JP2023097826A - 検査装置、及び検査装置の調整方法 - Google Patents

検査装置、及び検査装置の調整方法 Download PDF

Info

Publication number
JP2023097826A
JP2023097826A JP2021214156A JP2021214156A JP2023097826A JP 2023097826 A JP2023097826 A JP 2023097826A JP 2021214156 A JP2021214156 A JP 2021214156A JP 2021214156 A JP2021214156 A JP 2021214156A JP 2023097826 A JP2023097826 A JP 2023097826A
Authority
JP
Japan
Prior art keywords
measured
imaging unit
shape portion
optical axis
inspection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021214156A
Other languages
English (en)
Inventor
彩郁 森下
Sayaka Morishita
栄二 山田
Eiji Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Nidec Instruments Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Instruments Corp filed Critical Nidec Instruments Corp
Priority to JP2021214156A priority Critical patent/JP2023097826A/ja
Publication of JP2023097826A publication Critical patent/JP2023097826A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】被検物を検査する検査装置の調整方法を提供する。【解決手段】検査装置は、配置台と、撮像ユニットと、制御部とを有する。配置台は、被検物が配置される。撮像ユニットは、レンズと撮像部とを有する。撮像部は、レンズを透過した光を受光する。撮像ユニットは、配置台に配置された対象物200を撮像する。対象物200は、第1被測定形状部201と、第2被測定形状部202とを有する。撮像ユニットの光軸方向Dpにおいて、第1被測定形状部と第2被測定形状部とは、互いに異なる高さに配置される。制御部は、撮像ユニットによる第1被測定形状部の検出結果に基づいて第1位置O201を算出し、撮像ユニットによる第2被測定形状部の検出結果に基づいて第2位置O202を算出する。【選択図】図5

