JP2023007661A - 触媒評価方法 - Google Patents

触媒評価方法 Download PDF

Info

Publication number
JP2023007661A
JP2023007661A JP2021110654A JP2021110654A JP2023007661A JP 2023007661 A JP2023007661 A JP 2023007661A JP 2021110654 A JP2021110654 A JP 2021110654A JP 2021110654 A JP2021110654 A JP 2021110654A JP 2023007661 A JP2023007661 A JP 2023007661A
Authority
JP
Japan
Prior art keywords
catalyst
gas
temperature
evaluation method
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021110654A
Other languages
English (en)
Inventor
駿 川辺
Shun Kawabe
大 松田
Masaru Matsuda
晋哉 佐藤
Shinya Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2021110654A priority Critical patent/JP2023007661A/ja
Publication of JP2023007661A publication Critical patent/JP2023007661A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

【課題】 所望の高温耐性を有しているか否かを評価することができる触媒評価方法を提供する。【解決手段】 触媒評価方法は、SO2ガスをSO3に酸化させるための触媒を評価する評価方法であって、前記触媒を硫酸第一鉄水溶液に浸漬した後、前記触媒を、酸素濃度が10体積%~15体積%の不活性ガス雰囲気で、380℃以上、650℃以下の焙焼温度±5℃で焙焼し、前記焙焼後に冷却した前記触媒の硬度を測定することを特徴とする。【選択図】 図2

