JP2023161303A - aluminum alloy foil - Google Patents

aluminum alloy foil Download PDF

Info

Publication number
JP2023161303A
JP2023161303A JP2022071610A JP2022071610A JP2023161303A JP 2023161303 A JP2023161303 A JP 2023161303A JP 2022071610 A JP2022071610 A JP 2022071610A JP 2022071610 A JP2022071610 A JP 2022071610A JP 2023161303 A JP2023161303 A JP 2023161303A
Authority
JP
Japan
Prior art keywords
mass
less
aluminum alloy
grain size
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022071610A
Other languages
Japanese (ja)
Inventor
透 安元
Toru Yasumoto
貴史 鈴木
Takashi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
MA Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MA Aluminum Corp filed Critical MA Aluminum Corp
Priority to JP2022071610A priority Critical patent/JP2023161303A/en
Publication of JP2023161303A publication Critical patent/JP2023161303A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Metal Rolling (AREA)

Abstract

To provide an aluminum alloy foil having superior moldability while ensuring the stretch of the foil.SOLUTION: An aluminum alloy foil contains Fe: 0.8 mass% or more and 1.8 mass% or less, Si: 0.01 mass% or more and 0.08 mass% or less, and Cu: 0.005 mass% or more and 0.05 mass% or less, with the balance being Al and unavoidable impurities. The aluminum alloy foil shows a stretchability of 30% or more in the 0°, 45°, and 90° directions relative to the rolling direction. In at least one of these three directions, the maximum tensile strain is 45% or more in an uniaxial tensile test.SELECTED DRAWING: None

Description

この発明は、成形加工に供することができるアルミニウム合金箔に関する。 The present invention relates to an aluminum alloy foil that can be subjected to forming processing.

圧延性に優れる8000系アルミニウム合金は、医薬品や食品、リチウムイオン電池等の包装材など成形加工用のアルミニウム合金箔として広く用いられている。昨今、小さく薄い材料の加工が求められており、また、難加工形状を含む多岐にわたる形状の製品が存在する。これら厳しい条件での加工においても破断しないための成形性向上が要求されている。成形の重要なパラメータとして伸びが挙げられるが、加工時は多軸変形下で成形が行われることが多い。そのため、圧延方向に対し平行な方向だけでなく、45°や90°といった各方向の伸びも求められる。また、用途によって形状は多岐にわたり、製品によっては局所的に変形が集中する加工が実施される場合もある。
例えば、特許文献1では、成分範囲を規定するとともに、結晶粒の粒径を規定し、さらに、Cube方位の面積率を規定することで成形性を高めるとしている。
また、特許文献2では、(111)面、(100)面、(110)面、および、(311)面のそれぞれを示す各回折強度の比率を規定する成形性を高めるとしている。
8000 series aluminum alloys, which have excellent rollability, are widely used as aluminum alloy foils for forming and processing of packaging materials for pharmaceuticals, foods, lithium ion batteries, and the like. In recent years, there has been a demand for processing small and thin materials, and there are products with a wide variety of shapes, including shapes that are difficult to process. Improved formability is required to prevent breakage even during processing under these severe conditions. Elongation is an important parameter for forming, and during processing, forming is often performed under multiaxial deformation. Therefore, elongation is required not only in the direction parallel to the rolling direction but also in various directions such as 45° and 90°. In addition, shapes vary widely depending on the application, and depending on the product, processing may be performed that locally concentrates deformation.
For example, in Patent Document 1, the composition range is defined, the grain size of the crystal grains is defined, and the area ratio of the Cube orientation is defined to improve formability.
Further, Patent Document 2 states that the moldability is improved by defining the ratio of each diffraction intensity representing each of the (111) plane, (100) plane, (110) plane, and (311) plane.

特開2018-115376号公報Japanese Patent Application Publication No. 2018-115376 特開2012-052158号公報JP2012-052158A

我々は、成形性の良好な材料の開発に取組んでいる。しかし、従来のアルミニウム合金箔では成形性が充分であるとはいえない。
開発を推進していく中で成形性が良好な材料の特徴の1つとして、局所的な領域での変形能が高いことがあげられることを見出した。つまり、成形性が高い箔材料には、引張試験における局所部での変形能(局部変形能)が高いことが求められると思われる。
We are working on developing materials with good moldability. However, conventional aluminum alloy foils cannot be said to have sufficient formability.
During the course of development, we discovered that one of the characteristics of materials with good formability is that they have high deformability in localized areas. In other words, it seems that a foil material with high formability is required to have high deformability in a local area (local deformability) in a tensile test.

本発明は上記課題を背景としてなされたものであり、全伸びだけでなく、局所的な領域での変形能が高いことを特徴としている。 The present invention was developed against the background of the above problems, and is characterized by high deformability not only in total elongation but also in local areas.

すなわち、本発明のアルミニウム合金箔のうち、第1の形態は、Fe:0.8質量%以上1.8質量%以下、Si:0.01質量%以上0.08質量%以下、Cu:0.005質量%以上0.05質量%以下を含有し、残部がAlと不可避不純物からなる組成を有し、圧延方向に対して0°、45°、90°の各方向の伸びが30%以上であり、かつ、前記3方向のうち1方向以上において、単軸引張試験における引張方向ひずみの最大値(局部変形能)が45%以上であることを特徴とする。
他の形態のアルミニウム合金箔の発明は、前記形態の発明において、さらに方位差15°以上の大傾角粒界で囲まれた結晶粒の平均粒径が15μm以下であり、前記結晶粒に関し、最大結晶粒径/平均結晶粒径≦3.0であることを特徴とする。
他の形態のアルミニウム合金箔の発明は、前記形態の発明において、さらにCu方位密度が30以上であり、Cube方位密度が6以下であることを特徴とする。
That is, the first form of the aluminum alloy foil of the present invention has Fe: 0.8% by mass or more and 1.8% by mass or less, Si: 0.01% by mass or more and 0.08% by mass or less, Cu: 0 Contains .005% by mass or more and 0.05% by mass or less, with the remainder consisting of Al and unavoidable impurities, and has an elongation of 30% or more in each direction of 0°, 45°, and 90° with respect to the rolling direction. And, in one or more of the three directions, the maximum value of strain in the tensile direction (local deformability) in a uniaxial tensile test is 45% or more.
Another aspect of the invention of the aluminum alloy foil is that in the invention of the aspect described above, the average grain size of the crystal grains surrounded by large-angle grain boundaries having a misorientation of 15 degrees or more is 15 μm or less, and the maximum It is characterized in that crystal grain size/average crystal grain size≦3.0.
Another aspect of the invention of the aluminum alloy foil is characterized in that the Cu orientation density is 30 or more and the Cube orientation density is 6 or less.