Description

本発明は、検査装置、及び検査装置の調整方法に関する。
従来、被検物が配置される配置台と、撮像ユニットとを備えた検査装置が知られている。このような検査装置として、例えば、部品の欠陥を検査する装置、及び、レンズ枠に対するレンズの心出しを行う装置(例えば、特許文献1参照)が知られている。特許文献1には、レンズ等を有する被検物が配置される配置台と、被検物を撮像する撮像ユニットとを備えた、レンズ心出し装置が記載されている。
特開2008-209537号公報
しかしながら、特許文献1のレンズ心出し装置では、撮像ユニットの光軸が配置台に対して傾斜している場合、レンズの心出しを精度良く行うことが困難である。また、他の検査装置も同様であり、撮像ユニットの光軸が配置台に対して傾斜している場合、例えば、部品の欠陥を精度良く検出することが困難である。
本発明は、上記課題に鑑みてなされており、その目的は、撮像ユニットの光軸方向を適切に調整することが可能な検査装置、及び検査装置の調整方法を提供することである。
本発明のある観点からの例示的な検査装置は、被検物を検査する。検査装置は、配置台と、撮像ユニットと、制御部とを有する。前記配置台は、前記被検物が配置される。前記撮像ユニットは、レンズと撮像部とを有する。前記撮像部は、前記レンズを透過した光を受光する。前記撮像ユニットは、前記配置台に配置された対象物を撮像する。前記対象物は、第1被測定形状部と、第2被測定形状部とを有する。前記撮像ユニットの光軸方向において、前記第1被測定形状部と前記第2被測定形状部とは、互いに異なる高さに配置される。前記制御部は、前記撮像ユニットによる前記第1被測定形状部の検出結果に基づいて第1位置を算出し、前記撮像ユニットによる前記第2被測定形状部の検出結果に基づいて第2位置を算出する。
本発明の別の観点からの例示的な検査装置の調整方法は、被検物が配置される配置台と、レンズと前記レンズを透過した光を受光する撮像部とを有する撮像ユニットとを有する検査装置の調整方法である。前記調整方法は、前記配置台に配置された対象物を前記撮像ユニットによって撮像する工程を有する。前記対象物は、第1被測定形状部と、第2被測定形状部とを有する。前記撮像ユニットの光軸方向において、前記第1被測定形状部と前記第2被測定形状部とは、互いに異なる高さに配置される。前記調整方法は、前記撮像ユニットによる前記第1被測定形状部の検出結果に基づいて第1位置を算出する工程と、前記撮像ユニットによる前記第2被測定形状部の検出結果に基づいて第2位置を算出する工程と、前記第1位置及び前記第2位置に基づいて、前記撮像ユニットの光軸方向を調整する工程とを有する。
本発明のある例示的な観点によれば、撮像ユニットの光軸方向を適切に調整することが可能な検査装置、及び検査装置の調整方法を提供できる。
図1は、本発明の第1実施形態の検査装置の模式図である。 図2は、本発明の第1実施形態の検査装置の配置台の構造を示す斜視図である。 図3は、本発明の第1実施形態の検査装置の調整に用いる治具の構造を示す斜視図である。 図4は、本発明の第1実施形態の検査装置の調整に用いる治具の構造を示す平面図である。 図5は、本発明の第1実施形態の検査装置の撮像ユニットの光軸が配置台に対して垂直に配置されている状態を模式的に示す図である。 図6は、本発明の第1実施形態の検査装置の撮像ユニットの光軸が配置台に対して+X方向に傾斜している状態を模式的に示す図である。 図7は、本発明の第1実施形態の検査装置の撮像ユニットの光軸が配置台に対して-X方向に傾斜している状態を模式的に示す図である。 図8は、本発明の第1実施形態の検査装置の撮像ユニットの光軸方向を調整するフローを示す図である。 図9Aは、治具の回転角度が0°である状態を示す平面図である。 図9Bは、治具の回転角度が90°である状態を示す平面図である。 図9Cは、治具の回転角度が180°である状態を示す平面図である。 図9Dは、治具の回転角度が270°である状態を示す平面図である。 図10Aは、本発明の第2実施形態の検査装置の調整に用いる治具の構造を示す斜視図である。 図10Bは、本発明の第2実施形態の検査装置の調整に用いる治具の構造を示す平面図である。 図11Aは、本発明の第3実施形態の検査装置の調整に用いる治具の構造を示す斜視図である。 図11Bは、本発明の第3実施形態の検査装置の調整に用いる治具の構造を示す平面図である。 図12は、本発明の第4実施形態の検査装置の模式図である。
以下、図面を参照して本発明による検査装置、及び検査装置の調整方法の例示的な実施形態を説明する。なお、図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。なお、本願明細書では、発明の理解を容易にするため、互いに直交するX軸、Y軸及びZ軸を記載することがある。典型的には、Z軸は、鉛直方向を示し、X軸及びY軸は、水平方向を示す。ただし、本実施形態は、これに限定されない。
なお、本明細書において、方位、線及び面のうちのいずれかと他のいずれかとの位置関係において、「平行」は、両者がどこまで延長しても全く交わらない状態のみならず、実質的に平行である状態を含む。また、「垂直」及び「直交」はそれぞれ、両者が互いに90度で交わる状態のみならず、実質的に垂直である状態及び実質的に直交する状態を含む。さらに、「鉛直」は、重力が作用する方向のみならず、重力が実質的に作用する方向を示す。また、「水平」は、重力が作用する方向に対して厳密に直交する方向のみならず、重力が作用する方向に対して実質的に直交する方向を示す。つまり、「平行」、「垂直」、「直交」、「鉛直」及び「水平」はそれぞれ、両者の位置関係に本発明の効果を奏する程度の角度ずれがある状態を含み得ることは言うまでもない。
(第1実施形態)
まず、図1を参照して、本発明の第1実施形態の検査装置100を説明する。図1は、本発明の第1実施形態の検査装置100の模式図である。
図1に示すように、検査装置100は、検査対象物Sを検査する。なお、検査対象物Sは、本発明の「被検物」の一例である。検査装置100は、特に限定されないが、例えば、部品である検査対象物Sの欠陥を検査する装置であってもよいし、検査対象物Sのうち一部品と他部品との同心度を検査又は測定する装置であってもよい。検査装置100は、検査対象物Sが配置される配置台160と、撮像ユニット110と、制御部152とを有する。検査対象物Sは、検査装置100の配置台160に載置された状態で検査される。以下、具体的に説明する。
検査装置100は、撮像ユニット110と、環状光源120と、面光源130と、抑制部140とを備える。検査装置100において、撮像ユニット110、環状光源120及び面光源130は、固定して配置されることが好ましい。例えば、撮像ユニット110、環状光源120及び面光源130は、同一の固定台に固定して配置されることが好ましい。ただし、面光源130は、撮像ユニット110及び環状光源120に対して移動可能であってもよい。
撮像ユニット110は、検査対象物Sを撮像する。撮像ユニット110は、検査対象物Sに対して一方側(+Z方向側)に配置される。
撮像ユニット110は、撮像範囲内を撮像する。撮像ユニット110は、光軸Paを中心に広がる撮像範囲を撮像する。撮像ユニット110の撮像範囲は、調整可能であってもよい。撮像ユニット110の光軸Paは、光軸方向Dpに延びる。なお、撮像ユニット110の光軸Paは、後述するレンズ112の光軸と一致する。ここでは、光軸方向Dpは、略鉛直方向に平行である。検査対象物Sは、光軸Pa上に配置される。
撮像ユニット110は、レンズ112と、撮像部114とを有する。撮像部114は、レンズ112を透過した光を受光する。撮像部114は、例えば、カメラである。撮像部114は、撮像素子を含む。例えば、撮像素子は、CCD(Charge Coupled Device)イメージセンサー又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサーである。レンズ112は、特に限定されないが、本実施形態ではテレセントリックレンズである。テレセントリックレンズは、主光線が光軸に対して平行なレンズであり、被撮像物がレンズから遠ざかっても倍率が変化しないレンズである。
環状光源120は、環状構造を有する。環状光源120は、検査対象物Sに光を照射する。典型的には、環状光源120の中心は、撮像ユニット110の光軸Paと一致する。環状光源120は、検査対象物Sに対して一方側(+Z方向側)に配置される。環状光源120は、環状の中心に向けて斜めに光を照射する。典型的には、環状光源120は、所定のエリアからほぼ一定の強度の光を検査対象物Sに向けて照射する。
環状光源120は、光を出射する出射面120sを有する。出射面120sは、XY平面に対して斜めに傾いている。出射面120sの法線方向は、斜め下方向を向く。撮像ユニット110は、環状光源120から光が照射された検査対象物Sを撮像する。また、撮像ユニット110は、配置台160に配置された後述する治具200を撮像する。
面光源130は、検査対象物Sに光を照射する。面光源130は、面状に光を照射する。面光源130は、光を出射する出射面130sを有する。出射面130sの法線方向は、Z方向に延びる。典型的には、面光源130は、所定のエリアからほぼ一定の強度の光を照射する。
