JP2023142911A - Water supply control system, water supply control device, water supply control method, and program - Google Patents

Water supply control system, water supply control device, water supply control method, and program Download PDF

Info

Publication number
JP2023142911A
JP2023142911A JP2022050043A JP2022050043A JP2023142911A JP 2023142911 A JP2023142911 A JP 2023142911A JP 2022050043 A JP2022050043 A JP 2022050043A JP 2022050043 A JP2022050043 A JP 2022050043A JP 2023142911 A JP2023142911 A JP 2023142911A
Authority
JP
Japan
Prior art keywords
water supply
main water
valve
bypass valve
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022050043A
Other languages
Japanese (ja)
Inventor
大樹 辻
Daiki Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2022050043A priority Critical patent/JP2023142911A/en
Publication of JP2023142911A publication Critical patent/JP2023142911A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

To provide a system for controlling water supply of a steam generator.SOLUTION: A water supply control system includes a main water supply flow passage constituting a water supply system of a steam generator, a main water supply valve, a bypass flow passage of the main water supply flow passage, a main water supply bypass valve, and a water supply control device. The water supply control device calculates a first target opening on the basis of a steam flow rate supplied to a steam turbine from the steam generator, closes the main water supply bypass valve so that the valve opening becomes the first target opening, and calculates a second target opening to compensate a water supply flow rate which is decreased by closing of the main water supply bypass valve, and places the main water supply valve and the main water supply bypass valve under an open state by opening the closed main water supply valve so that the opening becomes the second target opening.SELECTED DRAWING: Figure 1

Description

本開示は、蒸気発生器の給水制御システム、給水制御装置、給水制御方法及びプログラムに関する。 The present disclosure relates to a water supply control system, a water supply control device, a water supply control method, and a program for a steam generator.

原子力プラントの蒸気発生器の給水流路には、主給水流路に加え、バイパス流路が設けられている。主給水流路には主給水弁が設けられ、バイパス流路には主給水バイパス弁が設けられている。従来、蒸気発生器からタービンへ供給される蒸気流量が多い高負荷のときには、主給水バイパス弁を閉じて主給水流路を通じて蒸気発生器へ冷却水を供給し、蒸気流量が少ない低負荷のときには、主給水弁を閉じてバイパス流路を通じて、蒸気発生器へ冷却水を供給する制御を行っている(特許文献1)。このように従来制御では、負荷に応じて、主給水流路とバイパス流路とを切り換えて、何れか1つの流路によって冷却水の給水を行っている。一方、より多くの給水流量を必要とするプラントに対して、主給水流路とバイパス流路の両方を使って、蒸気発生器へ冷却水を供給する方法が検討されている。主給水流路とバイパス流路を使用して給水する方法としては、例えば、負荷を上昇させる過程で、主給水バイパス弁を開としたまま、主給水弁を徐々に開いていく方法が考えられる。しかし、この方法では、主給水弁が微開状態で給水流量が変動し、給水制御が不安定となる可能性がある。 In addition to the main water supply flow path, a bypass flow path is provided in the water supply flow path of a steam generator of a nuclear power plant. The main water supply flow path is provided with a main water supply valve, and the bypass flow path is provided with a main water supply bypass valve. Conventionally, when the load is high and the flow rate of steam supplied from the steam generator to the turbine is high, the main water supply bypass valve is closed and cooling water is supplied to the steam generator through the main water flow path, and when the load is low and the flow rate of steam is low, the main water supply bypass valve is closed. , the main water supply valve is closed and cooling water is supplied to the steam generator through the bypass flow path (Patent Document 1). In this manner, in conventional control, the main water supply flow path and the bypass flow path are switched depending on the load, and cooling water is supplied through either one of the flow paths. On the other hand, for plants that require a larger flow rate of water supply, methods are being considered to supply cooling water to the steam generator using both the main water supply flow path and the bypass flow path. An example of a method for supplying water using the main water supply flow path and bypass flow path is to gradually open the main water supply valve while keeping the main water supply bypass valve open during the process of increasing the load. . However, with this method, the water supply flow rate fluctuates when the main water supply valve is slightly open, and water supply control may become unstable.

特開平10-253007号公報Japanese Patent Application Publication No. 10-253007

給水流量の変動を抑えつつ、主給水弁と主給水バイパス弁の両方を開状態に制御して、蒸気発生器への給水を行う方法が求められている。 There is a need for a method for supplying water to a steam generator by controlling both the main water supply valve and the main water supply bypass valve to an open state while suppressing fluctuations in the water supply flow rate.

本開示は、上記課題を解決することができる給水制御システム、給水制御装置、給水制御方法及びプログラムを提供する。 The present disclosure provides a water supply control system, a water supply control device, a water supply control method, and a program that can solve the above problems.

本開示の給水制御システムは、蒸気発生器へ冷却水を供給する給水系統を構成する主給水流路と、前記主給水流路に設けられる主給水弁と、前記給水系統を構成し、前記主給水流路をバイパスする主給水バイパス流路と、前記主給水バイパス流路に設けられる主給水バイパス弁と、前記主給水弁と前記主給水バイパス弁とを制御して前記冷却水の給水流量を制御する給水制御装置と、を有し、前記給水制御装置は、前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、第1の目標開度となるよう前記主給水バイパス弁を閉動作させ、前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような第2の目標開度を算出し、前記第2の目標開度となるように閉状態の前記主給水弁を開動作させ、前記主給水弁及び前記主給水バイパス弁を開状態とする。 The water supply control system of the present disclosure includes a main water supply flow path that configures a water supply system that supplies cooling water to a steam generator, a main water supply valve provided in the main water supply flow path, and a main water supply system that configures the water supply system. A main water supply bypass flow path that bypasses the water supply flow path, a main water supply bypass valve provided in the main water supply bypass flow path, and the main water supply valve and the main water supply bypass valve are controlled to control the water supply flow rate of the cooling water. and a water supply control device that calculates a first target opening degree based on the flow rate of steam supplied from the steam generator to the steam turbine, and calculates a first target opening degree and the first target opening degree. The main water supply bypass valve is closed so that the main water supply bypass valve closes, and a second target opening is calculated to compensate for the cooling water supply flow rate that decreases due to the closing operation of the main water supply bypass valve. The main water supply valve which is in the closed state is opened so that the main water supply valve and the main water supply bypass valve are opened.

本開示の給水制御装置は、蒸気発生器へ冷却水を供給する主給水流路と、前記主給水流路に設けられる主給水弁と、前記主給水流路をバイパスする主給水バイパス流路と、前記主給水バイパス流路に設けられる主給水バイパス弁と、を備える給水系統において、前記主給水弁と前記主給水バイパス弁とを制御することによって前記冷却水の前記蒸気発生器への給水流量を制御する給水制御装置であって、前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、前記第1の目標開度となるよう前記主給水バイパス弁を閉動作させ、前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような第2の目標開度を算出し、前記第2の目標開度となるように閉状態の前記主給水弁を開動作させ、前記主給水弁及び前記主給水バイパス弁を開状態とする。 The water supply control device of the present disclosure includes a main water supply flow path that supplies cooling water to a steam generator, a main water supply valve provided in the main water supply flow path, and a main water supply bypass flow path that bypasses the main water supply flow path. , a main water supply bypass valve provided in the main water supply bypass flow path, in which the water supply flow rate of the cooling water to the steam generator is controlled by controlling the main water supply valve and the main water supply bypass valve. A water supply control device for controlling a main water supply bypass, which calculates a first target opening degree based on a steam flow rate supplied from the steam generator to a steam turbine, and controls the main water supply bypass so that the first target opening degree is achieved. Close the valve, calculate a second target opening to compensate for the cooling water supply flow rate that decreases due to the closing operation of the main water supply bypass valve, and close the valve to the second target opening. The main water supply valve is opened, and the main water supply valve and the main water supply bypass valve are opened.

本開示の給水制御方法は、蒸気発生器へ冷却水を供給する主給水流路と、前記主給水流路に設けられる主給水弁と、前記主給水流路をバイパスする主給水バイパス流路と、前記主給水バイパス流路に設けられる主給水バイパス弁と、を備える給水系統において、前記主給水弁と前記主給水バイパス弁とを制御することによって給水流量を制御する給水制御方法であって、前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、前記第1の目標開度となるよう前記主給水バイパス弁を閉動作させ、前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような第2の目標開度を算出し、前記第2の目標開度となるように閉状態の前記主給水弁を開動作させ、前記主給水弁及び前記主給水バイパス弁を開状態とする。 The water supply control method of the present disclosure includes a main water supply flow path that supplies cooling water to a steam generator, a main water supply valve provided in the main water supply flow path, and a main water supply bypass flow path that bypasses the main water supply flow path. , a main water supply bypass valve provided in the main water supply bypass flow path, and a water supply control method for controlling the water supply flow rate by controlling the main water supply valve and the main water supply bypass valve, A first target opening degree is calculated based on the flow rate of steam supplied from the steam generator to the steam turbine, and the main water supply bypass valve is closed so that the first target opening degree is achieved, and the main water supply bypass valve is closed. A second target opening degree is calculated to compensate for the cooling water supply flow rate that decreases due to the closing operation of the valve, and the main water supply valve in the closed state is opened so as to reach the second target opening degree. , the main water supply valve and the main water supply bypass valve are opened.

本開示のプログラムは、コンピュータに、蒸気発生器へ冷却水を供給する主給水流路と、前記主給水流路に設けられる主給水弁と、前記主給水流路をバイパスする主給水バイパス流路と、前記主給水バイパス流路に設けられる主給水バイパス弁と、を備える給水系統において、前記主給水弁と前記主給水バイパス弁とを制御することによって給水流量を制御するコンピュータに、前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、前記第1の目標開度となるよう前記主給水バイパス弁を閉動作させ、前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような第2の目標開度を算出し、前記第2の目標開度となるように閉状態の前記主給水弁を開動作させ、前記主給水弁及び前記主給水バイパス弁を開状態とする処理を実行させる。 The program of the present disclosure provides a computer with a main water supply channel that supplies cooling water to a steam generator, a main water supply valve provided in the main water supply channel, and a main water supply bypass channel that bypasses the main water supply channel. and a main water supply bypass valve provided in the main water supply bypass flow path, the computer that controls the water supply flow rate by controlling the main water supply valve and the main water supply bypass valve, A first target opening degree is calculated based on the steam flow rate supplied from the steam turbine to the steam turbine, and the main water supply bypass valve is closed so that the first target opening degree is achieved. A second target opening degree that compensates for the cooling water supply flow rate that decreases due to the closing operation is calculated, and the main water supply valve in the closed state is operated to open the main water supply valve in the closed state so that the second target opening degree is achieved. A process for opening the water supply valve and the main water supply bypass valve is executed.

上述の給水制御システム、給水制御装置、給水制御方法及びプログラムによれば、主給水弁と主給水バイパス弁の両方を開状態にして、蒸気発生器に給水することができる。 According to the above-described water supply control system, water supply control device, water supply control method, and program, water can be supplied to the steam generator by opening both the main water supply valve and the main water supply bypass valve.

