JP2023002176A - Manufacturing method for all-solid battery - Google Patents

Manufacturing method for all-solid battery Download PDF

Info

Publication number
JP2023002176A
JP2023002176A JP2021103237A JP2021103237A JP2023002176A JP 2023002176 A JP2023002176 A JP 2023002176A JP 2021103237 A JP2021103237 A JP 2021103237A JP 2021103237 A JP2021103237 A JP 2021103237A JP 2023002176 A JP2023002176 A JP 2023002176A
Authority
JP
Japan
Prior art keywords
pressure
laminate
negative electrode
current collector
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021103237A
Other languages
Japanese (ja)
Inventor
雄志 鈴木
Yushi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021103237A priority Critical patent/JP2023002176A/en
Publication of JP2023002176A publication Critical patent/JP2023002176A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a manufacturing method for an all-solid battery that has a precipitation type lithium anode and reduced resistance.SOLUTION: A manufacturing method for an all-solid battery includes: preparing a laminate including a positive electrode collector, a cathode active material layer, a solid electrolyte layer, and a negative electrode collector laminated in this order; applying pressure P1 in the lamination direction on the laminate; charging the laminate on which pressure P1 is applied to make metallic lithium be precipitated between the solid electrolyte layer and the negative electrode collector; and applying pressure P2 in the lamination direction on the laminate during or after the charging. The pressure P2 is pressure at which the metallic lithium buckles and is lower than the pressure P1.SELECTED DRAWING: Figure 1

Description

本願は全固体電池の製造方法を開示する。 The present application discloses a method for manufacturing an all-solid-state battery.

特許文献1には、正極集電体と正極活物質層とセパレータと負極集電体とをこの順に有し、前記正極活物質層がリチウム化合物を含有し、前記セパレータおよび前記正極活物質層の内部に電解液が存在し、且つ、負極活物質層を備えていない、リチウム金属電池前駆体が開示されている。特許文献1に開示された前駆体は、電圧が印加されて充電されることにより負極集電体上に負極活物質としてのリチウムが析出し、電解液系のリチウムイオン二次電池となり得る。特許文献2には、リチウムイオン二次電池の製造方法において、負極と正極とを有するセルを加圧しながら負極へのリチウムプレドープを行うこと、及び、セルを加圧しながら初回充電を行うことが開示されている。特許文献3には、全固体リチウム二次電池の製造方法において、初回充放電後に電池を加圧することが開示されている。 In Patent Document 1, a positive electrode current collector, a positive electrode active material layer, a separator, and a negative electrode current collector are provided in this order, the positive electrode active material layer contains a lithium compound, and the separator and the positive electrode active material layer are arranged in this order. A lithium metal battery precursor is disclosed having an electrolyte therein and without a negative electrode active material layer. In the precursor disclosed in Patent Document 1, when a voltage is applied and the precursor is charged, lithium as a negative electrode active material is deposited on the negative electrode current collector, so that it can be used as an electrolyte-based lithium ion secondary battery. In Patent Document 2, in a method for manufacturing a lithium ion secondary battery, lithium pre-doping to the negative electrode is performed while pressurizing a cell having a negative electrode and a positive electrode, and initial charging is performed while pressurizing the cell. disclosed. Patent Document 3 discloses pressurizing the battery after initial charging and discharging in a method for manufacturing an all-solid lithium secondary battery.

特開2016-122528号公報JP 2016-122528 A 特開2016-110777号公報JP 2016-110777 A 特開2010-238484号公報JP 2010-238484 A

本発明者の新たな知見によれば、特許文献1に開示されたような析出型のリチウム負極を利用して全固体電池を製造した場合、全固体電池の抵抗が高くなり易いという問題がある。 According to new findings of the present inventors, when an all-solid-state battery is manufactured using a precipitation-type lithium negative electrode as disclosed in Patent Document 1, there is a problem that the resistance of the all-solid-state battery tends to increase. .

本願は上記課題を解決するための手段の一つとして、
正極集電体と正極活物質層と固体電解質層と負極集電体とがこの順に積層された積層体を準備すること、
前記積層体に対して積層方向に圧力Pを加えること、
前記圧力Pが加えられた後の前記積層体に対して充電を行い、前記固体電解質層と前記負極集電体との間に金属リチウムを析出させること、及び、
前記充電中又は前記充電後の前記積層体に対して積層方向に圧力Pを加えること、
を含み、
前記圧力Pは、前記金属リチウムが座屈する圧力であり、且つ、前記圧力Pよりも低い、
全固体電池の製造方法
を開示する。
As one means for solving the above problems, the present application provides
preparing a laminate in which a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, and a negative electrode current collector are laminated in this order;
applying a pressure P1 to the stack in the stacking direction;
charging the laminate to which the pressure P1 has been applied to deposit metallic lithium between the solid electrolyte layer and the negative electrode current collector;
applying pressure P2 in the stacking direction to the stack during or after the charging;
including
the pressure P2 is a pressure at which the metallic lithium buckles and is lower than the pressure P1;
A method for manufacturing an all-solid-state battery is disclosed.

本開示の製造方法においては、前記圧力Pが0.4MPa以上であってもよい。 In the manufacturing method of the present disclosure, the pressure P2 may be 0.4 MPa or higher.

本開示の製造方法においては、前記圧力Pが5MPa以下であってもよい。 In the manufacturing method of the present disclosure, the pressure P2 may be 5 MPa or less.

本開示の製造方法においては、前記圧力Pが100MPa以上であってもよい。 In the manufacturing method of the present disclosure, the pressure P1 may be 100 MPa or higher.

本開示の製造方法においては、前記固体電解質層が無機固体電解質を含むものであってもよい。 In the production method of the present disclosure, the solid electrolyte layer may contain an inorganic solid electrolyte.

本開示の方法によれば、析出型のリチウム負極を有し、抵抗の低い全固体電池を製造することができる。 According to the method of the present disclosure, an all-solid-state battery having a deposition-type lithium negative electrode and having low resistance can be manufactured.

全固体電池の製造方法の流れの一例を示している。1 shows an example of the flow of a manufacturing method for an all-solid-state battery. 全固体電池の製造方法の流れの一例を示している。1 shows an example of the flow of a manufacturing method for an all-solid-state battery. 析出型のリチウム負極の表面状態を示している。(A)が圧力Pを加える前の表面状態、(B)が圧力Pを加えた後の表面状態である。The surface state of the deposition type lithium negative electrode is shown. (A) is the surface state before the pressure P2 is applied, and ( B ) is the surface state after the pressure P2 is applied. 比較例に係る全固体電池の抵抗と実施例に係る全固体電池の抵抗とを比較した結果を示している。The result of comparing the resistance of the all-solid-state battery according to the comparative example and the resistance of the all-solid-state battery according to the example is shown.