面光源130は、検査対象物Sに対しての他方側(-Z方向側)に配置される。少なくとも面光源130が検査対象物Sに光を照射する場合、面光源130は、撮像ユニット110の光軸Pa上に位置する。撮像ユニット110は、面光源130から光が照射された検査対象物Sを撮像する。
抑制部140は、環状光源120から照射された光が面光源130に入射することを抑制する。上述したように、面光源130が検査対象物Sに光を照射する際に、撮像ユニット110は、面光源130から光が照射された検査対象物Sを撮像する。この場合、抑制部140は、面光源130から照射された光が検査対象物Sに入射することを遮らない。
一方で、撮像ユニット110は、環状光源120から光が照射された検査対象物Sを撮像する。この場合、抑制部140は、環状光源120から照射された光が面光源130に入射することを抑制する。具体的には、撮像ユニット110が、環状光源120から光が照射された検査対象物Sを撮像する場合、抑制部140は、環状光源120から照射された光が面光源130に入射することを抑制する。これにより、撮像ユニット110が面光源130で反射された光を受光することを抑制できる。
ここでは、抑制部140は、遮光位置と退避位置との間を移動可能な遮光板140pを含む。遮光位置は、面光源130の出射面130sの全面を覆う位置である。退避位置は、図1に示す位置であり、面光源130から検査対象物Sに向かう光を遮らない位置である。
検査装置100は、制御装置150をさらに備えてもよい。制御装置150は、検査装置100の撮像ユニット110、環状光源120、面光源130及び抑制部140の動作を制御してもよい。あるいは、制御装置150は、撮像ユニット110において撮像した撮像画像を解析して検査対象物Sの検査結果を判定してもよい。例えば、制御装置150は、撮像画像を画像解析することによって検査対象物S内に異物がないか検査できる。
制御装置150は、制御部152と、記憶部154とを有する。制御部152は、演算素子を含む。演算素子は、プロセッサーを含む。一例では、プロセッサーは、中央演算処理装置(Central Processing Unit:CPU)を含む。
記憶部154は、種々のデータを記憶する。例えば、記憶部154は、後述する治具200の各部の形状及び寸法を記憶する。また、記憶部154は、制御プログラムを記憶する。制御部152は、制御プログラムを実行することによって、制御装置150の演算を制御する。詳細には、制御部152のプロセッサーは、記憶部154の記憶素子の記憶しているコンピュータープログラムを実行して、制御装置150の各構成を制御する。
例えば、コンピュータープログラムは、非一時的コンピューター読取可能記憶媒体に記憶される。非一時的コンピューター読取可能記憶媒体は、ROM(Read Only Memory)、RAM(Random Access Memory)、CD-ROM、磁気テープ、磁気ディスク又は光データ記憶装置を含む。
検査装置100は、検査対象物Sが配置される配置台160を備える。典型的には、配置台160は、検査装置100の所定の位置に配置される。
図2は、本発明の第1実施形態の検査装置100の配置台160の構造を示す斜視図である。図2に示すように、配置台160は、検査対象物Sが配置される配置面160aを有する。配置面160aは、光軸方向Dpと交差する方向に延びる面であり、ここでは略水平方向に延びる。配置台160は、薄板形状を有する。
また、配置台160は、検査対象物Sが配置される位置を決める位置決め部160pを有する。位置決め部160pにより、検査対象物Sを所定の位置に位置決めできる。また、配置台160は、貫通孔160hを有する。貫通孔160hは、検査対象物Sの一部を収容したり、光を透過させたりする。
検査対象物Sの形状は、特に限定されないが、円柱構造を有してもよい。また、例えば、検査対象物Sは、薄い円板であってもよい。検査対象物Sは、透光部材を有してもよい。透光部材は、光を透過する。透光部材は、透明であってもよい。あるいは、透光部材は、着色されていてもよい。
図1に示すように、検査装置100は、光軸調整機構190をさらに備える。光軸調整機構190は、撮像ユニット110を保持するとともに、撮像ユニット110の光軸方向Dpを調整可能に構成されている。光軸調整機構190は、固定台に固定して配置される。なお、検査装置100は、撮像ユニット110を保持する保持部材をさらに備え、光軸調整機構190は、保持部材の姿勢を調整することによって撮像ユニット110の光軸方向Dpを調整してもよい。また、光軸調整機構190は、撮像ユニット110の光軸方向Dpだけでなく、撮像ユニット110の上下方向又は水平方向の位置も調整可能に構成されていてもよい。
次に、図3及び図4を参照して、本実施形態の検査装置100の撮像ユニット110の調整方法について説明する。図3は、本発明の第1実施形態の検査装置100の調整に用いる治具200の構造を示す斜視図である。図4は、本発明の第1実施形態の検査装置100の調整に用いる治具200の構造を示す平面図である。検査装置100による検査対象物Sの検査精度を高めるためには、撮像ユニット110の光軸Paを、配置台160の配置面160a(図2参照)に対して垂直に配置する必要がある。以下、検査装置100の撮像ユニット110の光軸方向Dpを調整する方法について詳細に説明する。
撮像ユニット110の光軸方向Dpを調整する場合、治具200(図3参照)を用いる。治具200は、配置台160の配置面160aに配置される。なお、治具200は、本発明の「対象物」の一例である。
図3及び図4に示すように、治具200は、第1被測定形状部201と、第2被測定形状部202とを有する。第1被測定形状部201及び第2被測定形状部202は、例えば、特徴的な形状を有する。本実施形態では、第1被測定形状部201及び第2被測定形状部202は、円形状を有する。第1被測定形状部201及び第2被測定形状部202は、例えば、多角形状又は矩形状を有してもよい。また、第1被測定形状部201及び第2被測定形状部202は、例えば、所定の比率の長さを有する二直線、又は、所定の角度で交差する二直線を有してもよい。
第1被測定形状部201と第2被測定形状部202とは、撮像ユニット110の光軸方向Dpにおいて、互いに異なる高さに配置される。
本実施形態では、治具200は、例えば、略円盤形状又は略円柱形状を有する。具体的には、治具200は、治具本体210と、突出部220とを有する。治具本体210は、治具200の外形を形成する。治具本体210は、撮像ユニット110の光軸方向Dpから見て、例えば、円形状又は真円形状を有する。治具本体210は、一定の厚みを有する。
突出部220は、治具本体210から撮像ユニット110側に突出する。突出部220は、治具本体210よりも小さい外形を有する。突出部220は、撮像ユニット110の光軸方向Dpから見て、例えば、円形状又は真円形状を有する。突出部220は、一定の厚みを有する。
また、治具200は、穴部230を有する。穴部230は、治具200を厚み方向に貫通する。言い換えると、穴部230は、治具本体210及び突出部220を厚み方向に貫通する。治具200の厚み方向は、光軸方向Dpに沿った方向である。なお、穴部230は、治具200を厚み方向に貫通しない窪みであってもよい。
本実施形態では、第1被測定形状部201は、治具本体210の上面210aの周縁部である。また、第2被測定形状部202は、穴部230の上端の周縁部である。言い換えると、第2被測定形状部202は、突出部220の上面220aの内周縁部である。さらに言い換えると、第2被測定形状部202は、上面220aと穴部230とが交差する部分である。
第2被測定形状部202の位置及び大きさは、特に限定されない。ただし、第2被測定形状部202は、撮像ユニット110の光軸方向Dpから見て第2被測定形状部202の中心位置O202と第1被測定形状部201の中心位置O201とが一致しないように、配置されている。
制御部152は、撮像ユニット110による第1被測定形状部201の検出結果に基づいて、第1位置を算出する。本実施形態では、第1位置は、第1被測定形状部201の中心位置O201である。
また、制御部152は、撮像ユニット110による第2被測定形状部202の検出結果に基づいて、第2位置を算出する。本実施形態では、第2位置は、第2被測定形状部202の中心位置O202である。
また、本実施形態では、制御部152は、第1位置と第2位置との間の距離を算出する。具体的には、制御部152は、第1被測定形状部201の中心位置O201と、第2被測定形状部202の中心位置O202との間の距離を算出する。制御部152は、光軸方向Dpから見たときの中心位置O201と中心位置O202との間の距離を算出する。本実施形態において、距離とは、特に記載が無い場合、光軸方向Dpから見たときの距離を意味する。なお、本実施形態では、治具200の厚み方向から見て、第1被測定形状部201の中心位置O201と、第2被測定形状部202の中心位置O202との間の距離が0.05mmとなるように、治具200が形成されている例について説明する。
ここで、図5~図7を参照して、第1位置と第2位置との間の距離について説明する。図5は、本発明の第1実施形態の検査装置100の撮像ユニット110の光軸Paが配置台160に対して垂直に配置されている状態を模式的に示す図である。図6は、本発明の第1実施形態の検査装置100の撮像ユニット110の光軸Paが配置台160に対して+X方向に傾斜している状態を模式的に示す図である。図7は、本発明の第1実施形態の検査装置100の撮像ユニット110の光軸Paが配置台160に対して-X方向に傾斜している状態を模式的に示す図である。なお、配置面160aに対する光軸Paの傾きは数°以下であるが、図6及び図7では、理解を容易にするために、光軸Paに対する治具200の傾きを大きく描いている。また、図5~図7では、理解を容易にするために、光軸方向Dpを基準として治具200が傾斜するように描いている。
