基準位置RP(爪6aの先端の実座標)との間の位置ズレが算出されるという効果をもたらす。
また、ショベル100では、コントローラ30は、アーム5に取り付けられたエンドアタッチメントの種類に関する情報を取得し、取得したエンドアタッチメントの種類に関する情報と姿勢検出装置の出力とに基づいてエンドアタッチメントの所定部位の推定位置を算出するように構成されていてもよい。エンドアタッチメントの種類は、例えば、法面バケット又は掘削バケット等のように用途別に分けられていてもよく、大型法面バケット、中型法面バケット、又は小型法面バケット等のようにサイズ別に分けられていてもよい。そして、エンドアタッチメントの種類に関する情報は、そのエンドアタッチメントがアーム5に取り付けられたときのアームピンから所定部位(例えば爪6aの先端)までの距離を含む。
ショベル100の操作者は、エンドアタッチメントが交換されたときに、入力装置D1を通じてコントローラ30にエンドアタッチメントの種類に関する情報を入力してもよい。例えば、ショベル100の操作者は、アーム5に取り付けられていた掘削バケットをアーム5から取り外した後で法面バケットをそのアーム5に取り付けたときに、表示装置D3に付属の入力装置D1であるタッチパネルを操作してエンドアタッチメントの種類を入力するための入力画面を呼び出す。そして、表示装置D3の表示画面に表示された、「法面バケット」のラベルが付されたソフトウェアボタンを押す。この操作によって、アームピンと法面バケットの先端との間の距離等の法面バケットに関する情報がコントローラ30に入力される。コントローラ30は、この法面バケットに関する情報と姿勢検出装置の出力とに基づいて法面バケットの先端の推定位置を算出できる。
この構成は、掘削バケットが法面バケットに取り換えられた場合であっても、コントローラ30がエンドアタッチメントの所定部位の位置を正確に推定できるようになるという効果をもたらす。
また、ショベル100では、コントローラ30は、所定の制御指令が入力されたときに、エンドアタッチメントの所定部位(バケット6の爪6aの先端)の推定位置と第1位置(基準位置RP)との間の位置ズレを算出するように構成されていてもよい。
図6又は図7に示す例では、ショベル100の操作者は、操作装置26を操作してアタッチメントATを動かし、バケット6の爪6aの先端を基準位置RPに接触させたときに、表示装置D3の表示画面に表示された、位置ズレの算出を開始するためのソフトウェアボタンを押すことによって位置ズレの算出を開始させてもよい。この場合、コントローラ30は、そのソフトウェアボタンが押されたときに生成される制御指令が入力されたときに、バケット6の爪6aの先端の推定座標とその先端の実座標(基準位置RPの座標)との間の位置ズレを算出してもよい。
この構成では、操作者は、エンドアタッチメントの所定部位が基準位置RPに接触したことを確認した上で、エンドアタッチメントの所定部位の推定座標とその所定部位の実座標(基準位置RPの座標)との間の位置ズレの算出を開始できるという効果をもたらす。そのため、この構成は、位置ズレの精度を高めることができるという効果をもたらす。
また、ショベル100では、エンドアタッチメントはバケット6であってもよい。この場合、コントローラ30は、バケット6の爪6aの先端の推定座標とその先端の実座標(基準位置RPの座標)との間の位置ズレの大きさに基づいてバケット6の爪6aの摩耗量を算出するように構成されていてもよい。
この構成は、ショベル100の操作者がバケット6の爪6aの摩耗量を正確に把握できるという効果をもたらす。そのため、操作者は爪6aの交換時期を正確に把握できる。
以上、本発明の好ましい実施形態について詳説した。しかしながら、本発明は、上述した実施形態に制限されることはない。上述した実施形態は、本発明の範囲を逸脱することなしに、種々の変形、置換等が適用され得る。また、別々に説明された特徴は、技術的な矛盾が生じない限り、組み合わせが可能である。
例えば、図6に示す例では、基準位置RPは地面上の一点であるが本発明はこの構成に限定されるものではない。具体的には、基準位置RPは、エンドアタッチメントの所定部位を接触させることができる地物であればよく、例えば、垂直壁の表面上の一点であってもよく、地面から上方に突出した台座の上端面上の一点であってもよい。
また、図7に示す例では、突出部材PMは上部旋回体3に取り付けられるように構成されているが、下部走行体1に取り付けられるように構成されていてもよい。
また、基準位置RPは実在の点である必要はなく、光学的、磁気的、或いは電気的に設定される仮想点であってもよい。
また、図6に示す例では、座標取得部51は、ショベル100を基準とする基準座標系を回転させて基準座標系の3軸を世界測地系の3軸に合わせることで基準座標系における任意の点に対応する世界測地系における座標を導き出す。例えば、座標取得部51は、世界測地系1984、日本測地系2000、国際地球基準座標系等の全地球的測地系における座標(緯度、経度、高度)を導き出す。但し、座標取得部51は、局所座標系(地域座標系)等のより狭い範囲の測地系の座標を導き出してもよい。
1・・・下部走行体 1R・・・右側走行用油圧モータ 1L・・・左側走行用油圧モータ 2・・・旋回機構 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 6a・・・爪 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 14・・・メインポンプ 15・・・パイロットポンプ 17・・・コントロールバルブユニット 21・・・旋回用油圧モータ 25・・・パイロットライン 26・・・操作装置 26A、26B・・・操作レバー 26C・・・操作ペダル 29・・・操作センサ 30・・・コントローラ 31・・・座標推定部 32・・・位置ズレ算出部 50・・・操作支援装置 51・・・座標取得部 52・・・計算部 53・・・音出力処理部 54・・・表示処理部 100・・・ショベル S1・・・ブーム角度センサ S2・・・アーム角度センサ S3・・・バケット角度センサ S4・・・機体傾斜センサ S5・・・旋回角速度センサ S6・・・測位装置 D1・・・入力装置 D2・・・音出力装置 D3・・・表示装置 D4・・・記憶装置 PM・・・突出部材