実施形態に係る蒸気発生器の給水制御システムの概略図である。FIG. 1 is a schematic diagram of a water supply control system for a steam generator according to an embodiment. 実施形態に係る給水制御装置の一例を示すブロック図である。It is a block diagram showing an example of the water supply control device concerning an embodiment. 実施形態に係る負荷上昇時の制御の一例を示す図である。It is a figure showing an example of control at the time of load rise concerning an embodiment. 実施形態に係る開度算出に用いる関数の一例を示す第1の図である。FIG. 3 is a first diagram illustrating an example of a function used to calculate the opening degree according to the embodiment. 実施形態に係る開度算出に用いる関数の一例を示す第2の図である。FIG. 7 is a second diagram illustrating an example of a function used to calculate the opening degree according to the embodiment. 実施形態に係る開度算出に用いる関数の一例を示す第3の図である。FIG. 7 is a third diagram illustrating an example of a function used to calculate the opening degree according to the embodiment. 実施形態に係る負荷降下時の制御の一例を示す図である。It is a figure showing an example of control at the time of load drop concerning an embodiment. 実施形態に係る負荷上昇時の処理の一例を示すフローチャートである。2 is a flowchart illustrating an example of processing when the load increases according to the embodiment. 実施形態に係る負荷降下時の処理の一例を示すフローチャートである。7 is a flowchart illustrating an example of processing when the load decreases according to the embodiment. 実施形態に係る給水制御装置のハードウェア構成の一例を示す図である。It is a diagram showing an example of a hardware configuration of a water supply control device according to an embodiment.

以下、本開示の給水制御システムについて、図1~図7を参照して説明する。
<実施形態>
(構成)
本実施形態の給水制御システムの構成について、図1、図2を参照して説明する。
図1に、加圧水型(PWR:Pressurized Water Reactor)の原子力発電プラントにおける蒸気発生器の給水制御システムの概略図を示す。給水制御システム100は、蒸気発生器1と、蒸気タービン4と、復水器5と、二次冷却ループ6と、給水制御装置10と、を含む。蒸気発生器1には一次冷却ループ2が接続されている。一次冷却ループ2は、図示しない原子炉と蒸気発生器1との間で、一次冷却水を循環させる流路を形成している。一次冷却ループ2は、一次冷却水を循環させるための一次冷却ポンプP1を有している。蒸気発生器1は、一次冷却ループ2を循環する一次冷却水を加熱し蒸気を発生させる。発生した水蒸気は、水蒸気供給流路3を通じて、蒸気タービン4へ供給される。蒸気タービン4は、蒸気発生器1から供給された水蒸気の熱エネルギーを使用して回転駆動する。蒸気タービン4の回転軸は、図示しない発電機に連結されており、蒸気タービン4の回転駆動により、図示しない発電機が発電する。二次冷却ループ6は、蒸気発生器1と蒸気タービン4との間で、二次冷却水を循環させる流路を形成している。二次冷却ループ6は、水蒸気供給流路3と、主給水流路7と、主給水バイパス流路8と、を含む。復水器5は、二次冷却ループ6における蒸気タービン4の下流側に配置され、蒸気タービン4で仕事をした後の蒸気を水へ凝縮する。主給水流路7は、二次冷却水を循環させるポンプP2を有しており、ポンプP2により、復水器5にて凝縮された水(二次冷却水)が、蒸気発生器1と蒸気タービン4との間で循環するようになっている。主給水流路7におけるポンプP2よりも二次冷却水の流れ方向の下流側の分岐点71では、主給水流路7から、主給水バイパス流路8が分岐している。主給水バイパス流路8には、主給水バイパス弁V2が設けられている。主給水バイパス弁V2の開度を調整することにより、主給水バイパス流路8を流れる二次冷却水の流量が制御される。主給水流路7における分岐点71の下流側には、主給水弁V1が設けられている。主給水弁V1の開度を調整することにより、主給水流路7を流れる二次冷却水の流量が制御される。主給水バイパス流路8は、主給水弁V1よりも下流側の合流点72にて、主給水流路7に接続(合流)している。ここで、主給水弁V1は、主給水バイパス弁V2と比べて、弁容量が大きく、細かな開度調整が難しい。また、主給水弁V1は、開度が微小の状態では流量に揺らぎが生じる。その反面で、主給水弁V1は、大流量の制御性に優れているといった特性を有している。
The water supply control system of the present disclosure will be described below with reference to FIGS. 1 to 7.
<Embodiment>
(composition)
The configuration of the water supply control system of this embodiment will be explained with reference to FIGS. 1 and 2.
Figure 1 shows a schematic diagram of a steam generator water supply control system in a pressurized water reactor (PWR) nuclear power plant. Feedwater control system 100 includes a steam generator 1 , a steam turbine 4 , a condenser 5 , a secondary cooling loop 6 , and a feedwater control device 10 . A primary cooling loop 2 is connected to the steam generator 1 . The primary cooling loop 2 forms a flow path for circulating primary cooling water between a nuclear reactor (not shown) and the steam generator 1. The primary cooling loop 2 includes a primary cooling pump P1 for circulating primary cooling water. The steam generator 1 heats primary cooling water circulating in the primary cooling loop 2 to generate steam. The generated steam is supplied to the steam turbine 4 through the steam supply channel 3. The steam turbine 4 is driven to rotate using the thermal energy of the steam supplied from the steam generator 1. The rotating shaft of the steam turbine 4 is connected to a generator (not shown), and the rotation of the steam turbine 4 causes the generator (not shown) to generate electricity. The secondary cooling loop 6 forms a flow path for circulating secondary cooling water between the steam generator 1 and the steam turbine 4. The secondary cooling loop 6 includes a steam supply channel 3 , a main water supply channel 7 , and a main water supply bypass channel 8 . The condenser 5 is arranged on the downstream side of the steam turbine 4 in the secondary cooling loop 6, and condenses the steam after working in the steam turbine 4 into water. The main water supply flow path 7 has a pump P2 that circulates secondary cooling water, and the pump P2 supplies water (secondary cooling water) condensed in the condenser 5 to the steam generator 1 It circulates between the turbine 4 and the turbine 4. A main water supply bypass flow path 8 branches from the main water supply flow path 7 at a branch point 71 on the downstream side of the pump P2 in the flow direction of the secondary cooling water in the main water supply flow path 7 . The main water supply bypass flow path 8 is provided with a main water supply bypass valve V2. By adjusting the opening degree of the main water supply bypass valve V2, the flow rate of the secondary cooling water flowing through the main water supply bypass flow path 8 is controlled. A main water supply valve V1 is provided downstream of the branch point 71 in the main water supply flow path 7. By adjusting the opening degree of the main water supply valve V1, the flow rate of the secondary cooling water flowing through the main water supply flow path 7 is controlled. The main water supply bypass flow path 8 is connected (merged) with the main water supply flow path 7 at a confluence point 72 on the downstream side of the main water supply valve V1. Here, the main water supply valve V1 has a larger valve capacity than the main water supply bypass valve V2, and it is difficult to finely adjust the opening degree. Furthermore, when the opening degree of the main water supply valve V1 is small, the flow rate fluctuates. On the other hand, the main water supply valve V1 has characteristics such as excellent controllability of large flow rates.

蒸気発生器1には、冷却水の水位を計測するセンサc1が設けられている。水蒸気供給流路3には、蒸気発生器1から蒸気タービン4へ供給される蒸気の流量を計測するセンサc2が設けられている。主給水流路7には、二次冷却ループ6によって蒸気発生器1へ還流する二次冷却水の給水流量を計測するセンサc3が設けられている。これらのセンサc1~c3は、給水制御装置10と接続されている。センサc1~c3が計測した、水位、水蒸気流量、給水流量は給水制御装置10へ送信され、蒸気発生器1へ供給される二次冷却水の給水流量の制御、即ち、主給水弁V1と主給水バイパス弁V2の開度制御に利用される。センサc2が計測する蒸気流量は、図示しない発電機の発電負荷と正の相関があり、負荷の指標とされる(例えば、発電負荷と蒸気流量は互いに換算することができる。)。つまり、発電負荷に対応する蒸気流量を実現できるように給水制御が行われる。また、センサc2が計測する蒸気流量とセンサc3が計測する給水流量にも正の相関が存在する。 The steam generator 1 is provided with a sensor c1 that measures the level of cooling water. The steam supply channel 3 is provided with a sensor c2 that measures the flow rate of steam supplied from the steam generator 1 to the steam turbine 4. The main water supply flow path 7 is provided with a sensor c3 that measures the flow rate of the secondary cooling water that is returned to the steam generator 1 by the secondary cooling loop 6. These sensors c1 to c3 are connected to the water supply control device 10. The water level, steam flow rate, and feed water flow rate measured by the sensors c1 to c3 are transmitted to the feed water control device 10, which controls the feed water flow rate of the secondary cooling water supplied to the steam generator 1, that is, the main water supply valve V1 and the main water supply flow rate. It is used to control the opening degree of the water supply bypass valve V2. The steam flow rate measured by the sensor c2 has a positive correlation with the power generation load of a generator (not shown) and is used as an index of the load (for example, the power generation load and the steam flow rate can be converted into each other). In other words, water supply control is performed so that a steam flow rate corresponding to the power generation load can be achieved. Further, there is a positive correlation between the steam flow rate measured by sensor c2 and the water supply flow rate measured by sensor c3.

次に給水制御装置10の機能、構成について説明する。給水制御装置10は、蒸気発生器1に供給される給水の流量を制御する。図2は、実施形態に係る給水制御装置の一例を示すブロック図である。給水制御装置10は、センサデータ取得部11と、入力受付部12と、制御部13と、出力部14と、記憶部15とを備える。
センサデータ取得部11は、センサc1~c3が計測した計測値を取得する。
入力受付部12は、ユーザからの入力を受け付ける。例えば、入力受付部12は、主給水弁V1と主給水バイパス弁V2の自動切り替え制御の開始を指示する操作の入力を受け付ける。主給水弁V1と主給水バイパス弁V2の自動切り替え制御については、後述する。
Next, the functions and configuration of the water supply control device 10 will be explained. The feed water control device 10 controls the flow rate of feed water supplied to the steam generator 1. FIG. 2 is a block diagram showing an example of the water supply control device according to the embodiment. The water supply control device 10 includes a sensor data acquisition section 11 , an input reception section 12 , a control section 13 , an output section 14 , and a storage section 15 .
The sensor data acquisition unit 11 acquires the measured values measured by the sensors c1 to c3.
The input accepting unit 12 accepts input from the user. For example, the input receiving unit 12 receives an input of an operation instructing the start of automatic switching control of the main water supply valve V1 and the main water supply bypass valve V2. The automatic switching control of the main water supply valve V1 and the main water supply bypass valve V2 will be described later.

制御部13は、二次冷却ループ6の動作を制御する。例えば、制御部13は、ポンプP2の起動・停止、主給水弁V1および主給水バイパス弁V2の開度制御を実行する。特に制御部13は、本実施形態に係る主給水弁V1と主給水バイパス弁V2の自動切り替え制御を実行する。自動切り替え制御とは、原子力発電プラントの発電負荷(図示しない発電機の負荷)に応じて、主給水バイパス弁V2のみが開の状態と、主給水弁V1および主給水バイパス弁V2の両方が開の状態とを切り替える制御である。制御部13は、開度算出部131と、主給水弁制御部132と、主給水バイパス弁制御部133と、を備える。 The control unit 13 controls the operation of the secondary cooling loop 6. For example, the control unit 13 starts and stops the pump P2, and controls the opening degrees of the main water supply valve V1 and the main water supply bypass valve V2. In particular, the control unit 13 executes automatic switching control of the main water supply valve V1 and the main water supply bypass valve V2 according to the present embodiment. Automatic switching control means that depending on the power generation load of the nuclear power plant (the load of the generator (not shown)), only the main water supply bypass valve V2 is open, and both the main water supply valve V1 and the main water supply bypass valve V2 are open. This is a control that switches between the state of The control unit 13 includes an opening calculation unit 131, a main water supply valve control unit 132, and a main water supply bypass valve control unit 133.