以下に、本発明で規定する内容について説明する。 The contents defined by the present invention will be explained below.

圧延方向に対して0°、45°、90°の伸びが30%以上である
本発明のアルミニウム合金箔では、上記伸び特性を満たすことで、全方位での優れた伸び特性が期待される。
The aluminum alloy foil of the present invention, which has an elongation of 30% or more at 0°, 45°, and 90° with respect to the rolling direction, is expected to have excellent elongation properties in all directions by satisfying the above elongation properties.

圧延方向に対して0°、45°、90°方向のうち1方向以上において、単軸引張試験における引張方向ひずみの最大値(局部変形能)が45%以上である。
少なくとも一方向において引張方向ひずみの最大値(局部変形能)が45%以上であることにより、良好な成形性が得られる。例えば、成形時に成形高さを十分に得ることができる。上記最大値が45%未満であると、例えば、成形高さを十分に得ることができない。なお、同様の理由で、60%以上であるのが一層望ましい。上記最大値は、例えば、後述するDIC解析方法により求めることができる。
The maximum value of strain in the tensile direction (local deformability) in a uniaxial tensile test is 45% or more in one or more of the 0°, 45°, and 90° directions with respect to the rolling direction.
Good moldability is obtained when the maximum value of strain in the tensile direction (local deformability) is 45% or more in at least one direction. For example, a sufficient molding height can be obtained during molding. If the maximum value is less than 45%, for example, a sufficient molding height cannot be obtained. Note that, for the same reason, it is more desirable that it be 60% or more. The maximum value can be determined, for example, by the DIC analysis method described below.

本発明のアルミニウム合金箔は、Fe:0.8質量%以上1.8質量%以下、Si:0.01質量%以上0.08質量%以下、Cu:0.005質量%以上0.05質量%以下を含有し、残部がAlと不可避不純物からなる組成を有する。
以下に、各成分の限定理由について説明する。
The aluminum alloy foil of the present invention includes Fe: 0.8% by mass or more and 1.8% by mass or less, Si: 0.01% by mass or more and 0.08% by mass or less, Cu: 0.005% by mass or more and 0.05% by mass. % or less, with the remainder consisting of Al and unavoidable impurities.
The reasons for limiting each component will be explained below.

Fe:0.8質量%以上1.8質量%以下
Feは、鋳造時にAl-Fe系金属間化合物として晶出する。これらは焼鈍時に再結晶の核となり再結晶粒を微細化する効果がある。また、圧延時の結晶粒分断の促進にも寄与する。ただし、含有量が過小であると、粗大な金属間化合物の分布密度が低くなり微細化の効果が低く、最終的な結晶粒径分布も不均一となる。一方、含有量が過剰になると、結晶粒微細化の効果が飽和もしくは低下し、さらに鋳造時に生成されるAl-Fe系化合物のサイズが非常に大きくなり、箔の延性と圧延性が低下する。このため、Fe含有量の下限0.8質量%、上限を1.8質量%に定める。同様の理由で、下限を1.0質量%、上限を1.6質量%とするのが望ましい。
Fe: 0.8% by mass or more and 1.8% by mass or less Fe crystallizes as an Al-Fe intermetallic compound during casting. These serve as nuclei for recrystallization during annealing and have the effect of making recrystallized grains finer. It also contributes to promoting grain fragmentation during rolling. However, if the content is too small, the distribution density of coarse intermetallic compounds will be low, the refinement effect will be low, and the final crystal grain size distribution will also be non-uniform. On the other hand, if the content is excessive, the grain refining effect is saturated or reduced, and furthermore, the size of the Al--Fe-based compound produced during casting becomes extremely large, resulting in a decrease in the ductility and rollability of the foil. Therefore, the lower limit of the Fe content is set at 0.8% by mass, and the upper limit is set at 1.8% by mass. For the same reason, it is desirable to set the lower limit to 1.0% by mass and the upper limit to 1.6% by mass.

Si:0.01質量%以上0.08質量%以下
Siは、鋳造時に粗大な金属間化合物を晶出する。粗大な金属間化合物の生成を防ぐため含有量は抑制したい。含有量が過大になると、化合物サイズの粗大化、及び密度の低下を招き、圧延性、伸び特性が低下する懸念がある。一方で、含有量が過小であると、高純度の地金を使用する必要があり、製造コストが大幅に増加する。このため、Si含有量は、下限を0.01質量%、上限を0.08質量%とするのが望ましい。同様の理由で、下限を0.01質量%、上限を0.05質量%とするのが一層望ましい。
Si: 0.01% by mass or more and 0.08% by mass or less Si crystallizes coarse intermetallic compounds during casting. The content should be suppressed to prevent the formation of coarse intermetallic compounds. If the content becomes too large, the compound size will become coarser and the density will decrease, leading to concerns that rollability and elongation properties will decrease. On the other hand, if the content is too low, it is necessary to use highly pure metal, which significantly increases manufacturing costs. Therefore, it is desirable that the Si content has a lower limit of 0.01% by mass and an upper limit of 0.08% by mass. For the same reason, it is more desirable to set the lower limit to 0.01% by mass and the upper limit to 0.05% by mass.