図1及び図2(A)~(D)に示されるように、実施形態に係る全固体電池の製造方法S10は、正極集電体11と正極活物質層13と固体電解質層15と負極集電体19とがこの順に積層された積層体20を準備すること(工程S1)、前記積層体20に対して積層方向に圧力Pを加えること(工程S2)、前記圧力Pが加えられた後の前記積層体20に対して充電を行い、前記固体電解質層15と前記負極集電体19との間に金属リチウム17を析出させること(工程S3)、及び、前記充電中又は前記充電後の前記積層体20に対して積層方向に圧力Pを加えること(工程S4)、を含む。ここで、前記圧力Pは、前記金属リチウム17が座屈する圧力であり、且つ、前記圧力Pよりも低い。 As shown in FIGS. 1 and 2A to 2D, the method S10 for manufacturing an all-solid-state battery according to the embodiment includes a positive electrode current collector 11, a positive electrode active material layer 13, a solid electrolyte layer 15, and a negative electrode collector. Prepare a laminate 20 in which the conductors 19 are laminated in this order (step S1), apply a pressure P1 to the laminate 20 in the lamination direction (step S2), and apply the pressure P1. After charging, the laminate 20 is charged to deposit metallic lithium 17 between the solid electrolyte layer 15 and the negative electrode current collector 19 (step S3); applying a pressure P2 in the stacking direction to the subsequent stack 20 (step S4). Here, the pressure P2 is a pressure at which the metallic lithium 17 buckles and is lower than the pressure P1.

1.工程S1
図1及び図2(A)に示されるように、工程S1においては、正極集電体11と正極活物質層13と固体電解質層15と負極集電体19とがこの順に積層された積層体20を準備する。
1. process S1
As shown in FIGS. 1 and 2A, in step S1, a laminate in which a positive electrode collector 11, a positive electrode active material layer 13, a solid electrolyte layer 15, and a negative electrode collector 19 are laminated in this order. Prepare 20.

1.1 正極集電体及び負極集電体
正極集電体11及び負極集電体19は、全固体電池の集電体として一般的なものをいずれも採用可能である。正極集電体11及び負極集電体19は、各々、金属箔又は金属メッシュであってもよい。特に、金属箔が取扱い性等に優れる。正極集電体11及び負極集電体19は、各々、複数枚の金属箔からなっていてもよい。正極集電体11及び負極集電体19を構成する金属としては、Cu、Ni、Cr、Au、Pt、Ag、Al、Fe、Ti、Zn、Co、ステンレス鋼等が挙げられる。特に、酸化耐性を確保する観点から、正極集電体11がAlを含むものであってもよく、また、還元耐性を確保する観点及びリチウムと合金化し難い観点から、負極集電体19がCuを含むものであってもよい。正極集電体11及び負極集電体19は、その表面に、抵抗を調整すること等を目的として、何らかのコート層を有していてもよい。また、正極集電体11及び負極集電体19が複数枚の金属箔からなる場合、当該複数枚の金属箔間に何らかの層を有していてもよい。正極集電体11及び負極集電体19の厚みは特に限定されるものではない。例えば、0.1μm以上又は1μm以上であってもよく、1mm以下又は100μm以下であってもよい。
1.1 Positive Electrode Current Collector and Negative Electrode Current Collector As the positive electrode current collector 11 and the negative electrode current collector 19, any one commonly used as current collectors for all-solid-state batteries can be employed. The positive electrode current collector 11 and the negative electrode current collector 19 may each be metal foil or metal mesh. In particular, metal foil is excellent in handleability and the like. Each of the positive electrode current collector 11 and the negative electrode current collector 19 may be composed of a plurality of sheets of metal foil. Examples of metals forming the positive electrode current collector 11 and the negative electrode current collector 19 include Cu, Ni, Cr, Au, Pt, Ag, Al, Fe, Ti, Zn, Co, and stainless steel. In particular, from the viewpoint of ensuring oxidation resistance, the positive electrode current collector 11 may contain Al. may include. The positive electrode current collector 11 and the negative electrode current collector 19 may have some kind of coating layer on their surfaces for the purpose of adjusting resistance or the like. Moreover, when the positive electrode current collector 11 and the negative electrode current collector 19 are made of a plurality of metal foils, some layer may be provided between the plurality of metal foils. The thicknesses of the positive electrode current collector 11 and the negative electrode current collector 19 are not particularly limited. For example, it may be 0.1 μm or more or 1 μm or more, or 1 mm or less or 100 μm or less.