Description

本発明は、触媒評価方法に関する。
銅製錬工程で排出されるSO(亜硫酸ガス)に対して転化触媒を用いてSO(無水硫酸ガス)に転化し、硫酸が製造されている(例えば、特許文献1参照)。
特開2007-269550号公報
転化触媒に導入されるガスは、SOの他に不純物を含んでおり、それらと転化触媒が接触した場合に劣化または粉化し、触媒活性低下や圧力損失上昇が発生する場合がある。ガスに含まれる不純物の中でも、転化器周辺設備であるガス道、熱交換器、乾燥塔、吸収塔といった構造物由来の硫酸鉄が特に多く含まれるため、硫酸鉄に耐性のある転化触媒が求められている。
本発明は上記の課題に鑑み、触媒が所望の硫酸鉄耐性を有しているか否かを評価する方法を提供することを目的とする。
本発明に係る触媒評価方法は、SOガスをSOに酸化させるための触媒を評価する方法であって、前記触媒を硫酸第一鉄水溶液に浸漬した後、前記触媒を、酸素濃度が10体積%~15体積%の不活性ガス雰囲気で、380℃以上、650℃以下の焙焼温度±5℃で焙焼し、前記焙焼後に冷却した前記触媒の硬度を測定することを特徴とする。前記焙焼して冷却した前記触媒の硬度が70N以上であるか否かを評価してもよい。前記硫酸第一鉄の鉄濃度は、22.5g/L~45g/Lとしてもよい。前記触媒を前記硫酸第一鉄に浸漬する時間は、2秒以上としてもよい。前記焙焼を1時間以上、6時間以下、行なってもよい。前記触媒は、担体がSiOであり、Vを必須成分としてもよい。
本発明によれば、触媒が所望の硫酸鉄耐性を有しているか否かを評価する方法を提供することができる。
硫酸工場の一例を示す図である。 触媒評価方法に用いる管状炉を例示する図である。 (a)および(b)は各サンプルの結果を示す図である。
(実施形態)
まず、本実施形態において評価対象とする転化触媒が用いられている硫酸工場100の概略について説明する。
銅鉱山で産出される銅鉱石は、主に硫化鉱である。硫化鉱を大別すると、輝銅鉱(CuS)、銅藍(CuS)などの鉱物を主体とした比較的高銅品位の二次硫化銅鉱と、黄銅鉱(CuFeS)を主体とする初生硫化鉱とに分けられる。近年、銅鉱山で採取される銅鉱石は、後者主体となっている。その結果、鉄、硫黄などの不純物が増加し、粗鉱銅品位は低下傾向にある。このことは、鉱山で銅製錬向けに生産する銅精鉱の銅品位の低下、鉄分の増加などの要因となる。
銅精鉱を処理する乾式銅製錬所においては、一般に、銅は製品電気銅として、鉄分はスラグとして、硫黄分は硫酸として回収される。硫酸製造工程の原料として供されるガス中のSO濃度は、非鉄金属製錬炉や焙焼炉出口の高濃度の排ガスを適切な濃度まで空気により希釈することによって調整されるのが一般的である。希釈後のSO濃度は、硫酸への吸収操作の前にSOをSOに酸化できる率、つまり転化設備の処理能力により最大濃度が決まると言ってよい。
図1は、本実施形態に係る硫酸工場100の一例を示す図である。硫酸工場100は、転化器1、プレコンバータ2などを備える。転化器1は、SOをSOに転化するための装置である。転化器1の内部には、SOがSOに転化される反応(転化反応)に用いられる転化触媒を含んだ層(以下、転化触媒層と称する)が配置されている。図1の例では、第1~第4の4層の転化触媒層が配置されている。転化器1に供給されるSOは、第1層、第2層、第3層、第4層の順に接触しつつ通過する。転化触媒層に接触したSOは、転化触媒層の触媒作用により、SOに酸化される。この反応は、下記式(1)の反応に相当する。転化器1で連続的に発生する熱により、転化触媒層の出口ガスの温度が上昇する。プレコンバータ2は、転化器1に供給される前のSOガスの一部をSOに転化するための装置である。図1の例では、上層および下層の2層の転化触媒層が配置されている。プレコンバータ2においても、転化触媒層に接触したSOは、転化触媒層の触媒作用により、SOに酸化される。
SO + 0.5O = SO (1)
また、硫酸工場100は、廃熱ボイラー3、SOクーラー4、吸収塔12,14などの熱回収手段を備える。廃熱ボイラー3は、プレコンバータ2から排出されるガスから、熱を蒸気として回収する装置である。SOクーラー4は、転化器1のいずれかの触媒層から排出されるガス(以下、転化触媒層の出口ガス)から、熱を高温空気として回収する装置である。吸収塔12,14は、下記式(2)の反応を生じる装置であり、併せて、転化器1のいずれかの転化触媒層の出口ガスから熱を回収する装置としても機能する。
O + SO = HSO (2)
また、硫酸工場100は、転化器1に供給される前のSOガスに対して熱交換を行う熱交換器6~9、および転化器1のいずれかの転化触媒層の出口ガスに対して熱交換を行う熱交換器10,11を備える。また、硫酸工場100は、流量を調節する調節弁17~24を備える。また、硫酸工場100は、廃熱ボイラー3による熱回収後のガスの温度を検出する温度センサ31、および転化器1の2段目以降の転化触媒層の入口ガスの温度を検出する温度センサ32を備える。また、硫酸工場100は、調節弁17~24の開度を制御するコントローラ40を備える。
以下、硫酸工場100の動作の概略について説明する。なお、以下の説明における原料ガスとは、転化器1に供給される前のSOガスのことであり、転化触媒層の出口ガスとは、転化器1のいずれかの転化触媒層から排出されるガスのことである。
銅製錬工程から硫酸工場100に送られたSO含有ガスは、乾燥塔25を通過した後にメインブロワ16で圧送され、調節弁19などを通って転化器1に原料ガスとして供給される。転化器1に供給される原料ガスの温度が低すぎるとSOの酸化反応(転化)が起こらないため、原料ガスを予熱する必要がある。そこで、転化器1の転化触媒層の出口ガスの持つ熱を、熱交換器6~9における原料ガスに対する加熱に使用してもよい。もしくは、調節弁20を用いてこれらの熱交換器をバイパスして、第1層の触媒層出口ガスと原料ガスの一部を混合することによって、第1層の出口ガスを適温に設定してもよい。