Cu:0.005質量%以上0.05質量%以下
Cuは、アルミニウム中に固溶し強度を増加、伸びを低下させる。また、Al-Fe系合金で報告される冷間圧延中の過度な加工軟化を抑制する効果がある。ただし、含有量が過小であると、加工軟化抑制の効果が低く、室温での再結晶による結晶粒粗大化を招く可能性がある。一方、含有量が過大になると、伸びが明瞭に低下する。このため、Cu含有量の下限を0.005質量%、上限を0.05質量%とする。同様の理由で、下限を0.005質量%、上限を0.01質量%とするのが一層望ましい。
Cu: 0.005% by mass or more and 0.05% by mass or less Cu is dissolved in aluminum to increase strength and reduce elongation. It also has the effect of suppressing excessive work softening during cold rolling, which has been reported for Al--Fe alloys. However, if the content is too small, the effect of suppressing processing softening will be low, and crystal grains may become coarse due to recrystallization at room temperature. On the other hand, when the content becomes too large, the elongation clearly decreases. Therefore, the lower limit of the Cu content is set to 0.005% by mass, and the upper limit is set to 0.05% by mass. For the same reason, it is more desirable to set the lower limit to 0.005% by mass and the upper limit to 0.01% by mass.

・方位差15°以上の大傾角粒界に囲まれた結晶粒について、平均粒径が15μm以下、かつ最大粒径/平均粒径≦3.0
塑性加工した際に局所的な変形を抑制しつつ(なるべく均一変形させる)、局所部での変形能の向上により伸びや成形性の向上が期待できる。塑性加工時の成形性向上のためには、なるべく均一変形させることにより局所変形を抑制することが重要だが、局所変形が起きた際に、その局所部での変形能(局部変形能)が高くなるような材料が望ましい。
局部変形能の向上には影響因子の一つとして結晶粒径が挙げられ、局部変形能を向上させるには平均結晶粒径が15μm以下であることが望ましい。また、結晶粒の粒度分布が不均一である場合、局所的な変形を生じ易くなり伸びが低下することが予想される。そのため、平均結晶粒径を15μm以下とするだけでなく、最大粒径/平均粒径≦3.0とすることも併せることで高い成形性を得ることができる。
・For grains surrounded by large-angle grain boundaries with a misorientation of 15° or more, the average grain size is 15 μm or less, and maximum grain size/average grain size ≦3.0
While suppressing local deformation (deforming as uniformly as possible) during plastic working, improvements in elongation and formability can be expected by improving deformability in local areas. In order to improve formability during plastic working, it is important to suppress local deformation by deforming as uniformly as possible, but when local deformation occurs, the deformability (local deformability) in that local area is high. It is desirable to use a material that
Grain size is one of the influencing factors for improving local deformability, and in order to improve local deformability, it is desirable that the average grain size is 15 μm or less. Furthermore, if the grain size distribution of crystal grains is non-uniform, local deformation is likely to occur and elongation is expected to decrease. Therefore, high moldability can be obtained not only by setting the average crystal grain size to 15 μm or less but also by setting the maximum grain size/average grain size≦3.0.

・Cu方位密度30以上かつCube方位密度6以下
集合組織もまた箔の局部変形能に影響を及ぼす。局部変形能のような変形の局所化は、材料厚みの薄い部分など材料として弱い部分で生じやすい。塑性加工に伴い生じる材料の表面あれは材料厚みの不均一さととらえることができ、表面あれの発達による材料厚み不均一さの顕在化は局部変形能の低下に繋がる。表面あれは結晶粒単位の変形、不均一さと関係している。そのため結晶方位が比較的揃っていれば、変形に伴う結晶粒の変形や回転は同様であるが、方位のバラつきが大きければ塑性変形に伴い、各結晶粒の変形や回転に不均一さが生じ、表面あれが発達し材料厚みが不均一となり局部変形能の低下につながる。そのため、結晶方位は集積していた方が局部変形能の向上につながる。箔は材料厚さが薄いため、その製造過程で圧延率は比較的高くなり、圧延集合組織が発達しやすい。しかし、同時にCube方位が発達すると、結晶方位のバラつきが大きくなり局部変形能の向上に対し適さない。そのため、Cube方位密度6以下かつCu方位密度30以上であるのが望ましい。
- Cu orientation density is 30 or more and Cube orientation density is 6 or less Texture also affects the local deformability of the foil. Localization of deformation, such as local deformability, tends to occur in areas where the material is weak, such as areas where the material is thin. The surface roughness of a material that occurs during plastic working can be regarded as non-uniformity in the material thickness, and the development of surface roughness that leads to material thickness non-uniformity leads to a decrease in local deformability. Surface roughness is related to deformation and non-uniformity of crystal grain units. Therefore, if the crystal orientation is relatively uniform, the deformation and rotation of the crystal grains due to deformation will be the same, but if the orientation is highly dispersive, the deformation and rotation of each crystal grain will be uneven due to plastic deformation. , surface roughness develops and the material thickness becomes uneven, leading to a decrease in local deformability. Therefore, if the crystal orientations are integrated, local deformability will be improved. Since the material thickness of foil is thin, the rolling rate is relatively high during its manufacturing process, and rolling texture is likely to develop. However, if the Cube orientation develops at the same time, the variation in crystal orientation increases, making it unsuitable for improving local deformability. Therefore, it is desirable that the Cube orientation density be 6 or less and the Cu orientation density be 30 or more.

本発明によれば、高い成形性を有するアルミニウム合金箔の提供が可能になる。 According to the present invention, it is possible to provide an aluminum alloy foil having high formability.

本発明の実施例における限界成形高さ試験で用いる角型ポンチの平面形状を示す図である。It is a figure which shows the planar shape of the square punch used in the limit forming height test in the Example of this invention.

