JP2023074632A - Method and apparatus for hydrogenation of gas - Google Patents

Method and apparatus for hydrogenation of gas Download PDF

Info

Publication number
JP2023074632A
JP2023074632A JP2021187651A JP2021187651A JP2023074632A JP 2023074632 A JP2023074632 A JP 2023074632A JP 2021187651 A JP2021187651 A JP 2021187651A JP 2021187651 A JP2021187651 A JP 2021187651A JP 2023074632 A JP2023074632 A JP 2023074632A
Authority
JP
Japan
Prior art keywords
residue
reactor
gas
amplifying
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021187651A
Other languages
Japanese (ja)
Inventor
泰男 石川
Yasuo Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021187651A priority Critical patent/JP2023074632A/en
Publication of JP2023074632A publication Critical patent/JP2023074632A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a large amount of hydrogen by preparing a residue of an amplifying material where hydrogen has been generated by treating gases such as CO2 gas and water vapor and then causing hydrogen to be further generated from the residue of the amplifying material.SOLUTION: While heating a reactor 2, an amplifying material consisting mainly of NaOH for amplifying electromagnetic waves from a furnace wall is fed into the reactor. The amplifying material is stirred by lead screws 22 and 24 to prolong its life while converting treated gases into hydrogen (first stage collection), and then a residue of the amplifying material is sent into a residue treatment kettle 50 for heating the amplifying material to 1000°C to 1600°C to recover hydrogen from the residue (second stage collection), thereby causing the residue to substantially disappear and collecting a large amount of hydrogen.SELECTED DRAWING: Figure 2

Description

本発明は、炭酸ガス、水蒸気、空気等の気体を増幅材を収納した反応炉内のプラズマ雰囲気でプラズマ崩壊させた後、増幅材の残渣を再加熱して水素を発生させるようにした気体の水素化方法及び装置に関する。 In the present invention, gas such as carbon dioxide gas, water vapor, air, etc. is plasma-collapsed in a plasma atmosphere in a reactor containing an amplification material, and then the residue of the amplification material is reheated to generate hydrogen. It relates to a hydrogenation method and apparatus.

本件発明者は、従来、従来SUS304の反応炉内にNaOH又はKOHからなる反応材を収納し、この反応材を500℃以上に加熱して核反応を生ぜしめることを開示している(特開2014-25743)。
また、従来、反応材としてNaOHとステンレス粉をステンレス容器内に入れ、ステンレス容器を500℃以上に加熱して反応材を微粒子として、この微粒子と反応炉の内壁間で核反応を起こさせるようにしている(国際公開番号WO2012/011499A1)
The inventor of the present invention has conventionally disclosed that a reaction material composed of NaOH or KOH is placed in a conventional SUS304 reactor, and the reaction material is heated to 500° C. or higher to cause a nuclear reaction (Japanese Unexamined Patent Application Publication No. 2014-25743).
Conventionally, NaOH and stainless steel powder are placed in a stainless steel container as reactants, and the stainless steel container is heated to 500° C. or higher to make fine particles of the reactant, and a nuclear reaction is caused between the fine particles and the inner wall of the reactor. (International Publication No. WO2012/011499A1)

特開2014-25743号JP 2014-25743 国際公開WO2012/011499A1International publication WO2012/011499A1

しかしながら、特許文献1、2においては、ステンレス炉内に反応材としてNaOH、KOH、ステンレス粉を使用し、ステンレス炉を所定温度以上に加熱すれば、核反応が生じて水素が発生させることができることが認識されているが、本件発明者の最近(2020年以降)の実験によれば、反応材は使用中固まってしまい、これにより微粒子の発生が減少するとともに、その反応材は残渣として反応炉内に残留して反応炉が使用不可となることが判明しており、この反応材の寿命を伸ばしたり、最終的に残留してしまう残渣の処理については、何らの対応も開示されていない。 However, in Patent Documents 1 and 2, NaOH, KOH, and stainless steel powder are used as reactants in a stainless steel furnace, and if the stainless steel furnace is heated to a predetermined temperature or higher, a nuclear reaction can occur and hydrogen can be generated. However, according to recent experiments (after 2020) by the present inventor, the reaction material solidifies during use, which reduces the generation of fine particles, and the reaction material is left as residue in the reactor. However, it has not been disclosed how to extend the life of the reaction material or how to deal with the residue that eventually remains.