転化器1では、層ごとに、反応に適した入口温度にするために熱交換器が配置される。一般に、触媒層を通過するほど上記式(1)の反応が進行し、原料ガスの温度は高くなる。例えば、第1層の出口ガスの温度は、550℃~620℃である。この第1層の出口ガスは、熱交換器9で250℃~350℃の原料ガスと熱交換し、390~460℃に冷却され、第2層に流入する。第2層の出口ガスは、熱交換器10もしくは熱交換器11を通ることで、180~230℃に調整され、吸収塔12に送られる。吸収塔12から排出される低温の戻りガスは、ガス洗浄塔13を経由して熱交換器10,11で第2層の出口ガスと熱交換し、430~460℃になった後に第3層に流入する。
第3層の出口ガスは、熱交換器8で250℃~300℃の原料ガスと熱交換して410~440℃となり、第4層に流入する。第4層の出口ガスは、熱交換器7および熱交換器6を通り、メインブロワ16から圧送される原料ガスを250℃~350℃に加熱した後、吸収塔14に送られる。吸収塔14から排出されるガスは、洗浄塔15を経由して排ガスとして排出される。
以上のように、転化器1の各転化触媒層の入口温度、即ち反応開始温度は、390~460℃の適正な温度に保たれる。低温ガス(原料ガスや吸収塔排出ガス)と反応後の高温ガス(触媒層出口ガス)との熱交換により互恵的に熱のやり取りを行っているが、必要に応じて調節弁17,20を使用することによって微調節する場合がある。
例えば、メインブロワ16から供給される原料ガスの温度が高すぎる場合は、調節弁17を開き、加熱前の原料ガスを混合して至適温度に調整する。もしくは第1層で想定以上にSOの酸化反応が進んで過熱した出口ガスに、調節弁20を調節して加熱前の原料ガスを混合して冷却する。
上述のように、熱交換器により転化器1内の温度は適正に維持されるが、SOの転化によって連続的に発生する熱は、ガスの加温で必要な量に対し大部分が過剰である。この過剰な熱は、ガス顕熱として吸収塔12または吸収塔14内に蓄積され、付属する酸クーラーにより冷却され大部分が廃棄される。一般的に、これらの熱量は多いが、低温で取扱い体積が大きいために有効な使途がない。そのためこの熱の有効利用がエネルギー効率に大きな影響を与える。
一方、廃熱ボイラー3がプレコンバータ2の出口に配置されている。また、空気ファン5を備えたSOクーラー4が、転化器1の第2層の出口に配置されている。廃熱ボイラー3およびSOクーラー4は、熱を蒸気および高温空気として回収する。これらの熱の回収は、硫酸工場の高SO濃度操業化により必要とされる条件、すなわち、ガスの温度上昇度を改善する、高温ガスから余剰熱を良質な形態で回収する、の2点に利用される熱の形態である。具体的な使用例を挙げると、廃熱ボイラー3で得られる蒸気は発電用の蒸気タービンに利用されることが多く、SOクーラー4で得られる高温空気は乾燥設備や加温設備の熱源に利用されることが多い。
調節弁18,19は、プレコンバータ2への供給ガス量と転化器1への供給ガス量を変化させる弁であり、例えば操業負荷(処理SO量)に応じて供給ガス比率を変化させる。調節弁21は、プレコンバータ2の出口の高温ガスからの除熱量を調節する弁である。すなわち、調節弁21の開度を増すと、廃熱ボイラー3をバイパスする量が増加するため、廃熱ボイラー3での回収熱量が減少する。
調節弁22~24は、それぞれ、SOクーラー4、熱交換器10、および熱交換器11の反応ガス(高温ガス)側出口に配された弁であり、転化器1の第2層の出口ガスの分配率を調節する。すなわち、調節弁22の開度を増すと、SOクーラー4での回収熱量が増加する。調節弁22~24は、それぞれが付帯するSOクーラー4、熱交換器10、および熱交換器11の圧力損失に十分な差があるときは、すべて必要という訳ではない。圧力損失が最も小さい(ガスが流れ易い)回路に弁を設ければ、弁を開閉することで各設備の流量比率を変化させることも可能である。
ところで、回分製銅する転炉を用いた銅製錬所では、転炉の錬銅サイクルにより、硫酸工場のSO負荷が変動する(転炉由来の排ガスのSO濃度は、錬銅サイクルにより変動する)。この場合、転炉の排ガス用ボイラーでの発生蒸気量と硫酸工場100の廃熱ボイラー3での発生蒸気量とは、基本的にピークが重複するため、蒸気タービン発電設備の出力を超過し、使用できない蒸気を放出することもある。
蒸気を放出せざるを得ない場合には、SOクーラー4での回収熱量(高温熱風量、または温度)を増加させることで、廃熱ボイラー3での発生蒸気量を抑制することができる。また、一般的に蒸気タービンによる発電は、エネルギー変換効率の観点から、乾燥や加温用途と比較して有利ではない。そのため、発電設備の出力制限の有無にかかわらず、乾燥や加温設備で消費する化石燃料の価格によっては、乾燥設備での重油等の化石燃料使用量削減を行うことがより経済的に有利となる場合もある。いずれにしても、熱回収形態の異なる熱回収設備の熱回収比率を調整することは、その使用先の設備能力やエネルギー価格に応じて、最適化を図ることができる。
上述したように、転化器1およびプレコンバータ2に備わる転化触媒は、導入されるSOガスが、ガス道、熱交換器、乾燥搭、吸収搭といった構造物を通過する際に発生する硫酸鉄を伴うので、硫酸鉄に対する耐性を有していることが求められる。転化触媒は、十分な硫酸鉄耐性を有していないと劣化または粉化し、触媒活性低下、圧力損失上昇などの要因となる。転化触媒が操業条件に近い条件で所望の硫酸鉄耐性を有していないと、定期修繕期間よりも短期間で転化触媒を入れ替える必要がある。この場合、硫酸工場100の操業を休止する必要が生じてしまう。そこで、転化触媒が操業条件に近い条件で所望の硫酸鉄耐性を有しているか否かを評価する手法が求められている。
