JP2023061404A - Battery with avalanche amplification function - Google Patents

Battery with avalanche amplification function Download PDF

Info

Publication number
JP2023061404A
JP2023061404A JP2021142108A JP2021142108A JP2023061404A JP 2023061404 A JP2023061404 A JP 2023061404A JP 2021142108 A JP2021142108 A JP 2021142108A JP 2021142108 A JP2021142108 A JP 2021142108A JP 2023061404 A JP2023061404 A JP 2023061404A
Authority
JP
Japan
Prior art keywords
electrode
dipole
cathode electrode
cathode
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021142108A
Other languages
Japanese (ja)
Inventor
光廣 佐想
Mitsuhiro Saso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cross Technology Labo Co Ltd
Original Assignee
Cross Technology Labo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cross Technology Labo Co Ltd filed Critical Cross Technology Labo Co Ltd
Priority to JP2021142108A priority Critical patent/JP2023061404A/en
Priority to PCT/JP2022/032993 priority patent/WO2023033113A1/en
Priority to CA3229926A priority patent/CA3229926A1/en
Priority to KR1020247010396A priority patent/KR20240060622A/en
Priority to AU2022338459A priority patent/AU2022338459A1/en
Publication of JP2023061404A publication Critical patent/JP2023061404A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

To provide a fuel cell having an avalanche amplification function.SOLUTION: A fuel cell in which a water-soluble electrolytic solution contains hydrogen peroxide with high dipole efficiency, has a micro capacitor that forms a configuration where a dipole electric double-layer is provided between a cathode electrode formed of metal copper or its alloy and an anode electrode formed of a metal or its alloy and having such an electrode potential difference that the electrode potential of the anode electrode is lower than that of the cathode electrode, and electrons flow from the cathode electrode to the anode electrode by a tunnel phenomenon. The fuel cell causes a current amplification phenomenon similar to avalanche amplification.SELECTED DRAWING: Figure 2

Description

本発明はカソード電極からアノード電極表面に流れる電子のアバランシェ増幅機能を有する電池に関する。 The present invention relates to a battery having an avalanche amplification function for electrons flowing from a cathode electrode to the surface of an anode electrode.

アバランシェ増幅とは、強い電界をもつ半導体の受光部に光が入ると、半導体原子への光子の衝突によって発生する電子が加速され、他の半導体原子と衝突し、更に複数の電子を喚起し、このなだれのような連鎖によって、移動電子が爆発的に増える現象をいう。この効果により、大きな電流変化を引き起こす。かかる現象は半導体又は絶縁体において、起こる特異な現象であるが、p型半導体とn型半導体とが空乏層を介して対向している場合にその空乏層に電子が流れ込むと、起きるアバランシェ増幅現象でもある。したがって、過酸化水素等の双極子を形成する化合物を含む電解液中では一対の電池電極を接近させてその電極間に双極子電気二重層を形成すると、短絡せず、発電機能を有するセパレータレス電池を形成する(特許文献1)が、カソード電極側からアノード電極側に局部的に双極子を介して接触する構成にすると、マイクロキャパシタ(注:本明細書では少なくとも1双極子のナノ領域の間隔で対向するカソードからアノードへの電極間に介在する双極子層が形成するキャパシタに一定以上の電荷が蓄積されるとトンネル現象により電子が流れ出す現象が生ずるキャパシタをいう)が形成され、ホトダイオードにおけるアバランシェ増幅に似た現象が起こると考えられる。すなわち、一対の電池電極間に双極子を介して1又は複数のマイクロキャパシタが形成されると、このマイクロキャパシタには、周囲のカソード電極から電子が流れ込んで蓄電される。このカソード領域から三角形の突起電極を介してカソード電極がアノード電極に接近していると、トンネル現象によりアノード電極の局部に電子が流れ始め、電極の他の原子に衝突して喚起すると、前記アバランシェ増幅を起こすと考えられる。近年、過酸化水素燃料電池は、水素燃料電池と違って、水溶液を用いる1コンパートメント構造は、燃料の供給が容易で、しかもカソードとアノード室を区画する膜のない動作ができるため、有望なエネルギー変換プラットフォームとして期待されている。そこで、本発明は過酸化水素を用いる燃料電池において、アバランシェ増幅効果を採用して起電力の増大が図れる構造を提供すべく、鋭意研究を重ねた。 Avalanche amplification is when light enters a semiconductor light-receiving part with a strong electric field, electrons generated by the collision of photons with semiconductor atoms are accelerated, collide with other semiconductor atoms, and arouse more electrons, This avalanche-like chain causes an explosive increase in mobile electrons. This effect causes large current changes. Such a phenomenon is a peculiar phenomenon that occurs in semiconductors or insulators. When a p-type semiconductor and an n-type semiconductor face each other across a depletion layer, electrons flow into the depletion layer, causing an avalanche amplification phenomenon. But also. Therefore, in an electrolytic solution containing a compound that forms a dipole such as hydrogen peroxide, if a pair of battery electrodes are brought close together to form a dipole electric double layer between the electrodes, a short circuit will not occur and a separator-less battery with power generation function will not occur. A battery is formed (Patent Document 1), but when it is configured to locally contact the cathode electrode side to the anode electrode side via a dipole, a microcapacitor (note: in this specification, a nano-region of at least one dipole) A capacitor formed by a dipole layer interposed between the electrodes from the cathode to the anode facing each other at a distance causes electrons to flow out due to a tunneling phenomenon when a certain amount of charge is accumulated in the capacitor. A phenomenon similar to avalanche amplification is considered to occur. That is, when one or a plurality of microcapacitors are formed between a pair of battery electrodes via a dipole, electrons flow into the microcapacitor from the surrounding cathode electrode and are charged. When the cathode electrode approaches the anode electrode through the triangular protruding electrode from this cathode region, electrons begin to flow locally in the anode electrode due to a tunneling phenomenon, and when they collide with other atoms on the electrode and arouse them, the avalanche thought to cause amplification. In recent years, hydrogen peroxide fuel cells have become a promising energy source because, unlike hydrogen fuel cells, the one-compartment structure using an aqueous solution allows easy fuel supply and operation without a membrane separating the cathode and anode compartments. It is expected as a conversion platform. Therefore, the inventors of the present invention conducted extensive research to provide a structure capable of increasing the electromotive force by adopting the avalanche amplification effect in a fuel cell using hydrogen peroxide.