本発明の気体の水素化方法は、加熱により電磁波を放射する反応炉内に前記電磁波のエネルギーを増幅する増幅材を入れ、この増幅材を撹拌しながら、気化せしめて微粒子とし、この微粒子を電子波で電離させてイオン電子とからなるプラズマ雰囲気とし、このプラズマ雰囲気内にCO、水蒸気、空気等の処理気体を供給して処理気体と増幅材の微粒子との相互作用により処理気体と微粒子とをプラズマ崩壊させて陽子と中性子と電子とに分離させ、β崩壊後の陽子を含む陽子と電子を再結合させて水素ガスを採集し、前記反応炉を所定時間運転後に増幅材の残渣を炉外に排出し、この残渣を1000℃以上に加熱される残渣処理窯に供給し、残渣処理窯から発生する電磁波により水素に変換させる。 In the gas hydrogenation method of the present invention, an amplifying material for amplifying the energy of the electromagnetic wave is placed in a reactor in which electromagnetic waves are emitted by heating, and the amplifying material is stirred and vaporized to form fine particles. A plasma atmosphere composed of ions and electrons is formed by ionization by waves, and a processing gas such as CO 2 , water vapor, or air is supplied into this plasma atmosphere, and the processing gas and the fine particles of the amplification material interact with each other. are separated into protons, neutrons, and electrons by plasma decay, and the protons and electrons containing protons after β decay are recombined to collect hydrogen gas, and after operating the reactor for a predetermined time, the residue of the amplification material is removed from the reactor. The residue is discharged outside, supplied to a residue processing kiln heated to 1000° C. or higher, and converted into hydrogen by electromagnetic waves generated from the residue processing kiln.

また、本発明の処理気体の水素化装置は、加熱により電磁波を放射する反応炉と、この反応炉内に供給され、前記電磁波を増幅する増幅材と、前記反応炉内に設けられ、前記増幅材を撹拌する撹拌装置と、反応炉を一定時間運転した後に増幅材の残渣を排出する残渣排出装置と、前記残渣を加熱してプラズマ崩壊により水素に変換する残渣処理釜とで構成した。 Further, the apparatus for hydrogenating a treated gas of the present invention comprises a reactor that emits electromagnetic waves by heating, an amplifying material that is supplied into the reactor and amplifies the electromagnetic waves, and a It consisted of a stirring device for stirring the material, a residue discharging device for discharging the residue of the amplifying material after the reactor was operated for a certain period of time, and a residue processing vessel for heating the residue and converting it into hydrogen by plasma decay.

本発明においては、反応炉内で増幅材を撹拌させたので、増幅材表面に増幅材と処理気体との反応化合物が堆積しても増幅材表面からの微粒子の発生が十分に行われるので、プラズマ崩壊反応が長時間継継続して行われ得る。そして、十分な反応が行われた後に、僅かな量の増幅材は残渣として反応炉内に残るので、その残渣を排出した後に、新たな増幅材が供給されて処理ガスの処理操作が継続される。そして前記残渣は残渣処理釜に送られ、この残渣処理釜は高熱(1000℃~1600℃)に耐えられるように、例えば、セラミックスで構成されている。前記残渣処理釜では、供給された残渣(主としてNaCO)は、プラズマ崩壊部で釜壁面から放射される電磁波と高熱により気化して微粒子となり、この微粒子は自ら電磁波の増幅作用をするとともに増幅した電磁波に当った場合にプラズマ崩壊して陽子と中性子と電子に分離する。 In the present invention, since the amplifying material is agitated in the reaction furnace, fine particles are sufficiently generated from the surface of the amplifying material even if the reaction compound between the amplifying material and the processing gas accumulates on the surface of the amplifying material. Plasma breakdown reactions can continue for long periods of time. Since a small amount of the amplifying material remains in the reactor as a residue after the reaction has been sufficiently carried out, after the residue is discharged, a new amplifying material is supplied and the process gas processing operation is continued. be. The residue is then sent to a residue treatment tank, which is made of, for example, ceramics so as to withstand high heat (1000° C. to 1600° C.). In the residue treatment vessel, the supplied residue (mainly Na 2 CO 3 ) is vaporized into fine particles by high heat and electromagnetic waves radiated from the wall surface of the vessel in the plasma collapse section, and the fine particles themselves act to amplify the electromagnetic wave. When hit by the amplified electromagnetic wave, the plasma collapses and separates into protons, neutrons, and electrons.

