JP2022549391A - Asymmetric section metal beam with rupture alarm function - Google Patents

Asymmetric section metal beam with rupture alarm function Download PDF

Info

Publication number
JP2022549391A
JP2022549391A JP2021559545A JP2021559545A JP2022549391A JP 2022549391 A JP2022549391 A JP 2022549391A JP 2021559545 A JP2021559545 A JP 2021559545A JP 2021559545 A JP2021559545 A JP 2021559545A JP 2022549391 A JP2022549391 A JP 2022549391A
Authority
JP
Japan
Prior art keywords
section
cross
asymmetric
zone
neutral axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021559545A
Other languages
Japanese (ja)
Inventor
▲頼▼政興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2022549391A publication Critical patent/JP2022549391A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B5/29Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated the prefabricated parts of the beams consisting wholly of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/36Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
    • E04B5/38Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
    • E04B5/40Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element with metal form-slabs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • E04C3/294Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete of concrete combined with a girder-like structure extending laterally outside the element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0413Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/0434Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the open cross-section free of enclosed cavities
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0452H- or I-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0465Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section square- or rectangular-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0473U- or C-shaped

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Measuring Fluid Pressure (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【課題】破壊警報機能を備えた非対称断面金属梁を提供する。【解決手段】破壊警報機能を備えた非対称断面金属梁は本体10を有し、本体10断面の断面形状は中性軸NAにおいて定義され、純粋曲げモーメント負荷を受けた時の圧力区と張力区を定義し、本体10各点は弾性範囲内で中性軸NAに対して線形関係を呈し、本体10断面の断面形状は中性軸NAにより両辺が非対称を呈し、最大曲げモーメント箇所の本体10断面の圧力区の断面係数は張力区の断面係数より大きく、本体10断面の圧力区がストレスを受けて弾性限度に達した後に収率し塑性変形に入る前に、張力区がストレスを受けて先に弾性限度を超過し先に収率し塑性変形に入り、張力区が塑性変形段階に入ることで、圧力区が圧縮せん断破壊を起こす可能性があるという警報作用を生じることができる。【選択図】図4bAn asymmetric cross-section metal beam with a rupture alarm feature is provided. SOLUTION: An asymmetric cross-section metal beam with a rupture alarm function has a body 10, the cross-sectional shape of the body 10 cross-section is defined in the neutral axis NA, and the pressure zone and the tension zone when subjected to a pure bending moment load. Each point of the body 10 exhibits a linear relationship with respect to the neutral axis NA within the elastic range, the cross-sectional shape of the body 10 is asymmetrical on both sides with respect to the neutral axis NA, and the maximum bending moment of the body 10 The section modulus of the pressure section of the cross section is greater than the section modulus of the tension section. The elastic limit is exceeded first, the yield is plastically deformed first, and the tension zone enters the plastic deformation stage, which can generate a warning that the pressure zone may undergo compressive shear failure. [Selection drawing] Fig. 4b

Description

本発明は梁構成部材に関し、特に破壊警報機能を備えた非対称断面金属梁に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to beam components, and more particularly to asymmetric cross-section metal beams with rupture alarms.

現在業界で行われている金属ビーム採用の実務的方法には、少なくとも以下の欠点が存在する。
1.鉄筋コンクリート床板(RC DECK)は鋼本体の断面係数に非常に大きな影響を及ぼす。対称断面では圧力区、張力区が、曲げモーメントと軸圧力を受け臨界負荷に達すると、圧力区が先に収率するが、業界では鉄筋コンクリート床板の鋼本体の断面係数に対する影響が通常は軽視されているため、大ビーム端の張力区の断面係数が圧力区より大きくなり、及び/或いは圧力区が先に臨界破壊に達しても気づかれない。
2.また、現在の業界では、梁軸力(即ち梁構成部材が負荷を受けて生まれる圧力)が軽視されているため、両端固定(Fixed End)の鉄骨大ビームにとって、それが負荷を受けた時に生じる、いわゆる軸圧力より圧力区が先に弾性限度に達しても気づかない。
3.さらに、鉄筋コンクリートプレートの片持ち鋼梁も、プレートビーム結合であるため、張力区の断面係数は圧力区の断面係数より大きい。
At least the following shortcomings exist in the practical method of adopting metal beams currently used in the industry.
1. Reinforced concrete deck (RC DECK) has a very large effect on the section modulus of the steel body. In the symmetric section, when the pressure zone and tension zone reach the critical load due to the bending moment and axial pressure, the pressure zone yields first, but the industry generally neglects the impact on the section modulus of the steel body of the reinforced concrete floor plate. Therefore, even if the section modulus of the tension section at the end of the large beam is larger than that of the pressure section and/or the pressure section reaches critical failure first, it will not be noticed.
2. In addition, in the current industry, the beam axial force (that is, the pressure generated when the beam component is loaded) is neglected. , even if the pressure zone reaches the elastic limit before the so-called axial pressure, it is not noticed.
3. In addition, since the cantilever steel beams of reinforced concrete plates are also plate-beam joints, the section modulus of the tension section is greater than that of the pressure section.

しかし、上述の、業界で現在行われている金属ビーム採用の方法は、鉄筋コンクリート床板の鋼本体の断面係数に対する影響を軽視し、梁軸力を軽視し、及び鉄筋コンクリートプレートの片持ち鋼梁が、プレートビーム結合により、張力区の断面係数が圧力区の断面係数より大きいという実際の状況を生んでいる。
これらのせいで、梁において、圧力区が先に弾性限度に達し、先に張力区において収率するため、瞬間的に圧縮せん断破壊が発生し、深刻な結果を招くおそれがある。
以上より、従来の梁構成部材の上述の問題及び欠点を如何にして解決するかが、本発明の主要な課題である。
However, the above-mentioned method of adopting metal beams currently practiced in the industry neglects the impact on the section modulus of the steel body of the reinforced concrete floor plate, neglects the beam axial force, and the cantilever steel beams of the reinforced concrete plate Plate-beam coupling creates a practical situation where the section modulus of the tension section is greater than that of the pressure section.
Due to these factors, in the beam, the elastic limit is reached first in the pressure zone, and the tension zone is yielded first, so that the compressive shear fracture occurs instantaneously, which may lead to serious consequences.
In view of the above, how to solve the above-mentioned problems and drawbacks of conventional beam members is the main subject of the present invention.