1.2 正極活物質層
正極活物質層13は、少なくとも正極活物質を含み得る。正極活物質層13は、正極活物質に加えて、さらに任意に固体電解質、バインダー及び導電助剤等を含んでいてもよい。正極活物質としてはリチウムイオン電池の正極活物質として公知のものであって、充電時に負極側にリチウムを供給可能なものを用いればよい。例えば、正極活物質としてコバルト酸リチウム、ニッケル酸リチウム、LiNi1/3Co1/3Mn1/3、マンガン酸リチウム、スピネル系リチウム化合物等の各種のリチウム含有複合酸化物を用いることができる。正極活物質と固体電解質との接触による反応を抑制するために、正極活物質の表面にニオブ酸リチウム層やチタン酸リチウム層やリン酸リチウム層等の被覆層が設けられていてもよい。正極活物質は、例えば、粒子状であってもよく、その大きさは特に限定されるものではない。固体電解質は、有機固体電解質(ポリマー固体電解質)及び無機固体電解質のいずれであってもよい。特に、無機固体電解質は、有機ポリマー電解質と比較してイオン伝導度が高く、また、有機ポリマー電解質と比較して耐熱性に優れる。さらに、有機ポリマー電解質と比較して剛性が高い。無機固体電解質としては、例えば、ランタンジルコン酸リチウム、LiPON、Li1+XAlGe2-X(PO、Li-SiO系ガラス、Li-Al-S-O系ガラス等の酸化物固体電解質;LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-SiS-P、LiS-P-LiI-LiBr、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P-GeS等の硫化物固体電解質を例示することができる。中でも、硫化物固体電解質、特にLiS-Pを含む硫化物固体電解質の性能が高い。固体電解質は、例えば、粒子状であってもよく、その大きさは特に限定されるものではない。バインダーとしては、例えば、ブタジエンゴム(BR)系バインダー、ブチレンゴム(IIR)系バインダー、スチレンブタジエンゴム(SBR)系バインダー、アクリレートブタジエンゴム(ABR)系バインダー、ポリフッ化ビニリデン(PVdF)系バインダー、ポリテトラフルオロエチレン(PTFE)系バインダー等が挙げられる。導電助剤としては、アセチレンブラックやケッチェンブラック等の炭素材料やニッケル、アルミニウム、ステンレス鋼等の金属材料が挙げられる。導電助剤は、例えば、粒子状又は繊維状であってもよく、その大きさは特に限定されるものではない。正極活物質層13における各成分の含有量は従来と同様とすればよい。正極活物質層13の形状も従来と同様とすればよい。積層体20をより容易に構成できる観点から、シート状の正極活物質層13であってもよい。正極活物質層13の厚みは、特に限定されるものではない。例えば、0.1μm以上2mm以下であってもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。
1.2 Positive Electrode Active Material Layer The positive electrode active material layer 13 may contain at least a positive electrode active material. In addition to the positive electrode active material, the positive electrode active material layer 13 may optionally contain a solid electrolyte, a binder, a conductive aid, and the like. As the positive electrode active material, one that is known as a positive electrode active material for lithium ion batteries and that can supply lithium to the negative electrode side during charging may be used. For example, various lithium-containing composite oxides such as lithium cobalt oxide, lithium nickel oxide, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , lithium manganate, and spinel-based lithium compounds can be used as the positive electrode active material. can. A coating layer such as a lithium niobate layer, a lithium titanate layer, or a lithium phosphate layer may be provided on the surface of the positive electrode active material in order to suppress reaction due to contact between the positive electrode active material and the solid electrolyte. The positive electrode active material may be, for example, particulate, and its size is not particularly limited. The solid electrolyte may be either an organic solid electrolyte (polymer solid electrolyte) or an inorganic solid electrolyte. In particular, inorganic solid electrolytes have higher ionic conductivity than organic polymer electrolytes, and are superior in heat resistance to organic polymer electrolytes. Furthermore, it has a high rigidity compared to organic polymer electrolytes. Examples of inorganic solid electrolytes include oxide solid electrolytes such as lithium lanthanum zirconate, LiPON, Li 1+X Al X Ge 2-X (PO 4 ) 3 , Li—SiO glass, and Li—Al—S—O glass. Li2SP2S5 , Li2S - SiS2 , LiI - Li2S - SiS2 , LiI - Si2SP2S5 , Li2SP2S5 - LiI - LiBr, Sulfide solids such as LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -GeS 2 Electrolytes can be exemplified. Among them, sulfide solid electrolytes, particularly sulfide solid electrolytes containing Li 2 SP 2 S 5 have high performance. The solid electrolyte may be particulate, for example, and its size is not particularly limited. Examples of binders include butadiene rubber (BR) binders, butylene rubber (IIR) binders, styrene butadiene rubber (SBR) binders, acrylate butadiene rubber (ABR) binders, polyvinylidene fluoride (PVdF) binders, polytetra Examples include fluoroethylene (PTFE) binders. Examples of conductive aids include carbon materials such as acetylene black and Ketjenblack, and metal materials such as nickel, aluminum, and stainless steel. The conductive aid may be, for example, particulate or fibrous, and its size is not particularly limited. The content of each component in the positive electrode active material layer 13 may be the same as the conventional one. The shape of the positive electrode active material layer 13 may also be the same as the conventional one. From the viewpoint of facilitating formation of the laminate 20, the positive electrode active material layer 13 may be in the form of a sheet. The thickness of the positive electrode active material layer 13 is not particularly limited. For example, it may be 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less.

1.3 固体電解質層
固体電解質層15は、少なくとも固体電解質を含み得る。固体電解質層15は、固体電解質に加えて、任意にバインダー等を含んでいてもよい。固体電解質については上述した通りである。特に、固体電解質層15が無機固体電解質を含む場合、固体電解質層15の剛性が高まり、積層体20に加えられる圧力Pが大きい場合においても金属リチウム17が固体電解質層を貫通することが防止され易い。バインダーは正極活物質層13に用いられるバインダーとして例示されたものから適宜選択して用いることができる。固体電解質層15における各成分の含有量は従来と同様とすればよい。固体電解質層15の形状も従来と同様とすればよい。積層体20をより容易に構成できる観点から、シート状の固体電解質層15であってもよい。固体電解質層15の厚みは、例えば、0.1μm以上2mm以下であってもよい。下限は1μm以上であってもよく、上限は1mm以下であってもよい。
1.3 Solid Electrolyte Layer The solid electrolyte layer 15 may contain at least a solid electrolyte. The solid electrolyte layer 15 may optionally contain a binder or the like in addition to the solid electrolyte. The solid electrolyte is as described above. In particular, when the solid electrolyte layer 15 contains an inorganic solid electrolyte, the rigidity of the solid electrolyte layer 15 is increased, and even when the pressure P2 applied to the laminate 20 is large, the metallic lithium 17 is prevented from penetrating the solid electrolyte layer. easy to be The binder can be appropriately selected and used from those exemplified as binders used for the positive electrode active material layer 13 . The content of each component in the solid electrolyte layer 15 may be the same as the conventional one. The shape of the solid electrolyte layer 15 may also be the same as the conventional one. The solid electrolyte layer 15 may be a sheet-like solid electrolyte layer 15 from the viewpoint of facilitating the construction of the laminate 20 . The thickness of the solid electrolyte layer 15 may be, for example, 0.1 μm or more and 2 mm or less. The lower limit may be 1 μm or more, and the upper limit may be 1 mm or less.