これら分離した陽子と電子は、プラズマ崩壊部に隣接して形成された再結合部で水素となり、分解した中性子は10分~15分後にはβ崩壊して陽子となり、β崩壊時に発生した電子も再結合部に引き寄せられて水素となる。このように残渣も完全にプラズマ崩壊できるので、捨てる物質はなくなる。なお、残渣釜の熱源として太陽光をフレネルレンズ(直径3~4m)で集光すれば、電気ヒータを使う場合に比較してエネルギー収支効率が著しく向上する。 These separated protons and electrons become hydrogen in the recombination zone formed adjacent to the plasma decay zone. After 10 to 15 minutes, the decomposed neutrons undergo β decay to become protons, and the electrons generated during β decay are also It is attracted to the recombination site and becomes hydrogen. In this way, even the residue can be completely plasma-disrupted, so there is no substance to throw away. If sunlight is condensed with a Fresnel lens (3 to 4 m in diameter) as a heat source for the residue pot, the energy balance efficiency will be significantly improved compared to using an electric heater.

本発明のCO等の処理気体の水素変換システムの概略構成図である。1 is a schematic configuration diagram of a hydrogen conversion system for a process gas such as CO 2 of the present invention; FIG. 本発明の気体の水素変換システムにおける反応炉の縦断面図である。1 is a vertical cross-sectional view of a reactor in the gaseous hydrogen conversion system of the present invention; FIG. 本発明の気体の水素変換システムにおける残渣処理釜の縦断面図である。1 is a vertical cross-sectional view of a residue treatment tank in the gaseous hydrogen conversion system of the present invention; FIG. 本発明の反応炉の他の実施例を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing another embodiment of the reactor of the present invention; 本発明の残渣処理釜の他の実施例を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing another embodiment of the residue treatment kettle of the present invention;

以下、図面を参照して本発明の実施形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1において、本発明のCO、水蒸気、空気等の気体の水素化システムSは、例えば、火力発電所、焼却炉、工場等で発生したCOを空気から分離して、一旦貯留されるCOタンク1を有し、このCOタンク1からのCOは複数並列配置された反応炉2、2…2に送られ、この反応炉でCOがHに変換され、このHは、Hタンク3に貯留されて、水素発電、燃料電池等の種々の用途に使用される。 In FIG. 1, the gaseous hydrogenation system S of the present invention such as CO 2 , steam, air, etc. separates CO 2 generated in, for example, thermal power plants, incinerators, factories, etc. from air and temporarily stores it. It has a CO2 tank 1, CO2 from this CO2 tank 1 is sent to reactors 2, 2...2 arranged in parallel, in which CO2 is converted to H2 , this H2 is stored in the H2 tank 3 and used for various purposes such as hydrogen power generation and fuel cells.

前記各反応炉2内には、加熱により発生する電磁波を増幅する増幅材が入れられているが、この増幅材は所定時間使用された後は残渣となり、この残渣は各反応炉2に沿って設けられたコンベア4によって運送され、それに接続されたコンベア5、6を経て高温の残渣処理釜7に送られ、ここで残渣もプラズマ崩壊して殆ど全て水素に変換され、種々の用途に使用され得る。 Each reactor 2 contains an amplifying material for amplifying electromagnetic waves generated by heating. After being used for a predetermined period of time, the amplifying material becomes a residue, and this residue is distributed along each reactor 2. It is transported by a provided conveyor 4 and sent to a high-temperature residue treatment tank 7 via conveyors 5 and 6 connected thereto, where the residue is also plasma-disintegrated and almost all converted to hydrogen, which is used for various purposes. obtain.

