JP4829384B1 - Four corner reinforcement structure of rectangular metal flat plate - Google Patents

Four corner reinforcement structure of rectangular metal flat plate Download PDF

Info

Publication number
JP4829384B1
JP4829384B1 JP2011113262A JP2011113262A JP4829384B1 JP 4829384 B1 JP4829384 B1 JP 4829384B1 JP 2011113262 A JP2011113262 A JP 2011113262A JP 2011113262 A JP2011113262 A JP 2011113262A JP 4829384 B1 JP4829384 B1 JP 4829384B1
Authority
JP
Japan
Prior art keywords
shear
flat plate
diagonal
rectangular metal
corners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011113262A
Other languages
Japanese (ja)
Other versions
JP2012241436A (en
Inventor
敏郎 鈴木
Original Assignee
株式会社 構造材料研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 構造材料研究会 filed Critical 株式会社 構造材料研究会
Priority to JP2011113262A priority Critical patent/JP4829384B1/en
Application granted granted Critical
Publication of JP4829384B1 publication Critical patent/JP4829384B1/en
Publication of JP2012241436A publication Critical patent/JP2012241436A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

【課題】面内せん断を受ける矩形金属平板について、せん断降伏荷重の確保と降伏後のせん断変形の進行にもせん断耐力の維持を図る。
【解決手段】矩形金属平板に対する本発明の代表的補強構造を(a)図に示したが、面内せん断を受ける矩形金属平板1の周囲四辺に枠組2,3を添接補強し、平板四隅角部に斜め補強材を周辺枠材とは僅かに離してトラス力が働かないようにし、平板面内の引張主応力+σを支え且つ圧縮主応力−σの影響を遮断し、せん断降伏荷重の確保と降伏後の大変形領域に於けるせん断耐力の維持を図る。矩形金属平板のせん断変形が進行した時点の状態を模式的に示したものが(b)図であるが、金属平板面内では圧縮主応力が消え形成される張力場に於いて斜め補強材が引張主応力+σを均等に受けるようにし、せん断変形を点線で示す十字形領域に限定しせん断降伏荷重の確保と降伏後のせん断耐力の安定的維持を図るものである。
【選択図】図15
A rectangular metal flat plate subjected to in-plane shearing is intended to maintain a shear strength in securing a shear yield load and advancing shear deformation after yielding.
A typical reinforcing structure of the present invention for a rectangular metal flat plate is shown in FIG. 1 (a). Frames 2 and 3 are attached and reinforced on the four sides of a rectangular metal flat plate 1 subjected to in-plane shear, and four corners of the flat plate are obtained. The diagonal reinforcement is slightly separated from the peripheral frame material at the corner to prevent the truss force from acting, supports the tensile principal stress + σ in the flat plate surface, blocks the influence of the compression principal stress -σ, and reduces the shear yield load. Maintain the shear strength in the large deformation area after securing and yielding. The state at the time when the shear deformation of the rectangular flat metal plate has progressed is schematically shown in FIG. 5 (b). In the metal flat plate surface, the diagonal reinforcing material is applied in the tension field where the compression principal stress disappears. It is intended to receive the tensile main stress + σ evenly, limit the shear deformation to the cross-shaped region indicated by the dotted line, and ensure the shear yield load and stably maintain the shear strength after yielding.
[Selection] Figure 15

Description

本発明は、面内せん断を受け必要に応じ圧縮荷重を支える長方形金属平板の補強構造で、金属系建物の壁面構成パネル,制振・耐震を目的とする間柱型乃至梁型せん断パネルや構造壁の全て又は一部を構成するものまでを対象としている。せん断パネルはせん断降伏荷重を確保することと降伏後の大変形領域に至るまで降伏せん断耐力を維持することであり、これを達成するための補強構造を意図し、且つ出来るだけ簡略な方法を提案する。   The present invention is a reinforcing structure of a rectangular metal flat plate that receives in-plane shear and supports a compressive load as needed. It is a wall-forming panel of a metal building, a stud-type or beam-type shear panel or structural wall for the purpose of vibration control and earthquake resistance. To all or part of it. The shear panel is to secure the shear yield load and maintain the yield shear strength until it reaches the large deformation region after yielding, and intends the reinforcement structure to achieve this, and proposes a method as simple as possible To do.