開度算出部131は、主給水弁V1と主給水バイパス弁V2の目標開度を算出する。
主給水弁制御部132は、開度算出部131が算出した主給水弁V1の目標開度に基づいて、主給水弁V1の開度を制御する。
主給水バイパス弁制御部133は、開度算出部131が算出した主給水バイパス弁V2の目標開度に基づいて、主給水バイパス弁V2の開度を制御する。
The opening calculation unit 131 calculates target opening degrees of the main water supply valve V1 and the main water supply bypass valve V2.
The main water supply valve control unit 132 controls the opening degree of the main water supply valve V1 based on the target opening degree of the main water supply valve V1 calculated by the opening degree calculation unit 131.
The main water supply bypass valve control section 133 controls the opening degree of the main water supply bypass valve V2 based on the target opening degree of the main water supply bypass valve V2 calculated by the opening degree calculation section 131.

出力部14は、諸々の情報を表示装置や電子ファイルに出力する。
記憶部15は、諸々の情報を記憶する。例えば、記憶部15は、センサデータ取得部11が取得した計測値、主給水弁V1および主給水バイパス弁V2の開度の算出に用いる関数F1~F3や閾値などの情報を記憶する。
The output unit 14 outputs various information to a display device or an electronic file.
The storage unit 15 stores various information. For example, the storage unit 15 stores information such as measurement values acquired by the sensor data acquisition unit 11, functions F1 to F3 used to calculate the opening degrees of the main water supply valve V1 and the main water supply bypass valve V2, threshold values, and the like.

(主給水弁V1および主給水バイパス弁V2の制御)
次に図3~図5を参照して、主給水弁V1および主給水バイパス弁V2の自動切り替え制御について説明する。自動切り替え制御とは、負荷上昇時において、主給水弁V1が閉で主給水バイパス弁V2が開の状態から、主給水弁V1および主給水バイパス弁V2の両方を開とすることであり、負荷降下時においては、主給水弁V1および主給水バイパス弁V2の両方が開となっている状態から、主給水バイパス弁V2を開としたまま、主給水弁V1を全閉する制御である。従来の制御では、図示しない発電機の負荷が低負荷のときには、主給水バイパス弁V2を開とし、主給水弁V1を閉とする。そして負荷が上昇したときには、主給水弁V1を開とし、主給水バイパス弁V2を閉とする。これに対し、本実施形態では、低負荷時には、従来の制御と同様に、主給水バイパス弁V2を開とし、主給水弁V1を閉とする。そして、高負荷時には、主給水弁V1と主給水バイパス弁V2の両方を開状態とし、より多量の二次冷却水を蒸気発生器1へ供給できるようにする。また、自動切り替えに際して、給水流量の変動を抑えつつ、主給水弁V1と主給水バイパス弁V2を開状態に制御する。
(Control of main water supply valve V1 and main water supply bypass valve V2)
Next, automatic switching control of the main water supply valve V1 and the main water supply bypass valve V2 will be described with reference to FIGS. 3 to 5. Automatic switching control is to open both the main water supply valve V1 and the main water supply bypass valve V2 from the state where the main water supply valve V1 is closed and the main water supply bypass valve V2 is open when the load increases. During descent, control is such that from a state in which both the main water supply valve V1 and the main water supply bypass valve V2 are open, the main water supply valve V1 is fully closed while the main water supply bypass valve V2 remains open. In conventional control, when the load of a generator (not shown) is low, the main water supply bypass valve V2 is opened and the main water supply valve V1 is closed. When the load increases, the main water supply valve V1 is opened and the main water supply bypass valve V2 is closed. On the other hand, in this embodiment, when the load is low, the main water supply bypass valve V2 is opened and the main water supply valve V1 is closed, similar to conventional control. When the load is high, both the main water supply valve V1 and the main water supply bypass valve V2 are opened, so that a larger amount of secondary cooling water can be supplied to the steam generator 1. Further, during automatic switching, the main water supply valve V1 and the main water supply bypass valve V2 are controlled to be open while suppressing fluctuations in the water supply flow rate.

[負荷上昇時]
図3は、実施形態に係る負荷上昇時の制御の一例を示す図である。
図3の上図31の縦軸は給水流量、横軸は時間を示している。図3の下図32の縦軸は主給水バイパス弁制御信号(主給水バイパス弁V2の開度指令値)又は、主給水弁制御信号(主給水バイパス弁V1の開度指令値)、横軸は時間を示している。上図31と下図32の横軸の同じ位置は同じ時間を示している。グラフg1の実線は、本実施形態の制御における主給水バイパス弁V2の開度を示し、グラフg2の実線は、本実施形態の制御における主給水弁V1の開度を示す。グラフg1の破線部分は、従来制御における主給水バイパス弁V2の開度を示し、グラフg2の破線部分は、従来制御における主給水弁V1の開度を示す。グラフg3は、センサc3が計測する給水流量を示す。時刻t0では、主給水バイパス弁V2(グラフg1)は開(例えば、70%)、主給水弁V1(グラフg2)の開度は全閉(0%)である。この状態では、センサc1が計測する蒸気発生器1における液相の水位が所定の範囲内となり、センサc1が計測する蒸気流量が発電負荷に応じた流量となるように、主給水バイパス弁V2の開度が制御されている。
[When load increases]
FIG. 3 is a diagram illustrating an example of control when the load increases according to the embodiment.
In the upper diagram 31 of FIG. 3, the vertical axis indicates the water supply flow rate, and the horizontal axis indicates time. The vertical axis of the lower diagram 32 in Figure 3 is the main water supply bypass valve control signal (opening command value of the main water supply bypass valve V2) or the main water supply valve control signal (the opening command value of the main water supply bypass valve V1), and the horizontal axis is the main water supply valve control signal (opening command value of the main water supply bypass valve V1). It shows the time. The same position on the horizontal axis in the upper diagram 31 and the lower diagram 32 indicates the same time. The solid line in graph g1 indicates the opening degree of the main water supply bypass valve V2 in the control of this embodiment, and the solid line in graph g2 indicates the opening degree of the main water supply valve V1 in the control of this embodiment. The broken line portion of the graph g1 indicates the opening degree of the main water supply bypass valve V2 in the conventional control, and the broken line portion of the graph g2 indicates the opening degree of the main water supply valve V1 in the conventional control. Graph g3 shows the water supply flow rate measured by sensor c3. At time t0, the main water supply bypass valve V2 (graph g1) is open (for example, 70%), and the opening degree of the main water supply valve V1 (graph g2) is fully closed (0%). In this state, the liquid phase water level in the steam generator 1 measured by the sensor c1 is within a predetermined range, and the main water supply bypass valve V2 is adjusted so that the steam flow rate measured by the sensor c1 is a flow rate corresponding to the power generation load. The opening degree is controlled.

ここで、発電負荷の上昇に備えて、ユーザが、時刻t1に、自動切り換え制御(負荷上昇に係る自動切り換え制御)の開始を給水制御装置10へ指示する。すると、開度算出部131が、センサc2が計測した現在の(切り替え前の)蒸気流量に基づいて、図4Aに例示する蒸気流量と主給水バイパス弁開度の関係を定めた関数F1を参照して、主給水バイパス弁V2の目標開度を算出する。例えば、開度算出部131は、センサc2が計測した切り替え前の蒸気流量が20%(定格出力時の蒸気流量を100%とする。)の場合、主給水バイパス弁V2の目標開度を20%と算出する。 Here, in preparation for an increase in the power generation load, the user instructs the water supply control device 10 to start automatic switching control (automatic switching control related to a load increase) at time t1. Then, the opening degree calculation unit 131 refers to the function F1 that defines the relationship between the steam flow rate and the main water supply bypass valve opening degree illustrated in FIG. 4A based on the current (before switching) steam flow rate measured by the sensor c2. Then, the target opening degree of the main water supply bypass valve V2 is calculated. For example, when the steam flow rate before switching measured by the sensor c2 is 20% (the steam flow rate at rated output is 100%), the opening degree calculation unit 131 sets the target opening degree of the main water supply bypass valve V2 to 20%. Calculate as %.

次に開度算出部131は、図4Bに例示する主給水バイパス弁開度と主給水バイパス流路8を流れる(主給水バイパス弁V2を通過する)二次冷却水の給水流量との関係を定めた関数F2を参照して、主給水バイパス弁V2を上記の目標開度としたときに、主給水バイパス流路8を流れる給水流量を算出する。例えば、開度算出部131は、主給水バイパス弁V2の目標開度が20%の場合、主給水バイパス弁V2を通過する給水流量を100(トン/h)と算出する。 Next, the opening degree calculation unit 131 calculates the relationship between the main water supply bypass valve opening degree and the feed water flow rate of the secondary cooling water flowing through the main water supply bypass flow path 8 (passing the main water supply bypass valve V2) as illustrated in FIG. 4B. With reference to the determined function F2, the flow rate of the water supply flowing through the main water supply bypass flow path 8 is calculated when the main water supply bypass valve V2 is set to the above target opening degree. For example, when the target opening degree of the main water supply bypass valve V2 is 20%, the opening calculation unit 131 calculates the water supply flow rate passing through the main water supply bypass valve V2 as 100 (tons/h).

次に開度算出部131は、現在(切り替え前)の給水流量から、主給水バイパス流路8で負担する二次冷却水の流量を減算して、主給水流路7で負担すべき給水流量(主給水弁V1を通過して供給すべき給水流量)を算出する。例えば、センサc3が計測した切り替え前の給水流量が250(トン/h)の場合、開度算出部131は、主給水流路7で負担すべき給水流量を、250-100(トン/h)=150(トン/h)により算出する。次に開度算出部131は、図4Cに例示する主給水弁開度と主給水弁V1を通過する二次冷却水の給水流量の関係を定めた関数F3を参照して、主給水弁V1の目標開度を算出する。例えば、開度算出部131は、図4Cに例示する関数F3を参照して、150(トン/h)を流すために必要な主給水弁V1の目標開度15%を算出する。これにより、切り替え前の主給水弁V1の開度0%、主給水バイパス弁V2の開度70%に対する、切り替え後の主給水弁V1の目標開度15%、主給水バイパス弁V2の目標開度20%を算出する。 Next, the opening calculation unit 131 subtracts the flow rate of the secondary cooling water to be borne by the main water supply bypass flow path 8 from the current (before switching) water supply flow rate, and calculates the water supply flow rate to be borne by the main water supply flow path 7. (The flow rate of water to be supplied through the main water supply valve V1) is calculated. For example, if the water supply flow rate measured by the sensor c3 before switching is 250 (tons/h), the opening degree calculation unit 131 calculates the water supply flow rate to be borne by the main water supply flow path 7 from 250 to 100 (tons/h). = 150 (tons/h). Next, the opening degree calculation unit 131 calculates the main water supply valve V1 with reference to a function F3 that defines the relationship between the main water supply valve opening degree and the supply water flow rate of the secondary cooling water passing through the main water supply valve V1, which is illustrated in FIG. 4C. Calculate the target opening degree. For example, the opening degree calculation unit 131 calculates the target opening degree of 15% of the main water supply valve V1 required to flow 150 (tons/h) with reference to the function F3 illustrated in FIG. 4C. As a result, the target opening of the main water supply valve V1 after switching is 15%, and the target opening of the main water bypass valve V2 is 0%, and the main water bypass valve V2 is 70% opening before switching. Calculate the degree of 20%.