前記反応炉2は図2に示すように、SUS304製の筒状の本体20を有し、この本体20の外周面は、面状ヒータ21によって400~500℃に加熱され、この加熱により本体壁面からは種々の周波数を有する電磁波w、w、…wが放射される。前本体20の中心には、回転軸22が設けられこの回転軸22はその右端でモータ23に接続され、前記回転軸22には旋回羽根24が設けられ回転軸22と旋回羽根23とでリードスクリューをなしている。前記モータ23は正転逆転が可能であり、前記回転軸22はその先端(左端)が左端板25の軸受26で右端板28の軸受27で回転自在に支持される。前記反応炉2の右端上部にはホッパー30が設けられ、このホッパー30内には前記電磁波wのエネルギーを増幅するための増幅材の主成分としてカセイソーダ粉(NaOH)が収納され、このNaOHは回転弁33の回転によりバッチ式で所定量反応炉内に送給される。反応炉内のNaOHはリードスクリューによってゆっくりと前方に撹拌されながら送られ、NaOHが反応炉2の先端に溜ったら、モータ23を逆転させてリードスクリューを逆転させ、NaOHを反応炉の右端に移動させる。このようにゆっくりと増幅材の主成分としてのNaOH31を撹拌しながら移動させると、右端板28の開口から送られるCO等の処理ガスと長時間反応を継続できる。すなわち反応炉2の加熱と電磁波との作用によりNaOHは微粒子となり炉内で飛行しているが、この微粒子はCOの一部と反応して、
2NaOH+CO→NaCO3+HO ……(1)
の反応によりNaCOとなり、このNaCOは固化する傾向にあるが、このNaCOがリードスクリューにより撹拌されるので、再び微粒子となり反応が継続される。しかしながら前記(1)式は化学的反応であるが、反応炉内でNaOHは微粒子化すると、この微粒子の一部は電磁波により化学結合が切断されて、NaとOとHに分離されるとともに、更に電離してNaイオン、O2-イオン、Hイオンと電子eとで構成されるプラズマ雰囲気となり、この中で高エネルギーの電磁波が発生して炉内に供給された各原子の原子核がプラズマ崩壊して陽子と中性子に分離される。分離後10~15分で中性子は陽子にβ崩壊するので、元々の陽子と中性子から変換した陽子を含む陽子と電子が再結合した場合に水素として排出される。
As shown in FIG. 2, the reaction furnace 2 has a tubular body 20 made of SUS304. emits electromagnetic waves w, w, . . . w having different frequencies. A rotary shaft 22 is provided at the center of the front body 20, and this rotary shaft 22 is connected to a motor 23 at its right end. It has a screw. The motor 23 is capable of forward and reverse rotation, and the tip (left end) of the rotary shaft 22 is rotatably supported by a bearing 26 of a left end plate 25 and a bearing 27 of a right end plate 28 . A hopper 30 is provided at the upper right end of the reactor 2. Caustic soda powder (NaOH) is stored in the hopper 30 as a main component of an amplifying material for amplifying the energy of the electromagnetic wave w, and this NaOH rotates. By rotating the valve 33, a predetermined amount is fed into the reactor in a batch manner. The NaOH in the reactor is slowly stirred forward by the lead screw, and when the NaOH accumulates at the tip of the reactor 2, the motor 23 is reversed to reverse the lead screw and move the NaOH to the right end of the reactor. Let When NaOH 31 as the main component of the amplifying material is slowly moved while being stirred in this way, the reaction with the processing gas such as CO 2 sent from the opening of the right end plate 28 can be continued for a long time. That is , NaOH turns into fine particles by the action of the heating of the reaction furnace 2 and the electromagnetic waves, and is flying in the furnace.
2NaOH+ CO2Na2CO3 + H2O (1)
This Na 2 CO 3 tends to solidify, but since this Na 2 CO 3 is agitated by the lead screw, it becomes fine particles again and the reaction continues. However, although the above formula (1) is a chemical reaction, when NaOH is atomized in a reactor, the chemical bonds of some of the fine particles are cut by electromagnetic waves and separated into Na, O and H, Further ionization results in a plasma atmosphere composed of Na + ions, O 2− ions, H + ions and electrons e , in which high-energy electromagnetic waves are generated to generate the nuclei of each atom supplied into the furnace. is separated into protons and neutrons by plasma decay. Neutrons undergo β-decay to protons 10-15 minutes after separation, and are ejected as hydrogen when protons and electrons recombine, including protons converted from the original protons and neutrons.

反応炉内の作用をまとめると、炉内は電磁波に寄りNaとOとHのイオンと電子eとのプラズマ雰囲気が形成され、このプラズマ雰囲気内にCOが供給されると、その一部は化学的反応により、主としてNaCOを形成し、その残りはプラズマ崩壊して陽子、中性子、電子に分離して炉内を飛行する。この場合、陽子と電子がタイミングよく再結合したものは水素として排出されるが、分離した核子(陽子、中性子)の大部分は炉の運転を停止して温度を下げると残渣としてのNaCOに吸収される。所定時間運転後にNaCOは残渣としてリードスクリューの回転により左端壁の出口29を通ってコンベア4上に排出される。 To summarize the actions in the reactor, a plasma atmosphere of Na, O, and H ions and electrons e is formed in the furnace by electromagnetic waves . mainly forms Na 2 CO 3 through a chemical reaction, the remainder of which undergoes plasma decay and separates into protons, neutrons, and electrons, which fly through the reactor. In this case, protons and electrons recombined with good timing are discharged as hydrogen . absorbed by 3 . After running for a predetermined time, Na 2 CO 3 is discharged as a residue onto the conveyor 4 through the outlet 29 on the left end wall by the rotation of the lead screw.