しかしながら、過酸化水素は燃料と酸化剤の両方として機能する高エネルギー密度液体であるので、ほとんどの金属電極はHのHO とOへの不均化反応を触媒する。その結果、過酸化物燃料電池における著しい損失機構を示すので、金属をカソード電極とする過酸化水素燃料電池は存在し得ないとされた。そのため、カソード電極として伝導性ポリマーであるポリ(3,4-エチレンジオキシチオフェン(PEDOT)を用いる一方、アノード電極としてニッケルメッシュを使用して、不均化反応による損失を発生させることのないように工夫し、0.20~0.30 mW cmの電力密度で0.5~0.6Vの範囲のオープン回路電位を示す過酸化水素燃料電池が発表されている(非特許文献1)。他方、カソード材料としてヘキサシアノ鉄酸銅(CuHCF)を使用し、アノード材料としてNiグリッドを使用する過酸化水素燃料電池も発表されている(非特許文献2)。 However, most metal electrodes catalyze the disproportionation reaction of H 2 O 2 to H 2 O and O 2 because hydrogen peroxide is a high energy density liquid that functions as both a fuel and an oxidant. As a result, hydrogen peroxide fuel cells with metal cathode electrodes were ruled out, as they exhibited a significant loss mechanism in peroxide fuel cells. Therefore, poly(3,4-ethylenedioxythiophene (PEDOT), a conductive polymer, was used as the cathodic electrode, while nickel mesh was used as the anodic electrode to avoid disproportionation losses. A hydrogen peroxide fuel cell that exhibits an open circuit potential in the range of 0.5 to 0.6 V at a power density of 0.20 to 0.30 mW cm has been announced (Non-Patent Document 1).On the other hand, hexacyanoferrate is used as a cathode material A hydrogen peroxide fuel cell using copper (CuHCF) and using a Ni grid as the anode material has also been published [2].

特願2021-073490号Japanese Patent Application No. 2021-073490

Chemical Communications,2018, Vol.54, Pages 11873-11876Chemical Communications, 2018, Vol.54, Pages 11873-11876 Journal of Hydrogen Energy, ELSEVIER, Vol.45, Issue 47, 25 September 2020, Pages 25708-25718Journal of Hydrogen Energy, ELSEVIER, Vol.45, Issue 47, 25 September 2020, Pages 25708-25718 水渡英二著:物理化学の進歩(1936),10(3):154~165頁Eiji Mizuwatari: Progress in Physical Chemistry (1936), 10(3): 154-165

燃料電池の場合、起電力が1V前後で金属空気電池に比して低いという問題もあり、アバランシェ増幅機能の導入は望まれるものの、従来の過酸化水素燃料電池のカソード電極であるポリ(3,4-エチレンジオキシチオフェン(PEDOT)やヘキサシアノ鉄酸銅(CuHCF)にアバランシェ増幅機能を持たせることは困難である。 In the case of fuel cells, there is also the problem that the electromotive force is around 1 V, which is lower than that of metal-air batteries. It is difficult to give 4-ethylenedioxythiophene (PEDOT) and copper hexacyanoferrate (CuHCF) an avalanche amplification function.