以下に、本発明のアルミニウム合金箔の実施形態について説明する。
本実施形態のアルミニウム合金箔の製造では、先ずは所定の組成に調製された鋳塊を溶製する。鋳塊であるスラブは均質化処理を行った後、熱間圧延を行い、さらに冷間圧延を行う。冷間圧延では、所望により1回以上の中間焼鈍を行うことができる。最後の中間焼鈍後の最終冷間圧延では、所定の圧下率で圧延を行って、所定の厚さのアルミニウム合金箔を得る。冷間圧延後のアルミニウム合金箔には最終焼鈍を行って、実施形態の合金箔とする。実施形態のアルミニウム合金箔には、成形加工を行うことができる。以下に、各工程について説明する。
Embodiments of the aluminum alloy foil of the present invention will be described below.
In manufacturing the aluminum alloy foil of this embodiment, first, an ingot prepared to have a predetermined composition is melted. The slab, which is an ingot, is homogenized, then hot rolled, and then cold rolled. In cold rolling, intermediate annealing can be performed one or more times if desired. In the final cold rolling after the final intermediate annealing, rolling is performed at a predetermined rolling reduction ratio to obtain an aluminum alloy foil with a predetermined thickness. The aluminum alloy foil after cold rolling is subjected to final annealing to obtain the alloy foil of the embodiment. The aluminum alloy foil of the embodiment can be formed. Each step will be explained below.

・所定組成
アルミニウム合金箔の組成としては、Fe:0.8質量%以上1.8質量%以下、Si:0.01質量%以上0.08質量%以下、Cu:0.005質量%以上0.05質量%以下を含有し、残部がAlと不可避不純物からなる組成が望ましい。
- Predetermined composition The composition of the aluminum alloy foil is: Fe: 0.8% by mass or more and 1.8% by mass or less, Si: 0.01% by mass or more and 0.08% by mass or less, Cu: 0.005% by mass or more and 0. It is desirable that the composition contains .05% by mass or less, with the remainder consisting of Al and unavoidable impurities.

・鋳造:スラブ厚さ:600mm以上750mm以下
鋳塊を得るための鋳造は、常法により行うことができるが、スラブ厚さを所定の厚さとするのが望ましい。スラブ厚さは、鋳造時の冷却速度に影響し、鋳造時に生成する晶出物や結晶粒のサイズ, 分布に影響する。また、スラブ厚みが異なると最終箔までの圧延率も変化する。
鋳造後における結晶粒の微細均一化は, 最終焼鈍後の箔の微細均一化に寄与すると考える。また, スラブ厚み変量による圧延率の変化は最終箔における集合組織の発達にも寄与する。これら, 結晶粒サイズや集合組織の集積度合いは局部変形能に影響を及ぼし, つまりは成形性にも寄与すると考える。このため、スラブ厚さは、600mm以上とするのが望ましい。但し、スラブ厚さが750mmを超えると、鋳造時の冷却速度が低下し、鋳造時に生成する晶出物や結晶粒径の粗大化を引き起こしやすくなる。
- Casting: Slab thickness: 600 mm or more and 750 mm or less Casting to obtain an ingot can be performed by a conventional method, but it is desirable that the slab thickness be a predetermined thickness. Slab thickness affects the cooling rate during casting, and the size and distribution of crystallized substances and crystal grains generated during casting. Further, if the slab thickness differs, the rolling rate to the final foil also changes.
It is believed that the fine and uniform grain size after casting contributes to the fine and uniformity of the foil after final annealing. In addition, changes in rolling rate due to variations in slab thickness also contribute to the development of texture in the final foil. We believe that the grain size and the degree of texture accumulation affect the local deformability, which in turn contributes to the formability. For this reason, it is desirable that the slab thickness be 600 mm or more. However, if the slab thickness exceeds 750 mm, the cooling rate during casting will decrease, and crystallized substances generated during casting and crystal grain size will become coarser.

・均質化処理:480℃~540℃×8時間以上
均質化処理は、鋳塊のミクロ偏析の解消と金属間化合物の分布状態を調整することを目的としており、最終焼鈍後のアルミニウム合金箔において微細均一な結晶粒組織を得るために重要な処理となる。
均質化処理の温度が480℃未満であると、結晶粒微細化が不十分であり、540℃を超えると、結晶粒の粗大化を招く。処理時間が8時間未満であると、均質処理が不十分となる。
・Homogenization treatment: 480°C to 540°C x 8 hours or more The purpose of homogenization treatment is to eliminate micro-segregation in the ingot and adjust the distribution state of intermetallic compounds. This is an important process to obtain a fine and uniform crystal grain structure.
If the temperature of the homogenization treatment is less than 480°C, crystal grain refinement will be insufficient, and if it exceeds 540°C, coarsening of crystal grains will result. If the treatment time is less than 8 hours, homogeneous treatment will be insufficient.

・熱間圧延
:仕上り温度230℃~280℃
均質化処理後の鋳塊を熱間圧延する場合、その仕上がり温度が重要となる。仕上がり温度を適正にして再結晶を抑制する(熱延板をファイバー組織とする)。ただし、仕上がり温度が280℃を超えると熱間圧延後に板の一部で再結晶を生じ、最終製品における理想的な集合組織が得にくくなる。またファイバー粒と再結晶粒が混在する不均一な組織は、最終製品における結晶粒組織の不均一さにも寄与し、成形性の低下を招くおそれがある。一方、圧延仕上がり温度が230℃未満で仕上げるには熱間圧延中の温度も極めて低温となるため、板のサイドにクラックが発生し生産性が大幅に低下する懸念がある。このため、熱間圧延の仕上がり温度は上記範囲が望ましい。
・Hot rolling: Finishing temperature 230℃~280℃
When hot rolling an ingot after homogenization treatment, the finishing temperature is important. Adjust the finishing temperature to suppress recrystallization (make the hot-rolled sheet a fiber structure). However, if the finishing temperature exceeds 280°C, recrystallization occurs in a part of the plate after hot rolling, making it difficult to obtain an ideal texture in the final product. Moreover, the non-uniform structure in which fiber grains and recrystallized grains coexist also contributes to the non-uniformity of the crystal grain structure in the final product, which may lead to a decrease in formability. On the other hand, in order to finish rolling at a finishing temperature of less than 230° C., the temperature during hot rolling must be extremely low, so there is a concern that cracks will occur on the sides of the plate and productivity will drop significantly. For this reason, the finishing temperature of hot rolling is preferably within the above range.