なお、プラズマ崩壊は炉内を負圧にすると活発に起きることが判っているので、炉には真空ポンプ34が設けられ、COの注入量はプラズマ雰囲気が負圧で維持されるように真空ポンプの能力とCOの注入量が調整される。 Since it is known that the plasma collapse occurs actively when the inside of the furnace is under a negative pressure, the furnace is provided with a vacuum pump 34, and the injection amount of CO 2 is set to a vacuum so that the plasma atmosphere is maintained at a negative pressure. Pump capacity and CO2 dosing are adjusted.

なお、増幅材は必ずしもNaOHのみに限定されず、Zn粉、Al粉、ステンレス粉を加えると効率が向上する。 The amplifying material is not necessarily limited to NaOH alone, and efficiency can be improved by adding Zn powder, Al powder, or stainless steel powder.

前記反応炉内に設けられたリードスクリューは、増幅材を撹拌する撹拌装置としての機能と増幅材を前後に送る搬送装置としての機能を有するが、これら装置を別個に設けてもよい。すなわち図4に示すように軸40に単純な平板状の羽根41、41、41を軸40の回転方向に角度をずらして設けたものでもよい。また、前記反応炉2の本体20の左端下部には回動機構42が、本体20の右端下部には上下動機構43が設けられ、上下動機構42により反応炉2を上下動させれば炉内の増幅材は前後に移動する。更に増幅材32を所定時間使用後には前記搬送装置(上下動機構42と撹拌装置)を作動させて、右端壁の下部に設けた排出口44から残渣46を収納する残渣収納箱45に排出する。なお、処理すべき気体はCOに限定されず、水蒸気(HO)、空気(N、O)でも水素化が可能である。なお、水蒸気の場合は残渣は水和カセイソーダ(NaOH・HO)であり、空気の場合にはNOが残渣となり、COの場合の残渣であるNaCOの処理よりも単純に処理可能である。 The lead screw provided in the reactor has a function as a stirring device for stirring the amplification material and a function as a conveying device for feeding the amplification material back and forth, but these devices may be provided separately. That is, as shown in FIG. 4, simple plate-like blades 41, 41, 41 may be provided on a shaft 40 at different angles in the rotational direction of the shaft 40. FIG. A rotating mechanism 42 is provided at the lower left end of the main body 20 of the reactor 2, and a vertical movement mechanism 43 is provided at the lower right end of the main body 20. The vertical movement mechanism 42 moves the reaction furnace 2 up and down. The amplification material inside moves back and forth. Further, after the amplifying material 32 has been used for a predetermined period of time, the conveying device (vertical movement mechanism 42 and stirring device) is operated to discharge the residue 46 into a residue storage box 45 from a discharge port 44 provided at the bottom of the right end wall. . The gas to be treated is not limited to CO 2 , and water vapor (H 2 O) and air (N 2 , O 2 ) can also be hydrogenated. In the case of water vapor, the residue is hydrated caustic soda (NaOH.H 2 O), and in the case of air, N 2 O is the residue, which is simpler than the treatment of Na 2 CO 3 , which is the residue in the case of CO 2 . can be processed to

次に、残渣処理釜7について説明する。 Next, the residue treatment pot 7 will be explained.

前記残渣処理釜7は、残渣(NaCO)を気化せしめるための気化部50と、この気化部50から水平に張り出して陽子と電子とを再結合させて水素ガスを発生させるための再結合部51とからなり、前記気化部50内には、コンベア6(図1)からの残渣を受けて気化部50内に供給するホッパー52が設けられている。前記気化部50及び再結合部51は肉厚の黒鉛材からなる耐熱壁52、53を有し、これら耐熱壁52、53内には伝達ヒータ54,55が配設され、電熱ヒータ54は1600℃迄加熱でき電熱ヒータ55は500℃まで加熱できる。 The residue treatment pot 7 includes a vaporization section 50 for vaporizing the residue (Na 2 CO 3 ), and a regenerating section 50 extending horizontally from the vaporization section 50 for recombining protons and electrons to generate hydrogen gas. A hopper 52 for receiving residue from the conveyor 6 (FIG. 1) and supplying it to the vaporization section 50 is provided in the vaporization section 50 . The vaporization section 50 and the recombination section 51 have heat-resistant walls 52 and 53 made of thick graphite material. C., and the electric heater 55 can heat up to 500.degree.