前記の先行技術には、梁において、圧力区が先に弾性限度に達し、先に張力区において収率するため、瞬間的に圧縮せん断破壊が発生し、深刻な結果を招くおそれがあるという欠点がある。 The above-mentioned prior art has the disadvantage that in the beam, the elastic limit is reached first in the pressure zone, and the tension zone is yielded first, so that the compressive shear fracture occurs instantaneously, which may lead to serious consequences. There is

本発明は本体断面に非対称断面配置を採用することで、張力区が先に弾性限度に達し、先に圧力区が収率し塑性変形に入り、張力区の塑性変形により、圧力区が圧縮せん断破壊を起こす可能性があるという警報機能を生じ、上述の課題を解決できる破壊警報機能を備えた非対称断面金属梁に関する。 The present invention adopts an asymmetrical cross-sectional arrangement in the cross section of the main body, so that the tension zone reaches the elastic limit first, the pressure zone first yields and enters plastic deformation, and the plastic deformation of the tension zone causes the pressure zone to undergo compressive shear. It relates to an asymmetric cross-section metal beam with a rupture alarm function that generates an alarm function of possible rupture and can solve the above-mentioned problems.

本発明による破壊警報機能を備えた非対称断面金属梁は、本体に本体断面を備え、本体断面の断面形状は中性軸において定義され、本体断面は純粋な曲げモーメント負荷を受けた時の圧力区と張力区に定義される。
該本体各点は弾性範囲内で、中性軸NAに対して線形関係を呈し、該本体断面の断面形状は中性軸により両辺が非対称を呈し、該本体の最大曲げモーメント箇所は、本体断面の該圧力区の断面係数が、該張力区の断面係数より大きく、圧力区のストレスが弾性限度に達し収率する前に、張力区のストレスは先に弾性限度を超過し、先に収率し、張力区が先に収率し塑性変形を起こすことで、圧力区が圧縮せん断破壊を起こす可能性があるという警報作用を生じる。
The asymmetric cross-section metal beam with rupture alarm function according to the present invention comprises a body section in a body, the cross-sectional shape of the body section being defined at the neutral axis, and the body section being the pressure zone when subjected to a pure bending moment load. and tension zone.
Each point of the body exhibits a linear relationship with respect to the neutral axis NA within the elastic range, the cross-sectional shape of the body exhibits asymmetry on both sides with respect to the neutral axis, and the maximum bending moment point of the body is The section modulus of the pressure section is greater than the section modulus of the tension section, and before the stress in the pressure section reaches the elastic limit and yields, the stress in the tension section first exceeds the elastic limit and yields However, since the tension zone yields first and causes plastic deformation, there is a warning effect that the pressure zone may cause compressive shear failure.

よって、本発明の本体断面設計は、その断面形状を定義する中性軸により、両辺が非対称を呈する。
これにより、本体の最大曲げモーメント箇所の本体断面の圧力区の断面係数は、張力区の断面係数より大きくなる。
そのため、本体が負荷を受け、張力区が既に弾性限度に達し収率後に塑性変形に入り、張力区が塑性変形段階に入ることで、圧力区に対して圧縮せん断破壊が起きる前に警報作用を生じ、人員の退避或いは構造補強などの緊急処置の時間を確保できる。
Thus, the body cross-sectional design of the present invention exhibits asymmetry on both sides due to the neutral axis that defines the cross-sectional shape.
As a result, the section modulus of the pressure section of the body section at the maximum bending moment of the body is greater than the section modulus of the tension section.
Therefore, when the main body is loaded, the tension section has already reached the elastic limit and enters plastic deformation after yield, and the tension section enters the plastic deformation stage, so that the pressure section has an alarm before compression shear fracture occurs. This will allow time for emergency measures such as evacuation of personnel or reinforcement of structures.

本発明による実施形態の金属梁のサポート及び均一負荷重の模式図である。FIG. 4 is a schematic diagram of a metal beam support and uniform load in an embodiment according to the present invention; 本発明による実施形態のH型非対称本体断面の金属梁の模式図であり、図中の本体断面は、幅が同じで、中性軸両辺の厚さは異なる。1 is a schematic view of a metal beam with an H-shaped asymmetric body cross-section in an embodiment according to the present invention, wherein the body cross-sections in the figure have the same width and different thicknesses on both sides of the neutral axis; 本発明による実施形態の口型非対称本体断面の金属梁の模式図であり、図中の本体断面は、幅が同じで、中性軸両辺の厚さは異なる。FIG. 4 is a schematic view of a metal beam with a mouth-shaped asymmetric body cross-section of an embodiment according to the present invention, wherein the body cross-sections in the figure have the same width and different thicknesses on both sides of the neutral axis; 本発明による実施形態の別種のH型非対称本体断面の金属梁の模式図であり、図中の本体断面は、厚さは同一だが、中性軸両辺の幅は異なる。FIG. 4 is a schematic view of another H-shaped asymmetric body cross-section metal beam according to an embodiment of the present invention, wherein the body cross-sections in the figures have the same thickness but different widths on both sides of the neutral axis; 本発明による実施形態の別種の口型非対称本体断面の金属梁の模式図であり、図中の本体断面は、厚さは同一だが、中性軸両辺の幅は異なる。FIG. 4 is a schematic view of another mouth-shaped asymmetric body cross-section metal beam according to an embodiment of the present invention, wherein the body cross-sections in the figures have the same thickness but different widths on both sides of the neutral axis; 従来のH型対称本体断面の金属梁の断面図であり、図中の比率は実際の規格に基づいたものではなく、例示に過ぎない。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a conventional H-shaped symmetrical body cross-section metal beam, and the proportions in the figure are not based on actual standards, but are for illustration only; 本発明による実施形態のH型非対称本体断面の金属梁の断面図であり、図中の比率は実際の規格に基づいたものではなく、例示に過ぎない。1 is a cross-sectional view of a metal beam with an H-shaped asymmetrical body cross-section of an embodiment according to the present invention, the proportions in the figure are not based on actual standards, but are for illustration only; FIG. 本発明による実施形態の別種のH型非対称本体断面の金属梁の断面図であり、図中の比率は実際の規格に基づいたものではなく、例示に過ぎない。FIG. 4 is a cross-sectional view of another H-shaped asymmetric body cross-sectional metal beam according to an embodiment of the present invention, the proportions in the figures are not based on actual standards, but are for illustration only; 従来のH型対称本体断面の金属梁連結床板の模式図である。1 is a schematic view of a conventional metal beam connecting floor plate with an H-shaped symmetrical main body section; FIG. 本発明による実施形態の別種の金属梁のサポート及び均一負荷重の模式図である。FIG. 4 is a schematic diagram of another kind of metal beam support and uniform load in an embodiment according to the present invention; 図6aの金属梁が均一荷重を受けた際の曲げモーメント図である。FIG. 6b is a bending moment diagram when the metal beam of FIG. 6a receives a uniform load;