:圧延率99.2%以上
スラブから熱間圧延仕上がりまでの間の圧延率を99.2%以上として, 鋳造時に生成した晶出物を細かく分断させるのが望ましい。また,圧延率を高くすること熱延後でファイバー組織とさせる。
: Rolling ratio of 99.2% or more It is desirable that the rolling ratio from the slab to the finished hot rolling is 99.2% or more to finely divide the crystallized substances generated during casting. In addition, by increasing the rolling rate, a fiber structure is created after hot rolling.

・冷間圧延
熱間圧延後には、冷間圧延が行われ、その途中に1回以上の中間焼鈍を行うことができる。
・中間焼鈍:300~400℃×3時間以上
冷間圧延により硬化した材料を軟化(圧延性を回復)させる。また、Feの析出を促進し固溶Fe量を低下させる。
中間焼鈍の温度が300℃未満では再結晶が完了せず結晶粒組織が不均一になるリスクがある、また、中間焼鈍の温度が400℃を超える高温では再結晶粒の粗大化を生じ、最終的な結晶粒サイズも大きくなる。処理時間が3時間未満の場合でも、再結晶が不完全であり、またFeの析出が不十分となる恐れがある。
- Cold rolling After hot rolling, cold rolling is performed, and intermediate annealing can be performed one or more times during the cold rolling.
- Intermediate annealing: 300-400°C x 3 hours or more Softens the material hardened by cold rolling (recovers rollability). Moreover, precipitation of Fe is promoted and the amount of solid solution Fe is reduced.
If the intermediate annealing temperature is less than 300°C, there is a risk that recrystallization will not be completed and the grain structure will become non-uniform; if the intermediate annealing temperature is higher than 400°C, the recrystallized grains will become coarser, and the final The grain size also increases. Even if the treatment time is less than 3 hours, recrystallization may be incomplete and Fe precipitation may be insufficient.

中間焼鈍にはコイルを炉に投入し一定時間保持するバッチ焼鈍(Batch Ann
ealing)と、連続焼鈍ライン(Continuous Annealing Line、以下CAL焼鈍という)により材料を急加熱・急冷する2種類の方式がある。中間焼鈍を負荷する場合、いずれの方法でも良い。
例えば、バッチ焼鈍では、300~400℃で3時間以上、CAL焼鈍では、昇温速度:100~250℃/秒、加熱温度:420~470℃、保持時間なしまたは保持時間:5秒以下、冷却速度:20~200℃/秒の条件を採用することができる。ただし、本実施形態としては、中間焼鈍の有無、中間焼鈍を行う場合の条件等は特定のものに限定されるものではない。
For intermediate annealing, the coil is placed in a furnace and held for a certain period of time (Batch Annealing).
There are two methods for rapidly heating and cooling a material using a continuous annealing line (hereinafter referred to as CAL annealing) and a continuous annealing line (hereinafter referred to as CAL annealing). When applying intermediate annealing, any method may be used.
For example, in batch annealing, 300 to 400°C for 3 hours or more, in CAL annealing, heating rate: 100 to 250°C/sec, heating temperature: 420 to 470°C, no holding time or holding time: 5 seconds or less, cooling Speed: Conditions of 20 to 200°C/sec can be adopted. However, in this embodiment, the presence or absence of intermediate annealing, the conditions for performing intermediate annealing, etc. are not limited to specific ones.

・最終冷間圧延:圧延率 95%以上
結晶粒は冷間圧延の過程でも微細化されるため(Grain Subdivision)、中間焼鈍後から最終厚みまでの最終冷間圧延率が高い程、結晶粒は微細化される。また冷間圧延率が高い程、Cu方位をより発達出来る。そのため、最終冷間圧延率は高い方が望ましく、具体的には最終冷間圧延率を95%以上とすることが望ましい。しかし最終冷間圧延率95%未満とすると、最終焼鈍後の再結晶粒径が粗大・不均一化し局部変形能が悪化し、高延性ひいては高成形性を達成することが難しくなる。
・Final cold rolling: Rolling rate 95% or more Because grains are refined during the cold rolling process (Grain Subdivision), the higher the final cold rolling rate from intermediate annealing to the final thickness, the finer the grain size. Be miniaturized. Further, the higher the cold rolling rate, the more the Cu orientation can be developed. Therefore, it is desirable that the final cold rolling rate is high, and specifically, it is desirable that the final cold rolling rate be 95% or more. However, if the final cold rolling ratio is less than 95%, the recrystallized grain size after final annealing becomes coarse and non-uniform, local deformability deteriorates, and it becomes difficult to achieve high ductility and thus high formability.

・最終冷間圧延後の厚さ
最終冷間圧延によって所望の厚さとすることができる。本実施形態としては特に厚さが限定されるものではないが、例えば10~40μmの厚さを示すことができる。
-Thickness after final cold rolling The desired thickness can be obtained by final cold rolling. Although the thickness is not particularly limited in this embodiment, the thickness can be, for example, 10 to 40 μm.