本実施形態においては、操業条件に近い条件で所望の硫酸鉄耐性を有しているか否かを評価することができる触媒評価方法について説明する。
転化器周辺の設備であるガス道、熱交換器、乾燥搭、吸収搭では、硫酸ミストやSOガスによって鉄系材料が腐食し、硫酸鉄となってSOガスに混入する。そこで、本発明者らは、転化触媒に鉄が影響するのではないかと考え、使用前の転化触媒と、硫酸工場100の操業に使用した後の転化触媒とをMLA(Mineral Liberation Analyzer)で比較した。その結果、使用前には転化触媒に鉄が観察されなかったものの、使用後には転化触媒に鉄が散見された。そこで、本実施形態においては、硫酸工場100の操業条件に近い条件で転化触媒を評価するために、転化触媒を硫酸第一鉄に浸漬しておく。
図2は、触媒評価方法に用いる管状炉50を例示する図である。石英管51内に石英板52を設置し、石英板52上に、硫酸第一鉄に浸漬した後の転化触媒53を置く。石英板52の真下に温度制御用熱電対54を設置する。石英管51内において、石英板52の上流側および下流側をグラスウール55で塞ぐ。上流側のグラスウール55は、ガスを石英管51内の全体に行き渡らせるために設置する。下流側のグラスウール55は、揮発物の粗取りを目的として設置する。
ガスミキサー56からエアと窒素ガスとが混合されたガスを石英管51内に導入する。例えば、3L/min程度で酸素濃度を10体積%以上、15体積%以下とする。酸素以外のガスは、不活性ガスであれば特に限定されるものではなく、例えば窒素ガスである。石英管51を380℃以上650℃以下の所定温度(焙焼温度)まで昇温する。転化触媒53の温度は、石英管51の温度に略一致するようになる。石英管51の温度を維持し、当該温度に応じた時間(焙焼時間)だけ保持する。例えば、石英管51の温度を、目標とする焙焼温度±5℃の範囲内に維持する。それにより、転化触媒53が焙焼される。焙焼後に石英管51を室温程度まで冷却する。それにより、転化触媒も室温程度まで冷却される。その後、石英管51を解体して転化触媒53を取り出す。
次に、木屋式硬度計を用いて転化触媒53の破壊硬度を測定する。最大加圧重は、例えば196Nとする。転化触媒53が所望の破壊硬度を有していれば、合格と判定し、当該所望の破壊強度を有していなければ、不合格と判定する。例えば、転化触媒53が70N以上の破壊硬度を有していれば、合格と判定してもよい。
焙焼温度は、硫酸工場100の操業において転化触媒が晒される温度以上であることが好ましい。一方、焙焼温度の上限値は、転化触媒の高温耐性の優劣の影響が破壊硬度の変化に影響しない温度範囲であることが好ましい。そこで、焙焼温度は、380℃以上、650℃以下とする。
操業条件に近い条件で所望の高温耐性を有しているか否かを評価するためには、硫酸第一鉄における鉄濃度に下限および上限を設けることが好ましい。薄すぎると触媒に硫酸鉄を浸透させるのに時間がかかり、バナジウムのような触媒成分の一部が溶けてしまう恐れがある。一方で硫酸第一鉄の溶解度に上限がある。このことから、例えば、硫酸第一鉄における鉄濃度は、22.5g/L以上、45g/L以下であることが好ましい。また、硫酸第一鉄に転化触媒を浸漬する時間に下限を設けることが好ましい。触媒を液に浸漬すると細かい気泡が出てくるがその気泡が落ち着いてくる時間よりも長く浸漬することが望ましく、例えば、硫酸第一鉄に転化触媒を浸漬する時間は、2秒以上であることが好ましい。
焙焼時間が短すぎると正確に転化触媒を評価できないおそれがある。そこで、焙焼時間に下限を設けることが好ましい。一方、焙焼時間が長くなれば長いほど評価精度が高くなるわけでもない。そこで、焙焼時間に上限を設けることが好ましい。例えば、焙焼時間は、1時間以上、6時間以下であることが好ましい。
なお、転化触媒は、SOをSOに転化させる能力を有するものであれば特に限定されるものではない。例えば、転化触媒は、SiOである担体に、転化能力を有するVを必須成分とするものが担持されたものを用いることができる。このような転化触媒であれば、高温域においてSiOの結晶性が劣化し、粉化が進むと考えられる。
以下、上記実施形態に係る触媒評価方法に従って、転化触媒の評価を行なった。
(実施例)
2種類の転化触媒をサンプルとして用意した。これら2種類の転化触媒は、それぞれ異なるメーカーによって製造されたものである。構成材料成分および製造工程の少なくともいずれかが異なっているものと考えられる。
各サンプルについて、鉄濃度が45g/Lの硫酸第一鉄に、2秒以上浸漬した。その後、焙焼温度を450℃±5℃とし、焙焼時間を6時間として焙焼を行なった。焙焼前における破壊硬度および焙焼後における破壊硬度を、木屋式硬度計を用いて破壊硬度を測定した。結果を図3(a)および図3(b)に示す。図3(a)の結果では、焙焼前には破壊硬度が基準値である70Nを上回っていたが、焙焼後に破壊硬度が基準値である70Nを下回った。図3(b)の結果では、焙焼前および焙焼後の両方において、破壊硬度が基準値である70Nを上回っていた。このように、焙焼後に破壊硬度が基準値を下回るサンプルと、焙焼後に破壊硬度が基準値を下回らないサンプルとが見られた。したがって、転化触媒を評価できることがわかった。
以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
1 転化器
2 プレコンバータ
3 廃熱ボイラー
4 SOクーラー
6~11 熱交換器
12,14 吸収塔
16 メインブロワ
17~24 調節弁
31,32 温度センサ
40 コントローラ
51 石英管
52 石英板
53 転化触媒
54 温度制御用熱電対
55 グラスウール
56 ガスミキサー
100 硫酸工場