(一実施形態)
上述の発明の内容において開示した中心思想について説明するため、以下では具体的な実施形態を用いる。
実施形態中の各種の物件は、説明に適した比率、大きさ、変形量或いはいは移動量で表示しており、実際の部品の比率に基づいた表示でないことを、ここに明記する。
また、以下で提示する実施形態において、同一の部品は同一の符号により説明する。
(one embodiment)
Specific embodiments are used below to explain the core ideas disclosed in the above subject matter.
Various objects in the embodiments are shown with ratios, sizes, deformation amounts, or movement amounts suitable for explanation, and are not shown based on actual ratios of parts.
Also, in the embodiments presented below, the same parts are described with the same reference numerals.

図1~図6bに示す、本発明による破壊警報機能を備えた非対称断面金属梁は、図1に示す通り、本体10を有する。
本体10は本実施形態中では、横梁(ビーム)で、複数のサポート部材20のサポートを受け負荷を受け止め、正、負の曲げモーメントを呈する複数の区間を生じる。
The asymmetric section metal beam with rupture alarm function according to the present invention, shown in FIGS. 1-6b, has a body 10, as shown in FIG.
The body 10, in this embodiment, is a beam, supported and loaded by a plurality of support members 20, resulting in a plurality of sections exhibiting positive and negative bending moments.

本発明の本体10は、本体断面を備え、本体断面の断面形状は、定義された中性軸NAにより両辺が非対称を呈し、非対称断面ではない。
本体断面は、純粋な曲げモーメント負荷を受けた時の圧力区と張力区に定義され、本体断面各点は弾性範囲内で、中性軸NAに対して線形関係を呈する。
本体10は、最大曲げモーメント箇所の本体断面で、圧力区の断面係数は、張力区の断面係数より大きい。
圧力区が受けるストレスが弾性限度(Elastic Limit)に達し、収率(Yield)する前に、張力区が受けるストレスは先に弾性限度を超過した後に収率し、塑性変形に入り、張力区が塑性変形段階に入ることで、圧力区は張力が弾性限度に達した後に展延変形を起こし、圧縮せん断破壊を起こす可能性があるという警報作用を生じる。
弾性限度とは、金属ビームが収率前に受け止め可能なストレスの臨界限度(張力と圧力)である。
即ち、ストレスが弾性限度を超過すると、金属ビームは収率を始め、塑性変形に入る。
The body 10 of the present invention comprises a body cross-section, the cross-sectional shape of the body cross-section being asymmetric on both sides with a defined neutral axis NA and not an asymmetric cross-section.
The cross section of the main body is defined in the pressure zone and the tension zone when a pure bending moment load is applied, and each point of the main body cross section exhibits a linear relationship with the neutral axis NA within the elastic range.
The body 10 has a section modulus at the point of maximum bending moment, and the section modulus of the pressure section is greater than the section modulus of the tension section.
Before the stress received by the pressure zone reaches the elastic limit and yields, the stress received by the tension zone first exceeds the elastic limit and then yields, enters into plastic deformation, and the tension zone By entering the plastic deformation stage, the pressure zone will undergo spreading deformation after the tension reaches the elastic limit, giving rise to a warning effect that compressive shear failure may occur.
The elastic limit is the critical limit of stress (tension and pressure) that a metal beam can take before yielding.
That is, when the stress exceeds the elastic limit, the metal beam begins yielding and goes into plastic deformation.

本体10は好ましくは、H型鋼梁、口型鋼梁(図2a~図3b参照)である。
本体断面の断面形状は、中性軸NAにより、非対称の両辺を呈する。
一実施形態中では、本体断面の幅が同じであるが、厚さは、一辺が厚く、かつもう一辺は薄い(図2a~図2b参照)。
厚い方の一辺は、最大曲げモーメント箇所圧力区で、断面係数がより大きい。
また、薄い方の一辺は、最大曲げモーメント箇所張力区で、断面係数がより小さい。
本発明の本体10の厚さの差異は、前記に限定されない。
例えば、別種の一実施形態中では、本体断面の厚さは同じであるが、幅は、一辺が広く、かつもう一辺が狭い(図3a~図3b参照)。
この時、広い方の一辺は、圧力区で、断面係数がより大きく、かつ狭い方の一辺は、張力区で、断面係数がより小さい。
The body 10 is preferably an H-shaped steel beam, a mouth-shaped steel beam (see FIGS. 2a-3b).
The cross-sectional shape of the cross-section of the main body exhibits both sides of asymmetry with respect to the neutral axis NA.
In one embodiment, the width of the body cross-section is the same, but the thickness is thicker on one side and thinner on the other (see Figures 2a-2b).
The thicker side is the pressure zone where the maximum bending moment is, and the section modulus is larger.
In addition, the thinner side has a smaller section modulus in the tension section at the point of maximum bending moment.
The thickness difference of the main body 10 of the present invention is not limited to the above.
For example, in another embodiment, the thickness of the body cross section is the same, but the width is wider on one side and narrower on the other (see Figures 3a-3b).
At this time, the wider side is the pressure zone with a larger section modulus, and the narrower side is the tension zone with a smaller section modulus.