・最終焼鈍:250℃~350℃×10時間以上
最終冷間圧延後の箔を完全軟化させるために、最終焼鈍が行われる。箔圧延後の最終焼鈍は例えば、250℃~350℃で実施すればよい。最終焼鈍の温度が低いと軟質化が不十分である。350℃を超えると、箔の変形や経済性の低下などが問題となる。最終焼鈍の時間は、10時間未満では最終焼鈍の効果が不十分である。
- Final annealing: 250°C to 350°C x 10 hours or more Final annealing is performed to completely soften the foil after final cold rolling. The final annealing after foil rolling may be carried out at, for example, 250°C to 350°C. If the final annealing temperature is low, softening is insufficient. If the temperature exceeds 350°C, problems such as deformation of the foil and reduction in economic efficiency will occur. If the final annealing time is less than 10 hours, the effect of the final annealing is insufficient.

実施形態のアルミニウム合金箔は、圧延方向に対して0°、45°、90°の各方向の伸びが30%以上の伸び特性を有している。
上記伸び特性は、製造工程においてスラブ厚さを600mm~750mmとし鋳造時に生成する晶出物や結晶粒のサイズ, 分布および最終箔までの圧延率を制御することで、最終箔における結晶粒径や集合組織を適正化することにより得ることができる。
The aluminum alloy foil of the embodiment has an elongation property in which the elongation in each direction of 0°, 45°, and 90° with respect to the rolling direction is 30% or more.
The above elongation characteristics can be achieved by controlling the size and distribution of crystallized substances and crystal grains generated during casting, and the rolling rate up to the final foil, by setting the slab thickness to 600 mm to 750 mm in the manufacturing process. It can be obtained by optimizing the texture.

さらに実施形態のアルミニウム合金箔は、前記3方向のうち1方向以上において、単軸引張試験における引張方向ひずみの最大値(局部変形能)が45%以上である。
当該ひずみは。例えば、DIC解析方法により測定することができる。DIC測定は、試験材にスプレーなどを用いて速乾性塗料を塗布し、表面にランダムパターンを予め描いておき、それを塑性変形、例えば単軸引張試験に供した際のパターンの変化を光学センサで読み取って変形中のひずみ分布を測定する。パターンの変化は例えば連続でカメラにより撮影することができる。DIC解析では、小さな標点間でのひずみを計測して局所部のひずみを取得することができる。
Furthermore, the aluminum alloy foil of the embodiment has a maximum strain in the tensile direction (local deformability) of 45% or more in a uniaxial tensile test in one or more of the three directions.
The strain in question is. For example, it can be measured by the DIC analysis method. In DIC measurement, a quick-drying paint is applied to the test material using a spray etc., a random pattern is drawn on the surface in advance, and the change in the pattern is detected using an optical sensor when the material is subjected to plastic deformation, such as a uniaxial tensile test. to measure the strain distribution during deformation. For example, changes in the pattern can be photographed continuously with a camera. In DIC analysis, it is possible to obtain local strain by measuring strain between small gauge points.

本実施形態では、さらに以下の特性を有しているのが望ましい。
・方位差15°以上の大傾角粒界に囲まれた結晶粒について、平均粒径が15μm以下、かつ最大粒径/平均粒径≦3.0
上記特性は、製造工程においてスラブ厚さや圧延率を適切に制御にすることにより得ることができる。
In this embodiment, it is desirable to further have the following characteristics.
・For grains surrounded by large-angle grain boundaries with a misorientation of 15° or more, the average grain size is 15 μm or less, and maximum grain size/average grain size ≦3.0
The above characteristics can be obtained by appropriately controlling the slab thickness and rolling rate during the manufacturing process.

・Cu方位密度30以上かつCube方位密度6以下
上記Cube方位密度、Cu方位密度は、製造工程において、最終冷間圧延率を95%以上にすることにより得ることができる。
- Cu orientation density 30 or more and Cube orientation density 6 or less The above Cube orientation density and Cu orientation density can be obtained by making the final cold rolling rate 95% or more in the manufacturing process.

以下に、本発明の実施例を説明する。
表1に示す組成のアルミニウム合金(残部がAlとその他の不可避不純物)を常法により溶製し、表1に示す厚みのスラブを得た。当該スラブに対して、500℃で8時間以上保持する均質化処理を行った。
均質化処理後のスラブに対し、表1に示す圧下率の熱間圧延によって、5mmの仕上がり厚みで熱間圧延を行った。熱間圧延仕上り温度は235℃~284℃とした。
Examples of the present invention will be described below.
An aluminum alloy having the composition shown in Table 1 (the balance being Al and other unavoidable impurities) was melted by a conventional method to obtain a slab having the thickness shown in Table 1. The slab was subjected to homogenization treatment at 500° C. for 8 hours or more.
The slabs after the homogenization treatment were hot rolled to a finished thickness of 5 mm by hot rolling at the rolling reduction shown in Table 1. The hot rolling finishing temperature was 235°C to 284°C.

次いで熱間圧延材を冷間圧延した。冷間圧延では、供試材No.8を除いて、板厚が2.8mmになった状態(冷間圧延率44.4%)で、中間焼鈍を行った。中間焼鈍は、360℃×3時間の条件でバッチ炉で行った。その後、仕上げ厚さ40μmになるまで最終冷間圧延を行った。最終冷間圧延の圧下率は98.6%であった。試験材No.8は、中間焼鈍を行うことなく仕上げ厚さまで圧延した。よって最終冷間圧延は99.2%であった。
冷間圧延を完了したアルミニウム合金箔に対しては、最終焼鈍を行った。最終焼鈍は300℃×20時間の条件により行った。
The hot rolled material was then cold rolled. In cold rolling, sample material No. With the exception of No. 8, intermediate annealing was performed in a state where the plate thickness was 2.8 mm (cold rolling ratio: 44.4%). Intermediate annealing was performed in a batch furnace at 360° C. for 3 hours. Thereafter, final cold rolling was performed until the finished thickness was 40 μm. The reduction ratio in the final cold rolling was 98.6%. Test material No. No. 8 was rolled to the final thickness without performing intermediate annealing. Therefore, the final cold rolling was 99.2%.
Final annealing was performed on the aluminum alloy foil that had been cold rolled. Final annealing was performed at 300° C. for 20 hours.