面内せん断を受ける金属平板は、せん断座屈荷重がせん断降伏荷重を上回るようにしても降伏後せん断変形が進行する過程でせん断耐力を維持し且つ正負交番に繰り返されるせん断荷重に対し安定した履歴性状とすることは難しく、このため金属平板の幅厚比を小さくすることが必要となり、結果的には多くのスティフナ−を格子状に配して平板全域を細分化し補強することがこれまでの代表的な方法であった。   A flat metal plate subjected to in-plane shear maintains its shear strength in the process of shear deformation after yielding even if the shear buckling load exceeds the shear yield load, and has a stable history against repeated shear loads. Therefore, it is difficult to achieve the properties, and therefore it is necessary to reduce the width-thickness ratio of the metal flat plate. As a result, many stiffeners are arranged in a lattice shape to subdivide and reinforce the entire area of the flat plate so far. It was a representative method.

金属平板の降伏せん断荷重を確保し且つ降伏後のせん断耐力の維持を図るために、設計で要求されるせん断強度に対し降伏点応力度の低い材料を使うことで金属平板の板厚を上げて早期のせん断座屈を回避し降伏後の塑性変形能力を高める方法がある。この他、制振・耐震を目的としてせん断パネルを波板や折板とするもの,粘弾性材料を組み込んだ壁板,壁板と建物部位との接合方法を工夫したもの等様々な提案がされている。   In order to secure the yield shear load of the metal flat plate and maintain the shear strength after yielding, increase the plate thickness of the metal flat plate by using a material with a lower yield point stress than the shear strength required by the design. There are methods to avoid early shear buckling and increase the plastic deformation capacity after yielding. In addition to this, various proposals have been made, such as using shear panels as corrugated plates or folded plates for the purpose of vibration suppression and earthquake resistance, wall plates incorporating viscoelastic materials, and methods that devised a method of joining the wall plates and building parts. ing.

特開 平10−246026 公開特許公報Japanese Patent Laid-Open No. 10-246026 特開 平11−303310 公開特許公報Japanese Patent Laid-Open No. 11-303310 特開2005−042423 公開特許公報Japanese Patent Laid-Open No. 2005-042423 特開2006−037586 公開特許公報Japanese Patent Laid-Open No. 2006-037586 特開2010−090650 公開特許公報JP 2010-090650 A Patent Publication

木原碩美/鳥井信吾著 「極低降伏点鋼板壁を用いた制震構造の設計」建築技術 1998年11月Tomomi Kihara / Shingo Torii “Design of damping structure using steel plate wall with extremely low yield point” Architectural Technology November 1998 鈴木敏郎著 「捩り剛性を主体とするせん断剛性と平板のせん断座屈」日本建築学会 2008年9月Toshio Suzuki “Shear stiffness mainly composed of torsional stiffness and shear buckling of flat plate” Architectural Institute of Japan, September 2008

解決しようとする課題は、面内せん断を受ける矩形金属平板乃至面内せん断に加え圧縮荷重を支える長方形金属平板について、平板のせん断降伏荷重を確保することは勿論せん断降伏後の大変形領域に至るまでせん断耐力を落すことなく設計上必要とされる塑性変形能力を付与することであり、しかもできる限り簡単な補強構造とし且つ前記性能確保が確実となるよう意図している。   The problem to be solved is not only to ensure the shear yield load of the flat plate, but also to the large deformation region after the shear yield for the rectangular metal plate subjected to in-plane shear or the rectangular metal plate that supports compressive load in addition to in-plane shear. It is intended to provide the plastic deformation capability required in the design without reducing the shear strength, and to make the reinforcement structure as simple as possible and ensure the performance.

平板がせん断力を受けると、初期の純せん断場から徐々に圧縮主応力成分が消え引張主応力が支配する張力場へと移行する。この応力変化点の荷重が所謂座屈固有値であり平板のせん断耐力低下がこれに起因するとし座屈荷重を上げることで対処してきた。しかし、平板面内応力の変化から見れば斜め引張り状態へ移行することであり、座屈固有値は安定化に向かう転換点と見る方が合理的である。   When the flat plate is subjected to a shearing force, the compressive principal stress component gradually disappears from the initial pure shear field and shifts to a tension field governed by the tensile principal stress. The load at this stress change point is a so-called buckling eigenvalue, and the reduction in the shear strength of the flat plate is caused by this, and this has been dealt with by increasing the buckling load. However, from the viewpoint of the change in stress in the flat plate, it is a transition to an oblique tension state, and it is more reasonable to view the buckling eigenvalue as a turning point toward stabilization.