次に主給水弁制御部132が時刻t1に主給水弁V1を開き始め、一定の速度で目標開度15%まで主給水弁V1を開いてゆく。主給水弁V1を開く速度は予め定められている。主給水バイパス弁制御部133は時刻t2に主給水バイパス弁V2を閉じ始め、一定の速度で目標開度20%まで主給水バイパス弁V2の開度を低下させる。図3の例では、時刻t3に、主給水弁V1の目標開度15%と主給水バイパス弁V2の目標開度20%が達成され、その後、負荷上昇に伴って、時刻t4に、主給水弁V1と主給水バイパス弁V2の開度が上昇し始めている。時刻t4以降は、時刻t1~t4までの自動切換え制御とは、異なるロジックによって、要求された負荷を実現できるような開度制御が実行される。これにより、高負荷時には、主給水弁V1と主給水バイパス弁V2の両方を開状態とすることができ、従来の主給水弁V1のみを開として給水を行うときと比較して、大容量の二次冷却水を蒸気発生器1へ供給することができる。また、主給水バイパス弁V2を開とすることで、主給水弁V1のみに負担を掛けることが無く、主給水弁V1の負担を軽減することができる。 Next, the main water supply valve control unit 132 starts opening the main water supply valve V1 at time t1, and continues to open the main water supply valve V1 at a constant speed up to the target opening degree of 15%. The speed at which the main water supply valve V1 is opened is predetermined. The main water supply bypass valve control unit 133 starts closing the main water supply bypass valve V2 at time t2, and reduces the opening degree of the main water supply bypass valve V2 at a constant speed to the target opening degree of 20%. In the example of FIG. 3, at time t3, the target opening of 15% for the main water supply valve V1 and the target opening of 20% for the main water supply bypass valve V2 are achieved, and then, as the load increases, the main water supply The opening degrees of valve V1 and main water supply bypass valve V2 are beginning to increase. After time t4, opening control that can realize the requested load is executed using a different logic from the automatic switching control from time t1 to t4. As a result, during high load, both the main water supply valve V1 and the main water supply bypass valve V2 can be opened, and compared to the conventional case where only the main water supply valve V1 is opened and water is supplied, a large capacity can be achieved. Secondary cooling water can be supplied to the steam generator 1. Moreover, by opening the main water supply bypass valve V2, the burden on the main water supply valve V1 is not imposed only, and the burden on the main water supply valve V1 can be reduced.

また、本実施形態では、主給水弁V1を微開状態としたまま徐々に開くようなことをせず、目標開度15%まで上昇させる。これにより、上図31のグラフg3に示すように、自動切り換え制御による給水流量の変動を抑制し、比較的小さな変動のみで、主給水弁V1と主給水バイパス弁V2の両方を開状態とすることができる。グラフg3に示すように、主給水弁V1と主給水バイパス弁V2の両方を開状態とすれば、速やかに給水流量の変動を静定することができる。本実施形態の自動切り換え制御との比較対象として、主給水バイパス弁V2を開いたまま、主給水弁V1を少しずつ開いてゆく制御を行ったところ、グラフg3に例示する変動よりも短い周期で大きな変動が生じることが確認されている。これは、主給水弁V1を少しずつ開いてゆく過程では、主給水弁V1を微開状態としているために給水流量に変動が生じたためと考えられる。 Moreover, in this embodiment, the main water supply valve V1 is not gradually opened while being kept slightly open, but is increased to the target opening degree of 15%. As a result, as shown in graph g3 in Figure 31 above, fluctuations in the water supply flow rate due to automatic switching control are suppressed, and both the main water supply valve V1 and the main water supply bypass valve V2 are opened with only relatively small fluctuations. be able to. As shown in graph g3, by opening both the main water supply valve V1 and the main water supply bypass valve V2, fluctuations in the water supply flow rate can be quickly stabilized. As a comparison with the automatic switching control of this embodiment, control was performed to gradually open the main water supply valve V1 while keeping the main water supply bypass valve V2 open. It has been confirmed that large fluctuations occur. This is considered to be because, in the process of gradually opening the main water supply valve V1, the main water supply valve V1 is kept in a slightly open state, so that a fluctuation occurs in the water supply flow rate.

[負荷降下時]
図5は、実施形態に係る負荷降下時の制御の一例を示す図である。
図5の縦軸は主給水バイパス弁制御信号(主給水バイパス弁V1の開度指令値)又は、主給水弁制御信号(主給水バイパス弁V2の開度指令値)、横軸は時間を示している。グラフg1の実線は、本実施形態の制御における主給水バイパス弁V2の開度を示し、グラフg2の実線は、本実施形態の制御における主給水弁V1の開度を示す。グラフg1の破線部分は、従来制御における主給水バイパス弁V2の開度を示し、グラフg2の破線部分は、従来制御における主給水弁V1の開度を示す。従来制御では、グラフg1の破線部分に示すように、主給水バイパス弁V2が全閉の状態から切り替え制御を開始するのに対し、本実施形態では、主給水バイパス弁V2をある程度開いた状態から自動切り替え制御を開始する点が異なる。主給水弁V1については開状態から全閉とする点は従来制御も本実施形態の自動切り替え制御でも変わらないが、切り替え開始前に、主給水バイパス弁V2が開となっている分、主給水弁V1の開度は小さくなっている。例えば、時刻t1に、ユーザが、自動切り換え制御(負荷降下に係る自動切り換え制御)の開始を給水制御装置10へ指示する。すると、開度算出部131が、切り替え後の主給水バイパス弁V2の開度を算出する。主給水弁v1の目標開度は0%である。例えば、開度算出部131は、目標負荷に基づく蒸気流量に基づいて、蒸気流量と主給水バイパス弁開度の関係を定めた図示しない関数を参照して、主給水バイパス弁V2の目標開度を算出してもよい。
[When load drops]
FIG. 5 is a diagram illustrating an example of control at the time of load drop according to the embodiment.
The vertical axis of FIG. 5 shows the main water supply bypass valve control signal (opening command value of the main water supply bypass valve V1) or the main water supply valve control signal (opening command value of the main water supply bypass valve V2), and the horizontal axis shows time. ing. The solid line in graph g1 indicates the opening degree of the main water supply bypass valve V2 in the control of this embodiment, and the solid line in graph g2 indicates the opening degree of the main water supply valve V1 in the control of this embodiment. The broken line portion of the graph g1 indicates the opening degree of the main water supply bypass valve V2 in the conventional control, and the broken line portion of the graph g2 indicates the opening degree of the main water supply valve V1 in the conventional control. In the conventional control, switching control is started from the state where the main water supply bypass valve V2 is fully closed, as shown by the broken line part of the graph g1, whereas in this embodiment, the switching control is started from the state where the main water supply bypass valve V2 is opened to some extent. The difference is that automatic switching control is started. The main water supply valve V1 is fully closed from the open state, which is the same in both conventional control and automatic switching control of this embodiment. The opening degree of valve V1 is small. For example, at time t1, the user instructs the water supply control device 10 to start automatic switching control (automatic switching control related to load drop). Then, the opening calculation unit 131 calculates the opening of the main water supply bypass valve V2 after switching. The target opening degree of the main water supply valve v1 is 0%. For example, based on the steam flow rate based on the target load, the opening degree calculation unit 131 refers to a function (not shown) that defines the relationship between the steam flow rate and the main water supply bypass valve opening degree, and determines the target opening degree of the main water supply bypass valve V2. may be calculated.

次に主給水弁制御部132が時刻t2に主給水弁V1を閉じ始め、一定の速度で目標開度0%まで主給水弁V1を閉じてゆく。主給水弁V1を閉じる速度は予め定められている。主給水バイパス弁制御部133は時刻t1に主給水バイパス弁V2を開き始め、一定の速度で目標開度まで主給水バイパス弁V2の開度を上昇させる。時刻t4に切り替えが完了すると、時刻t1~t4までの自動切換え制御とは、異なるロジックによって、主給水バイパス弁V2の開度制御が実行される。負荷降下時においても、自動切り換え制御中の給水流量が一定となるように、主給水弁V1と主給水バイパス弁V2は制御される。また、負荷降下時においても、主給水弁V1を微開状態とすること無く全閉とするので、給水流量の変動を抑制することができる。 Next, the main water supply valve control unit 132 starts closing the main water supply valve V1 at time t2, and closes the main water supply valve V1 at a constant speed until the target opening degree is 0%. The speed at which the main water supply valve V1 is closed is predetermined. The main water supply bypass valve control unit 133 starts opening the main water supply bypass valve V2 at time t1, and increases the opening degree of the main water supply bypass valve V2 at a constant speed to the target opening degree. When the switching is completed at time t4, the opening degree control of the main water supply bypass valve V2 is executed using a different logic from the automatic switching control from times t1 to t4. Even when the load drops, the main water supply valve V1 and the main water supply bypass valve V2 are controlled so that the water supply flow rate during automatic switching control is constant. Further, even when the load is lowered, the main water supply valve V1 is not slightly opened but is fully closed, so that fluctuations in the water supply flow rate can be suppressed.

(動作)
次に図6A、図6Bを参照して、給水制御システム100の動作について説明する。
[負荷上昇時]
図6Aは、実施形態に係る負荷上昇時の処理の一例を示すフローチャートである。
センサデータ取得部11が、センサc1~c3が計測した計測値を取得する(ステップS1)。例えば、センサデータ取得部11は、センサc1が計測した水位、センサc2が計測した蒸気流量、センサc3が計測した給水流量を取得して、記憶部15に記録する。
(motion)
Next, the operation of the water supply control system 100 will be described with reference to FIGS. 6A and 6B.
[When load increases]
FIG. 6A is a flowchart illustrating an example of processing when the load increases according to the embodiment.
The sensor data acquisition unit 11 acquires the measured values measured by the sensors c1 to c3 (step S1). For example, the sensor data acquisition unit 11 acquires the water level measured by the sensor c1, the steam flow rate measured by the sensor c2, and the water supply flow rate measured by the sensor c3, and records them in the storage unit 15.