例えば、断面形状が中性軸NAにより両辺が対称であるH形金属鋼梁では、その本体断面の規格は、H400L*200W*7t*11T(図4a参照。Lは高さ、Wは幅、tはウェブ厚さ、Tは上下フランジ厚さ)である。
断面形状が、中性軸NAにより、非対称の両辺を呈するH形金属鋼梁(図4b参照)では、その本体断面の規格は、H400L*200W*7t*12T1/10T2(T1を最大曲げモーメント箇所圧力区とみなし、T2を最大曲げモーメント箇所張力区とみなす)である。
別種の断面形状が、中性軸NAにより、非対称の両辺を呈するH形金属鋼梁(図4c参照)では、その本体断面の規格は、H400L*200W*7t*15T1/7T2である。
この三本のH形金属鋼梁の断面積、単位重量、慣性モーメントIx、断面係数Sx、及び断面係数Sxの比率を、表1に示す。
For example, in an H-shaped metal steel beam whose cross-sectional shape is symmetrical on both sides with respect to the neutral axis NA, the standard for its body cross-section is H400L*200W*7t*11T (see FIG. 4a. L is height, W is width, t is the web thickness and T is the top and bottom flange thickness).
In the H-shaped metal steel beam (see Fig. 4b) whose cross-sectional shape presents both sides asymmetrical with respect to the neutral axis NA, the standard for the body cross-section is H400L*200W*7t*12T1/10T2 (T1 is the maximum bending moment point It is regarded as a pressure section, and T2 is regarded as a tension section at the maximum bending moment.
Another kind of cross-sectional shape is H-shaped metal steel beam (see FIG. 4c) with both sides of asymmetry with neutral axis NA, the standard of its body cross-section is H400L*200W*7t*15T1/7T2.
Table 1 shows the cross-sectional area, unit weight, moment of inertia Ix, section modulus Sx, and section modulus Sx ratio of these three H-shaped metal steel beams.

Figure 2022549391000002
Figure 2022549391000002

表1に示す通り、モデル1、2、3の断面積は共に、70.46cmで、単位重量は共に、56.1kgf/mである。
その内、モデル1の断面係数(S)は、990cmで、比率は、100%である。
モデル2と比較する。
断面積、単位重量の条件不変の状況下で、本体断面の規格について上、下フランジ11の厚さのみを変えると、中性軸NAにより両辺が非対称を呈する。
即ち、上下フランジ11の厚さをそれぞれ10mm及び12mmに変える。
この時、モデル2の断面係数は、厚さが12mmのフランジ11側(即ち圧力区)で1039cmまで高まり、モデル1に比べて5%向上する。
同時に、断面係数は、厚さが10mmのフランジ11側(即ち張力区)で937cmまで低下し、モデル1に比べて5%低下する。
さらに、モデル3と比較する。
同様に、本体断面の規格について上、下フランジ11の厚さを変えると、中性軸NAにより両辺が非対称を呈する。
即ち、上、下フランジ11の厚さをそれぞれ7mm及び15mmに変える。
この時、モデル3の断面係数は、厚さが15mmのフランジ11側(即ち圧力区)で1158cmまで高まり、モデル1に比べて17%向上する。
同時に、断面係数は、厚さが7mmのフランジ11側(即ち張力区)で、761cmまで低下し、モデル1に比べて23%低下する。
以上より明らかなように、本体断面を臨界点荷重方向が固定された構造(建築用梁、辺柱など)に用いると、断面係数が、相対的に大きい側は積載荷重を高められ、断面係数が相対的に小さい側が張力状態なら、弾性限度を超過した後に収率し、展延変形して破壊され、圧縮せん断破壊の警報作用を発揮する。
As shown in Table 1, Models 1, 2 and 3 all have cross-sectional areas of 70.46 cm 2 and unit weights of 56.1 kgf/m.
Among them, the section modulus (S x ) of model 1 is 990 cm 3 and the ratio is 100%.
Compare with model 2.
If only the thicknesses of the upper and lower flanges 11 are changed with respect to the standard of the cross section of the main body under the same conditions of cross-sectional area and unit weight, both sides are asymmetrical with respect to the neutral axis NA.
That is, the thicknesses of the upper and lower flanges 11 are changed to 10 mm and 12 mm, respectively.
At this time, the section modulus of model 2 increases to 1039 cm 3 on the flange 11 side (that is, the pressure zone) with a thickness of 12 mm, which is 5% higher than that of model 1.
At the same time, the section modulus is reduced to 937 cm 3 on the 10 mm thick flange 11 side (ie tension section), which is 5% lower than model 1 .
Further, compare with Model 3.
Similarly, if the thicknesses of the upper and lower flanges 11 are changed with respect to the standard of the cross section of the main body, both sides exhibit asymmetry with respect to the neutral axis NA.
That is, the thicknesses of the upper and lower flanges 11 are changed to 7 mm and 15 mm, respectively.
At this time, the section modulus of model 3 increases to 1158 cm 3 on the flange 11 side (that is, the pressure zone) with a thickness of 15 mm, which is 17% higher than that of model 1.
At the same time, the section modulus is reduced to 761 cm 3 on the 7 mm thick flange 11 side (ie tension section), which is 23% lower than model 1.
As is clear from the above, when the body cross section is used for a structure with a fixed critical point load direction (construction beams, side pillars, etc.), the side with a relatively large section modulus can increase the load, and the section modulus If the side with relatively small V is in tension, it will yield after exceeding the elastic limit, will be stretched and broken, and will have a compressive shear failure warning effect.