Claims (6)

  1. SOガスをSOに酸化させるための触媒を評価する評価方法であって、
    前記触媒を硫酸第一鉄水溶液に浸漬した後、前記触媒を、酸素濃度が10体積%~15体積%の不活性ガス雰囲気で、380℃以上、650℃以下の焙焼温度±5℃で焙焼し、
    前記焙焼後に冷却した前記触媒の硬度を測定することを特徴とする評価方法。
  2. 前記焙焼して冷却した前記触媒の硬度が70N以上であるか否かを評価することを特徴とする請求項1に記載の評価方法。
  3. 前記硫酸第一鉄の鉄濃度は、22.5g/L~45g/Lであることを特徴とする請求項1または請求項2に記載の評価方法。
  4. 前記触媒を前記硫酸第一鉄に浸漬する時間は、2秒以上であることを特徴とする請求項1から請求項3のいずれか一項に記載の評価方法。
  5. 前記焙焼を1時間以上、6時間以下、行なうことを特徴とする請求項1から請求項4のいずれか一項に記載の評価方法。
  6. 前記触媒は、担体がSiOであり、Vを必須成分とすることを特徴とする請求項1から請求項6のいずれか一項に記載の評価方法。
JP2021110654A 2021-07-02 2021-07-02 触媒評価方法 Pending JP2023007661A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021110654A JP2023007661A (ja) 2021-07-02 2021-07-02 触媒評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021110654A JP2023007661A (ja) 2021-07-02 2021-07-02 触媒評価方法