本発明者は銅又はその合金が過酸化水素燃料電池のカソード電極として有効であることを見出している。そこで、カソード電極が銅又はその合金からなる金属であることを利用して鋭意研究の結果、過酸化水素燃料電池において、カソード電極面から突出する電極部を形成し、アノード電極の局部に双極子を介して近接させると、周囲のカソード電極から双極子電気二重層に蓄電されるが、カソード電極がアノード電極に極めて接近していると、トンネル現象によりアノード電極の局部に電子が流れ始め、アノード電極の他の原子に衝突して喚起すると、電子の発生が雪崩的に増加し、発電量が増えることを見出した。本発明はこれを利用してアバランシェ増幅機能を有する燃料電池を提供することを課題とする。 The inventors have found that copper or its alloys are effective as cathode electrodes in hydrogen peroxide fuel cells. Therefore, as a result of intensive research using the fact that the cathode electrode is a metal made of copper or its alloy, in a hydrogen peroxide fuel cell, an electrode portion protruding from the cathode electrode surface is formed, and a dipole is formed locally on the anode electrode. When the cathode electrode and the anode electrode are brought close to each other through the , electricity is stored in the dipole electric double layer from the surrounding cathode electrode. They found that when they collided with other atoms on the electrode and aroused them, the generation of electrons increased like an avalanche, increasing the amount of power generation. An object of the present invention is to utilize this to provide a fuel cell having an avalanche amplification function.

本発明者は燃料電池の発電量をアバランシェ増幅機能により増大させる電池を提供するものであって、電極面に双極子電気二重層を形成する双極子能率の高い化合物を含む水溶性電解液と、銅、チタン、及び鉄からなる遷移金属製カソード電極と、カソード電極より卑なる金属であるマグネシウム、アルミニウム、亜鉛又はその合金からなるアノード電極とを備え、前記カソード電極はその電極面からアノード電極の対極面に対し突出する複数のスペーサとその先端とアノード電極面とがその間に少なくとも1個の双極子が介在する間隔で対向し、双極子電気二重層を挟持して、マイクロキャパシタを形成してなる、ことを特徴とするカソードからの電子を蓄電しては所定の電荷が溜まるまで蓄電し、トンネル効果によりアノード局部に集中して流れることを特徴とする、アバランシェ増幅機能を有する電池にある。 The present inventors provide a battery that increases the amount of power generated by a fuel cell by an avalanche amplification function, comprising: A cathode electrode made of a transition metal made of copper, titanium, and iron, and an anode electrode made of magnesium, aluminum, zinc, or an alloy thereof, which is a metal less noble than the cathode electrode. A plurality of spacers protruding from the counter electrode surface and their tips and the anode electrode surface are opposed to each other with an interval between which at least one dipole is interposed, sandwiching the dipole electric double layer to form a microcapacitor. A battery having an avalanche amplification function is characterized in that electrons from the cathode are stored until a predetermined charge is accumulated, and the electrons flow intensively to the anode due to a tunnel effect.

本発明によれば、電池(図1)を構成するカソード電極とアノード電極との間に双極子電気二重層からなるマイクロキャパシタ(図2)を有する。そのため、一旦所定量以上の荷電が蓄電されるとマイクロキャパシタからアノード電極へトンネル効果により電子が流れ、それがアノード電極の周囲の原子に衝突し、更に複数の電子を喚起し、このなだれのような連鎖によって、移動電子が爆発的に増えることになる。複数の電極突起は、アノード電極との間に複数のマイクロキャパシタを形成し、集電して一定の電荷が溜まると、トンネル現象により放電を繰り返すマイクロキャパシタを構成して点在し、等価な回路構成の概念図は図4のように示され、図5に示す起電力変化を起こす。カソード電極面から突出する鋭角三角形状の突起電極の先端とアノード電極表面との間に挟持される少なくとも1個の双極子、例えば過酸化水素分子のような双極子能率を有する分子で形成される双極子電気二重層であるマイクロキャパシタが好ましい。過酸化水素の双極子能率を参考にすると、2.0e.s.u.×10-15以上の双極子能率を有する化合物が好ましい(非特許文献3)。 According to the present invention, a microcapacitor (FIG. 2) composed of a dipole electric double layer is provided between a cathode electrode and an anode electrode constituting a battery (FIG. 1). Therefore, once a predetermined amount or more of electric charge is stored, electrons flow from the microcapacitor to the anode electrode due to the tunnel effect, which collide with the atoms around the anode electrode, further evoke a plurality of electrons, and form an avalanche. This chain will result in an explosive increase in mobile electrons. A plurality of electrode projections form a plurality of microcapacitors between the anode electrode and collect current, and when a certain amount of electric charge accumulates, the microcapacitors repeat discharge due to a tunneling phenomenon and are scattered to form an equivalent circuit. A conceptual diagram of the configuration is shown in FIG. 4, causing the electromotive force change shown in FIG. At least one dipole sandwiched between the tip of the acute triangular projecting electrode projecting from the surface of the cathode electrode and the surface of the anode electrode is formed by a molecule having dipole efficiency such as a hydrogen peroxide molecule. Microcapacitors that are dipole electric double layers are preferred. Referring to the dipole moment of hydrogen peroxide, a compound having a dipole moment of 2.0 e.su×10 −15 or more is preferred (Non-Patent Document 3).