面内せん断を受ける金属平板の力学的釣合いから、最終段階の引張主応力が支配する張力場に応じ対角にある斜め略45度方向の補強材で一様に引張るようにする。又、他の対角にある斜め補強材により初期段階での圧縮主応力が金属平板に影響しないようすれば、弾性領域から降伏開始時点を経て降伏後の大変形領域に至るまで斜め引張力による安定した力学的釣合いを保つことができる。   From the mechanical balance of the flat metal plate subjected to in-plane shearing, it is uniformly pulled with a diagonal reinforcement of approximately 45 degrees diagonally according to the tension field governed by the final tensile principal stress. Also, if the diagonal principal reinforcements at other diagonals prevent the compressive principal stress in the initial stage from affecting the metal flat plate, the diagonal tensile force extends from the elastic region to the large deformation region after yielding after the yield start point. A stable mechanical balance can be maintained.

面内せん断を受ける金属平板の効果的補強構造を考える上で、図11の八角形平板に面内せん断が加わる場合の力学的挙動は参考となる。(a)図は周辺枠材2を突出フランジとする金属平板1であり、水平・垂直の枠組からせん断力が作用し金属平板面内の引張主応力+σと圧縮主応力−σとを示している。(b)図はせん断変形が進行した時点の状況を模式的に示したもので、金属面では圧縮主応力が消えて引張主応力+σが支配する。   In considering an effective reinforcement structure of a metal flat plate subjected to in-plane shear, the mechanical behavior when in-plane shear is applied to the octagonal flat plate of FIG. 11 is a reference. (A) The figure shows a metal flat plate 1 having a peripheral frame member 2 as a projecting flange, and shows a tensile main stress + σ and a compressive main stress -σ in the plane of the metal flat plate due to a shearing force acting from a horizontal / vertical frame. Yes. FIG. 5B schematically shows the situation at the time when the shear deformation has progressed. On the metal surface, the compressive principal stress disappears and the tensile principal stress + σ is dominated.

図12は大きさ900mmx900mmに内接する板厚6.0mmの八角形平板に対し、周辺枠材は100mmx25mmで平板側辺加力部の幅をが150mm,180mm,240mmとする解析結果である。点線は斜辺を含む全ての辺を弾塑性体とする場合で、せん断降伏荷重近傍まで上昇し降伏後若干不安定であるものの一定の耐力は保たれる。実線は上下,左右の加力部を除く四隅斜め方向枠を剛体置換した場合で、大変形領域に至るまでせん断耐力は安定的に維持される。   FIG. 12 shows the analysis results for an octagonal flat plate having a thickness of 900 mm × 900 mm inscribed with a plate thickness of 6.0 mm, the peripheral frame material being 100 mm × 25 mm, and the width of the flat plate side side applied portion being 150 mm, 180 mm, and 240 mm. The dotted line shows the case where all sides including the hypotenuse are made of an elasto-plastic material, and it rises to the vicinity of the shear yield load and is somewhat unstable after yielding, but a certain proof stress is maintained. The solid line shows the case where the four corner diagonal frames except for the upper and lower and left and right applied parts are replaced with a rigid body, and the shear strength is stably maintained until reaching the large deformation region.

図13は前記八角形平板を基として、(a)図は四隅補強による矩形金属平板の代表的構造を示したものである。周辺部枠材を通してせん断力が作用し変形が進行した状態を(b)図に模式的に示したが、斜め補強材が枠材とで三角形を構成することで剛体置換に近い状態になり、更に点線で示す十字形領域にせん断変形領域を限定することで、せん断降伏荷重の確保と降伏後のせん断耐力の安定的維持を図ることができる。   FIG. 13 is based on the octagonal flat plate, and FIG. 13A shows a typical structure of a rectangular metal flat plate by four-corner reinforcement. The state in which the shearing force acts through the peripheral frame material and the deformation has progressed is schematically shown in FIG. (B), but the diagonal reinforcing material forms a triangle with the frame material, so that it is close to rigid body replacement, Furthermore, by limiting the shear deformation region to the cross-shaped region indicated by the dotted line, it is possible to secure the shear yield load and stably maintain the shear strength after the yield.

長方形金属平板の塑性変形能力の大幅な向上を図るため、最終段階の引張主応力が支配する張力場に釣合うよう平板四隅の斜め略45度方向に補強材を配し引張力を一様に受け止めるようにする。初期段階の引張主応力と直交する圧縮主応力はせん断パネル内部に影響を与えないよう他の角部の補強材で対処すれば、弾性領域から降伏開始時点を経て降伏後の大変形領域に至るまで斜め引張力での安定した力学的釣合いを保つことができる。   In order to greatly improve the plastic deformation capacity of rectangular metal flat plates, reinforcing materials are arranged in the direction of approximately 45 degrees diagonally at the four corners of the flat plate to balance the tensile field governed by the final tensile principal stress, and the tensile force is made uniform. Try to catch it. If the compressive principal stress orthogonal to the initial tensile principal stress is dealt with by other corner reinforcements so as not to affect the inside of the shear panel, the elastic region leads to the large deformation region after yielding after the yield start point. It is possible to maintain a stable mechanical balance with an oblique tensile force.