図5に示すように、撮像ユニット110の光軸Paが配置台160の配置面160a(図2参照)に対して垂直である場合、第1位置(第1被測定形状部201の中心位置O201)と第2位置(第2被測定形状部202の中心位置O202)との間の距離W1は、例えば、0.05mmとなる。
図6に示すように、撮像ユニット110の光軸Paが配置台160の配置面160aに対して+X方向に傾斜している場合、第1位置(中心位置O201)と第2位置(中心位置O202)との間の距離W2は、距離W1よりも小さく(例えば、0.04mm)なる。
図7に示すように、撮像ユニット110の光軸Paが配置台160の配置面160aに対して-X方向に傾斜している場合、第1位置(中心位置O201)と第2位置(中心位置O202)との間の距離W3は、距離W1よりも大きく(例えば、0.06mm)なる。
つまり、第1位置(中心位置O201)と第2位置(中心位置O202)との間の距離が距離W1(0.05mm)に比べて、大きいか、又は、小さいかによって、光軸Paの傾斜方向が決まる。また、第1位置(中心位置O201)と第2位置(中心位置O202)との間の距離と距離W1(0.05mm)との差によって、光軸Paの傾斜角度が決まる。そして、第1位置(中心位置O201)と第2位置(中心位置O202)との間の距離を表示パネル等の表示部に表示したり、光軸Paの傾斜方向及び傾斜角度を表示部に表示したり、撮像ユニット110の光軸方向Dpを変更すべき方向及び角度を表示部に表示したりする。これにより、ユーザは、撮像ユニット110の光軸方向Dpを適切に調整することができる。
なお、図6及び図7を参照して、光軸Paが+X方向又は-X方向に傾斜している場合に、光軸Paの傾斜をX方向に沿って調整する例について説明したが、光軸Paが+Y方向又は-Y方向に傾斜している場合についても同様である。つまり、光軸Paが+Y方向又は-Y方向に傾斜している場合、光軸Paの傾斜をY方向に沿って調整することができる。
以上、図1~図7を用いて説明したように、制御部152は、撮像ユニット110による第1被測定形状部201の検出結果に基づいて第1位置を算出し、撮像ユニット110による第2被測定形状部202の検出結果に基づいて第2位置を算出する。従って、算出された第1位置及び第2位置に基づいて、撮像ユニット110の光軸方向Dpを適切に調整できる。よって、調整後の撮像ユニット110を用いて検査対象物Sを精度良く検査できる。
また、本実施形態では、上記のように、第1位置は、第1被測定形状部201の中心位置O201であり、第2位置は、第2被測定形状部202の中心位置O202である。従って、第1被測定形状部201及び第2被測定形状部202に基づいて、第1位置及び第2位置を容易に算出できる。
また、本実施形態では、制御部152は、第1位置と第2位置との間の距離を算出する。従って、算出した距離に基づいて、容易に、撮像ユニット110の光軸方向Dpを調整できる。
また、本実施形態では、レンズ112は、テレセントリックレンズである。テレセントリックレンズを有する撮像ユニットを用いた場合、テレセントリックレンズから被撮像物までの距離が変化しても倍率が変化しないため、撮像ユニットの光軸方向を調整することは、通常、困難である。しかしながら、本実施形態では、上述したように、光軸方向Dpを適切に調整できるため、テレセントリックレンズを用いた検査装置100に本発明を適用することは、特に有効である。
また、本実施形態では、第1被測定形状部201及び第2被測定形状部202は、円形状である。従って、第1被測定形状部201及び第2被測定形状部202を容易に精度良く形成できる。
次に、図8及び図9を参照して、撮像ユニット110の光軸方向Dpを調整するフローについて説明する。図8は、本発明の第1実施形態の検査装置100の撮像ユニット110の光軸方向Dpを調整するフローを示す図である。図9Aは、治具200の回転角度が0°である状態を示す平面図である。図9Bは、治具200の回転角度が90°である状態を示す平面図である。図9Cは、治具200の回転角度が180°である状態を示す平面図である。図9Dは、治具200の回転角度が270°である状態を示す平面図である。
本実施形態の検査装置100の撮像ユニット110の調整方法は、ステップS1~ステップS7を含む。ステップS1~ステップS7は、特に記載が無い場合、制御部152によって実行される。ここでは、図3及び図4に示した構造の治具200を用いて撮像ユニット110の光軸方向Dpを調整する場合について説明する。
図8に示すように、ステップS1において、ユーザは、治具200を配置台160に配置する。そして、配置台160に配置された治具200を撮像ユニット110によって撮像する。具体的には、配置台160の配置面160a上に配置された治具200に対して、環状光源120から光を照射する。そして、配置台160の配置面160a上に配置された治具200を撮像ユニット110によって撮像する。撮像データは、制御部152に送信される。
次に、ステップS2において、撮像ユニット110による第1被測定形状部201の検出結果に基づいて第1位置を算出する。具体的には、制御部152は、撮像データを画像化する。そして、制御部152は、記憶部154に記憶されている治具200に関するデータに基づいて、画像化された撮像データから、第1被測定形状部201に対応するデータを抽出する。その後、制御部152は、抽出したデータに基づいて、第1位置を算出する。本実施形態では、制御部152は、抽出したデータに基づいて、第1被測定形状部201の中心位置O201を算出する。
次に、ステップS3において、撮像ユニット110による第2被測定形状部202の検出結果に基づいて第2位置を算出する。具体的には、制御部152は、撮像データを画像化する。そして、制御部152は、記憶部154に記憶されている治具200に関するデータに基づいて、画像化された撮像データから、第2被測定形状部202に対応するデータを抽出する。その後、制御部152は、抽出したデータに基づいて、第2位置を算出する。本実施形態では、制御部152は、抽出したデータに基づいて、第2被測定形状部202の中心位置O202を算出する。
次に、ステップS4において、第1位置(中心位置O201)と第2位置(中心位置O202)との間の距離が算出される。なお、ステップS4の算出は、制御部152が行ってもよいし、ユーザが行ってもよい。
次に、ステップS5において、撮像回数が閾値(ここでは4回)以上であるか否かが判定される。なお、ステップS5の判定は、制御部152が行ってもよいし、ユーザが行ってもよい。
ステップS5で撮像回数が閾値未満であると判定された場合、ステップS6に進む。
次に、ステップS6において、治具200が配置台160上で所定角度(例えば90°)回転される。なお、ステップS6の治具200の回転は、検査装置100が行ってもよい。具体的には、検査装置100は、治具200を回転させる回転機構(図示せず)をさらに有し、回転機構が治具200を所定角度回転させてもよい。また、ステップS6の治具200の回転は、ユーザが手動で行ってもよい。
次に、ステップS1に戻り、ステップS1~ステップS6が繰り返される。ステップS1~ステップS4が4回行われると、例えば図9A~図9Dに示した状態(回転角度が0°、90°、180°及び270°の状態)で、治具200が撮像され、第1位置と第2位置との間の距離が算出される。そして、各状態(4つの回転角度)における、第1位置と第2位置との間の距離が算出される。その結果、下記の表1に示す調整前の欄の例えば「0.04」「0.06」「0.06」「0.04」が得られる。なお、回転角度が0°又は90°のときの治具200の状態を第1状態と記載することがある。また、回転角度が180°又は270°のときの治具200の状態を第2状態と記載することがある。
Figure 2023097826000002
ステップS5で撮像回数が閾値(ここでは4回)以上であると判定された場合、ステップS7に進む。
次に、ステップS7において、第1位置及び第2位置に基づいて、撮像ユニット110の光軸方向Dpを調整する。本実施形態では、第1位置と第2位置との間の距離に基づいて、撮像ユニット110の光軸方向Dpを調整する。なお、ステップS7の光軸方向Dpの調整は、制御部152が光軸調整機構190を駆動することによって行ってもよいし、ユーザが光軸調整機構190を操作して行ってもよい。光軸方向Dpの調整は、2方向(ここでは、X方向及びY方向)に行う。
具体的には、表1の調整前の0°の距離「0.04」、及び、180°の距離「0.06」に基づいて、上述したように光軸Paの傾斜をX方向に沿って調整する。より具体的には、距離「0.04」と距離「0.06」との平均値0.05になるように、光軸Paの傾斜をX方向に沿って調整する。これにより、配置台160の配置面160aに対する撮像ユニット110の光軸PaのX方向の傾斜がなくなる。よって、表1の調整1回目の欄に示すように、0°の距離が「0.05」になり、180°の距離が「0.05」になる。つまり、第1状態(回転角度が0°)の第1位置と第2位置との間の距離と、第2状態(回転角度が180°)の第1位置と第2位置との間の距離とに基づいて、撮像ユニット110の光軸方向DpをX方向に沿って調整する。