本発明のアバランシェ増幅機能を発揮するマイクロキャパシタ部の概念図である。FIG. 4 is a conceptual diagram of a microcapacitor unit that exhibits the avalanche amplification function of the present invention; 本発明のアバランシェ増幅機能を適用する燃料電池の概念図である。1 is a conceptual diagram of a fuel cell to which the avalanche amplification function of the present invention is applied; FIG. 本発明のアバランシェ増幅機能を有する燃料電池を構成する銅電極の構成の(A)は斜視図、(B)はマグネシウム電極と銅電極の組み合わせ状態の端面図である。1(A) is a perspective view of the configuration of a copper electrode that constitutes a fuel cell having an avalanche amplification function of the present invention, and (B) is an end view of a combined state of a magnesium electrode and a copper electrode. FIG. 多数のマイクロキャパシタを形成した電池の概念図である。1 is a conceptual diagram of a battery in which many microcapacitors are formed; FIG. 本発明のマイクロキャパシタをマグネシウム空気電池に適用した場合の発電状態を示すグラフである。4 is a graph showing the state of power generation when the microcapacitor of the present invention is applied to a magnesium air battery; 通常の電気二重層キャパシタを形成する電池の銅電極の構成の(A)は斜視図、(B)はマグネシウム電極と銅電極の組み合わせ状態の断面図である(A) is a perspective view of the configuration of copper electrodes of a battery forming a normal electric double layer capacitor, and (B) is a cross-sectional view of a state in which magnesium electrodes and copper electrodes are combined.

本発明は、燃料電池の発電量をアバランシェ増幅機能により増大させるものであって、本発明は双極子電気二重層でアバランシェ増幅効果を達成するものであるから、電極面に双極子電気二重層を形成する双極子能率の高い化合物を含む水溶性電解液を備える。双極子二重層を形成する化合物としては典型的には各種電解液、過酸化水素水溶液であるが、その双極子能率からすると、2.0e.s.u.×10-15以上の双極子能率を有する化合物、過酸化水素が好ましい(非特許文献3)。カソード電極としては銅又はその合金だけでなく、チタン、及び鉄からなる遷移金属及びその合金が有効である。アノード電極としては、カソード電極より卑なる金属であるマグネシウム、アルミニウム、亜鉛又はその合金からなるアノード電極が好ましい。前記カソード電極はその電極面からアノード電極の対極面に対し突出する複数のスペーサとその先端とアノード電極面とがその間に少なくとも1個の双極子が介在する間隔で対向し、双極子電気二重層を挟持して、マイクロキャパシタを形成してなる。これにより、カソードからの電子を蓄電しては所定の電荷が溜まるまで蓄電し、トンネル効果によりアノード局部に集中して流れることを特徴とする、アバランシェ増幅機能を有する。本発明では、図2に示すように、Mgアノード電極板とCuカソード電極板とを、過酸化水素を含むアルカリ性電解液に浸漬して対向配置してなる。そして、図3(A)に示すように、銅電極10はその一部を三角形に切り欠いて電極面に対し直角に立ち上げ、高さ5~15mmの鋭角三角形の突起電極11を形成し、その先端をマグネシウム電極面に柔らかく接するように、対向させる。少なくとも1分子の双極子が介在する間隔が好ましい。突起電極は150mmから200mmの間隔で形成し、周囲のカソード電極領域から電子が流れ込むようにするのがよい。 The present invention increases the power generation of a fuel cell by an avalanche amplification function, and the present invention achieves an avalanche amplification effect with a dipole electric double layer. An aqueous electrolyte containing a high dipole efficiency compound to form is provided. Compounds that form a dipole double layer are typically various electrolytic solutions and aqueous hydrogen peroxide solutions. , hydrogen peroxide is preferred (Non-Patent Document 3). As the cathode electrode, not only copper or its alloys but also transition metals such as titanium and iron and their alloys are effective. As the anode electrode, an anode electrode made of magnesium, aluminum, zinc, or an alloy thereof, which is a metal less noble than that of the cathode electrode, is preferable. The cathode electrode has a plurality of spacers protruding from its electrode surface toward the counter electrode surface of the anode electrode, and the tips of the spacers and the anode electrode surface are opposed to each other with at least one dipole interposed therebetween to form a dipole electric double layer. are sandwiched to form a microcapacitor. As a result, the electrons from the cathode are stored until a predetermined charge is accumulated, and the electrons flow intensively to the anode portion due to the tunnel effect, thereby providing an avalanche amplification function. In the present invention, as shown in FIG. 2, a Mg anode electrode plate and a Cu cathode electrode plate are immersed in an alkaline electrolyte containing hydrogen peroxide and arranged opposite to each other. Then, as shown in FIG. 3A, part of the copper electrode 10 is cut into a triangular shape and raised at a right angle to the electrode surface to form an acute triangular protruding electrode 11 having a height of 5 to 15 mm. The tip is made to face the magnesium electrode surface so as to be in soft contact. A spacing interposed by at least one molecular dipole is preferred. The protruding electrodes are preferably formed at intervals of 150 mm to 200 mm so that electrons flow in from the surrounding cathode electrode regions.