前記再結合部51の上下空間内には、所定間隔でプラスの電極板7、7…7とマイナスの電極板6、6…6が対向配置されており、これら電極板56,57は並列配置された直流電源58、59に接続されスイッチ60の切換により電極のプラス、マイナスを切換可能になっている。そして、前記再結合部の左端壁には、発生した水素ガスを排出する排出口61が設けられている。
次に気化部および再結合部の作用について説明する。
前記気化部50内に送られた残渣としてのNaCOは、耐熱壁50が1000~1600℃に加熱されており、しかも耐熱壁50の内壁からは高周波数の電磁波が放射されているので、Na原子、C原子及びO原子に分離し高速で気化部内を飛行しており、この時電磁波に当たるとそれら原子は中性のNa、C、O原子に加えて電離してNa、Na2+…Nan+のイオン、Cn+イオン、On-イオン及び電子に分離されプラズマ雰囲気となり、ハイデルベルグの不確定原理の範囲内で高エネルギー電磁波が発生し、これにより各中性原子、各イオンがプラズマ崩壊して陽子と中性子と原子に分離する。
7 and negative electrode plates 6, 6, . . . By switching a switch 60 connected to DC power sources 58 and 59 connected to the DC power supply, the electrodes can be switched between plus and minus. A discharge port 61 for discharging the generated hydrogen gas is provided on the left end wall of the recombination section.
Next, the functions of the evaporating section and the recombination section will be described.
The residual Na 2 CO 3 sent into the vaporization unit 50 is heated to 1000 to 1600° C. in the heat-resistant wall 50, and the inner wall of the heat-resistant wall 50 radiates high-frequency electromagnetic waves. , Na atoms, C atoms and O atoms and fly in the vaporization part at high speed . … Na n+ ions, C n+ ions, O n- ions and electrons are separated into a plasma atmosphere, and high-energy electromagnetic waves are generated within the scope of Heidelberg's uncertainty principle, whereby each neutral atom and each ion becomes plasma. It decays and separates into protons, neutrons and atoms.

このようにして分離した陽子と中性子(10分程度でβ崩壊して陽子に変換される)と電子は再結合部51に送り込まれ、陽子-電極近傍に電子は+電極に引寄せられ、1分間に1度切換スイッチ60が切替わり、これに伴ってその電極の極性も変わるので、+電極側の電子は反対側に、また、-電極側の陽子はその反対側に移動するので、陽子と電子は交叉して再結合が生じて水素ガスが排出口61から排出される。 The protons, neutrons (which are converted into protons by β decay in about 10 minutes) and electrons thus separated are sent to the recombination unit 51, and the electrons are attracted to the + electrode in the vicinity of the proton-electrode. The change-over switch 60 is switched once per minute, and the polarity of the electrode changes accordingly, so the electrons on the + electrode side move to the opposite side, and the protons on the - electrode side move to the opposite side. and electrons cross each other to cause recombination, and hydrogen gas is discharged from the discharge port 61 .

前記残渣処理釜7は電気ヒータにより加熱するようになっているが、1000~1600℃の温度を図5に示すように太陽光を集束させて得ることができる。図5に示す残渣処理釜70は、セラミック材からなる円筒状の気化部71と、この気化部71から水平に張出した再結合部72を有し、前記気化部71の上面は透明な光透過材73を備え、残渣74は気化部71の側面上部に形成された残渣供給口75から供給される。
前記残渣処理釜70の上方には直径3m~5mのフレネルレンズ76が設けられ、更にフレネルレンズ76の上方には太陽光を遮る遮光板77が開閉自在に設けられ、遮蔽板77を開放した時に、フレネルレンズ76を透過した太陽光は、前記気化部71の残渣74内で焦点を結ぶようになっている。
The residue treatment pot 7 is heated by an electric heater, and a temperature of 1000 to 1600° C. can be obtained by converging sunlight as shown in FIG. The residue treatment pot 70 shown in FIG. 5 has a cylindrical vaporization section 71 made of ceramic material and a recombination section 72 extending horizontally from the vaporization section 71. The upper surface of the vaporization section 71 is transparent and transparent to light. A material 73 is provided, and a residue 74 is supplied from a residue supply port 75 formed on the upper side surface of the vaporization unit 71 .
A Fresnel lens 76 having a diameter of 3 m to 5 m is provided above the residue treatment pot 70, and a light shielding plate 77 for blocking sunlight is provided above the Fresnel lens 76 so as to be openable and closable. , the sunlight passing through the Fresnel lens 76 is focused in the residue 74 of the vaporizing section 71 .