Claims (6)

  1. 下部走行体と、
    前記下部走行体に搭載された上部旋回体と、
    前記上部旋回体に取り付けられた、ブーム、アーム、及びエンドアタッチメントを含むアタッチメントと、
    前記アタッチメントの姿勢を検出する姿勢検出装置と、
    前記姿勢検出装置の出力に基づいて前記エンドアタッチメントの所定部位の推定位置を算出するように構成された制御装置と、を備え、
    前記制御装置は、ブームフートピンから所定の方向に既知の距離だけ離れた第1位置に前記エンドアタッチメントの所定部位が位置付けられたときの前記姿勢検出装置の出力に基づき、前記エンドアタッチメントの所定部位の推定位置と前記第1位置との間の位置ズレを算出するように構成されている、
    ショベル。
  2. ショベルの位置を測定する測位装置を備え、
    前記制御装置は、前記位置ズレを算出する前に、前記測位装置の出力に基づいて前記ブームフートピンと前記第1位置との間の前記距離を算出する、
    請求項1に記載のショベル。
  3. 前記制御装置は、前記アームに取り付けられた前記エンドアタッチメントの種類に関する情報を取得し、取得した前記エンドアタッチメントの種類に関する情報と前記姿勢検出装置の出力とに基づいて前記エンドアタッチメントの所定部位の推定位置を算出するように構成されている、
    請求項1又は2に記載のショベル。
  4. 前記制御装置は、所定の制御指令が入力されたときに、前記位置ズレを算出するように構成されている、
    請求項1又は2に記載のショベル。
  5. 前記エンドアタッチメントはバケットであり、
    前記制御装置は、前記位置ズレに基づいて前記バケットの爪の摩耗量を算出する、
    請求項1又は2に記載のショベル。
  6. 下部走行体と、前記下部走行体に搭載された上部旋回体と、前記上部旋回体に取り付けられた、ブーム、アーム、及びエンドアタッチメントを含むアタッチメントと、前記アタッチメントの姿勢を検出する姿勢検出装置と、を備えるショベルの管理システムであって、
    前記姿勢検出装置の出力に基づいて前記エンドアタッチメントの所定部位の推定位置を算出するように構成された制御装置を有し、
    前記制御装置は、ブームフートピンから所定の方向に既知の距離だけ離れた第1位置に前記エンドアタッチメントの所定部位が位置付けられたときの前記姿勢検出装置の出力に基づき、前記エンドアタッチメントの所定部位の推定位置と前記第1位置との間の位置ズレを算出するように構成されている、
    ショベルの管理システム。
JP2022089281A 2022-05-31 2022-05-31 ショベル及びショベルの管理システム Pending JP2023176800A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022089281A JP2023176800A (ja) 2022-05-31 2022-05-31 ショベル及びショベルの管理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022089281A JP2023176800A (ja) 2022-05-31 2022-05-31 ショベル及びショベルの管理システム

Publications (1)

Publication Number Publication Date
JP2023176800A true JP2023176800A (ja) 2023-12-13

Family

ID=89122867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022089281A Pending JP2023176800A (ja) 2022-05-31 2022-05-31 ショベル及びショベルの管理システム

Country Status (1)

Country Link
JP (1) JP2023176800A (ja)

Similar Documents

Publication Publication Date Title
JP6728286B2 (ja) ショベル及びショベルの制御方法
US9598845B2 (en) Posture computing apparatus for work machine, work machine, and posture computation method for work machine
US9739038B2 (en) Posture computing apparatus for work machine, work machine, and posture computation method for work machine
CN105518226B (zh) 作业机械的控制***和作业机械
JP6068730B2 (ja) 作業機械、及び作業機械の作業機パラメータ補正方法
US9663917B2 (en) Work vehicle, bucket device, and method for obtaining tilt angle
US20180094408A1 (en) Display system of working machine and working machine
US9689145B1 (en) Work vehicle and method for obtaining tilt angle
KR102259549B1 (ko) 작업 기계
JP6289534B2 (ja) 作業機械の制御システム及び作業機械
KR20230033461A (ko) 건설기계
JP4202209B2 (ja) 作業機械の位置計測表示システム
JP2023176800A (ja) ショベル及びショベルの管理システム
JP2020204265A (ja) 油圧ショベル
JP7065002B2 (ja) 作業機械
WO2023204197A1 (ja) 作業支援システム