1.4 積層体
積層体20は、上述した正極集電体11と正極活物質層13と固体電解質層15と負極集電体19とがこの順に積層されるように、上述した各材料を塗工したり、転写したりすること等によって成形及び積層することで、容易に得られる。積層体20は、正極集電体11と正極活物質層13と固体電解質層15と負極集電体19とを、各々、少なくとも1つずつ含めばよい。すなわち、積層体20は、上述した正極集電体11と正極活物質層13と固体電解質層15と負極集電体19との積層単位を少なくとも1つ有するものであればよく、当該積層単位を複数備えていてもよい。この場合、複数の積層単位が互いに電気的に直列に接続されていてもよいし、並列に接続されていてもよいし、電気的に接続されていなくてもよい。また、積層体20は上記以外の層を含むものであってもよい。
1.4 Laminate The laminate 20 is coated with the materials described above so that the positive electrode collector 11, the positive electrode active material layer 13, the solid electrolyte layer 15, and the negative electrode collector 19 are laminated in this order. It can be easily obtained by molding and laminating by processing, transferring, or the like. The laminate 20 may include at least one positive electrode current collector 11, one positive electrode active material layer 13, one solid electrolyte layer 15, and one negative electrode current collector 19, respectively. That is, the laminate 20 may have at least one lamination unit of the positive electrode current collector 11, the positive electrode active material layer 13, the solid electrolyte layer 15, and the negative electrode current collector 19 described above. You may have more than one. In this case, the plurality of lamination units may be electrically connected in series or parallel to each other, or may not be electrically connected. Moreover, the laminate 20 may include layers other than those described above.

2.工程S2
図1及び図2(B)に示されるように、工程S2においては、工程S1を経て準備された積層体20に対して、積層方向に圧力Pを加える。工程S2は、例えば、積層体20を構成する各層をプレスして一体化することを目的とするものであってもよいし、積層体20を構成する各層の隙間を解消して界面抵抗を低下させることを目的とするものであってもよい。
2. process S2
As shown in FIGS. 1 and 2B, in step S2, a pressure P1 is applied in the stacking direction to the laminate 20 prepared through step S1. The step S2 may be for the purpose of, for example, pressing and integrating the layers constituting the laminate 20, or eliminating the gaps between the layers constituting the laminate 20 to reduce the interfacial resistance. It may be intended to make

工程S2においては、公知の方法によって積層体20を加圧すればよい。例えば、CIP、HIP、ロールプレス、一軸プレス、金型プレス等の種々の加圧方法によって積層体20を積層方向に加圧することができる。特にCIPやHIPのような方圧プレスにて積層体20を加圧した場合、積層体20の積層面をより均一に加圧し易いものと考えられる。 In step S2, the laminate 20 may be pressurized by a known method. For example, the laminate 20 can be pressurized in the stacking direction by various pressurization methods such as CIP, HIP, roll press, uniaxial press, and mold press. In particular, when the laminate 20 is pressurized by a lateral press such as CIP or HIP, it is considered that the lamination surface of the laminate 20 can be easily pressurized more uniformly.

工程S2において、積層体20へと加えられる圧力Pは、後述する圧力Pよりも大きい。圧力Pの大きさは、目的とする電池の性能に応じて適宜決定され得る。例えば、積層体20に含まれる固体電解質を塑性変形させて上述の一体化や隙間の解消を容易に行い得る観点から、圧力Pは100MPa以上、150MPa以上、200MPa以上、300MPa以上又は350MPa以上であってもよい。圧力Pの上限は特に限定されない。工程S2において、積層体20の加圧時間や加圧温度は特に限定されるものではない。 In step S2, the pressure P1 applied to the laminate 20 is greater than the pressure P2 described later. The magnitude of the pressure P1 can be appropriately determined according to the intended performance of the battery. For example, the pressure P1 is 100 MPa or more, 150 MPa or more, 200 MPa or more, 300 MPa or more, or 350 MPa or more from the viewpoint of easily performing the above-described integration and elimination of gaps by plastically deforming the solid electrolyte contained in the laminate 20. There may be. The upper limit of the pressure P1 is not particularly limited. In step S2, the pressing time and pressing temperature of the laminate 20 are not particularly limited.

尚、工程S2及び後述の工程S4において、「積層体に対して積層方向に圧力を加える」とは、積層体に対して少なくとも積層方向に圧力P又はPを加えることを意味し、積層方向への圧力P又はPとともに、積層方向以外の方向への圧力が含まれていてもよい。 In step S2 and step S4 described later, "applying pressure to the laminate in the stacking direction" means applying pressure P1 or P2 to the laminate at least in the stacking direction. A pressure in a direction other than the stacking direction may be included along with the pressure P1 or P2 in the direction.

3.工程S3
図1及び図2(C)に示されるように、工程S3においては、圧力Pが加えられた後の積層体20に対して充電を行い、固体電解質層15と負極集電体19との間に金属リチウム17を析出させる。全固体電池100において、当該金属リチウム17は負極活物質として機能し得る。工程S3における充電は、積層体20を準備した後の1回目の充電であってもよいし、2回目以降の充電であってもよい。
3. Step S3
As shown in FIGS. 1 and 2C, in step S3, the laminate 20 to which the pressure P1 has been applied is charged, and the solid electrolyte layer 15 and the negative electrode current collector 19 are charged. Metallic lithium 17 is deposited therebetween. In the all-solid-state battery 100, the metallic lithium 17 can function as a negative electrode active material. The charging in step S3 may be the first charging after preparing the laminate 20, or may be the second or subsequent charging.

工程S3において、積層体20は一般的な電池の充電方法と同様の方法によって充電されればよい。すなわち、積層体20の正極集電体11及び負極集電体19に外部電源を接続して充電を行えばよい。積層体20を充電することで、図2(C)において下向き矢印で示されるように、正極活物質層13に含まれる正極活物質から固体電解質層15を介して負極集電体19の表面へとリチウムイオンが伝導し、負極集電体19の表面において当該リチウムイオンが電子を受け取って金属リチウム17となって析出する。この時、金属リチウム17は、図2(C)に示されるように、負極集電体19の表面において不均一に析出する。工程S3において金属リチウム17が不均一に析出するのは、電解質層が固体電解質で構成されることが一因と考えられる。具体的には、固体電解質層15と負極集電体19とが固-固界面で接触して、金属リチウム17の析出起点が不均一に生じるためと考えられる。この点、金属リチウム17の析出が不均一となって電池抵抗が増大するという課題は、全固体電池において特有に生じるものと考えられる。 In step S3, the laminate 20 may be charged by a method similar to a general battery charging method. That is, the positive electrode current collector 11 and the negative electrode current collector 19 of the laminate 20 may be charged by connecting an external power source. By charging the laminate 20, as indicated by the downward arrow in FIG. Then, lithium ions are conducted, and the lithium ions receive electrons on the surface of the negative electrode current collector 19 and become metallic lithium 17 to be deposited. At this time, metallic lithium 17 is unevenly deposited on the surface of negative electrode current collector 19, as shown in FIG. 2(C). It is considered that one of the reasons why the metal lithium 17 is deposited non-uniformly in step S3 is that the electrolyte layer is composed of a solid electrolyte. Specifically, it is considered that the solid electrolyte layer 15 and the negative electrode current collector 19 are in contact with each other at the solid-solid interface, and deposition starting points of the metallic lithium 17 are unevenly generated. In this respect, the problem that the deposition of metallic lithium 17 becomes non-uniform and the battery resistance increases is considered to occur peculiarly to all-solid-state batteries.