このように集束された太陽光は、1500~2000℃程度に残渣74を加熱するので、この熱と釜のセラミックスの壁からの高エネルギーの電磁波により残渣74は気化するとともに電磁波の作用により電離してプラズマ雰囲気となりプラズマ崩壊して陽子、中性子及び電子に分離し、中性子からβ崩壊した陽子を含む陽子群と電子群とが、再結合部72で電極56、57の作用により再結合して水素ガスとなる。 The sunlight converged in this manner heats the residue 74 to about 1500 to 2000° C. This heat and the high-energy electromagnetic waves from the ceramic wall of the kettle evaporate the residue 74 and ionize it by the action of the electromagnetic waves. It becomes a plasma atmosphere, plasma decays and separates into protons, neutrons and electrons, and a group of protons and electrons containing protons β-decayed from neutrons are recombined in the recombination section 72 by the action of the electrodes 56 and 57 to hydrogen. becomes gas.

COを大量に排出する石炭、石油産業全般に適用され得る。 It can be applied to the general coal and petroleum industries that emit a large amount of CO2 .

1…CO2タンク
2…反応炉
7…残渣処理釜
23…モータ
56、57…電極板
70…残渣処理釜
73…光透過材
76…フレネルレンズ
Reference Signs List 1 CO2 tank 2 Reaction furnace 7 Residue treatment pot 23 Motors 56, 57 Electrode plate 70 Residue treatment pot 73 Light transmitting material 76 Fresnel lens

Claims (7)

加熱により電磁波を放射する反応炉内に前記電磁波を増幅する増幅する増幅材を入れ、この増幅材を撹拌しながらCO、水蒸気等の処理気体を反応炉内に供給して処理気体をプラズマ崩壊させ水素を発生せしめ、前記プラズマ崩壊と同時に発生する増幅材と処理ガスの反応物を所定時間運転後に残渣として排出し、この残渣を1000℃以上加熱される残渣処理釜に供給し、残渣処理釜から発生する電磁波により残渣をプラズマ崩壊により水素に変換させる水素化方法。 An amplifying material for amplifying the electromagnetic wave is placed in a reactor that radiates electromagnetic waves by heating, and a processing gas such as CO 2 or water vapor is supplied into the reactor while stirring the amplifying material to cause plasma decay of the processing gas. After operating for a predetermined period of time, the reaction product of the amplification material and the processing gas generated simultaneously with the plasma collapse is discharged as a residue, and this residue is supplied to a residue processing vessel heated to 1000° C. or higher, whereupon the residue processing vessel is heated. A hydrogenation method in which the residue is converted to hydrogen by plasma decay by electromagnetic waves generated from 前記増幅材はNaOHを主成分とし、残渣は主成分がNaCOである請求項1記載の気体の水素化方法。 2. The gas hydrogenation method according to claim 1, wherein the amplifying agent is mainly composed of NaOH, and the residue is mainly composed of Na2CO3 . 前記残渣処理釜は、太陽光を集中させて1000℃以上の熱を得る請求項1記載の気体の水素化方法。 2. The gas hydrogenation method according to claim 1, wherein said residue treatment vessel concentrates sunlight to obtain heat of 1000[deg.] C. or higher. 加熱により電磁波を放射する反応炉とこの反応炉内に供給され、前記電磁波を増幅する増幅材と、前記反応炉内に設けられ、前記増幅材を撹拌する撹拌装置と、反応炉を一定時間運転した後に増幅材の残渣を排出する残渣排出装置と、前記残渣を加熱して処理気体のプラズマ崩壊により水素に変換する残渣処理釜とからなる水素化装置。 A reactor that emits electromagnetic waves by heating, an amplifying material that is supplied to the reactor and amplifies the electromagnetic waves, a stirring device that is provided in the reactor and stirs the amplifying material, and the reactor is operated for a certain period of time. A hydrogenation apparatus comprising a residue discharge device for discharging the residue of the amplifying material after heating, and a residue treatment tank for heating the residue and converting it into hydrogen by plasma decay of the treatment gas. 前記撹拌装置は、モータにより回転する回転羽根であり、残渣排出装置は反応炉を傾斜させて振動させる機構からなる請求項4記載の気体の水素化装置。 5. The gas hydrogenation apparatus according to claim 4, wherein the stirring device is a rotating blade rotated by a motor, and the residue discharging device is a mechanism for tilting and vibrating the reactor. 前記撹拌装置と残渣排出装置は、正逆回転可能なリードスクリューが兼ねる請求項4記載の気体の水素化装置。 5. A gas hydrogenation apparatus according to claim 4, wherein said agitating device and said residue discharging device are combined with a reversible lead screw. 前記残渣処理釜は、セラミックの本体とこの本体を1000℃以上に加熱する加熱装置とからなり、増幅材の残渣は本体内で気体となり、セラミック本体から放射される高周波数の電磁波によりプラズマ崩壊して水素に変換される請求項4記載の気体の水素化装置。 The residue processing pot comprises a ceramic body and a heating device for heating the body to 1000° C. or higher. The residue of the amplifying material becomes a gas within the body and is plasma-collapsed by the high-frequency electromagnetic waves radiated from the ceramic body. 5. A gaseous hydrogenation apparatus according to claim 4, wherein the gas is converted to hydrogen by
JP2021187651A 2021-11-18 2021-11-18 Method and apparatus for hydrogenation of gas Pending JP2023074632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021187651A JP2023074632A (en) 2021-11-18 2021-11-18 Method and apparatus for hydrogenation of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021187651A JP2023074632A (en) 2021-11-18 2021-11-18 Method and apparatus for hydrogenation of gas