続いて、表1の調整前の90°の距離「0.06」、及び、270°の距離「0.04」に基づいて、上述したように光軸Paの傾斜をY方向に沿って調整する。より具体的には、距離「0.06」と距離「0.04」との平均値0.05になるように、光軸Paの傾斜をY方向に沿って調整する。これにより、配置台160の配置面160aに対する撮像ユニット110の光軸PaのY方向の傾斜がなくなる。よって、表1の調整2回目の欄に示すように、90°の距離が「0.05」になり、270°の距離が「0.05」になる。つまり、第1状態(回転角度が90°)の第1位置と第2位置との間の距離と、第2状態(回転角度が270°)の第1位置と第2位置との間の距離とに基づいて、撮像ユニット110の光軸方向DpをY方向に沿って調整する。
以上のようにして、配置台160の配置面160aに対して撮像ユニット110の光軸Paが垂直になり、処理が終了する。
本実施形態では、図8に示すように、治具200を撮像し、第1位置、第2位置及び距離を算出した後に、治具200を回転させる例について示したが、本発明はこれに限らない。例えば、治具200の撮像と治具200の回転とを複数回繰り返した後に、各回転角度における第1位置、第2位置及び距離をまとめて算出してもよい。
また、本実施形態では、ステップS7において、光軸PaのX方向の調整と、光軸PaのY方向の調整との両方を行う例について示したが、本発明はこれに限らない。言い換えると、治具200の撮像と、第1位置、第2位置及び距離の算出とを複数回繰り返した後に、撮像ユニット110の光軸Paを調整する例について示したが、本発明はこれに限らない。例えば、0°及び180°について、治具200の撮像と距離等の算出とを実行した後、光軸PaのX方向の傾斜を調整してもよい。その後、例えば、90°及び270°について、治具200の撮像と距離等の算出とを実行した後、光軸PaのY方向の傾斜を調整してもよい。
以上、図8及び図9を用いて説明したように、検査装置100の調整方法は、治具200を撮像ユニット110によって撮像する工程(ステップS1)と、第1被測定形状部201の検出結果に基づいて第1位置を算出する工程(ステップS2)と、第2被測定形状部202の検出結果に基づいて第2位置を算出する工程(ステップS3)と、第1位置及び第2位置に基づいて、撮像ユニット110の光軸方向Dpを調整する工程(ステップS7)とを有する。従って、算出された第1位置及び第2位置に基づいて、撮像ユニット110の光軸方向Dpを適切に調整できる。よって、調整後の撮像ユニット110を用いて検査対象物Sを精度良く検査できる。
また、本実施形態では、上記のように、検査装置100の調整方法は、治具200を配置台160上で第1状態から第2状態に回転させる工程(ステップS6)を有し、撮像する工程(ステップS1)は、第1状態における治具200を撮像する工程と、第2状態における治具200を撮像する工程とを有する。そして、撮像ユニット110の光軸方向Dpを調整する工程(ステップS7)において、第1状態(例えば、回転角度が0°)の第1位置と第2位置との間の距離と、第2状態(例えば、回転角度が180°)の第1位置と第2位置との間の距離とに基づいて、撮像ユニット110の光軸方向Dpを調整する。従って、例えば、算出した2つの距離が平均値となるように、撮像ユニット110の光軸方向Dpを調整することができる。よって、撮像ユニット110の光軸方向Dpをより精度良く調整できる。
さらに、本実施形態では、上記のように、第1状態(例えば、回転角度が90°)の第1位置と第2位置との間の距離と、第2状態(例えば、回転角度が270°)の第1位置と第2位置との間の距離とに基づいて、撮像ユニット110の光軸方向Dpを調整する。従って、撮像ユニット110の光軸方向Dpの調整を、容易に、2方向(ここでは、X方向及びY方向)に行うことができる。
(第2実施形態)
次に、図8、図10A及び図10Bを参照して、本発明の第2実施形態の検査装置100について説明する。図10Aは、本発明の第2実施形態の検査装置100の調整に用いる治具200の構造を示す斜視図である。図10Bは、本発明の第2実施形態の検査装置100の調整に用いる治具200の構造を示す平面図である。第2実施形態では、上記第1実施形態と異なり、治具200が2つの第2被測定形状部202を有する例について説明する。
図10A及び図10Bに示すように、治具200は、第1被測定形状部201と、第2被測定形状部202とを有する。本実施形態では、治具200は、2つの第2被測定形状部202を有する。
具体的には、治具200は、穴部230及び穴部231を有する。穴部231は、穴部230と同じ形状を有する。なお、穴部231は、穴部230の内径よりも大きい又は小さい内径を有してもよい。また、穴部230と中心位置O201との間の距離は、穴部231と中心位置O201との間の距離と同じであっても良いし、穴部231と中心位置O201との間の距離に比べて、大きく又は小さくてもよい。第2被測定形状部202の一方(以下、第2被測定形状部202aとも記載する)は、穴部230の上端の周縁部である。第2被測定形状部202の他方(以下、第2被測定形状部202bとも記載する)は、穴部231の上端の周縁部である。
制御部152は、撮像ユニット110による第2被測定形状部202aの検出結果に基づいて、第2位置(第2被測定形状部202aの中心位置O202a)を算出する。また、制御部152は、撮像ユニット110による第2被測定形状部202bの検出結果に基づいて、第2位置(第2被測定形状部202bの中心位置O202b)を算出する。
2つの第2被測定形状部202の位置及び大きさは、特に限定されない。ただし、中心位置O202a、中心位置O202b、及び、中心位置O201は、一直線上に配置されない。言い換えると、2つの第2位置の一方(以下、中心位置O202aとも記載する)と第1位置(中心位置O201)とを通過する第1直線M1と、2つの第2位置の他方(以下、中心位置O202bとも記載する)と第1位置(中心位置O201)とを通過する第2直線M2とは、交差する。本実施形態では、第1直線M1と第2直線M2とは、直交する。
以上、図10A及び図10Bを用いて説明したように、治具200は、2つの第2被測定形状部202を有する。従って、第2被測定形状部202が1つだけ形成されている場合に比べて、撮像ユニット110の光軸方向Dpを調整する際に治具200を回転させる回数を削減できる。具体的には、本実施形態では、1回の撮像によって2つの第2被測定形状部202を撮像でき、2つの第2位置が算出される。言い換えると、上記第1実施形態において例えば回転角度が0°及び90°の位置で撮像した場合と同様の効果又は結果が得られる。よって、例えば第1実施形態と比べて、撮像ユニット110の光軸方向Dpを調整する際に治具200を回転させる回数を削減できる。
第2実施形態のその他の構造は、第1実施形態と同様である。
次に、図8を参照して、本実施形態による撮像ユニット110の光軸方向Dpを調整するフローについて説明する。以下、第1実施形態と異なる点について主に説明する。
図8に示すように、ステップS1において、第1実施形態と同様、配置台160に配置された治具200を撮像ユニット110によって撮像する。
次に、ステップS2において、第1実施形態と同様、撮像ユニット110による第1被測定形状部201の検出結果に基づいて第1位置を算出する。
次に、ステップS3において、撮像ユニット110による第2被測定形状部202の検出結果に基づいて第2位置を算出する。このとき、本実施形態では、第2被測定形状部202aの中心位置O202aと、第2被測定形状部202bの中心位置O202bとを算出する。
次に、ステップS4において、第1位置(中心位置O201)と第2位置(中心位置O202a)との間の距離と、第1位置(中心位置O201)と第2位置(中心位置O202b)との間の距離とが算出される。
次に、ステップS5において、撮像回数が閾値(ここでは2回)以上であるか否かが判定される。
ステップS5で撮像回数が閾値未満であると判定された場合、ステップS6に進む。
次に、ステップS6において、治具200が配置台160上で所定角度(例えば180°)回転される。言い換えると、治具200は、第1状態(回転角度が0°の状態)から第2状態(回転角度が180°の状態)に回転される。そして、ステップS1に戻る。
ステップS5で撮像回数が閾値(ここでは2回)以上であると判定された場合、ステップS7に進む。
次に、ステップS7において、第1位置及び2つの第2位置に基づいて、撮像ユニット110の光軸方向DpをX方向及びY方向に調整する。
これにより、配置台160の配置面160aに対して撮像ユニット110の光軸Paが垂直になり、処理が終了する。
第2実施形態のその他の調整フロー及びその他の効果は、第1実施形態と同様である。
本実施形態では、図10A及び図10Bに示したように、2つの第2被測定形状部202を設けるために、2つの穴部230及び231を形成する例について示したが、本発明はこれに限らない。例えば、第1実施形態において、治具200の突出部220の中心位置を、治具本体210の中心位置からずらしてもよい。そして、突出部220の上面220aの外周縁部を第2被測定形状部202bとしてもよい。