工程S3において、充電電圧は特に限定されるものではなく、目的とする電池の性能に応じて適宜決定され得る。特に、SOCが高くなるほど、析出する金属リチウム17の量が多くなり、後述する工程S4において金属リチウム17を負極集電体19の表面において均一化し易い。ただし、析出する金属リチウム17の量が多過ぎると、析出する金属リチウム17の柱(図3(A)参照)が大きくなり過ぎて、プレス圧力の集中等が懸念される。この点、充電容量は、例えば、1mAh/cm以上3mAh/cm以下であってもよい。 In step S3, the charging voltage is not particularly limited, and can be appropriately determined according to the intended performance of the battery. In particular, the higher the SOC, the greater the amount of metallic lithium 17 that precipitates, and the metallic lithium 17 tends to be made uniform on the surface of the negative electrode current collector 19 in step S4, which will be described later. However, if the amount of the deposited metallic lithium 17 is too large, the pillars of the deposited metallic lithium 17 (see FIG. 3A) become too large, and there is a concern about concentration of press pressure. In this regard, the charge capacity may be, for example, 1 mAh/cm 2 or more and 3 mAh/cm 2 or less.

4.工程S4
図1及び図2(D)に示されるように、工程S4においては、工程S3における充電中又は工程S3の充電後の積層体20に対して積層方向に圧力Pを加える。工程S4における圧力Pは、金属リチウム17が座屈する圧力であり、且つ、圧力Pよりも低い。これにより、工程S3において負極集電体19の表面に不均一に析出した金属リチウム17を負極集電体19の表面において延展させることができ、負極集電体19の表面において金属リチウム17を均すことができる。結果として、負極集電体19の表面に隙間の少ない金属リチウム17の層(負極活物質層)が形成され、固体電解質層15と金属リチウム17の層との接触状態、金属リチウム17同士の接触状態、金属リチウム17と負極集電体19との接触状態が良好なものとなり易く、全固体電池の抵抗を低下させることができる。上述したように、金属リチウム17の不均一析出によって電池抵抗が増大することは、全固体電池における特有の課題と考えられるところ、製造方法S10は、工程S1~S4を備えることで当該課題を解決するものといえる。
4. Step S4
As shown in FIGS. 1 and 2D , in step S4, a pressure P2 is applied in the stacking direction to the laminate 20 during charging in step S3 or after charging in step S3. The pressure P2 in step S4 is the pressure at which the metallic lithium 17 buckles and is lower than the pressure P1. As a result, the metallic lithium 17 deposited unevenly on the surface of the negative electrode current collector 19 in step S3 can be spread on the surface of the negative electrode current collector 19, and the metallic lithium 17 can be evenly distributed on the surface of the negative electrode current collector 19. can As a result, a layer of metallic lithium 17 with few gaps (negative electrode active material layer) is formed on the surface of the negative electrode current collector 19, and the state of contact between the solid electrolyte layer 15 and the layer of metallic lithium 17, and the contact state of the metallic lithium 17 with each other. The contact state between the metal lithium 17 and the negative electrode current collector 19 tends to be good, and the resistance of the all-solid-state battery can be reduced. As described above, the increase in battery resistance due to non-uniform deposition of metallic lithium 17 is considered to be a problem unique to all-solid-state batteries, and the manufacturing method S10 includes steps S1 to S4 to solve the problem. It can be said that

工程S4においては、公知の方法によって積層体20を加圧すればよい。工程S4における加圧は金属リチウム17を座屈させ得る程度の軽度なものであればよく、様々な加圧方法を採用可能である。例えば、CIP、ロールプレス、一軸プレス、金型プレス等の種々の方法によって積層体20を積層方向に加圧することができる。特に、CIPやHIPのような方圧プレスにて積層体20を加圧した場合、積層体20の積層面をより均一に加圧し易く、金属リチウム17を負極集電体19の表面全体に均し易いものと考えられる。工程S3と工程S4とを同時に行う場合は、加圧とともに充電が可能な方法を採用すればよい。 In step S4, the laminate 20 may be pressurized by a known method. The pressurization in step S4 may be light enough to cause buckling of the metal lithium 17, and various pressurization methods can be employed. For example, the stack 20 can be pressed in the stacking direction by various methods such as CIP, roll press, uniaxial press, and mold press. In particular, when the laminate 20 is pressurized by a direction press such as CIP or HIP, it is easier to press the lamination surface of the laminate 20 more uniformly, and the metallic lithium 17 is spread evenly over the entire surface of the negative electrode current collector 19. is considered to be easy. When step S3 and step S4 are performed at the same time, a method that allows both pressurization and charging may be adopted.

工程S4において、積層体20へと加えられる圧力Pは、金属リチウム17が座屈する圧力である。「金属リチウムが座屈する」とは、固体電解質層15と負極集電体19との間において、金属リチウム17が負極集電体19の表面に沿った方向へと変形・延展することを意味する。本発明者の知見によれば、例えば、圧力Pが0.4MPa以上である場合、金属リチウム17が容易に座屈して負極集電体19の表面において均一化され易い。圧力Pが高いほど、負極集電体19の表面において金属リチウム17が均一化され易く、この点、圧力Pは1MPa以上であってもよい。一方、圧力Pがあまりに高過ぎる場合、金属リチウム17が固体電解質層15の隙間に入り込んで、固体電解質層15を通過する虞がある。圧力Pが圧力Pよりも低いことで、このような問題が回避され易くなる。圧力Pは、例えば、100MPa以下、50MPa以下、10MPa以下又は5MPa以下であってもよい。 In step S4, the pressure P2 applied to the laminate 20 is the pressure at which the metallic lithium 17 buckles. “Metal lithium buckles” means that between the solid electrolyte layer 15 and the negative electrode current collector 19, the metal lithium 17 deforms and extends along the surface of the negative electrode current collector 19. . According to the findings of the present inventors, for example, when the pressure P2 is 0.4 MPa or more , the metallic lithium 17 easily buckles and becomes uniform on the surface of the negative electrode current collector 19 . The higher the pressure P2, the easier it is for the metallic lithium 17 to be homogenized on the surface of the negative electrode current collector 19. In this respect, the pressure P2 may be 1 MPa or more. On the other hand, if the pressure P2 is too high , the metallic lithium 17 may enter the gaps in the solid electrolyte layer 15 and pass through the solid electrolyte layer 15 . Such a problem can be easily avoided by having the pressure P2 lower than the pressure P1. The pressure P2 may be, for example, 100 MPa or less, 50 MPa or less, 10 MPa or less or 5 MPa or less.