得られた供試材に対し、以下の項目についてそれぞれ評価を行い、評価結果を表2に示した。 The obtained test materials were evaluated on the following items, and the evaluation results are shown in Table 2.

伸び率
伸び率は引張試験にて測定した。引張試験は、JIS Z2241に準拠し、圧延方向に対して0°、45°、90°の各方向の伸びを測定できるように、JIS5号試験片を採取し、万能引張試験機(島津製作所社製 AGS-X 10kN)で引張り速度5mm/min.にて試験を行った。
伸び率の算出について以下の通りである。まず試験前に試験片長手中央に試験片垂直方向に2本の線を標点距離である50mm間隔でマークする。試験後にアルミニウム合金箔の破断面をつき合わせてマーク間距離を測定し、そこから標点距離(50mm)を引いた伸び量(mm)を標点間距離(50mm)で除して伸び率(%)を求めた。
Elongation rate The elongation rate was measured by a tensile test. The tensile test was conducted in accordance with JIS Z2241, and a JIS No. 5 test piece was taken using a universal tensile testing machine (Shimadzu Corporation) so that the elongation in each direction of 0°, 45°, and 90° with respect to the rolling direction could be measured. (manufactured by AGS-X 10kN) at a tensile speed of 5mm/min. The test was conducted at
The calculation of the elongation rate is as follows. First, before testing, two lines are marked in the longitudinal center of the test piece in the vertical direction of the test piece at intervals of 50 mm, which is the gage distance. After the test, the fractured surfaces of the aluminum alloy foils are brought together to measure the distance between the marks, and the elongation (mm) obtained by subtracting the gauge length (50 mm) is divided by the gauge distance (50 mm) to calculate the elongation rate ( %) was calculated.

局部変形能
前項の伸び率測定同様の条件の引張試験にて測定を行った。試験片はJIS5号試験片を用い、試験片平行部に艶消しの白色速乾性塗料をスプレーにて下地として塗布した後、黒色の速乾性塗料をスプレーにて塗布しドット状のランダムパターンを付与した。引張試験中での試験片の様子をCCDカメラにて連続的に撮影し、Correlated Solutions社製のVIC ?3D を用いて試験片平行部における引張方向ひずみの面分布を解析した。表2の局部変形能の項には、引張方向0°、45°、90°(圧延方向に対し)のうち、試験片破断までに最大の局部ひずみを示した箇所のひずみ値を示した。
Local deformability Measurement was carried out in a tensile test under the same conditions as in the elongation measurement described in the previous section. The test piece used was a JIS No. 5 test piece. A matte white quick-drying paint was sprayed on the parallel part of the test piece as a base, and then a black quick-drying paint was sprayed to give a dot-like random pattern. did. The condition of the test piece during the tensile test was continuously photographed using a CCD camera, and the plane distribution of strain in the tensile direction in the parallel portion of the test piece was analyzed using VIC-3D manufactured by Correlated Solutions. In the section of local deformability in Table 2, the strain value at the location where the maximum local strain was exhibited before specimen fracture was shown among the tensile directions of 0°, 45°, and 90° (with respect to the rolling direction).

結晶粒径
箔表面を電解研磨した後、SEM(Scanning Electron Microscope)-EBSDにて結晶方位解析を行い、結晶粒間の方位差が15°以上の結晶粒界をHAGBs(大傾角粒界)と規定し、HAGBsで囲まれた結晶粒の大きさを測定した。倍率×900で視野サイズ90×180μmを3視野測定し、平均結晶粒径、及び大粒径/平均粒径を粒径比として算出した。一つ一つの結晶粒径は円相当径にて算出し、平均結晶粒径の算出にはEBSDのArea法(Average by Area Fraction Method)を用いた。尚、解析にはTSL Solutions社のOIM Analysisを使用した。
結果は、平均結晶粒径、粒径比として表2に示した。
Crystal grain size After electrolytically polishing the foil surface, crystal orientation analysis was performed using SEM (Scanning Electron Microscope)-EBSD, and grain boundaries with an orientation difference of 15° or more between crystal grains were identified as HAGBs (high angle grain boundaries). The size of grains surrounded by HAGBs was measured. Three fields of view with a field size of 90 x 180 μm were measured at a magnification of x900, and the average crystal grain size and large grain size/average grain size were calculated as a grain size ratio. The diameter of each crystal grain was calculated based on the equivalent circle diameter, and the average by area fraction method of EBSD was used to calculate the average grain size. Note that OIM Analysis from TSL Solutions was used for the analysis.
The results are shown in Table 2 as average crystal grain size and grain size ratio.

結晶方位密度
Cube方位は{001}<100>、Cu方位は{112}<111>を代表方位とした。それぞれの方位密度はX線回折法において、{111}、{200}、{220}の不完全極点図を測定し、その結果を用いて3次元方位分布関数(ODF;Orientation Distribution Function)を計算し、各結晶方位密度の評価を行った。
結果は、Cube方位密度、Cu方位密度として表2に示した。
Crystal Orientation Density The representative orientations were {001}<100> for the Cube orientation, and {112}<111> for the Cu orientation. Each orientation density is determined by measuring the incomplete pole figures of {111}, {200}, and {220} using the X-ray diffraction method, and using the results to calculate a three-dimensional orientation distribution function (ODF). Then, each crystal orientation density was evaluated.
The results are shown in Table 2 as Cube orientation density and Cu orientation density.