(第3実施形態)
次に、図11A及び図11Bを参照して、本発明の第3実施形態の検査装置100について説明する。図11Aは、本発明の第3実施形態の検査装置100の調整に用いる治具200の構造を示す斜視図である。図11Bは、本発明の第3実施形態の検査装置100の調整に用いる治具200の構造を示す平面図である。
図11A及び図11Bに示すように、治具200は、治具本体210と、凹部250とを有する。なお、本実施形態では、治具200は、突出部220を有しない。凹部250は、治具本体210の上面210aから撮像ユニット110とは反対側に窪む。凹部250は、上面210aに対して垂直な内側面251と、内側面251に接続する内側面252とを有する。内側面251は、撮像ユニット110の光軸方向Dpから見て、例えば、円形状又は真円形状を有する。内側面252は、例えば、円錐形状を有する。
内側面251は、治具本体210の上面210aから途中の深さまで形成されている。内側面252は、内側面251の端部から、治具本体210の下面まで形成されている。なお、内側面252は、治具本体210の下面まで形成されてなくてもよい。つまり、本実施形態では凹部250は治具本体210を貫通するが、凹部250は治具本体210を貫通しなくてもよい。
本実施形態では、第2実施形態と同様、治具200は、2つの第2被測定形状部202(第2被測定形状部202a及び第2被測定形状部202b)を有する。第2被測定形状部202aは、凹部250の上端の周縁部である。また、第2被測定形状部202bは、凹部250の下端の周縁部である。なお、凹部250は、光軸方向Dpから見て凹部250の中心位置と第1被測定形状部201の中心位置O201とが一致しないように配置されている。
また、本実施形態では、撮像ユニット110の光軸方向Dpから見て、2つの第2被測定形状部202の一方(ここでは、第2被測定形状部202b)は、2つの第2被測定形状部202の他方(ここでは、第2被測定形状部202a)の内部に配置される。従って、2つの第2被測定形状部202を1つの凹部250によって形成できる。なお、例えば、凹部250を上下に反転させた形状の凸部を治具本体210上に形成することも可能である。この場合、2つの第2被測定形状部(図示せず)を1つの凸部によって形成できる。
制御部152は、撮像ユニット110による第2被測定形状部202aの検出結果に基づいて、第2位置(第2被測定形状部202aの中心位置O202a)を算出する。また、制御部152は、撮像ユニット110による第2被測定形状部202bの検出結果に基づいて、第2位置(第2被測定形状部202bの中心位置O202b)を算出する。
2つの第2被測定形状部202の位置及び大きさは、特に限定されない。ただし、第2被測定形状部202aの中心位置O202a、第2被測定形状部202bの中心位置O202b、及び、中心位置O201は、一直線上に配置されない。言い換えると、2つの第2位置の一方(中心位置O202a)と第1位置(中心位置O201)とを通過する第1直線M1と、2つの第2位置の他方(中心位置O202b)と第1位置(中心位置O201)とを通過する第2直線M2とは、交差する。
以上、本実施形態では、第2実施形態と同様、治具200は、2つの第2被測定形状部202を有する。従って、第2被測定形状部202が1つだけ形成されている場合に比べて、撮像ユニット110の光軸方向Dpを調整する際に治具200を回転させる回数を削減できる。
なお、第3実施形態では、凹部250の上端の周縁部を第2被測定形状部202aとし、凹部250の下端の周縁部を第2被測定形状部202bとしたが、本発明はこれに限らない。例えば、凹部250の上端の周縁部を第1被測定形状部201とし、凹部250の下端の周縁部を第2被測定形状部202としてもよい。この場合、第1実施形態と同様のフローによって、撮像ユニット110の光軸方向Dpを調整できる。また、この場合、治具本体210の上面210aの外周縁部を第1被測定形状部201とする場合と異なり、第1被測定形状部201が他の部材と接触することを抑制できるため、第1被測定形状部201が変形することを抑制できる。
また、第3実施形態では、光軸方向Dpから見て凹部250の上端の中心位置と第1被測定形状部201の中心位置O201とが一致しないように、凹部250を配置する例について示したが、本発明はこれに限らない。例えば、凹部250は、光軸方向Dpから見て凹部250の上端の中心位置と第1被測定形状部201の中心位置O201とが一致するように、配置されてもよい。言い換えると、凹部250は、第1被測定形状部201と同心円状に配置されてもよい。ただし、この場合、凹部250の上端の周縁部を第2被測定形状部202として用いることができないため、治具200は、第2被測定形状部202を1つだけ有することになる。
第3実施形態のその他の構造、その他の調整フロー及びその他の効果は、第1実施形態及び第2実施形態と同様である。
(第4実施形態)
次に、図12を参照して、本発明の第4実施形態の検査装置100を説明する。図12は、本発明の第4実施形態の検査装置100の模式図である。
図12に示すように、検査装置100は、撮像ユニット110、環状光源120、面光源130、抑制部140、配置台160(図1参照)及び光軸調整機構190に加えて固定台180をさらに備える。固定台180は、環状光源120、面光源130、抑制部140、配置台160及び光軸調整機構190を固定して配置する。撮像ユニット110は、光軸調整機構190に対して着脱可能に取り付けられる。
以上、図面を参照して本発明の実施形態を説明した。ただし、本発明は、上記の実施形態に限られず、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。また、上記の実施形態に開示される複数の構成要素を適宜組み合わせることによって、種々の発明の形成が可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素の材質、形状、寸法等は一例であって、特に限定されず、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。
例えば、第1実施形態~第4実施形態では、検査装置100が、検査対象物Sに光を上方から照射する環状光源120と、検査対象物Sに光を下方から照射する面光源130とを有する例について示したが、本発明はこれに限らない。例えば、検査装置100は、環状光源120及び面光源130以外の光源を有してもよい。また、例えば、検査装置100が検査対象物Sに光を下方から照射する光源を有しない場合、配置台160は、貫通孔160hを有しなくてもよい。また、検査装置100は、光源を有しなくてもよい。
また、第1実施形態~第3実施形態では、治具200が略円盤形状又は略円柱形状を有する例について示したが、本発明はこれに限らない。治具200の形状は、特に限定されない。治具200は、例えば、矩形状等の略多角形状を有してもよい。
また、例えば、治具200は、光軸方向Dpから見て略L字形状等の中心位置を算出しにくい外形を有してもよい。この場合、治具200は、例えば、第2被測定形状部202としての穴部230に加えて、第1被測定形状部201としての穴部をさらに有してもよい。このように構成すれば、第1位置を容易に算出できる。
また、第1実施形態~第3実施形態では、第1被測定形状部201及び第2被測定形状部202が円形状を有する例について示したが、本発明はこれに限らない。第1被測定形状部201及び第2被測定形状部202の形状は、特に限定されない。第1被測定形状部201及び第2被測定形状部202は、例えば、矩形状等の多角形状を有してもよい。
また、第1実施形態~第3実施形態では、第1位置及び第2位置が第1被測定形状部201の中心位置、及び、第2被測定形状部202の中心位置である例について示したが、本発明はこれに限らない。例えば、第1位置及び第2位置は、第1被測定形状部201の中心位置、及び、第2被測定形状部202の中心位置でなくてもよい。
なお、例えば、第1被測定形状部201及び第2被測定形状部202は、平行な二直線、又は、交差する二直線であってもよい。この場合、第1位置及び第2位置は、一方の直線の中心位置、又は、端部であってもよい。
また、第1実施形態~第3実施形態では、制御部152が、第1位置と第2位置との間の距離を算出する例について示したが、本発明はこれに限らない。制御部152は、第1位置と第2位置との間の距離に加え、例えば、第1位置から第2位置に向かう方向を算出してもよい。このように構成すれば、治具200を180°回転させなくても、撮像ユニット110の光軸Paの傾斜方向を判別することが可能である。従って、例えば、第2状態の治具200を撮像することなく、第1状態の治具200を撮像することによって、撮像ユニット110の光軸方向Dpを調整することが可能である。
100 :検査装置
110 :撮像ユニット
112 :レンズ
114 :撮像部
152 :制御部
160 :配置台
200 :治具(対象物)
201 :第1被測定形状部
202,202a,202b :第2被測定形状部
Dp :光軸方向
M1 :第1直線
M2 :第2直線
O201 :中心位置(第1位置)
O202,O202a,O202b :中心位置(第2位置)
Pa :光軸
S :検査対象物(被検物)
W1,W2,W3 :距離