工程S4を行うタイミングは、上述の通り、工程S3における充電中又は充電後である。「充電中又は充電後」とは「充電中及び充電後」を含む概念である。すなわち、工程S3において積層体20の充電によって固体電解質層15と負極集電体19との間に金属リチウム17を析出させると同時に当該金属リチウム17を加圧して均一化してもよいし、工程S3において金属リチウム17を析出させた後に当該金属リチウム17を加圧して均一化してもよいし、工程S3における充電中から工程S3の充電後に亘って金属リチウム17を加圧して均一化してもよい。工程S2において、積層体20の加圧時間や加圧温度は特に限定されるものではない。工程S4における加圧は連続的であってもよいし、断続的であってもよい。 The timing for performing step S4 is during or after charging in step S3, as described above. “During charging or after charging” is a concept including “during charging and after charging”. That is, in step S3, the metallic lithium 17 may be deposited between the solid electrolyte layer 15 and the negative electrode current collector 19 by charging the laminate 20, and at the same time, the metallic lithium 17 may be pressurized and homogenized. After depositing the metallic lithium 17 in step S3, the metallic lithium 17 may be pressurized and homogenized, or the metallic lithium 17 may be pressurized and homogenized from charging in step S3 to after charging in step S3. In step S2, the pressing time and pressing temperature of the laminate 20 are not particularly limited. Pressurization in step S4 may be continuous or intermittent.

5.その他の工程
図2(E)に示されるように、工程S1~S4を経ることで、正極集電体11、正極活物質層13、固体電解質層15、金属リチウム17の層(負極活物質層)、及び、負極集電体19をこの順に有する全固体電池100が得られる。製造方法S10は、上述した工程S1~S4以外に、全固体電池を製造するための一般的な工程を含んでいてもよい。例えば、積層体20をラミネートフィルム等の外装体の内部に収容する工程や、積層体20に集電タブを接続する工程等である。積層体20を外装体に収容する工程や積層体20に集電タブを接続する工程は、上記工程S2の前であっても、上記工程S2の後であってもよい。例えば、積層体20の集電体11、19に集電タブを接続(集電体11、19の一部を突出させて、これをタブとしても用いてもよい)したうえで、当該積層体20を外装体としてのラミネートフィルム内に収容する一方で、ラミネートフィルムの外部にタブを引き出した状態で、ラミネートフィルムを封止し、その後、ラミネートフィルム外から圧力P1にて積層体20に対して積層方向に圧力を加え、さらにその後、ラミネートフィルム外のタブを介して積層体20の充電を行ってもよい。
5. Other Steps As shown in FIG. 2(E) , through steps S1 to S4, the positive electrode current collector 11, the positive electrode active material layer 13, the solid electrolyte layer 15, the layer of metallic lithium 17 (negative electrode active material layer). ), and the negative electrode current collector 19 in this order. The manufacturing method S10 may include general steps for manufacturing an all-solid-state battery in addition to the steps S1 to S4 described above. For example, there is a step of housing the laminate 20 inside an exterior body such as a laminate film, a step of connecting a collector tab to the laminate 20, and the like. The step of housing the laminate 20 in the outer package and the step of connecting the collector tab to the laminate 20 may be performed before or after the step S2. For example, after connecting a current collecting tab to the current collectors 11 and 19 of the laminate 20 (a part of the current collectors 11 and 19 may be protruded and used as a tab), the laminate 20 is housed in a laminate film as an outer package, the laminate film is sealed with a tab pulled out to the outside of the laminate film, and then the laminate 20 is subjected to pressure P1 from outside the laminate film. After applying pressure in the stacking direction, the laminate 20 may be charged via a tab outside the laminate film.

以上の通り、製造方法S10によれば、析出型のリチウム負極を有する全固体電池100を製造することができる。ここで、製造方法S10においては、充電中又は充電後の積層体20が圧力Pにて加圧されることで、金属リチウム17の隙間が低減されることから、固体電解質層15と金属リチウム17との接触状態、金属リチウム17同士の接触状態、金属リチウム17と負極集電体19との接触状態が良好となり易く、結果として全固体電池100の抵抗が低減され易い。 As described above, according to the manufacturing method S10, the all-solid-state battery 100 having a deposition-type lithium negative electrode can be manufactured. Here, in the manufacturing method S10, since the gap between the metallic lithium 17 is reduced by pressurizing the laminate 20 during or after charging with the pressure P2, the gap between the solid electrolyte layer 15 and the metallic lithium 17, the contact state between the metal lithium 17, and the contact state between the metal lithium 17 and the negative electrode current collector 19 are easily improved, and as a result, the resistance of the all-solid-state battery 100 is easily reduced.

以下、実施例を示しつつ、本開示の方法についてさらに詳細に説明するが、本開示の方法は以下の実施例に限定されるものではない。 The method of the present disclosure will be described in more detail below with reference to examples, but the method of the present disclosure is not limited to the following examples.

1.実施例
1.1 正極合剤の作製
正極活物質(LiNi1/3Co1/3Mn1/3)と、固体電解質(LiI-LiBr-LiS-P)と、導電助剤(VGCF)と、バインダー(ABR)とを所定の比率で混合して正極合剤を得た。
1. Example 1.1 Production of positive electrode mixture A positive electrode mixture was obtained by mixing an auxiliary agent (VGCF) and a binder (ABR) at a predetermined ratio.

1.2 電解質合剤の作製
固体電解質(LiI-LiBr-LiS-P)と、バインダー(ABR)とを所定の比率で混合して電解質合剤を得た。
1.2 Preparation of Electrolyte Mixture A solid electrolyte (LiI--LiBr--Li 2 SP 2 S 5 ) and a binder (ABR) were mixed at a predetermined ratio to obtain an electrolyte mixture.