Publications (1)

Publication Number Publication Date
JP2023074632A true JP2023074632A (en) 2023-05-30

Family

ID=86541328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021187651A Pending JP2023074632A (en) 2021-11-18 2021-11-18 Method and apparatus for hydrogenation of gas

Country Status (1)

Country Link
JP (1) JP2023074632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220219977A1 (en) * 2019-03-26 2022-07-14 Yasuo Ishikawa Method of and apparatus for plasma reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220219977A1 (en) * 2019-03-26 2022-07-14 Yasuo Ishikawa Method of and apparatus for plasma reaction

Similar Documents

Publication Publication Date Title
US7718120B2 (en) RF plasma system for medical waste treatment
JP2023074632A (en) Method and apparatus for hydrogenation of gas
JPS63270458A (en) Device for forming compound thin film
JP5403723B1 (en) Raw garbage processing method and processing apparatus
JP4908874B2 (en) Gasification apparatus, hardly decomposable organic compound processing apparatus and processing method
CN212329220U (en) Coal fired power plant abandoned fan blade treatment device based on plasma technology
US20170312730A1 (en) Method for thermal preconditioning of natural graphite flakes using electromagnetic waves
JP4032606B2 (en) Waste resin volume reduction and detoxification treatment system
JP4446030B2 (en) Liquid plasma generator and liquid plasma generation method
WO2006038048A1 (en) Apparatus and method for decomposing water
JP2002193601A (en) Method and device for water decomposition
EP3498665B1 (en) Method for the production of synthesis gas
JP2020075821A (en) Hydrogen generating method and hydrogen generating apparatus
CN107686094B (en) Microwave hydrogen production method and device
JP2012017376A (en) Organic waste gasification system and organic waste gasification method
JPWO2021079843A5 (en)
JP2022168898A (en) Plasma reaction method and plasma reactor
JP5925945B1 (en) Waste treatment apparatus and waste treatment method
JP2006194232A (en) Processing and effectively using method and effectively using system of raw waste
JP2023106117A (en) Plasma reaction method and reaction apparatus
JP2011212517A (en) Waste incineration fly ash treatment apparatus and method
JP2022097793A (en) Plasma reactor
KR20220088462A (en) Plasma reaction method and plasma reaction apparatus
JP2019122962A (en) Organic matter decomposer
JP2020081981A (en) Processing apparatus using plasma and method for producing hydrogen generating material using the processing apparatus