Claims (9)

  1. 被検物を検査する検査装置であって、
    前記被検物が配置される配置台と、
    レンズと前記レンズを透過した光を受光する撮像部とを有する撮像ユニットと、
    制御部と
    を有し、
    前記撮像ユニットは、前記配置台に配置された対象物を撮像し、
    前記対象物は、第1被測定形状部と、第2被測定形状部とを有し、
    前記撮像ユニットの光軸方向において、前記第1被測定形状部と前記第2被測定形状部とは、互いに異なる高さに配置され、
    前記制御部は、
    前記撮像ユニットによる前記第1被測定形状部の検出結果に基づいて第1位置を算出し、
    前記撮像ユニットによる前記第2被測定形状部の検出結果に基づいて第2位置を算出する、検査装置。
  2. 前記第1位置は、前記第1被測定形状部の中心位置であり、
    前記第2位置は、前記第2被測定形状部の中心位置である、請求項1に記載の検査装置。
  3. 前記制御部は、前記第1位置と前記第2位置との間の距離を算出する、請求項1又は請求項2に記載の検査装置。
  4. 前記レンズは、テレセントリックレンズである、請求項1から請求項3のいずれか1項に記載の検査装置。
  5. 前記対象物は、2つの前記第2被測定形状部を有し、
    前記制御部は、前記撮像ユニットによる前記2つの第2被測定形状部の検出結果に基づいて、2つの前記第2位置を算出し、
    前記2つの第2位置の一方と前記第1位置とを通過する第1直線と、前記2つの第2位置の他方と前記第1位置とを通過する第2直線とは、交差する、請求項1から請求項4のいずれか1項に記載の検査装置。
  6. 前記撮像ユニットの光軸方向から見て、前記2つの第2被測定形状部の一方は、前記2つの第2被測定形状部の他方の内部に配置される、請求項5に記載の検査装置。
  7. 前記第1被測定形状部及び前記第2被測定形状部は、円形状である、請求項1から請求項6のいずれか1項に記載の検査装置。
  8. 被検物が配置される配置台と、レンズと前記レンズを透過した光を受光する撮像部とを有する撮像ユニットとを有する検査装置の調整方法であって、
    前記配置台に配置された対象物を前記撮像ユニットによって撮像する工程を有し、
    前記対象物は、第1被測定形状部と、第2被測定形状部とを有し、
    前記撮像ユニットの光軸方向において、前記第1被測定形状部と前記第2被測定形状部とは、互いに異なる高さに配置され、
    前記調整方法は、
    前記撮像ユニットによる前記第1被測定形状部の検出結果に基づいて第1位置を算出する工程と、
    前記撮像ユニットによる前記第2被測定形状部の検出結果に基づいて第2位置を算出する工程と、
    前記第1位置及び前記第2位置に基づいて、前記撮像ユニットの光軸方向を調整する工程と
    を有する、検査装置の調整方法。
  9. 前記対象物を前記配置台上で第1状態から第2状態に回転させる工程をさらに有し、
    前記撮像する工程は、
    前記第1状態における前記対象物を撮像する工程と、
    前記第2状態における前記対象物を撮像する工程と
    を有し、
    前記撮像ユニットの光軸方向を調整する工程において、前記第1状態の前記第1位置と前記第2位置との間の距離と、前記第2状態の前記第1位置と前記第2位置との間の距離とに基づいて、前記撮像ユニットの光軸方向を調整する、請求項8に記載の検査装置の調整方法。
JP2021214156A 2021-12-28 2021-12-28 検査装置、及び検査装置の調整方法 Pending JP2023097826A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021214156A JP2023097826A (ja) 2021-12-28 2021-12-28 検査装置、及び検査装置の調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021214156A JP2023097826A (ja) 2021-12-28 2021-12-28 検査装置、及び検査装置の調整方法