1.3 積層体の準備
正極集電体(アルミニウム箔)と、上記の正極合剤により得られる正極活物質層と、電解質合剤により得られる固体電解質層と、負極集電体(銅箔)とを用いて、図2(A)に示される構成を有する積層体を作製した。また、積層体の側面において、各集電体に接続されたタブを突出させた。作製した積層体を外装体としてのラミネートフィルム内に封止した。ここで、タブの一部は、シール材を介して、ラミネートフィルムの外部に引き出されるようにした。
1.3 Preparation of laminate A positive electrode current collector (aluminum foil), a positive electrode active material layer obtained from the positive electrode mixture, a solid electrolyte layer obtained from the electrolyte mixture, and a negative electrode current collector (copper foil) was used to fabricate a laminate having the configuration shown in FIG. 2(A). In addition, tabs connected to each current collector were projected from the side surface of the laminate. The produced laminate was sealed in a laminate film as an outer package. Here, a part of the tab was pulled out of the laminate film through the sealing material.

1.4 積層体の加圧(充電前)
準備した積層体に対して、冷間静水圧(CIP)を用いて、積層方向に392MPaの圧力Pを加え、ラミネートセル化した。
1.4 Pressurization of laminate (before charging)
A pressure P1 of 392 MPa was applied to the prepared laminate using cold isostatic pressure (CIP) in the stacking direction to form a laminate cell.

1.5 積層体の充電
圧力Pにて加圧後の積層体のタブを充放電装置に接続し、25℃にて、0.1Cで4Vまで充電を行った。充電により、固体電解質層と負極集電体との間に金属リチウムが析出した。
1.5 Charging of Laminate The tab of the laminate after being pressurized at pressure P1 was connected to a charging/discharging device, and charged at 25° C. to 4V at 0.1C. By charging, metallic lithium was deposited between the solid electrolyte layer and the negative electrode current collector.

1.6 積層体の加圧(充電後)
充電後の積層体に対し、一軸プレスを用いて、積層方向に5MPaの圧力Pを加えることで、評価用の全固体電池を得た。
1.6 Pressurization of laminate (after charging)
An all-solid-state battery for evaluation was obtained by applying a pressure P2 of 5 MPa to the stacked body after charging in the stacking direction using a uniaxial press.

2.比較例
充電後の積層体に対して、圧力を加えなかったこと以外は、実施例と同様にして評価用の全固体電池を得た。
2. Comparative Example An all-solid-state battery for evaluation was obtained in the same manner as in Examples, except that no pressure was applied to the stacked body after charging.

3.評価
3.1 金属リチウムの状態
実施例及び比較例に係る全固体電池の各々について、固体電解質層から金属リチウム及び負極集電体を剥がし、固体電解質層と負極集電体との間に析出した金属リチウムの状態を観察した。具体的には、負極集電体の表面のうち固体電解質層側の表面をSEMで観察した。図3(A)が比較例についての観察結果、図3(B)が実施例についての観察結果である。
3. Evaluation 3.1 State of metallic lithium For each of the all-solid-state batteries according to Examples and Comparative Examples, the metallic lithium and the negative electrode current collector were peeled off from the solid electrolyte layer, and deposited between the solid electrolyte layer and the negative electrode current collector. The state of metallic lithium was observed. Specifically, of the surfaces of the negative electrode current collector, the surface on the solid electrolyte layer side was observed with an SEM. FIG. 3A shows the observation results for the comparative example, and FIG. 3B shows the observation results for the example.

図3(A)に示されるように、積層体に対して充電を行うことで、固体電解質層と負極集電体との間に金属リチウムが不均一に析出していることが分かる。これは、固体電解質層と負極集電体とが固-固界面で接触して、金属リチウムの析出起点が不均一に生じたためと考えられる。一方、図3(B)に示されるように、充電後の積層体に対して積層方向に圧力Pを加えることで、析出した金属リチウムが座屈して負極集電体の表面に沿って延展し、負極集電体の表面において金属リチウムが均一化されていることが分かる。尚、上記実施例では、充電後の積層体に対して積層方向に圧力Pを加えた場合について例示したが、充電中の積層体に対して積層方向に圧力Pを加えた場合であっても、負極集電体の表面において金属リチウムが均一化される。 As shown in FIG. 3(A), by charging the laminate, metallic lithium is unevenly deposited between the solid electrolyte layer and the negative electrode current collector. This is presumably because the solid electrolyte layer and the negative electrode current collector were in contact with each other at the solid-solid interface, and deposition starting points of metallic lithium were non-uniformly generated. On the other hand, as shown in FIG . 3B, by applying pressure P2 in the stacking direction to the charged stack, the deposited metallic lithium buckles and spreads along the surface of the negative electrode current collector. However, it can be seen that metallic lithium is homogenized on the surface of the negative electrode current collector. In the above examples, the case where the pressure P2 is applied in the stacking direction to the stacked body after charging is exemplified. However, metallic lithium is homogenized on the surface of the negative electrode current collector.

3.2 抵抗の測定
実施例及び比較例に係る全固体電池の各々について、2.3mA/cmで5秒抵抗を測定した。比較例に係る抵抗値を100%として、実施例に係る抵抗値を比較した。結果を図4に示す。
3.2 Resistance Measurement Resistance was measured at 2.3 mA/cm 2 for 5 seconds for each of the all-solid-state batteries according to Examples and Comparative Examples. Taking the resistance value of the comparative example as 100%, the resistance values of the examples were compared. The results are shown in FIG.

図4に示されるように、実施例に係る全固体電池は、比較例に係る全固体電池と比較して、抵抗が60%程度にまで低下した。これは、図3(B)に示されるように、負極集電体の表面において金属リチウムが均一化されて隙間が低減されたことによるものと考えられる。すなわち、不均一に析出した金属リチウムが圧力Pにて加圧されて均されることで、固体電解質層と金属リチウムとの接触状態、金属リチウム同士の接触状態、金属リチウムと負極集電体との接触状態が良好なものとなり、負極側の抵抗が低下した結果、電池全体としての抵抗も低下したものと考えられる。 As shown in FIG. 4, the resistance of the all-solid-state battery according to the example was reduced to about 60% as compared with the all-solid-state battery according to the comparative example. This is presumably because, as shown in FIG. 3B, metallic lithium was made uniform on the surface of the negative electrode current collector and the gaps were reduced. That is, the non - uniformly deposited metallic lithium is pressurized and leveled at the pressure P2, so that the contact state between the solid electrolyte layer and metallic lithium, the contact state between metallic lithium, and the metallic lithium and the negative electrode current collector It is considered that the resistance of the negative electrode side decreased, resulting in a decrease in the resistance of the battery as a whole.