次に制御部13が、主給水弁V1および主給水バイパス弁V2の切り替え指示(負荷上昇に係る自動切り替え制御の実行指示)の有無を判定する(ステップS2)。例えば、ユーザが、切り替えを指示する操作を、給水制御装置10へ入力した場合、入力受付部12が、この操作を受け付け、切り替えを指示があったことを制御部13へ通知する。制御部13は、入力受付部12からの通知に基づいて、替え指示の有無を判定する。切り替え指示が無い場合(ステップS2;No)、ステップS1からの処理を繰り返す。切り替え指示がある場合(ステップS2;Yes)、制御部13は、ステップS1にて取得された給水流量が所定の許容範囲内かどうかを判定する(ステップS3)。給水流量があまりにも少なすぎるか、多すぎる場合、自動切り替え制御の実行は適切では無いため、記憶部15には、給水流量の許容範囲が予め設定されている。制御部13は、センサc3によって計測された給水流量が許容範囲内かどうかを判定する。給水流量が許容範囲を超える場合(ステップS3;No)、ステップS1からの処理を繰り返す。出力部14は、給水流量が許容範囲内では無いため、自動切り換え制御の実行ができないことを表示装置等へ出力する。 Next, the control unit 13 determines whether there is an instruction to switch the main water supply valve V1 and the main water supply bypass valve V2 (an instruction to execute automatic switching control related to a load increase) (step S2). For example, when the user inputs an operation instructing switching to the water supply control device 10, the input receiving unit 12 accepts this operation and notifies the control unit 13 that there is an instruction to switch. The control unit 13 determines whether there is a change instruction based on the notification from the input reception unit 12. If there is no switching instruction (step S2; No), the process from step S1 is repeated. If there is a switching instruction (step S2; Yes), the control unit 13 determines whether the water supply flow rate acquired in step S1 is within a predetermined allowable range (step S3). If the water supply flow rate is too low or too high, it is not appropriate to execute the automatic switching control, so the storage unit 15 has a permissible range of the water supply flow rate set in advance. The control unit 13 determines whether the water supply flow rate measured by the sensor c3 is within an allowable range. If the water supply flow rate exceeds the allowable range (step S3; No), the process from step S1 is repeated. The output unit 14 outputs to a display device or the like that automatic switching control cannot be executed because the water supply flow rate is not within an allowable range.

給水流量が許容範囲内の場合(ステップS3;Yes)、制御部13は、主給水弁V1が閉で主給水バイパス弁V2が開の状態から、主給水弁V1および主給水バイパス弁V2が開の状態へ切り替えることを決定する(ステップS4)。開度算出部131は、切り替え後の目標開度を算出する(ステップS5)。図3、図4A~図4Cを用いて説明したように、開度算出部131は、切り替え前の蒸気流量と関数F1(図4A)に基づいて、切り替え後の主給水バイパス弁V2の目標開度を算出する。また、開度算出部131は、切り替え後に主給水弁V1を通過して蒸気発生器1へ供給するべき二次冷却水の供給流量と関数F3(図4C)とに基づいて、切り替え後の主給水弁V1の目標開度を算出する。次に主給水弁制御部132が、一定の速度で、主給水弁V1を、主給水弁V1の目標開度まで開く制御を行い、主給水バイパス弁制御部133が、一定の速度で、主給水主給水バイパス弁V2を主給水バイパス弁V2の目標開度まで開く制御を行う(ステップS6)。主給水弁制御部132は、主給水弁V1の開度が目標開度に達したかどうかを判定し、主給水バイパス弁制御部133は、主給水バイパス弁V2の開度が目標開度に達したかどうかを判定する。主給水弁V1の開度が目標開度に達すると、主給水弁制御部132は、主給水弁V1を開く制御を停止する(ステップS7)。主給水バイパス弁V2の開度が目標開度に達すると、主給水バイパス弁制御部133は、主給水バイパス弁V2を閉じる制御を停止する(ステップS7)。これにより、給水流量の変動を抑えつつ、主給水弁V1と主給水主給水バイパス弁V2の両方を開状態に制御することができる。 If the water supply flow rate is within the allowable range (step S3; Yes), the control unit 13 changes the state in which the main water supply valve V1 is closed and the main water supply bypass valve V2 is open to open the main water supply valve V1 and the main water supply bypass valve V2. It is determined to switch to the state (step S4). The opening calculation unit 131 calculates the target opening after switching (step S5). As explained using FIGS. 3 and 4A to 4C, the opening calculation unit 131 calculates the target opening of the main water supply bypass valve V2 after switching based on the steam flow rate before switching and the function F1 (FIG. 4A). Calculate degree. Further, the opening calculation unit 131 calculates the main water supply valve after switching based on the supply flow rate of secondary cooling water to be supplied to the steam generator 1 through the main water supply valve V1 after switching and the function F3 (FIG. 4C). Calculate the target opening degree of the water supply valve V1. Next, the main water supply valve control unit 132 controls the main water supply valve V1 to open at a constant speed to the target opening degree of the main water supply valve V1, and the main water supply bypass valve control unit 133 controls the main water supply valve V1 to open at a constant speed. Control is performed to open the main water supply bypass valve V2 to the target opening degree of the main water supply bypass valve V2 (step S6). The main water supply valve control unit 132 determines whether the opening degree of the main water supply valve V1 has reached the target opening degree, and the main water supply bypass valve control unit 133 determines whether the opening degree of the main water supply bypass valve V2 has reached the target opening degree. Determine whether it has been reached. When the opening degree of the main water supply valve V1 reaches the target opening degree, the main water supply valve control unit 132 stops the control to open the main water supply valve V1 (step S7). When the opening degree of the main water supply bypass valve V2 reaches the target opening degree, the main water supply bypass valve control unit 133 stops the control to close the main water supply bypass valve V2 (step S7). Thereby, both the main water supply valve V1 and the main water supply main water supply bypass valve V2 can be controlled to be in the open state while suppressing fluctuations in the water supply flow rate.

[負荷降下時]
次に負荷降下時の処理について説明する。図6Aと同様の処理については、簡単に説明する。図6Bは、実施形態に係る負荷降下時の処理の一例を示すフローチャートである。
センサデータ取得部11が、センサc1~c3が計測した計測値を取得する(ステップS11)。次に制御部13が、主給水弁V1および主給水バイパス弁V2の切り替え指示(負荷降下に係る自動切り替え制御の実行指示)の有無を判定する(ステップS12)。切り替え指示が無い場合(ステップS12;No)、ステップS11からの処理を繰り返す。切り替え指示がある場合(ステップS12;Yes)、制御部13は、ステップS1にて取得された給水流量が所定の許容範囲内かどうかを判定する(ステップS13)。給水流量が許容範囲を超える場合(ステップS13;No)、出力部14は警告を出力し、ステップS11からの処理が繰り返される。
[When load drops]
Next, processing when the load drops will be explained. Processing similar to that in FIG. 6A will be briefly described. FIG. 6B is a flowchart illustrating an example of processing at the time of load drop according to the embodiment.
The sensor data acquisition unit 11 acquires the measurement values measured by the sensors c1 to c3 (step S11). Next, the control unit 13 determines whether there is an instruction to switch the main water supply valve V1 and the main water supply bypass valve V2 (instruction to execute automatic switching control related to load drop) (step S12). If there is no switching instruction (step S12; No), the process from step S11 is repeated. If there is a switching instruction (step S12; Yes), the control unit 13 determines whether the water supply flow rate acquired in step S1 is within a predetermined allowable range (step S13). If the water supply flow rate exceeds the allowable range (step S13; No), the output unit 14 outputs a warning, and the processing from step S11 is repeated.

給水流量が許容範囲内の場合(ステップS13;Yes)、制御部13は、主給水弁V1および主給水バイパス弁V2が開の状態から、主給水弁V1が閉で主給水バイパス弁V2が開の状態へ切り替えることを決定する(ステップS14)。開度算出部131が、切り替え後の目標開度を算出する(ステップS15)。主給水弁V1については、開度算出部131は、目標開度を0%に設定する。主給水バイパス弁V2については、例えば、開度算出部131は、切り替え後の目標負荷に対応する蒸気流量に基づいて、主給水バイパス弁V2の目標開度を算出する。例えば、記憶部15には、蒸気流量と主給水バイパス弁開度の関係を定めた関数F4(図示せず)が登録されていて、開度算出部131は、目標負荷に対応する蒸気流量に基づいて関数F4を参照し、切り換え後の主給水バイパス弁V2の目標開度を算出する。図4Aに例示する関数F1には、主給水弁V1および主給水バイパス弁V2を開とした場合の主給水バイパス弁V2の開度が規定されているのに対し、負荷降下時の自動切り替え制御で参照する関数F4では、主給水バイパス弁V2のみを開とした場合の主給水バイパス弁V2の開度が規定されている。その為、関数F4では、例えば、同じ負荷(例えば、蒸気流量が20%)に対して関数F1にて規定されている開度よりも大きな開度が設定されている。 If the water supply flow rate is within the allowable range (step S13; Yes), the control unit 13 changes from the state where the main water supply valve V1 and the main water supply bypass valve V2 are open, the main water supply valve V1 is closed and the main water supply bypass valve V2 is open. It is determined to switch to the state (step S14). The opening calculation unit 131 calculates the target opening after switching (step S15). Regarding the main water supply valve V1, the opening calculation unit 131 sets the target opening to 0%. Regarding the main water supply bypass valve V2, for example, the opening calculation unit 131 calculates the target opening of the main water supply bypass valve V2 based on the steam flow rate corresponding to the target load after switching. For example, a function F4 (not shown) that defines the relationship between the steam flow rate and the main water supply bypass valve opening degree is registered in the storage unit 15, and the opening degree calculation unit 131 calculates the steam flow rate corresponding to the target load. Based on this, the target opening degree of the main water supply bypass valve V2 after switching is calculated with reference to the function F4. The function F1 illustrated in FIG. 4A defines the opening degree of the main water supply bypass valve V2 when the main water supply valve V1 and the main water supply bypass valve V2 are opened, whereas the automatic switching control when the load decreases The function F4 referred to here defines the opening degree of the main water supply bypass valve V2 when only the main water supply bypass valve V2 is opened. Therefore, in the function F4, for example, a larger opening is set than the opening defined by the function F1 for the same load (for example, steam flow rate is 20%).

次に主給水弁制御部132が、一定の速度で、主給水弁V1を全閉する制御を行い、主給水バイパス弁制御部133が、一定の速度で、主給水主給水バイパス弁V2を主給水バイパス弁V2の目標開度まで開く制御を行う(ステップS16)。例えば、主給水弁制御部132は、給水流量を一定に保てるように、主給水バイパス弁V2を開くことによって増大する給水流量を相殺できるような速度で主給水弁V1を閉じてゆく。主給水弁制御部132は、主給水弁V1の開度が目標開度(0%)に達したかどうかを判定し、主給水バイパス弁制御部133は、主給水バイパス弁V2の開度が目標開度に達したかどうかを判定する。主給水弁V1の開度が目標開度に達すると、主給水弁制御部132は、主給水弁V1を開く制御を停止する(ステップS17)。主給水バイパス弁V2の開度が目標開度に達すると、主給水バイパス弁制御部133は、主給水バイパス弁V2を閉じる制御を停止する(ステップS17)。これにより、給水流量の変動を抑えつつ、主給水弁V1を閉状態に制御することができる。 Next, the main water supply valve control section 132 performs control to fully close the main water supply valve V1 at a constant speed, and the main water supply bypass valve control section 133 controls the main water supply main water supply bypass valve V2 at a constant speed. Control is performed to open the water supply bypass valve V2 to the target opening degree (step S16). For example, the main water supply valve control unit 132 closes the main water supply valve V1 at a speed that can offset the increased water supply flow rate by opening the main water supply bypass valve V2 so as to keep the water supply flow rate constant. The main water supply valve control unit 132 determines whether the opening degree of the main water supply valve V1 has reached the target opening degree (0%), and the main water supply bypass valve control unit 133 determines whether the opening degree of the main water supply bypass valve V2 has reached the target opening degree (0%). Determine whether the target opening degree has been reached. When the opening degree of the main water supply valve V1 reaches the target opening degree, the main water supply valve control unit 132 stops the control to open the main water supply valve V1 (step S17). When the opening degree of the main water supply bypass valve V2 reaches the target opening degree, the main water supply bypass valve control unit 133 stops the control to close the main water supply bypass valve V2 (step S17). Thereby, the main water supply valve V1 can be controlled to the closed state while suppressing fluctuations in the water supply flow rate.