本発明における起電力はアノード電極/過酸化水素を含むアルカリ性電解液/カソード電極の構成における起電力であって、その金属空気電池の反応は次の通りである。
アノード側の酸化反応を2Mg→2Mg2+ + 4e-と、
他方、カソード側の還元反応をO+HO+4e-→4OH- となる。
本発明では、金属空気電池のカソード側の還元反応を促進するために、電解液に過酸化水素を添加し、アノード側負極に比べてカソード側正極のイオン化進行速度が劣る原因を改善した。
すなわち、金属銅はCu+H→Cu2++OH+OH-及び Cu+OH→Cu2++OH-と一部過酸化水素に溶けるが、Cu2++2HO - →Cu+2HOと、HO基がHaber u. Willstatter連鎖によって過酸化水素の分解を促進するからであると思われる(非特許文献3)。
The electromotive force in the present invention is the electromotive force in the configuration of anode electrode/alkaline electrolyte containing hydrogen peroxide/cathode electrode, and the reaction of the metal-air battery is as follows.
The oxidation reaction on the anode side is 2Mg→2Mg 2+ + 4e ,
On the other hand, the reduction reaction on the cathode side becomes O 2 +H 2 O+4e →4OH .
In the present invention, hydrogen peroxide is added to the electrolytic solution in order to promote the reduction reaction on the cathode side of the metal-air battery, thereby improving the cause of the inferior ionization rate of the positive electrode on the cathode side compared to the negative electrode on the anode side.
That is, metallic copper dissolves partially in hydrogen peroxide such as Cu + H 2 O 2 →Cu 2+ +OH + OH - and Cu + OH → Cu 2+ + OH - , but Cu 2+ + 2HO 2 - → Cu + 2HO 2 and HO 2 groups form the Haber u. Willstatter chain. This is thought to be because the decomposition of hydrogen peroxide is accelerated by (Non-Patent Document 3).

しかも、本発明によると、カソード電極の表面に形成される電気二重層は過酸化水素を含み、その双極子(ダイポール)機能により形成される。そのため、対極のアノード電極はカソード電極と接触しても短絡せず、対向するアノード電極とカソード電極の接触を一定間隔で点状に配置される突起等で形成すると、点状突起の先端に電気二重層キャパシタ構造を有することになり(図1)、電極表面にマイクロコンデンサとして多数点在し(図3)、電池起電力を集電してはトンネル効果により流れ、アバランシェ増幅を繰り返す(図5)ので、マクロコンデンサ機能を有しない同一電極構成の場合に比して2倍以上の発電能力を発揮することになる。 Moreover, according to the present invention, the electric double layer formed on the surface of the cathode electrode contains hydrogen peroxide and is formed by its dipole function. Therefore, even if the anode electrode of the counter electrode comes into contact with the cathode electrode, a short circuit does not occur. It has a double-layer capacitor structure (Fig. 1), and many microcapacitors are scattered on the electrode surface (Fig. 3), collecting the battery electromotive force and flowing by the tunnel effect, repeating avalanche amplification (Fig. 5). ), the power generation capacity is more than doubled compared to the case of the same electrode configuration without the macrocapacitor function.

本発明においては、前記水溶性電解液に過酸化水素の一部又は全部を過炭酸ナトリウムにより供給するのが好ましい。具体的には、0.5から2.0モルのアルカリ金属又はアルカリ土類金属ハロゲン化塩、特に塩化ナトリウムを含む中性又はアルカリ性水溶液に対し数%から十数%の過酸化水素水(体積%)又は過炭酸ナトリウム(重量%)を添加するのが好ましい。 In the present invention, it is preferable that sodium percarbonate is used to supply part or all of the hydrogen peroxide to the aqueous electrolytic solution. Specifically, a neutral or alkaline aqueous solution containing 0.5 to 2.0 mol of alkali metal or alkaline earth metal halide salt, particularly sodium chloride, and several percent to ten and several percent of hydrogen peroxide water (volume %) or sodium percarbonate (% by weight) is preferably added.

アノード電極がマグネシウム又はその合金からなり、
(-)Mg/NaCl+H/Cu(+)の電池構成をとることにより、銅カソード電極との間に過酸化水素又はそれが分解したヒドロキシラジカルを分解するに必要な分解電圧を与える。マグネシウム合金電極としてMAZ61又はMAZ31のマグネシウム/アルミ/亜鉛の合金電極が使用できる。
the anode electrode is made of magnesium or its alloy,
By adopting a battery configuration of (−) Mg/NaCl+H 2 O 2 /Cu(+), a decomposition voltage necessary to decompose hydrogen peroxide or its decomposed hydroxy radical is applied between the copper cathode electrode and the hydrogen peroxide. give. A magnesium/aluminum/zinc alloy electrode of MAZ61 or MAZ31 can be used as the magnesium alloy electrode.