以上の結果から、析出型のリチウム負極を有する全固体電池を製造する際は、以下の手順を経ることで、抵抗の低い全固体電池を製造できることが分かった。 From the above results, it was found that when manufacturing an all-solid-state battery having a deposition type lithium negative electrode, an all-solid-state battery with low resistance can be manufactured by following the steps below.

(1)正極集電体と正極活物質層と固体電解質層と負極集電体とがこの順に積層された積層体を準備する。
(2)前記積層体に対して積層方向に圧力Pを加える。
(3)前記圧力Pが加えられた後の前記積層体に対して充電を行い、前記固体電解質層と前記負極集電体との間に金属リチウムを析出させる。
(4)前記充電中又は前記充電後の前記積層体に対して積層方向に圧力Pを加える。ここで、前記圧力Pは、前記金属リチウムが座屈する圧力であり、且つ、前記圧力Pよりも低い。
(1) Prepare a laminate in which a positive electrode collector, a positive electrode active material layer, a solid electrolyte layer, and a negative electrode collector are laminated in this order.
(2) A pressure P1 is applied to the stack in the stacking direction.
( 3 ) After the pressure P1 is applied, the laminate is charged to deposit metallic lithium between the solid electrolyte layer and the negative electrode current collector.
( 4 ) A pressure P2 is applied in the stacking direction to the laminate during or after the charging. Here, the pressure P2 is a pressure at which the metallic lithium buckles and is lower than the pressure P1.

11 正極集電体
13 正極活物質層
15 固体電解質層
17 金属リチウム
19 負極集電体
20 積層体
100 全固体電池
11 positive electrode current collector 13 positive electrode active material layer 15 solid electrolyte layer 17 metallic lithium 19 negative electrode current collector 20 laminate 100 all-solid battery

Claims (5)

正極集電体と正極活物質層と固体電解質層と負極集電体とがこの順に積層された積層体を準備すること、
前記積層体に対して積層方向に圧力Pを加えること、
前記圧力Pが加えられた後の前記積層体に対して充電を行い、前記固体電解質層と前記負極集電体との間に金属リチウムを析出させること、及び、
前記充電中又は前記充電後の前記積層体に対して積層方向に圧力Pを加えること、
を含み、
前記圧力Pは、前記金属リチウムが座屈する圧力であり、且つ、前記圧力Pよりも低い、
全固体電池の製造方法。
preparing a laminate in which a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, and a negative electrode current collector are laminated in this order;
applying a pressure P1 to the stack in the stacking direction;
charging the laminate to which the pressure P1 has been applied to deposit metallic lithium between the solid electrolyte layer and the negative electrode current collector;
applying pressure P2 in the stacking direction to the stack during or after the charging;
including
the pressure P2 is a pressure at which the metallic lithium buckles and is lower than the pressure P1;
A method for manufacturing an all-solid-state battery.
前記圧力Pが0.4MPa以上である、
請求項1に記載の製造方法。
The pressure P2 is 0.4 MPa or more,
The manufacturing method according to claim 1.
前記圧力Pが5MPa以下である、
請求項1又は2に記載の製造方法。
The pressure P2 is 5 MPa or less,
The manufacturing method according to claim 1 or 2.
前記圧力Pが100MPa以上である、
請求項1~3のいずれか1項に記載の製造方法。
The pressure P1 is 100 MPa or more,
The production method according to any one of claims 1 to 3.
前記固体電解質層が無機固体電解質を含む、
請求項1~4のいずれか1項に記載の製造方法。
The solid electrolyte layer contains an inorganic solid electrolyte,
The production method according to any one of claims 1 to 4.
JP2021103237A 2021-06-22 2021-06-22 Manufacturing method for all-solid battery Pending JP2023002176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021103237A JP2023002176A (en) 2021-06-22 2021-06-22 Manufacturing method for all-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021103237A JP2023002176A (en) 2021-06-22 2021-06-22 Manufacturing method for all-solid battery

Publications (1)

Publication Number Publication Date
JP2023002176A true JP2023002176A (en) 2023-01-10

Family

ID=84797584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021103237A Pending JP2023002176A (en) 2021-06-22 2021-06-22 Manufacturing method for all-solid battery

Country Status (1)

Country Link
JP (1) JP2023002176A (en)

Similar Documents

Publication Publication Date Title
KR101750145B1 (en) Method for producing all-solid-state battery, and all-solid-state battery
JP5765349B2 (en) All-solid battery and method for manufacturing the same
CN110556513B (en) Alkali metal composite electrode material, preparation and application thereof
JP2014127272A (en) Method for manufacturing electrode for all solid state battery
JP2015005421A (en) Electrode body and all-solid-state battery
CN107528043B (en) Battery with a battery cell
KR20230014733A (en) Secondary battery and its manufacturing method
JP5494572B2 (en) All solid state battery and manufacturing method thereof
JP7167752B2 (en) All-solid battery
US20230016169A1 (en) All-solid-state battery and manufacturing method for all-solid-state battery
CN111725475B (en) Method for manufacturing all-solid-state battery and all-solid-state battery
JP2023002176A (en) Manufacturing method for all-solid battery
JP2023533234A (en) Method for manufacturing all-solid-state battery containing solid electrolyte material
JP2020161471A (en) Manufacturing method of all-solid battery, and all-solid battery
CN114583245B (en) All-solid secondary battery
WO2024018247A1 (en) Method for manufacturing lithium secondary battery
US20220320499A1 (en) Anode for all-solid-state battery
US20230299331A1 (en) Secondary battery
US20240047735A1 (en) Lithium sulfur battery
JP6776978B2 (en) An all-solid-state lithium-ion secondary battery including a negative electrode for an all-solid-state lithium-ion secondary battery and its negative electrode.
US20240088394A1 (en) Secondary battery
US20240055652A1 (en) Secondary battery
JP2018181708A (en) Negative electrode mixture material for all-solid lithium ion secondary battery, negative electrode including the same, and all-solid lithium ion secondary battery having negative electrode hereof
CN117917793A (en) Secondary battery and method for manufacturing same
CN117638409A (en) Lithium metal secondary battery