図1に示す通り、前述の本体10は床板Dを有し、上のフランジ11に敷設し、せん断釘30により固定する。せん断釘30の密度と強度が十分なら、床板Dは、せん断釘30と本体10によりつながり、T型の一体梁のようになる(図5参照)。
この時、本体10は、サポート部材40間のスパンが正曲げモーメントで圧力区が上、張力区が下であるため、上のフランジ11は床板Dに拘束され、圧力区の断面係数は拡大し、積載荷重を高める。
構造モデルからいえば、材料力学により曲げモーメント関係式(式1参照)に表現することができる。
しかも、図6(a)に示す通り、両辺サポート部材40(端点A、Bと表示)とスパンの中央は共に、臨界点(端点A、Bは、特徴臨界点)である。
図6(b)に示す通り、MとMは共に、負曲げモーメントで、Mmaxは、正曲げモーメントである。

Figure 2022549391000003
As shown in FIG. 1, the aforementioned body 10 has a floorboard D, laid on the upper flange 11 and secured by shear nails 30 . If the shear nail 30 has sufficient density and strength, the floor board D will be connected to the shear nail 30 by the main body 10, like a T-shaped integral beam (see FIG. 5).
At this time, the main body 10 has a positive bending moment in the span between the support members 40, the pressure zone is on the top, and the tension zone is on the bottom. , to increase the payload.
In terms of the structural model, it can be expressed as a bending moment relational expression (see Formula 1) by material mechanics.
Moreover, as shown in FIG. 6A, both the both-side support members 40 (labeled as end points A and B) and the center of the span are critical points (end points A and B are characteristic critical points).
As shown in FIG. 6(b), both M A and M B are negative bending moments and M max is a positive bending moment.
Figure 2022549391000003

本体10はサポート部材40箇所が負曲げモーメントで、張力区が上、圧力区が下であるなら、上のフランジ11は同様に床板Dに拘束され、反対に張力区の断面係数は拡大し、積載荷重を高める。
サポート部材40箇所は圧力区となり、先に弾性限度を超過し破壊される。
これにより明らかなように、本体10に床板Dが結合している時、本体10に対して拡大した張力区の断面係数は、積載荷重を高め、圧力区が先に弾性限度を超過し、瞬間的に圧縮せん断破壊され、床板構造設計時の安全性に甚大な影響を及ぼす。
しかし、現在の建築業界の慣行である構造分析設計方式では、床板と本体10の結合には、大した意味がなく、軽視し考慮しなくても良いとされているため、限界を超えた使用時に圧力区が瞬間的に破壊する危険が発生する可能性がある。
If the support member 40 of the main body 10 has a negative bending moment, the tension section is the upper side, and the pressure section is the lower side, the upper flange 11 is also restrained by the floor plate D, and the section modulus of the tension section is increased, Increase payload.
40 parts of the support member become a pressure zone, and the elastic limit is exceeded first and destroyed.
As can be seen from this, when the floor plate D is connected to the body 10, the section modulus of the tension zone expanded with respect to the body 10 will increase the load, and the pressure zone will exceed the elastic limit first and momentarily compression shear failure, which has a significant impact on safety when designing the floor plate structure.
However, in the structural analysis design method, which is the practice in the current building industry, the connection between the floor plate and the main body 10 has no great meaning and should be neglected and not considered, so it is used beyond the limit. Occasionally, there is a danger that the pressure zone will burst instantly.

例を挙げる。
仮に、本体10が、両端にのみ前述のサポート部材40を有するなら、両サポート部材40間はスパンで、サポート部材40箇所は、サポート部材セクションである。
本体10の本体断面は、前述のH400L*200W*7t*11Tの規格を採用し、かつ本体10の均一負荷は、3000kgf/mである。
本体10は上のフランジ11に、前述のように、床板Dを敷設し、せん断釘30により固定する。
この時、均一負荷を3300kgf/mまで高めれば、限界を超えた使用となる。
表2により明らかなように、サポート部材セクションの張力区は、断面係数が拡大することで積載荷重を高め、ストレス比率は弾性限度を超過せず、反対に、サポート部材セクションの圧力区ストレス比率が既に弾性限度を超過し、破壊される(表2において、σは断面最大ストレス、fyは金属材料の収率ストレス。仮に2500kgf/cmなら、S、Sは圧縮、張力区の断面係数。下表3、7、8も同様)。
For example.
If the body 10 only has the aforementioned support members 40 at both ends, then the span between the support members 40 is the span and the support member 40 is the support member section.
The body section of the body 10 adopts the above-mentioned standard of H400L*200W*7t*11T, and the uniform load of the body 10 is 3000 kgf/m.
The main body 10 has the upper flange 11 on which the floor board D is laid and fixed by the shear nails 30 as described above.
At this time, if the uniform load is increased to 3300 kgf/m, it will be used beyond the limit.
As can be seen from Table 2, the tension section of the support member section increases the load by increasing the section modulus, the stress ratio does not exceed the elastic limit, and conversely, the pressure section stress ratio of the support member section increases. It has already exceeded the elastic limit and is destroyed (in Table 2, σ is the maximum cross-sectional stress, fy is the yield stress of the metal material. If it is 2500 kgf / cm 2 , S pressure , S tension is compression, section modulus of tension section The same applies to Tables 3, 7 and 8 below).

Figure 2022549391000004
Figure 2022549391000004

同様に、均一負荷を3300kgf/mまで高めれば、限界を超えた使用状況下で、採用する本体10の本体断面を、H400L*200W*7t*14T1/8T2の非対称断面の規格に変える。
この時、表3に示す通り、サポート部材セクションの張力区は、断面係数が拡大することで、積載荷重は高くなる。
但し、本体10の本体断面の断面形状が中性軸NAにより両辺が非対称を呈することで、床板Dをつなぐ本体10の圧力区の断面係数は、張力区の断面係数より依然として大きくなるよう調整できる。これによりサポート部材セクションの圧力区のストレス比率が、限界を超えた使用時に、弾性限度を超過することはなく、サポート部材セクションの張力区のストレス比率は、先に弾性限度を超過した後収率し、塑性変形破壊に入り、同様に、圧力区は、警告なしに発生する瞬間的な圧縮せん断破壊の警報作用を生じることができる。
Similarly, if the uniform load is increased to 3300 kgf/m, the cross section of the main body 10 to be adopted is changed to the asymmetric cross section standard of H400L*200W*7t*14T1/8T2 under conditions of use exceeding the limit.
At this time, as shown in Table 3, the section modulus of the tension section of the support member section increases, so that the load increases.
However, since the cross-sectional shape of the main body section of the main body 10 is asymmetrical on both sides with respect to the neutral axis NA, the section modulus of the pressure section of the main body 10 connecting the floor plate D can still be adjusted to be greater than the section modulus of the tension section. . As a result, when the stress ratio of the pressure zone of the support member section exceeds the limit, the elastic limit is not exceeded, and the stress ratio of the tension zone of the support member section exceeds the elastic limit first. and enter into plastic deformation failure, similarly pressure zones can produce the alarming effect of momentary compressive shear failure that occurs without warning.