前記アノード電極とカソード電極とを交互にスペーサを介して一定の間隔をもって対向配置し、アノード電極とカソード電極との接触部に過酸化水素を含む水溶性電解液により電気二重層キャパシタを形成するが、前記スペーサがカソード電極と同じ金属銅又は銅合金からなり、対極表面に一定間隔を隔てる点状突起を有する(図2)のが好ましい。マイクロキャパシタは2.0e.s.u.×10-15以上の双極子能率を有する双極子、例えば過酸化水素の1分子のnmオーダーの間隔をもってカソード電極とアノード電極を対向させることにより、構成できる。カソード電極からアノード電極局部にトンネル電流が集中して流れるように、カソード電極面から三角形状の電極を突出させる。複数のカソード電極を対向させる場合は、各カソード電極の突起電極の本数、配置位置を変え、アノード電極と接近する場所を変えるのがよい。アノード電極はカソード電極からの電子の衝突により溶解し、周囲原子に連鎖して衝突し、電子の発生を喚起するので、カソード電極の突起が近接する部分は大きな貫通孔(2.0mm~5.00mm)が形成され、電極全体には小さな貫通するホール(0.5mm~1.0mm)が多数形成され、海綿状となる。 The anode electrode and the cathode electrode are alternately arranged to face each other with a constant interval intervening spacers, and an electric double layer capacitor is formed at the contact portion between the anode electrode and the cathode electrode using an aqueous electrolyte solution containing hydrogen peroxide. Preferably, the spacer is made of the same metallic copper or copper alloy as that of the cathode electrode, and has punctiform projections spaced apart at regular intervals on the surface of the counter electrode (FIG. 2). A microcapacitor can be constructed by opposing a cathode electrode and an anode electrode with a dipole having a dipole efficiency of 2.0 e.su×10 −15 or more, for example, a distance of nm order of one molecule of hydrogen peroxide. A triangular electrode is protruded from the surface of the cathode electrode so that a tunnel current flows intensively from the cathode electrode to a local portion of the anode electrode. When a plurality of cathode electrodes are arranged to face each other, it is preferable to change the number and position of the protruding electrodes of each cathode electrode and change the position of approaching the anode electrode. The anode electrode melts due to the collision of electrons from the cathode electrode, which collides with surrounding atoms in a chain reaction to induce the generation of electrons. 00 mm) is formed, and a large number of small penetrating holes (0.5 mm to 1.0 mm) are formed throughout the electrode, forming a spongy shape.

図3に示す銅電極を使用して図4に示す概念の複数のマイクロキャパシタがある電池を構成した。容量3000mlの上方開放型直方体プラスチック容器を用いる。
図3では、1mm厚み、縦横100×100mmの銅カソード電極板10に上下左右に150mmないし200mm間隔で多数の三角形の50mmの高さの突起11を切り立て(図3A)、図3Bに示すように、両端は銅板10は突起11を内向きに、真ん中は背中合わせに張り合わせた銅電極10で2mm厚み、縦横100×100mmのマグネシウムアノード電極板20を挟み込んで組み合わせる。この組み合わせ電極を使うと図1に示すように、銅カソード電極の表面にマイクロコンデンサを形成することができる。
他方、図6Aに示す、1mm厚み、縦横100×100mmの銅カソード電極板10に銅電極板をT字形に切り出し、端部を折り曲げて形成したスペーサSを取り付ける。このカソード電極板でスペーサSを介して2mm厚みの縦横100×100mmのMgアノード電極板20の両側を挟みつける。3枚の銅カソード電極板10で、2枚のMgアノード電極板20はスペーサSを介して交互に挟みつけると、図6Bに示す上部端面図の状態となる。この組み合わせ電極を使うと図1に示すマイクロコンデンサを形成しない。
A battery with multiple microcapacitors of the concept shown in FIG. 4 was constructed using the copper electrodes shown in FIG. A top-opening cuboid plastic container with a capacity of 3000 ml is used.
In FIG. 3, a copper cathode electrode plate 10 having a thickness of 1 mm and a length and width of 100×100 mm is cut into a large number of triangular protrusions 11 having a height of 50 mm vertically and horizontally at intervals of 150 mm to 200 mm (FIG. 3A), as shown in FIG. 3B. At both ends, the copper plates 10 are laminated with the protrusions 11 facing inward, and at the center, the copper electrodes 10 are laminated back to back, and the magnesium anode electrode plate 20 having a thickness of 2 mm and a length and width of 100×100 mm is sandwiched between them. Using this combination of electrodes, a microcapacitor can be formed on the surface of the copper cathode electrode, as shown in FIG.
On the other hand, a copper cathode electrode plate 10 having a thickness of 1 mm and a length and width of 100×100 mm shown in FIG. A Mg anode electrode plate 20 having a thickness of 2 mm and a size of 100×100 mm is sandwiched between the cathode electrode plates with spacers S interposed therebetween. When two Mg anode electrode plates 20 are alternately sandwiched between three copper cathode electrode plates 10 with spacers S interposed therebetween, the top end view shown in FIG. 6B is obtained. Using this combination of electrodes does not form the microcapacitor shown in FIG.