図6A、図6Bで例示した処理では、ユーザが、切り替え指示を行うこととしたが(図6AのステップS2、図6BのステップS12)、制御部13が、センサc2が計測する蒸気流量が、例えば、定格負荷で運転するときの20%未満の蒸気流量の状態から上昇して20%に至り、且つ、給水流量が許容範囲内であれば(ステップS3;Yes)、負荷上昇に係る自動切り替え制御を行うと自動的に決定してもよい。同様に、制御部13は、20%を上回る蒸気流量の状態から低下して20%に至り、且つ、給水流量が許容範囲内であれば(ステップS13;Yes)、負荷降下に係る自動切り替え制御を行うと決定してもよい。 In the process illustrated in FIGS. 6A and 6B, the user issues a switching instruction (step S2 in FIG. 6A, step S12 in FIG. 6B), but the control unit 13 controls the steam flow rate measured by the sensor c2 to For example, if the steam flow rate rises from less than 20% when operating at rated load to 20%, and the water supply flow rate is within the allowable range (step S3; Yes), automatic switching will occur due to the load increase. It may be automatically determined that the control is to be performed. Similarly, if the steam flow rate decreases from more than 20% to 20% and the water supply flow rate is within the allowable range (step S13; Yes), the control unit 13 performs automatic switching control related to load reduction. You may decide to do so.

また、上記の図3の説明では、負荷がある程度上昇した際に、自動切り替え制御を行って、その後、別の制御ロジックによって負荷を上昇させる例で説明したが、負荷を上昇させながら自動切り替え制御を行ってもよい。その場合、開度算出部131は、以下のようにして、主給水弁V1および主給水バイパス弁V2の目標開度を算出してもよい。例えば、開度算出部131は、切り替え後の目標負荷に応じた目標蒸気流量と図4Aの関数F1によって、主給水バイパス弁V2の目標開度を設定し、図4Bの関数F2に基づいて、切り替え後の主給水バイパス弁V2を通過する給水流量を算出する。そして、開度算出部131は、目標負荷に応じた目標給水流量を、例えば、負荷と給水流量の関係を規定した所定の関数によって算出し、算出した目標給水流量から主給水バイパス弁V2を通過する給水流量を減算して、目標給水流量を達成するための主給水弁V1を通過する給水流量を算出する。さらに、開度算出部131は、算出した主給水弁V1を通過する給水流量と、図4Cの関数F3によって、主給水弁V1の目標開度を算出する。 In addition, in the explanation of Fig. 3 above, an example was explained in which automatic switching control is performed when the load increases to a certain extent, and then the load is increased using another control logic, but automatic switching control is performed while increasing the load. You may do so. In that case, the opening degree calculation unit 131 may calculate the target opening degrees of the main water supply valve V1 and the main water supply bypass valve V2 as follows. For example, the opening degree calculation unit 131 sets the target opening degree of the main water supply bypass valve V2 based on the target steam flow rate according to the target load after switching and the function F1 in FIG. 4A, and based on the function F2 in FIG. 4B, The water supply flow rate passing through the main water supply bypass valve V2 after switching is calculated. Then, the opening calculation unit 131 calculates a target water supply flow rate according to the target load, for example, using a predetermined function that defines the relationship between the load and the water supply flow rate, and passes the water through the main water supply bypass valve V2 from the calculated target water supply flow rate. The water supply flow rate passing through the main water supply valve V1 for achieving the target water supply flow rate is calculated by subtracting the water supply flow rate. Furthermore, the opening calculation unit 131 calculates the target opening of the main water supply valve V1 based on the calculated water supply flow rate passing through the main water supply valve V1 and the function F3 in FIG. 4C.

(効果)
以上説明したように、本実施形態によれば、原子力発電プラントの発電負荷が一定以上となると、主給水弁V1と主給水バイパス弁V2の両方を開状態に制御して、蒸気発生器に給水する。これにより、主給水弁V1だけで給水を行う場合と比較して、高負荷時の給水流量を増大させることができる。また、主給水バイパス弁V2だけが開となっている状態から、主給水弁V1と主給水バイパス弁V2の両方を開とする切り替え時には、主給水弁V1を微開した状態を維持すること無く、ある程度の開度まで開くので、微開状態での流量が不安定な主給水弁V1によって、給水流量が変動することを防ぎつつ、主給水弁V1と主給水バイパス弁V2の両方を開状態に制御することができる。
(effect)
As explained above, according to the present embodiment, when the power generation load of the nuclear power plant exceeds a certain level, both the main water supply valve V1 and the main water supply bypass valve V2 are controlled to be open, and water is supplied to the steam generator. do. Thereby, compared to the case where water is supplied only by the main water supply valve V1, the water supply flow rate during high load can be increased. In addition, when switching from a state in which only the main water supply bypass valve V2 is open to opening both the main water supply valve V1 and the main water supply bypass valve V2, the main water supply valve V1 is not kept slightly open. Since it opens to a certain degree of opening, both the main water supply valve V1 and the main water supply bypass valve V2 are kept open while preventing the water supply flow rate from fluctuating due to the main water supply valve V1 whose flow rate is unstable when it is slightly open. can be controlled.

図7は、実施形態に係る給水制御装置のハードウェア構成の一例を示す図である。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える。上述の給水制御装置10は、コンピュータ900に実装される。そして、上述した各機能は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、記憶領域を主記憶装置902に確保する。また、CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
FIG. 7 is a diagram illustrating an example of the hardware configuration of the water supply control device according to the embodiment.
The computer 900 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, an input/output interface 904, and a communication interface 905. The water supply control device 10 described above is implemented in a computer 900. Each of the above-mentioned functions is stored in the auxiliary storage device 903 in the form of a program. The CPU 901 reads the program from the auxiliary storage device 903, expands it to the main storage device 902, and executes the above processing according to the program. Further, the CPU 901 reserves a storage area in the main storage device 902 according to the program. Further, the CPU 901 secures a storage area in the auxiliary storage device 903 to store the data being processed according to the program.

給水制御装置10の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各機能部による処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、CD、DVD、USB等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 Each function is achieved by recording a program for realizing all or part of the functions of the water supply control device 10 on a computer-readable recording medium, and having the computer system read and execute the program recorded on the recording medium. The processing may be performed by the department. The "computer system" here includes hardware such as an OS and peripheral devices. Furthermore, the term "computer system" includes the homepage providing environment (or display environment) if a WWW system is used. Furthermore, the term "computer-readable recording medium" refers to portable media such as CDs, DVDs, and USBs, and storage devices such as hard disks built into computer systems. Further, when this program is distributed to the computer 900 via a communication line, the computer 900 that received the distribution may develop the program in the main storage device 902 and execute the above processing. Further, the above program may be one for realizing a part of the above-mentioned functions, and further may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. .

以上のとおり、本開示に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As described above, several embodiments according to the present disclosure have been described, but all these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention as well as within the scope of the invention described in the claims and its equivalents.

<付記>
各実施形態に記載の給水制御システム、給水制御装置、給水制御方法及びプログラムは、例えば以下のように把握される。
<Additional notes>
The water supply control system, water supply control device, water supply control method, and program described in each embodiment can be understood, for example, as follows.

(1)第1の態様に係る給水制御システム100は、蒸気発生器1へ冷却水を供給する給水系統を構成する主給水流路7と、前記主給水流路に設けられる主給水弁V1と、前記給水系統を構成し、前記主給水流路をバイパスする主給水バイパス流路8と、前記主給水バイパス流路に設けられる主給水バイパス弁V2と、前記主給水弁と前記主給水バイパス弁とを制御して前記冷却水の給水流量を制御する給水制御装置10と、を備え、前記給水制御装置は、前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、第1の目標弁開度となるよう前記主給水バイパス弁を閉動作させ、前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような前記主給水弁の第2の目標開度を算出し、前記第2の目標開度となるよう閉状態の前記主給水弁を開動作させることによって、前記主給水弁及び前記主給水バイパス弁を開状態とする。
これにより、給水流量の変動を抑えつつ、主給水弁と主給水バイパス弁の両方を開状態に制御することができる。
(1) The water supply control system 100 according to the first aspect includes a main water supply flow path 7 that constitutes a water supply system that supplies cooling water to the steam generator 1, and a main water supply valve V1 provided in the main water flow path. , a main water supply bypass passage 8 that constitutes the water supply system and bypasses the main water supply passage, a main water supply bypass valve V2 provided in the main water supply bypass passage, the main water supply valve and the main water supply bypass valve. and a feed water control device 10 that controls the feed water flow rate of the cooling water, and the feed water control device controls a first target opening based on the steam flow rate supplied from the steam generator to the steam turbine. the main water supply bypass valve is operated to close so as to have a first target valve opening degree, and the main water supply water is operated to compensate for the water supply flow rate of the cooling water that decreases due to the closing operation of the main water supply bypass valve. The main water supply valve and the main water supply bypass valve are opened by calculating a second target opening of the valve and opening the main water supply valve in the closed state so as to reach the second target opening. do.
Thereby, both the main water supply valve and the main water supply bypass valve can be controlled to be open while suppressing fluctuations in the water supply flow rate.

(2)第2の態様に係る給水制御システムは、(1)の給水制御システムであって、前記給水制御装置は、前記蒸気タービンの負荷が第1の閾値より低いときには、前記主給水バイパス弁を開、前記主給水弁を閉とし、その状態から、前記負荷が前記第1の閾値に達すると、前記第1の目標弁開度となるよう前記主給水バイパス弁を閉動作させ、前記主給水弁を第2の目標開度となるよう開動作させる。
これにより、低負荷時には主給水バイパス弁のみを開とし、高負荷時には、主給水弁と主給水バイパス弁の両方を開状態とする。これにより、高負荷時の給水流量を、主給水弁のみを開とするときと比較して増大することができる。
(2) A water supply control system according to a second aspect is the water supply control system according to (1), in which the water supply control device operates to control the main water supply bypass valve when the load of the steam turbine is lower than a first threshold value. is opened, the main water supply valve is closed, and from that state, when the load reaches the first threshold value, the main water supply bypass valve is closed so that the first target valve opening degree is reached, and the main water supply valve is closed. The water supply valve is opened to the second target opening degree.
As a result, only the main water supply bypass valve is opened during low load, and both the main water supply valve and the main water supply bypass valve are opened during high load. Thereby, the water supply flow rate during high load can be increased compared to when only the main water supply valve is opened.