Figure 2022549391000005
Figure 2022549391000005

また、例えば、均一負荷が2750kgf/mで限界を超えた使用でない状況では、本体10は上のフランジ11に同様に床板Dを敷設し、せん断釘30により固定する。
現行の業界の慣例の構造分析では床板Dの影響を考慮しない。
そこで、RH400L*200W*7t*11T以上の規格を採用すれば、現れるストレス比率は表4の通りである。
In addition, for example, when the uniform load is 2750 kgf/m and is not used beyond the limit, the floor board D is similarly laid on the upper flange 11 of the main body 10 and fixed with the shear nail 30 .
Current industry practice structural analysis does not consider the effect of floorboard D.
Therefore, if a standard of RH400L*200W*7t*11T or higher is adopted, the stress ratio that appears is shown in Table 4.

Figure 2022549391000006
Figure 2022549391000006

上記を受けて、同一の条件下で、本発明の非対称断面金属梁を採用すれば、実態に合わせて床板Dの影響を考慮すべきである。
この時、本体10の本体断面は、規格を下げ、H380L*190W*7t*14T1/8T2の非対称断面の規格を採用する。
表5に示す通り、圧力区及び張力区のストレス比率は共に弾性範囲内(ストレス比率≦1)である。
かつ、床板Dを有する時、サポート部材セクションの圧力区断面係数は、張力区より高く、より高い積載荷重を依然として備える。
また、限界を超えた使用の状況下でも、サポート部材セクションの張力区のストレス比率は、先に弾性限度を超過した後収率し、塑性変形破壊に入るが、圧力区は、警告なしに発生する瞬間的な圧縮せん断破壊の警報作用を生じることができるばかりか、規格低下により、単位重量を減らすことができる(単位重量はH400L*200W*7t*11Tの規格に対して6.4%減少)。
こうして、構造の安全に適合する前提の下、本体10の材料コストを削減できる。
In view of the above, if the asymmetric cross-section metal beam of the present invention is adopted under the same conditions, the influence of the floor plate D should be considered according to the actual situation.
At this time, the body cross section of the main body 10 is reduced to the standard of H380L*190W*7t*14T1/8T2, which is an asymmetrical cross section.
As shown in Table 5, both stress ratios in the pressure zone and tension zone are within the elastic range (stress ratio ≤ 1).
And with the floor plate D, the section modulus of the pressure section of the support member section is higher than that of the tension section, still providing a higher load.
In addition, even under the condition of use exceeding the limit, the stress ratio of the tension section of the support member section first exceeds the elastic limit and then enters into plastic deformation failure, but the pressure section occurs without warning. Not only can it generate an instantaneous compressive shear failure alarm action, but also the unit weight can be reduced due to the standard reduction (the unit weight is reduced by 6.4% against the standard of H400L * 200W * 7t * 11T ).
In this way, the material costs of the main body 10 can be reduced under the premise of conformity to structural safety.

Figure 2022549391000007
Figure 2022549391000007

上述の説明で明らかなように、本発明は以下の特徴を備える。
1.本発明の本体10は、臨界負荷を受けると、本発明の本体断面設計の断面形状が定義された中性軸NAにより、両辺が非対称を呈する。これにより、本体10の最大曲げモーメント箇所の本体断面の圧力区の断面係数が、張力区の断面係数より大きくなる。よって、本体10が負荷を受けると、張力区が既に弾性限度に達していても、収率後に塑性変形に入り、これにより圧力区に対して圧縮せん断破壊前に警報作用を生じ、人員の退避或いは構造補強など緊急処置の時間を確保できる。
2.現在の業界は、鉄筋コンクリート床板の、鋼本体断面係数に対する影響を通常は軽視して考慮せず、或いは梁軸力(即ち梁構成部材が負荷を受け生まれる圧力)を軽視することで、大ビーム端の張力区断面係数が圧力区より大きい、及び/或いは圧力区が先に臨界破壊に達しながら気づかないという問題、及び床板Dの片持ち鋼梁が、プレートビーム結合により、張力区の断面係数が圧力区の断面係数より大きくなるという問題を招いている。本発明本体10の本体断面は、非対称断面設計により、これを克服し、これにより現在の業界における、前述のような問題が存在する施工法を正しい方法へ導くことができる。
3.本発明による本体10の本体断面は、非対称断面の設計により、張力区が弾性限度に達した後に収率して塑性変形に入り、圧力区に対して圧縮せん断破壊前に警報作用を生じる他、本体断面の規格低下により単位重量を減らし、よって構造の安全に適合するとの前提の下で、本体10の材料コストを削減できる。
As is clear from the above description, the present invention has the following features.
1. When subjected to a critical load, the body 10 of the present invention exhibits asymmetry on both sides due to the neutral axis NA on which the cross-sectional shape of the body cross-sectional design of the present invention is defined. As a result, the section modulus of the pressure section of the main body cross section at the maximum bending moment of the main body 10 becomes larger than the section modulus of the tension section. Therefore, when the main body 10 is loaded, even if the tension zone has already reached the elastic limit, it will enter plastic deformation after yield, which will cause a warning effect to the pressure zone before compressive shear failure, and evacuate personnel. Alternatively, time for emergency measures such as structural reinforcement can be secured.
2. The current industry usually neglects the influence of the reinforced concrete floor plate on the steel body section modulus, or neglects the beam axial force (that is, the pressure generated when the beam component is loaded). The section modulus of the tension section is greater than that of the pressure section, and/or the pressure section reaches critical failure first without being noticed. This leads to the problem that the section modulus is larger than the pressure zone. The body cross-section of the body 10 of the present invention overcomes this by the asymmetrical cross-section design, which can guide the current industry's construction method with the above-mentioned problems to the right way.
3. The main body section of the main body 10 according to the present invention has an asymmetrical cross-sectional design, and after the tension zone reaches the elastic limit, it yields and enters into plastic deformation, causing a warning effect before compressive shear failure for the pressure zone. The reduction in the standard of the body cross-section reduces the unit weight, thus reducing the material cost of the body 10 under the premise of conforming to the safety of the structure.