プラスチック容器にはおよそ1500mlの純水に塩化ナトリウム0.5モル/l以上、好ましくは1.5モル/l以上2モル/lの電解液を調整し、これに過炭酸ナトリウム50~100gと30%過酸化水素水50mlを加える。電池反応は一定時間過ぎると、過酸化水素が消費され、電球が減少するので、2~3時間ごとに10mlの30%過酸化水素水を添加する。 In a plastic container, an electrolytic solution of 0.5 mol/l or more, preferably 1.5 mol/l or more and 2 mol/l of sodium chloride is prepared in about 1500 ml of pure water, and 50 to 100 g of sodium percarbonate and 30 g of sodium percarbonate are added thereto. 50 ml of % hydrogen peroxide solution is added. After a certain period of time, the cell reaction consumes hydrogen peroxide and the light bulb decreases, so add 10 ml of 30% hydrogen peroxide solution every 2 to 3 hours.

本件実施例においては、図3AおよびBの電極構成と図6AおよびBの電極構成の性能を比較してマイクロキャパシタを銅カソード電極表面に形成する場合としない場合の性能比較を行った。
電極構成以外は同じ条件としたので、アルカリ電解水における過酸化水素燃料電池反応に、マグネシウム空気電池反応が伴うものである点は同じである。したがって、以下の反応式に基づき、過酸化水素がH+2HO+2e-→2HO+2OH-に分解する一方、カソード電極側でH+2OH-→O+2HO+2e-の酸化反応を起こすだけでなく、アルカリ性電解液での金属酸化反応がMg→Mg2++2e-となり、カソード側での酸素を還元してイオン化する反応がO+2HO+4e-→4OH-と典型的な金属空気電池反応が起こる。但し、過酸化水素燃料電池及び金属空気電池反応では酸素ガスは発生すると理解できるが、上記構成では酸素ガスだけでなく、水素ガスも発生する。ということは、非特許文献3(水渡英二著、物理化学の進歩(1936)、10(3):154~165頁)に示唆されるように、銅カソード電極表面で触媒機能が働き、過酸化水素の分解又はヒドロキシイオンの分解が起こり、発電反応に繋がっていると思われる。
2H→4・OH→H+O+4e-
4OH-→H+O+4e-
In this example, the performance of the electrode configuration of FIGS. 3A and B and the electrode configuration of FIGS. 6A and B were compared to compare the performance with and without the microcapacitor formed on the surface of the copper cathode electrode.
Since the conditions were the same except for the electrode configuration, the point that the hydrogen peroxide fuel cell reaction in alkaline electrolyzed water was accompanied by the magnesium air cell reaction was the same. Therefore, based on the following reaction formula, hydrogen peroxide decomposes into H 2 O 2 +2H 2 O+2e →2H 2 O+2OH , while H 2 O 2 +2OH →O 2 +2H 2 O+2e on the cathode electrode side. In addition to causing an oxidation reaction, the metal oxidation reaction in the alkaline electrolyte becomes Mg→Mg 2+ +2e , and the reaction in which oxygen is reduced and ionized on the cathode side is typically O 2 +2H 2 O+4e →4OH − . A metal-air battery reaction occurs. However, although it can be understood that oxygen gas is generated in the hydrogen peroxide fuel cell and the metal-air cell reaction, not only oxygen gas but also hydrogen gas is generated in the above configuration. That is, as suggested in Non-Patent Document 3 (Eiji Mizuwatari, Advances in Physical Chemistry (1936), 10(3): pp. 154-165), a catalytic function acts on the surface of the copper cathode electrode, and overheating occurs. It is believed that decomposition of hydrogen oxide or decomposition of hydroxy ions occurs, leading to a power generation reaction.
2H2O2- > 4.OH- > H2 + O2 +4e-
4OH →H 2 +O 2 +4e

以上の実験結果を考察すると、マイクロキャパシタを作る構成にもよるが、図3に示すマイクロキャパシタを有する燃料電池は図6に示すマイクロキャパシタを有しないものに比して2倍以上の電流値の増加を見ることがわかった。マイクロキャパシタに伴う集電放電効果が電池の発電量に大きな影響を与えることがわかる。そのため、本発明の構成は1コンパートメント構造の過酸化水素燃料電池として新規で有用な構成を提供することができるので、画期的である
Considering the above experimental results, depending on the configuration of the microcapacitor, the fuel cell having the microcapacitor shown in FIG. found to see an increase. It can be seen that the current collection/discharge effect accompanying the microcapacitor has a great influence on the power generation amount of the battery. Therefore, the configuration of the present invention is epoch-making because it can provide a novel and useful configuration for a hydrogen peroxide fuel cell with a one-compartment structure.