Publications (1)

Publication Number Publication Date
JP2023007661A true JP2023007661A (ja) 2023-01-19

Family

ID=85111964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021110654A Pending JP2023007661A (ja) 2021-07-02 2021-07-02 触媒評価方法

Country Status (1)

Country Link
JP (1) JP2023007661A (ja)

Similar Documents

Publication Publication Date Title
CN102774815B (zh) 用于硫酸生产的工艺和设备
CN101927982B (zh) 一种等温型直接氧化硫磺回收工艺
CN102242254A (zh) 高硫铁矿球团强化焙烧固结工艺
CN107010607A (zh) 高浓度二氧化硫烟气二元可调节预转化制硫酸方法
CN103072957A (zh) 一种制取硫酸的工艺
TW200413246A (en) Process and plant for the manufacture of sulphuric acid from gases rich in sulphur dioxide
CN103011092A (zh) So2的非衡态高浓度两次转化制硫酸技术
CN103072956A (zh) 处理烟气的方法及***
CN108975285A (zh) 一种湿法制酸装置和一种湿法脱硫的方法
CN102530882B (zh) 一种除水型硫磺回收方法及装置
CN205347482U (zh) 一种利用电石炉尾气制还原气直接还原冶金的***
JP2023007661A (ja) 触媒評価方法
JP2023007660A (ja) 触媒評価方法
JP3831435B2 (ja) ガス精製装置
JP5984506B2 (ja) 硫酸製造設備における廃熱の利用方法及びそのシステム
CN109136585B (zh) 一种铜冶炼过程中抑制高温烟气中三氧化硫产生的方法
CN109095441A (zh) 制备硫酸的方法
CN104593616B (zh) 一种金属硫化矿全氧负能火法冶炼方法
CN108178132B (zh) 一种二硫化碳生产中的硫回收方法及设备
US9725784B2 (en) Production of copper via looping oxidation process
CN113023685A (zh) 一种克劳斯硫磺回收再热装置和方法
US9187340B2 (en) Sulfide oxidation process for production of molybdenum oxides from molybdenite
CN202898023U (zh) 用于硫酸生产的工艺和设备
CN208980334U (zh) 一种湿法制酸装置
Vatanakul et al. Waste heat utilization to increase energy efficiency in the metals industry