(3)第3の態様に係る給水制御システムは、(2)の給水制御システムであって、前記給水制御装置は、前記負荷が第1の閾値以上で、前記主給水バイパス弁および前記主給水弁を開とした状態から、前記負荷が第2の閾値まで低下すると、前記主給水バイパス弁を開動作させ、前記主給水弁を閉動作させる。
これにより、高負荷時には、主給水弁と主給水バイパス弁の両方を開状態とし、低負荷時には、主給水バイパス弁のみを開とするよう制御できる。
(3) A water supply control system according to a third aspect is the water supply control system according to (2), in which the water supply control device is configured to control the main water supply bypass valve and the main water supply water supply control system when the load is a first threshold value or more. When the load decreases to a second threshold value from the state where the valve is open, the main water supply bypass valve is opened and the main water supply valve is closed.
Thereby, it is possible to control so that both the main water supply valve and the main water supply bypass valve are opened during high load, and only the main water supply bypass valve is opened during low load.

(4)第4の態様に係る給水制御システムは、(1)~(3)の給水制御システムであって、前記給水制御装置は、前記主給水バイパス弁を前記第1の目標弁開度まで一定の速度で閉動作させ、前記主給水弁を前記第2の目標開度まで一定の速度で開動作させる。
これにより、一定の速度で、前記主給水弁と前記主給水バイパス弁を開閉させることにより、給水流量の変動を抑えつつ、主給水弁と主給水バイパス弁の両方を開状態に制御することができる。
(4) A water supply control system according to a fourth aspect is the water supply control system of (1) to (3), wherein the water supply control device operates the main water supply bypass valve to the first target valve opening degree. The main water supply valve is closed at a constant speed, and the main water supply valve is opened at a constant speed until the second target opening degree is reached.
As a result, by opening and closing the main water supply valve and the main water supply bypass valve at a constant speed, it is possible to control both the main water supply valve and the main water supply bypass valve to an open state while suppressing fluctuations in the water supply flow rate. can.

(5)第5の態様に係る給水制御システムは、(1)~(4)の給水制御システムであって、前記給水制御装置は、前記主給水弁と前記主給水バイパス弁の両方を開状態としたときの前記主給水バイパス弁の目標開度と前記蒸気流量との関係を規定した第1の関数と、前記主給水バイパス弁の開度と前記主給水バイパス弁を通過する前記給水流量との関係を規定した第2の関数と、前記主給水弁の開度と前記主給水弁を通過する前記給水流量との関係を規定した第3の関数と、を有し、前記主給水バイパス弁を前記閉動作させる前の前記蒸気流量と、前記第1の関数と、に基づいて、前記第1の目標開度を算出し、前記第1の目標開度と前記第2の関数とに基づいて、前記第1の目標開度を達成したときに前記主給水バイパス弁を通過する前記冷却水の給水流量を算出し、前記主給水バイパス弁を前記閉動作させる前の状態において前記主給水バイパス弁を通過する前記冷却水の給水流量から、前記第1の目標開度を達成したときに前記主給水バイパス弁を通過する前記冷却水の給水流量を減算して差分流量を算出し、前記差分流量と、前記第3の関数と、に基づいて、前記第2の目標開度を算出する。
これにより、前記第1の目標開度と前記第2の目標開度を算出することができる。
(5) A water supply control system according to a fifth aspect is the water supply control system according to any one of (1) to (4), wherein the water supply control device has both the main water supply valve and the main water supply bypass valve in an open state. a first function that defines the relationship between the target opening degree of the main water supply bypass valve and the steam flow rate when and a third function that defines the relationship between the opening degree of the main water supply valve and the water supply flow rate passing through the main water supply valve, and the main water supply bypass valve The first target opening degree is calculated based on the steam flow rate before the closing operation and the first function, and the first target opening degree is calculated based on the first target opening degree and the second function. calculate the supply flow rate of the cooling water that passes through the main water supply bypass valve when the first target opening degree is achieved, and calculate the supply flow rate of the cooling water that passes through the main water supply bypass valve when the first target opening degree is achieved; Calculate a differential flow rate by subtracting the supply flow rate of the cooling water that passes through the main water supply bypass valve when the first target opening degree is achieved from the supply flow rate of the cooling water that passes through the valve, and calculate the difference flow rate. The second target opening degree is calculated based on the flow rate and the third function.
Thereby, the first target opening degree and the second target opening degree can be calculated.

(6)第6の態様に係る給水制御装置は、蒸気発生器へ冷却水を供給する主給水流路と、前記主給水流路に設けられる主給水弁と、前記主給水流路をバイパスする主給水バイパス流路と、前記主給水バイパス流路に設けられる主給水バイパス弁と、を備える給水系統において、前記主給水弁と前記主給水バイパス弁とを制御することによって前記冷却水の前記蒸気発生器への給水流量を制御する給水制御装置であって、前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、前記第1の目標弁開度となるよう前記主給水バイパス弁を閉動作させ、前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような第2の目標開度を算出し、前記第2の目標開度となるように閉状態の前記主給水弁を開動作させ、前記主給水弁及び前記主給水バイパス弁を開状態とする。 (6) The water supply control device according to the sixth aspect includes a main water supply flow path that supplies cooling water to the steam generator, a main water supply valve provided in the main water supply flow path, and a bypass of the main water supply flow path. In a water supply system including a main water supply bypass passage and a main water supply bypass valve provided in the main water supply bypass passage, the steam of the cooling water is controlled by controlling the main water supply valve and the main water supply bypass valve. A water supply control device that controls a water supply flow rate to a generator, the device calculating a first target opening degree based on the steam flow rate supplied from the steam generator to the steam turbine, and calculating the first target valve opening degree based on the steam flow rate supplied from the steam generator to the steam turbine. The main water supply bypass valve is operated to close so that the main water supply bypass valve is closed, and a second target opening degree is calculated to compensate for the cooling water supply flow rate that decreases due to the closing operation of the main water supply bypass valve, and the second target opening is calculated. The main water supply valve in the closed state is opened so that the main water supply valve and the main water supply bypass valve are opened.

(7)第7の態様に係る給水制御方法は、蒸気発生器へ冷却水を供給する主給水流路と、前記主給水流路に設けられる主給水弁と、前記主給水流路をバイパスする主給水バイパス流路と、前記主給水バイパス流路に設けられる主給水バイパス弁と、を備える給水系統において、前記主給水弁と前記主給水バイパス弁とを制御することによって給水流量を制御する給水制御方法であって、前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、前記第1の目標開度となるよう前記主給水バイパス弁を閉動作させ、前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような第2の目標開度を算出し、前記第2の目標開度となるように閉状態の前記主給水弁を開動作させ、前記主給水弁及び前記主給水バイパス弁を開状態とする。 (7) The water supply control method according to the seventh aspect includes a main water supply flow path that supplies cooling water to the steam generator, a main water supply valve provided in the main water supply flow path, and a bypass of the main water supply flow path. In a water supply system including a main water supply bypass flow path and a main water supply bypass valve provided in the main water supply bypass flow path, the water supply flow rate is controlled by controlling the main water supply valve and the main water supply bypass valve. A control method, wherein a first target opening degree is calculated based on a steam flow rate supplied from the steam generator to a steam turbine, and the main water supply bypass valve is closed so as to reach the first target opening degree. calculate a second target opening degree that compensates for the cooling water supply flow rate that decreases due to the closing operation of the main water supply bypass valve, and adjust the main water supply bypass valve in the closed state to the second target opening degree. The water supply valve is opened to open the main water supply valve and the main water supply bypass valve.

(8)第8の態様に係るプログラムは、蒸気発生器へ冷却水を供給する主給水流路と、前記主給水流路に設けられる主給水弁と、前記主給水流路をバイパスする主給水バイパス流路と、前記主給水バイパス流路に設けられる主給水バイパス弁と、を備える給水系統において、前記主給水弁と前記主給水バイパス弁とを制御することによって給水流量を制御するコンピュータに、前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、前記第1の目標開度となるよう前記主給水バイパス弁を閉動作させ、前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような第2の目標開度を算出し、前記第2の目標開度となるように閉状態の前記主給水弁を開動作させ、前記主給水弁及び前記主給水バイパス弁を開状態とする処理、を実行させる。 (8) The program according to the eighth aspect includes a main water supply flow path that supplies cooling water to a steam generator, a main water supply valve provided in the main water supply flow path, and a main water supply that bypasses the main water supply flow path. In a water supply system including a bypass passage and a main water supply bypass valve provided in the main water supply bypass passage, a computer that controls the water supply flow rate by controlling the main water supply valve and the main water supply bypass valve, A first target opening degree is calculated based on the flow rate of steam supplied from the steam generator to the steam turbine, and the main water supply bypass valve is closed so that the first target opening degree is achieved, and the main water supply bypass valve is closed. A second target opening degree is calculated to compensate for the cooling water supply flow rate that decreases due to the closing operation of the valve, and the main water supply valve in the closed state is opened so as to reach the second target opening degree. , a process of opening the main water supply valve and the main water supply bypass valve.

1・・・蒸気発生器
2・・・一次冷却ループ
3・・・水蒸気供給流路
4・・・蒸気タービン
5・・・復水器
6・・・二次冷却ループ
7・・・主給水流路
8・・・主給水バイパス流路
10・・・給水制御装置
11・・・センサデータ取得部
12・・・入力受付部
13・・・制御部
131・・・開度算出部
132・・・主給水弁制御部
133・・・主給水バイパス弁制御部
14・・・出力部
15・・・記憶部
100・・・給水制御システム
P1・・・一次冷却ポンプ
V1・・・主給水弁
V2・・・主給水バイパス弁
c1、c2、c3・・・センサ
900・・・コンピュータ
901・・・CPU
902・・・主記憶装置
903・・・補助記憶装置
904・・・入出力インタフェース
905・・・通信インタフェース
1...Steam generator 2...Primary cooling loop 3...Steam supply flow path 4...Steam turbine 5...Condenser 6...Secondary cooling loop 7...Main water supply flow Channel 8... Main water supply bypass channel 10... Water supply control device 11... Sensor data acquisition section 12... Input reception section 13... Control section 131... Opening degree calculation section 132... Main water supply valve control unit 133...Main water supply bypass valve control unit 14...Output unit 15...Storage unit 100...Water supply control system P1...Primary cooling pump V1...Main water supply valve V2... ...Main water supply bypass valve c1, c2, c3...Sensor 900...Computer 901...CPU
902... Main storage device 903... Auxiliary storage device 904... Input/output interface 905... Communication interface

Claims (8)