角筒張出し高さ
角筒張出し高さは角筒成形試験にて評価した。試験は万能薄板成形試験器(ERICHSEN社製 モデル142/20)にて行い、厚さ40μmのアルミ箔を、図1に示す形状を有する角型ポンチ(一辺の長さL=37mm、角部の面取り径R=4.5mm)を用いて行った。試験条件として、シワ抑え力は10kN、ポンチの上昇速度(成形速度)の目盛は1とし、そして箔の片面(ポンチが当たる面)に鉱物油を潤滑剤として塗布した。箔に対し装置の下部から上昇するポンチが当たり、箔が成形されるが、3回連続成形した際に割れやピンホールがなく成形できた最大のポンチの上昇高さをその材料の角筒張出し高さ(mm)と規定した。ポンチの高さは0.5mm間隔で変化させた。
測定結果は表2に示した。
Square tube overhang height The square tube overhang height was evaluated by a square tube forming test. The test was conducted using a universal thin plate forming tester (Model 142/20 manufactured by ERICHSEN), and aluminum foil with a thickness of 40 μm was punched with a square punch having the shape shown in Figure 1 (length of one side L = 37 mm, corner part The chamfer diameter R was 4.5 mm). As test conditions, the wrinkle suppressing force was 10 kN, the scale of the rising speed of the punch (forming speed) was 1, and mineral oil was applied as a lubricant to one side of the foil (the side that the punch touches). A punch that rises from the bottom of the device hits the foil and forms the foil, but the maximum rise height of the punch that can be formed without cracks or pinholes when forming three times in a row is determined by the extrusion of the rectangular tube of the material. It was defined as height (mm). The height of the punch was changed at intervals of 0.5 mm.
The measurement results are shown in Table 2.

表2に示すように、本願発明の実施例No.1~8では、比較例に比して角筒張出し高さが大きく、優れた成形性を有している。それに対し、本発明の組成もしくは塑性加工に伴う局部変形能の何れか又は両方が範囲外である比較例No.9~15は、角筒張出し高さが小さく、成形性に劣っている。 As shown in Table 2, Example No. of the present invention. In Nos. 1 to 8, the height of the rectangular tube overhang was greater than that of the comparative example, and the moldability was excellent. On the other hand, Comparative Example No. 1, in which either or both of the composition of the present invention and the local deformability accompanying plastic working is outside the range. No. 9 to No. 15 had a small rectangular tube overhang height and poor moldability.

Figure 2023161303000001
Figure 2023161303000001

Figure 2023161303000002
Figure 2023161303000002

Claims (3)

Fe:0.8質量%以上1.8質量%以下、Si:0.01質量%以上0.08質量%以下、Cu:0.005質量%以上0.05質量%以下を含有し、残部がAlと不可避不純物からなる組成を有し、圧延方向に対して0°、45°、90°の各方向の伸びが30%以上であり、かつ、前記3方向のうち1方向以上において、単軸引張試験における引張方向ひずみの最大値(局部変形能)が45%以上であることを特徴とするアルミニウム合金箔。 Contains Fe: 0.8% by mass or more and 1.8% by mass or less, Si: 0.01% by mass or more and 0.08% by mass or less, Cu: 0.005% by mass or more and 0.05% by mass or less, and the remainder is It has a composition consisting of Al and unavoidable impurities, has an elongation of 30% or more in each direction of 0°, 45°, and 90° with respect to the rolling direction, and is uniaxial in one or more of the three directions. An aluminum alloy foil characterized in that the maximum value of strain in the tensile direction (local deformability) in a tensile test is 45% or more. 方位差15°以上の大傾角粒界で囲まれた結晶粒の平均粒径が15μm以下であり、前記結晶粒に関し、最大結晶粒径/平均結晶粒径≦3.0であることを特徴とする請求項1に記載のアルミニウム合金箔。 The average grain size of crystal grains surrounded by large-angle grain boundaries with a misorientation of 15° or more is 15 μm or less, and for the crystal grains, maximum grain size/average grain size≦3.0. The aluminum alloy foil according to claim 1. Cu方位密度が30以上であり、Cube方位密度が6以下であることを特徴とする請求項1または2に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 1 or 2, wherein the Cu orientation density is 30 or more and the Cube orientation density is 6 or less.
JP2022071610A 2022-04-25 2022-04-25 aluminum alloy foil Pending JP2023161303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022071610A JP2023161303A (en) 2022-04-25 2022-04-25 aluminum alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022071610A JP2023161303A (en) 2022-04-25 2022-04-25 aluminum alloy foil

Publications (1)

Publication Number Publication Date
JP2023161303A true JP2023161303A (en) 2023-11-07

Family

ID=88650111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022071610A Pending JP2023161303A (en) 2022-04-25 2022-04-25 aluminum alloy foil

Country Status (1)

Country Link
JP (1) JP2023161303A (en)

Similar Documents

Publication Publication Date Title
JP6461249B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
KR20210060589A (en) Manufacturing method of aluminum alloy foil and aluminum alloy foil
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP6461248B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
KR101251237B1 (en) Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP6936293B2 (en) Aluminum alloy foil
JP2005298922A (en) Aluminum alloy plate to be formed, and manufacturing method therefor
US20160265095A1 (en) High strength aluminum alloy sheet excellent in bendability and shape freezability and method of production of same
JP2023182829A (en) Battery wrapping foil made of aluminum alloy
JP2012214844A (en) Aluminum alloy fin material for heat exchanger, and method for manufacturing the same
JP2023161303A (en) aluminum alloy foil
JP2023161183A (en) aluminum alloy foil
JP2024043236A (en) Aluminum alloy foil
JP4778395B2 (en) Aluminum alloy sheet with excellent stretch flangeability and high post-baking strength
JP7303274B2 (en) aluminum alloy foil
JP2019044270A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP2008161879A (en) Method for producing magnesium alloy rolled sheet
JP2023116801A (en) Aluminum alloy foil for battery packaging material
JP2024028131A (en) aluminum alloy foil
JP2019044271A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP2024024624A (en) Aluminum alloy foil and method for producing the same