Publications (1)

Publication Number Publication Date
JP2023097826A true JP2023097826A (ja) 2023-07-10

Family

ID=87071728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021214156A Pending JP2023097826A (ja) 2021-12-28 2021-12-28 検査装置、及び検査装置の調整方法

Country Status (1)

Country Link
JP (1) JP2023097826A (ja)

Similar Documents

Publication Publication Date Title
US9106807B2 (en) Device for noncontact determination of edge profile at a thin disk-shaped object
JP5125423B2 (ja) X線断層画像によるはんだ電極の検査方法およびこの方法を用いた基板検査装置
CN108007400B (zh) 用于坐标测量装置和测量x射线ct设备的坐标对准工具
JP5014003B2 (ja) 検査装置および方法
JP5120625B2 (ja) 内面測定装置
JP5109633B2 (ja) 測定方法及び検査方法並びに測定装置及び検査装置
TW201329439A (zh) 用於使用成像系統產生有興趣區域之三維模型之方法及裝置
JP2021099363A (ja) 三次元形状測定用x線ct装置の長さ測定誤差評価用器物
TWI626623B (zh) 三維檢測裝置以及用於三維檢測的方法
JP2007078635A (ja) 校正用治具、及び画像測定機のオフセット算出方法
JP2008196974A (ja) 突起物の高さ測定装置及び高さ測定方法
JP5101955B2 (ja) 形状測定方法及び形状測定装置
JP2006200957A (ja) 貫通孔検査装置およびこれを用いた貫通孔検査方法
JP2023097826A (ja) 検査装置、及び検査装置の調整方法
TWI593955B (zh) 光偏折檢測模組及使用其檢測及誤差校正之方法
JP3978507B2 (ja) バンプ検査方法及び装置
JP4974267B2 (ja) ウェーハ外周検査方法
CN115127483A (zh) 用于测量同轴度的检测方法、以及检测同轴度的***
JP4449596B2 (ja) 実装基板検査装置
JP2021131331A (ja) 基板エッジ検査装置
JP2011080944A (ja) X線ct装置
JP2007170929A (ja) 光沢平面検査装置
JP2006177760A (ja) X線検査装置、x線検査方法およびx線検査プログラム
JP5877679B2 (ja) レチクルの支持機構および検査装置
JP3231753U (ja) ***x線撮影装置用mtfエッジの位置決め器具

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20240531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240531