前述した本発明の実施形態は本発明を限定するものではなく、本発明により保護される範囲は後述される特許請求の範囲を基準とする。 The embodiments of the present invention described above are not intended to limit the present invention, but the scope of protection by the present invention is subject to the following claims.

10 本体
11 フランジ
20 サポート部材
30 せん断釘
40 サポート部材
D 床板
NA 中性軸
L 高さ
W 幅
t ウェブ厚さ
T、T1、T2 フランジ厚さ
A~E 区間
10 Body 11 Flange 20 Support Member 30 Shear Nail 40 Support Member D Floor Board NA Neutral Axis L Height W Width t Web Thickness T, T1, T2 Flange Thickness AE Section

Claims (5)

破壊警報機能を備えた非対称断面金属梁であって、
本体及び床板を有し、
前記本体は、上のフランジにおいて、せん断釘により、前記床板と固定して一体梁となし、
前記本体は、本体断面を備え、
前記本体断面の断面形状は中性軸において定義され、
前記本体断面は、純粋な曲げモーメント負荷を受けた時の圧力区と張力区に定義され、
前記本体の各点は弾性範囲内で、前記中性軸に対して線形関係を呈し、
前記本体断面の断面形状は、前記中性軸により、両辺が非対称を呈し、
前記本体は、最大曲げモーメント箇所の本体断面の前記圧力区の断面係数が、前記張力区の断面係数より大きく、前記圧力区がストレスを受けて弾性限度に達し収率する前に、前記張力区がストレスを受けて先に弾性限度に達した後に収率し、塑性変形に入り、これにより前記張力区は塑性変形に入り、前記圧力区が圧縮せん断破壊を起こす可能性があるという警報作用を生じることを特徴とする、
破壊警報機能を備えた非対称断面金属梁。
An asymmetric section metal beam with a rupture alarm, comprising:
having a main body and a floorboard,
said body is fixed to said floorboard at an upper flange by means of shear nails to form an integral beam;
the body comprises a body cross-section,
the cross-sectional shape of said body cross-section being defined at a neutral axis,
The body cross section is defined in a pressure zone and a tension zone when subjected to a pure bending moment load,
each point of the body exhibits a linear relationship to the neutral axis within the elastic range;
Both sides of the cross-sectional shape of the main body are asymmetric with respect to the neutral axis,
In the main body, the section modulus of the pressure zone in the cross section of the body at the maximum bending moment is greater than the section modulus of the tension zone, and the tension zone is stretched before the stress zone reaches the elastic limit and yields. After being stressed and reaching the elastic limit first, it will enter plastic deformation, so that the tension zone will undergo plastic deformation, and the pressure zone will undergo compressive shear failure. characterized by occurring
Asymmetric section metal beams with rupture alarm function.
前記本体断面の断面形状は、前記中性軸により、非対称の両辺を呈し、幅は同一で、厚さは一辺が厚く、他辺は薄いことを特徴とする、請求項1に記載の破壊警報機能を備えた非対称断面金属梁。 The destructive alarm according to claim 1, wherein the cross-sectional shape of the main body has both sides asymmetrical with respect to the neutral axis, the width is the same, and the thickness is thick on one side and thin on the other side. Asymmetric section metal beams with features. 前記本体断面の断面形状は、前記中性軸により、非対称の両辺を呈し、厚さは同一で、幅は一辺が広く、他辺が狭いことを特徴とする、請求項1に記載の破壊警報機能を備えた非対称断面金属梁。 The destructive alarm according to claim 1, wherein the cross-sectional shape of the main body has both sides asymmetrical with respect to the neutral axis, the thickness is the same, and the width is wide on one side and narrow on the other side. Asymmetric section metal beams with features. 前記本体は横梁(ビーム)で、複数のサポート部材のサポートを受け、負荷を受けとめることを特徴とする、請求項1に記載の破壊警報機能を備えた非対称断面金属梁。 The asymmetric cross-section metal beam with rupture alarm function as claimed in claim 1, characterized in that said body is a transverse beam (beam), supported by a plurality of supporting members to receive load. 前記本体断面はH型、口型を呈することを特徴とする、請求項1に記載の破壊警報機能を備えた非対称断面金属梁。
The asymmetric cross section metal beam with rupture alarm function as claimed in claim 1, characterized in that the cross section of the body is H-shaped and mouth-shaped.
JP2021559545A 2020-08-25 2021-08-23 Asymmetric section metal beam with rupture alarm function Pending JP2022549391A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010866425.6 2020-08-25
CN202010866425.6A CN114108944B (en) 2020-08-25 2020-08-25 Asymmetric section metal beam with damage warning function
PCT/CN2021/114100 WO2022042491A1 (en) 2020-08-25 2021-08-23 Metal beam having asymmetrical section and having damage warning function

Publications (1)

Publication Number Publication Date
JP2022549391A true JP2022549391A (en) 2022-11-25

Family

ID=80354637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021559545A Pending JP2022549391A (en) 2020-08-25 2021-08-23 Asymmetric section metal beam with rupture alarm function

Country Status (11)