Claims (2)

2.0e.s.u.×10-15以上の双極子能率を有する双極子を含み、双極子電気二重層を電極との界面に形成する水溶性電解液と、金属銅又はその合金からなるカソード電極と、カソード電極より電極電位が卑なる電極電位差を形成する金属又はその合金からなるアノード電極とを備え、カソード電極とアノード電極との間に少なくとも1分子の双極子が挟持されて形成されて複数のマイクロキャパシタを有し、カソード電極からアノード電極への電子の流れにトンネル効果を付与する機能を有することを特徴とするアバランシェ増幅機能を有する燃料電池。 2. A water-soluble electrolyte containing a dipole having a dipole efficiency of 0 e.su×10 −15 or more and forming a dipole electric double layer at the interface with the electrode, and a cathode electrode made of metallic copper or an alloy thereof. and an anode electrode made of a metal or an alloy thereof that forms an electrode potential difference in which the electrode potential is less noble than that of the cathode electrode. A fuel cell having an avalanche amplification function, comprising a microcapacitor and having a function of imparting a tunnel effect to electron flow from a cathode electrode to an anode electrode. 前記マイクロキャパシタが、カソード電極面から突出する鋭角三角形状の突起電極と、その先端とアノード電極表面との間に挟持される少なくとも1個の過酸化水素分子とで形成される双極子電気二重層である請求項1に記載の燃料電池。 The microcapacitor is a dipole electric double layer formed by an acute triangular protruding electrode protruding from the surface of the cathode electrode and at least one hydrogen peroxide molecule sandwiched between the tip of the protruding electrode and the surface of the anode electrode. The fuel cell according to claim 1, wherein
JP2021142108A 2021-09-01 2021-09-01 Battery with avalanche amplification function Pending JP2023061404A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021142108A JP2023061404A (en) 2021-09-01 2021-09-01 Battery with avalanche amplification function
PCT/JP2022/032993 WO2023033113A1 (en) 2021-09-01 2022-09-01 Battery having electronic conduction function via electric double layer capacitor
CA3229926A CA3229926A1 (en) 2021-09-01 2022-09-01 Battery having electron conduction function via electric double layer capacitor
KR1020247010396A KR20240060622A (en) 2021-09-01 2022-09-01 Battery with electron conduction function through an electric double layer capacitor
AU2022338459A AU2022338459A1 (en) 2021-09-01 2022-09-01 Battery having electronic conduction function via electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021142108A JP2023061404A (en) 2021-09-01 2021-09-01 Battery with avalanche amplification function

Publications (1)

Publication Number Publication Date
JP2023061404A true JP2023061404A (en) 2023-05-02

Family

ID=86249589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021142108A Pending JP2023061404A (en) 2021-09-01 2021-09-01 Battery with avalanche amplification function

Country Status (1)

Country Link
JP (1) JP2023061404A (en)

Similar Documents

Publication Publication Date Title
EP2929586B1 (en) Anaerobic aluminum-water electrochemical cell
KR20160050102A (en) Hybride Flow Battery and Electrolyte Solution for The Same
Lianos A brief review on solar charging of Zn–air batteries
WO2019178210A1 (en) Transition metal phosphides for high efficient and long cycle life metal-air batteries
JP2022068077A (en) One-compartment type aqueous solution fuel cell with metallic copper as cathode electrode
JP2023061404A (en) Battery with avalanche amplification function
WO2023033070A1 (en) Cathode electrode formed of copper or copper alloy
JP2010086924A (en) Magnesium air secondary battery
JP2023061405A (en) Micro capacitor
WO2022225066A1 (en) Air electrode having hydrogen peroxide-containing electric double layer, and metal-air battery using same
WO2023033113A1 (en) Battery having electronic conduction function via electric double layer capacitor
JP5737727B2 (en) Magnesium battery
JP2024034840A (en) Battery with electron conduction function via electric double layer capacitor
WO2023033071A1 (en) Combustion method for hydrogen peroxide fuel cell using cathode electrode that is formed of copper or copper alloy
JP2024034273A (en) Cathode electrode made of copper or copper alloy
JP2015022871A (en) Metal air battery
JP2015141862A (en) metal-air battery
WO2023033068A1 (en) Air battery in which metallic copper or alloy thereof serves as oxygen reducing air electrode
JP2024034270A (en) Air battery using metallic copper or its alloy as an oxygen-reducing air electrode
US20130088184A1 (en) Battery device utilizing oxidation and reduction reactions to produce electric potential
JP2017092014A (en) Aluminum air battery
CN107946603A (en) A kind of double activated material cell anode chamber
CN214672733U (en) High-energy-density charge-discharge battery
KR102604353B1 (en) Energy storage devices and method of manufacturing the same
CN118160131A (en) Air battery using metallic copper or alloy thereof as redox air electrode

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240430