蒸気発生器へ冷却水を供給する給水系統を構成する主給水流路と、
前記主給水流路に設けられる主給水弁と、
前記給水系統を構成し、前記主給水流路をバイパスする主給水バイパス流路と、
前記主給水バイパス流路に設けられる主給水バイパス弁と、
前記主給水弁と前記主給水バイパス弁とを制御して前記冷却水の給水流量を制御する給水制御装置と、を有し、
前記給水制御装置は、
前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、第1の目標開度となるよう前記主給水バイパス弁を閉動作させ、
前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような第2の目標開度を算出し、前記第2の目標開度となるように閉状態の前記主給水弁を開動作させ、
前記主給水弁及び前記主給水バイパス弁を開状態とする、
給水制御システム。
A main water supply flow path that constitutes a water supply system that supplies cooling water to the steam generator;
a main water supply valve provided in the main water supply flow path;
a main water supply bypass passage that constitutes the water supply system and bypasses the main water supply passage;
a main water supply bypass valve provided in the main water supply bypass flow path;
a water supply control device that controls the main water supply valve and the main water supply bypass valve to control the supply flow rate of the cooling water;
The water supply control device includes:
calculating a first target opening degree based on the steam flow rate supplied from the steam generator to the steam turbine, and closing the main water supply bypass valve so as to achieve the first target opening degree;
A second target opening degree that compensates for the cooling water supply flow rate that decreases due to the closing operation of the main water supply bypass valve is calculated, and the main water supply valve is closed so that the second target opening degree is achieved. Open the
opening the main water supply valve and the main water supply bypass valve;
Water supply control system.
前記給水制御装置は、前記蒸気タービンの負荷が第1の閾値より低いときには、前記主給水バイパス弁を開、前記主給水弁を閉とし、その状態から、前記負荷が上昇し、前記第1の閾値に達すると、前記第1の目標開度となるよう前記主給水バイパス弁を閉動作させ、前記主給水弁を第2の目標開度となるよう開動作させる、
請求項1に記載の給水制御システム。
The feedwater control device opens the main water supply bypass valve and closes the main water supply valve when the load of the steam turbine is lower than a first threshold, and from that state, the load increases and the first water supply bypass valve closes. When the threshold value is reached, the main water supply bypass valve is operated to close so that the first target opening degree is reached, and the main water supply valve is operated to open so that the second target opening degree is reached.
The water supply control system according to claim 1.
前記給水制御装置は、前記負荷が第1の閾値以上で、前記主給水バイパス弁および前記主給水弁を開とした状態から、前記負荷が第2の閾値まで低下すると、
前記主給水バイパス弁を開動作させ、前記主給水弁が全閉となるまで閉動作させる、
請求項2に記載の給水制御システム。
The water supply control device is configured such that when the load is equal to or higher than a first threshold value and the main water supply bypass valve and the main water supply valve are opened, when the load decreases to a second threshold value,
The main water supply bypass valve is opened and closed until the main water supply valve is fully closed.
The water supply control system according to claim 2.
前記給水制御装置は、前記主給水バイパス弁を前記第1の目標開度まで一定の速度で閉動作させ、前記主給水弁を前記第2の目標開度まで一定の速度で開動作させる、
請求項1または請求項2に記載の給水制御システム。
The water supply control device causes the main water supply bypass valve to close at a constant speed to the first target opening degree, and opens the main water supply valve to the second target opening degree at a constant speed.
The water supply control system according to claim 1 or 2.
前記給水制御装置は、
前記主給水弁と前記主給水バイパス弁の両方を開状態としたときの前記主給水バイパス弁の目標開度と前記蒸気流量との関係を規定した第1の関数と、
前記主給水バイパス弁の開度と前記主給水バイパス弁を通過する前記給水流量との関係を規定した第2の関数と、
前記主給水弁の開度と前記主給水弁を通過する前記給水流量との関係を規定した第3の関数と、を有し、
前記主給水バイパス弁を前記閉動作させる前の前記蒸気流量と、前記第1の関数と、に基づいて、前記第1の目標開度を算出し、
前記第1の目標開度と前記第2の関数とに基づいて、前記第1の目標開度を達成したときに前記主給水バイパス弁を通過する前記冷却水の給水流量を算出し、
前記主給水バイパス弁を前記閉動作させる前の状態において前記主給水バイパス弁を通過する前記冷却水の給水流量から、前記第1の目標開度を達成したときに前記主給水バイパス弁を通過する前記冷却水の給水流量を減算して差分流量を算出し、
前記差分流量と、前記第3の関数と、に基づいて、前記第2の目標開度を算出する、
請求項1または請求項2に記載の給水制御システム。
The water supply control device includes:
a first function that defines a relationship between a target opening degree of the main water supply bypass valve and the steam flow rate when both the main water supply valve and the main water supply bypass valve are open;
a second function that defines a relationship between the opening degree of the main water supply bypass valve and the flow rate of the water supply passing through the main water supply bypass valve;
a third function that defines a relationship between the opening degree of the main water supply valve and the water supply flow rate passing through the main water supply valve;
Calculating the first target opening degree based on the steam flow rate before the closing operation of the main water supply bypass valve and the first function,
Based on the first target opening degree and the second function, calculate the supply flow rate of the cooling water that passes through the main water supply bypass valve when the first target opening degree is achieved;
The cooling water passes through the main water bypass valve when the first target opening degree is achieved based on the flow rate of the cooling water that passes through the main water bypass valve in the state before the main water supply bypass valve is operated to close. Calculating the differential flow rate by subtracting the cooling water supply flow rate,
calculating the second target opening degree based on the differential flow rate and the third function;
The water supply control system according to claim 1 or 2.
蒸気発生器へ冷却水を供給する主給水流路と、前記主給水流路に設けられる主給水弁と、前記主給水流路をバイパスする主給水バイパス流路と、前記主給水バイパス流路に設けられる主給水バイパス弁と、を備える給水系統において、前記主給水弁と前記主給水バイパス弁とを制御することによって前記冷却水の前記蒸気発生器への給水流量を制御する給水制御装置であって、
前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、前記第1の目標開度となるよう前記主給水バイパス弁を閉動作させ、
前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような第2の目標開度を算出し、前記第2の目標開度となるように閉状態の前記主給水弁を開動作させ、
前記主給水弁及び前記主給水バイパス弁を開状態とする、
給水制御装置。
A main water supply flow path that supplies cooling water to the steam generator, a main water supply valve provided in the main water supply flow path, a main water supply bypass flow path that bypasses the main water supply flow path, and a main water supply bypass flow path that bypasses the main water supply flow path. A main water supply bypass valve provided in the water supply system, the water supply control device controlling the water supply flow rate to the steam generator by controlling the main water supply valve and the main water supply bypass valve. hand,
calculating a first target opening degree based on the steam flow rate supplied from the steam generator to the steam turbine, and closing the main water supply bypass valve so as to reach the first target opening degree;
A second target opening degree that compensates for the cooling water supply flow rate that decreases due to the closing operation of the main water supply bypass valve is calculated, and the main water supply valve is closed so that the second target opening degree is achieved. Open the
opening the main water supply valve and the main water supply bypass valve;
Water supply control device.
蒸気発生器へ冷却水を供給する主給水流路と、前記主給水流路に設けられる主給水弁と、前記主給水流路をバイパスする主給水バイパス流路と、前記主給水バイパス流路に設けられる主給水バイパス弁と、を備える給水系統において、前記主給水弁と前記主給水バイパス弁とを制御することによって給水流量を制御する給水制御方法であって、
前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、前記第1の目標開度となるよう前記主給水バイパス弁を閉動作させ、
前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような第2の目標開度を算出し、前記第2の目標開度となるように閉状態の前記主給水弁を開動作させ、
前記主給水弁及び前記主給水バイパス弁を開状態とする、
給水制御方法。
A main water supply flow path that supplies cooling water to the steam generator, a main water supply valve provided in the main water supply flow path, a main water supply bypass flow path that bypasses the main water supply flow path, and a main water supply bypass flow path that bypasses the main water supply flow path. A water supply control method for controlling a water supply flow rate by controlling the main water supply valve and the main water supply bypass valve in a water supply system including a main water supply bypass valve provided,
calculating a first target opening degree based on the steam flow rate supplied from the steam generator to the steam turbine, and closing the main water supply bypass valve so as to reach the first target opening degree;
A second target opening degree that compensates for the cooling water supply flow rate that decreases due to the closing operation of the main water supply bypass valve is calculated, and the main water supply valve is closed so that the second target opening degree is achieved. Open the
opening the main water supply valve and the main water supply bypass valve;
Water supply control method.
蒸気発生器へ冷却水を供給する主給水流路と、前記主給水流路に設けられる主給水弁と、前記主給水流路をバイパスする主給水バイパス流路と、前記主給水バイパス流路に設けられる主給水バイパス弁と、を備える給水系統において、前記主給水弁と前記主給水バイパス弁とを制御することによって給水流量を制御するコンピュータに、
前記蒸気発生器から蒸気タービンへ供給される蒸気流量に基づいて第1の目標開度を算出し、前記第1の目標開度となるよう前記主給水バイパス弁を閉動作させ、
前記主給水バイパス弁の前記閉動作によって減少する前記冷却水の給水流量を補うような第2の目標開度を算出し、前記第2の目標開度となるように閉状態の前記主給水弁を開動作させ、
前記主給水弁及び前記主給水バイパス弁を開状態とする処理、
を実行させるプログラム。
A main water supply flow path that supplies cooling water to the steam generator, a main water supply valve provided in the main water supply flow path, a main water supply bypass flow path that bypasses the main water supply flow path, and a main water supply bypass flow path that bypasses the main water supply flow path. In a water supply system comprising a main water supply bypass valve provided, a computer that controls a water supply flow rate by controlling the main water supply valve and the main water supply bypass valve;
calculating a first target opening degree based on the steam flow rate supplied from the steam generator to the steam turbine, and closing the main water supply bypass valve so as to reach the first target opening degree;
A second target opening degree that compensates for the cooling water supply flow rate that decreases due to the closing operation of the main water supply bypass valve is calculated, and the main water supply valve is closed so that the second target opening degree is achieved. Open the
A process of opening the main water supply valve and the main water supply bypass valve,
A program to run.
JP2022050043A 2022-03-25 2022-03-25 Water supply control system, water supply control device, water supply control method, and program Pending JP2023142911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022050043A JP2023142911A (en) 2022-03-25 2022-03-25 Water supply control system, water supply control device, water supply control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022050043A JP2023142911A (en) 2022-03-25 2022-03-25 Water supply control system, water supply control device, water supply control method, and program

Publications (1)

Publication Number Publication Date
JP2023142911A true JP2023142911A (en) 2023-10-06

Family

ID=88220191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022050043A Pending JP2023142911A (en) 2022-03-25 2022-03-25 Water supply control system, water supply control device, water supply control method, and program

Country Status (1)

Country Link
JP (1) JP2023142911A (en)

Similar Documents

Publication Publication Date Title
KR910002987B1 (en) Automatic steam generator feed water control over full power range
JP2005076461A (en) Compressor control method
WO2019163438A1 (en) Control device for steam governing valve of power generation plant, and method for controlling steam governing valve of power generation plant
JP6058419B2 (en) Steam turbine valve control apparatus and valve control method thereof
JP2023142911A (en) Water supply control system, water supply control device, water supply control method, and program
JP2013148347A (en) Water supply control device, and water supply control method
JP2008002337A (en) Steam turbine control device and steam turbine control method
KR100584835B1 (en) Feedwater control system for steam generator in nuclear power plant and control method thereof
JPS628605B2 (en)
JP4560481B2 (en) Steam turbine plant
JP7519953B2 (en) Output control method, control device and nuclear power plant
JP6781613B2 (en) Control systems, steam turbines, power plants and control methods
JP5306000B2 (en) Water supply control device and water supply control method
JPS5828689A (en) Method and device for controlling reactor power at load loss
JP7053520B2 (en) Nuclear power plant and control method of nuclear power plant
JPS6158903A (en) Turbine controller for nuclear reactor
JP4556883B2 (en) Reactor power controller
JP4003630B2 (en) Reactor recirculation flow controller
JPH01178900A (en) Feed-water flow-rate controller for nuclear reactor
JPH0514878B2 (en)
JPS61215404A (en) Control device for steam turbine
JPH0241720B2 (en)
JP2004044944A (en) Device for controlling recirculation flow rate of feed-water pump
JPS62131903A (en) Speed control device for steam turbine
JPH03215198A (en) Load controller for combined cycle plant