Country Link
US (1) US20230145105A1 (en)
EP (1) EP4063580A4 (en)
JP (1) JP2022549391A (en)
KR (1) KR20230052299A (en)
CN (1) CN114108944B (en)
AU (1) AU2021329983A1 (en)
CA (1) CA3157684A1 (en)
GB (1) GB2613910A (en)
IL (1) IL300073A (en)
MX (1) MX2023002174A (en)
WO (1) WO2022042491A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7125475B2 (en) * 2017-08-18 2022-08-24 クナウフ ギプス カーゲー Sets of frames, basic frameworks, modules, profiles and building elements for modular construction and modular construction buildings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS461323Y1 (en) * 1970-04-02 1971-01-18
WO2006065085A1 (en) * 2004-12-15 2006-06-22 Research Institute Of Industrial Science & Technology Manufacturing method for prestressed steel composite girder and prestressed steel composite girder thereby
CN106703184A (en) * 2016-12-30 2017-05-24 北京工业大学 Connection node construction of concrete-filled square steel tube column and rectangular section steel beam
JP2017122361A (en) * 2016-01-08 2017-07-13 新日鐵住金株式会社 Horizontal member, structure for mounting face material by using horizontal member, and structure for mounting face material and frame material by using horizontal member
JP2017198035A (en) * 2016-04-28 2017-11-02 Jfeスチール株式会社 Steel pile wall
JP2020076226A (en) * 2018-11-06 2020-05-21 日本製鉄株式会社 Shape steel, floor structure, and construction method of floor structure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH34199A (en) * 1905-04-15 1906-03-31 Arnold Moccetti Ernest Carrier formed from metal tension members and pressure bodies arranged between them
US4709456A (en) * 1984-03-02 1987-12-01 Stress Steel Co., Inc. Method for making a prestressed composite structure and structure made thereby
JP2000248685A (en) * 1999-03-01 2000-09-12 Tomoe Corp Beam member for steel framing structure
AU2003903142A0 (en) * 2003-06-23 2003-07-03 Palmer Tube Mills (Aust) Pty Ltd An improved beam
GB0510975D0 (en) * 2005-05-31 2005-07-06 Westok Ltd Floor construction method and system
CN101122158B (en) * 2007-09-03 2011-06-29 江苏美凯龙钢业有限公司 Method for manufacturing plate-patched double-abdomen eccentricity combination beam
AU2009200214A1 (en) * 2008-01-18 2009-08-06 Martin Holland Composite Beam
US7877937B2 (en) * 2008-09-02 2011-02-01 Amonix, Inc. High-stiffness, lightweight beam structure
JP5143956B2 (en) * 2008-11-07 2013-02-13 コリア インスティチュート オブ コンストラクション テクノロジー High-rise steel-concrete composite slabs and shaped steel plate assembly beams for beams
KR20100076578A (en) * 2008-12-26 2010-07-06 재단법인 포항산업과학연구원 Concrete girder comprised of multy-hybrid strength and method for manufacturing thereof
DE102009013241B4 (en) * 2009-03-14 2011-01-20 Weber, Ulrike, Dipl.-Ing. Support made of a one-piece steel construction profile
CN203097040U (en) * 2013-01-29 2013-07-31 朱崇钊 Antifatigue prestressing force steel-concrete combination beam
CN204059752U (en) * 2014-09-18 2014-12-31 江西省辉煌建设集团有限公司 A kind of heavier-duty Ripple Sternum
US10087628B2 (en) * 2015-07-05 2018-10-02 Constantine Shuhaibar Structural system and method using monolithic beams having improved strength

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS461323Y1 (en) * 1970-04-02 1971-01-18
WO2006065085A1 (en) * 2004-12-15 2006-06-22 Research Institute Of Industrial Science & Technology Manufacturing method for prestressed steel composite girder and prestressed steel composite girder thereby
JP2017122361A (en) * 2016-01-08 2017-07-13 新日鐵住金株式会社 Horizontal member, structure for mounting face material by using horizontal member, and structure for mounting face material and frame material by using horizontal member
JP2017198035A (en) * 2016-04-28 2017-11-02 Jfeスチール株式会社 Steel pile wall
CN106703184A (en) * 2016-12-30 2017-05-24 北京工业大学 Connection node construction of concrete-filled square steel tube column and rectangular section steel beam
JP2020076226A (en) * 2018-11-06 2020-05-21 日本製鉄株式会社 Shape steel, floor structure, and construction method of floor structure

Also Published As

Publication number Publication date
CA3157684A1 (en) 2022-03-03
CN114108944A (en) 2022-03-01
US20230145105A1 (en) 2023-05-11
EP4063580A1 (en) 2022-09-28
KR20230052299A (en) 2023-04-19
GB202205379D0 (en) 2022-05-25
EP4063580A4 (en) 2023-06-21
CN114108944B (en) 2023-01-03
MX2023002174A (en) 2023-03-15
GB2613910A (en) 2023-06-21
AU2021329983A1 (en) 2022-05-12
IL300073A (en) 2023-03-01
WO2022042491A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US10400468B2 (en) Staggered truss system with controlled force slip joints
JP2008175056A (en) Moment-resistant structure, sustainer and method for construction
CN107366373A (en) A kind of steel plate shear force wall with Self-resetting energy dissipation brace
JP2011001792A (en) Beam-column joint part structure of rigid frame skeleton and rolled h-steel
JP2022549391A (en) Asymmetric section metal beam with rupture alarm function
JP4829384B1 (en) Four corner reinforcement structure of rectangular metal flat plate
CN219451134U (en) Multistage buckling restrained energy-dissipation supporting structure
CN113338467B (en) Hierarchical yield shear type mild steel damper and construction method thereof
US20230117355A1 (en) Devices and systems for displacement control in seismic braces and yielding links
TWI772869B (en) Asymmetric metal beam with damage warning function
JP3706319B2 (en) Steel frame ramen structure
JP2022111782A (en) Hot-rolled steel strip, H-shaped steel, floor structure, floor structure design method, and floor structure construction method
JPH1045023A (en) Energy absorbing member
JP7425951B2 (en) beam joint structure
CN212053198U (en) Novel connection node structure of secondary beam at main beam splicing part
CN218815244U (en) Aluminum alloy template retention pulling-on piece
Elgaaly Plate and box girders
JP2019157598A (en) Steel plate earthquake resistant wall, and steel plate earthquake resistant wall structure comprising the same
KISHIKI et al. New ductile steel frames limiting damage to connetion elements at the bottom flange of beam-ends (part 2.)
JP2023146180A (en) steel beam
Fóti et al. Interaction phenomena in the cold-formed frame corner behaviour
CN117721930A (en) Metal damper for limiting vertical deformation
JP2024010806A (en) Design method of beam joint part and column-beam joint structure
JP2021156115A (en) Beam joint structure
CN116949918A (en) Composite beam concrete roof with hollow tube shear members and anti-cracking construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128