四隅補強材構成と八角形連続補強材構成の金属平板を示す。(実施例1)The metal flat plate of a four corner reinforcement material structure and an octagonal continuous reinforcement material structure is shown. Example 1 四隅補強材の各構成とその補強効果に関する解析結果の説明図である。It is explanatory drawing of the analysis result regarding each structure of the four corner reinforcement material, and its reinforcement effect. 枠材及び補強材を充実乃至管状矩形断面とする構成を示す。(実施例2)The structure which makes a frame material and a reinforcing material full or a tubular rectangular cross section is shown. (Example 2) 四隅斜め補強材の断面形と四隅補強効果に関する解析結果の説明図である。It is explanatory drawing of the analysis result regarding the cross-sectional shape and four-corner reinforcement effect of a four-corner diagonal reinforcement material. 突出リブで斜め補強された長方形金属平板の構成二種を示す。(実施例3)Two types of configuration of a rectangular metal flat plate diagonally reinforced with protruding ribs are shown. (Example 3) 突出フランジを枠材とする四隅補強効果に関する解析結果の説明図である。It is explanatory drawing of the analysis result regarding the four corner reinforcement effect which uses a protrusion flange as a frame material. 枠材をアングル部材とする四隅補強効果に関する解析結果の説明図である。It is explanatory drawing of the analysis result regarding the four corner reinforcement effect which uses a frame material as an angle member. 両側辺部に角管を添接する長方形金属平板の構成二種を示す。(実施例4)Two types of configuration of a rectangular metal flat plate with square tubes attached to both sides are shown. Example 4 四隅斜め補強材を帯板とする長方形金属平板の解析結果の説明図である。It is explanatory drawing of the analysis result of the rectangular metal flat plate which uses a four-corner diagonal reinforcement material as a strip. 四隅を三角形平板で補強する長方形金属平板の解析結果の説明図である。It is explanatory drawing of the analysis result of the rectangular metal flat plate which reinforces four corners with a triangular flat plate. 枠材及び補強材を角管部材とする大型壁板の構成図である。(実施例5)It is a block diagram of the large-sized wall board which uses a frame material and a reinforcing material as a square tube member. (Example 5) 閉鎖形断面である角管で構成する大型壁板の解析結果の説明図である。It is explanatory drawing of the analysis result of the large-sized wall board comprised with the square tube which is a closed cross section. 八角形枠組のせん断パネルとする力学的釣合いに関する説明図である。It is explanatory drawing regarding the mechanical balance made into the shear panel of an octagonal frame. 八角形枠組部材の剛性とせん断耐力に関する解析結果の説明図である。It is explanatory drawing of the analysis result regarding the rigidity and shear strength of an octagonal frame member. 四隅斜め補強による金属平板のせん断変形推移を説明する模式図である。It is a schematic diagram explaining the shear deformation transition of the metal flat plate by four corner diagonal reinforcement.

面内せん断を受ける金属平板の最終的釣合いが平板面内の引張主応力と周辺枠組とで構成される張力場となることから、せん断力が加わる初期段階から斜め方向となる引張主応力との釣合いを基本としこれと直交する圧縮主応力の影響を受けない構造を考える。これにより引張主応力を応力方向と直交する斜め補強材が均等に受け、平行する斜め補強材が圧縮主応力の平板への影響を排除する。   Since the final balance of the metal flat plate subjected to in-plane shear is the tension field composed of the tensile principal stress in the flat plate surface and the peripheral frame, the tensile principal stress in the diagonal direction from the initial stage where the shear force is applied Consider a structure that is balanced and unaffected by compressive principal stress. As a result, the diagonal reinforcing material orthogonal to the stress direction receives the tensile main stress evenly, and the parallel diagonal reinforcing material eliminates the influence of the compressive main stress on the flat plate.

代表的補強構造の一例は図1で、矩形金属平板1に周囲四辺をフランジ2で囲み且つ周辺枠組の四隅角部に斜め補強材4を周辺枠材とは近接配置するもののトラス力が働かない程度に離して添接し構成する。(a)図で示す四隅補強構造は周囲四辺の中間即ち斜め補強材が偏心するる部位が弱点となるが、(b)図のように周辺枠材と平行する部位も突出リブ4を連続することで解消できる。   An example of a typical reinforcing structure is shown in FIG. 1, in which a rectangular metal flat plate 1 is surrounded by four flanges with flanges 2 and diagonal reinforcing members 4 are arranged close to the peripheral frame members at the four corners of the peripheral frame, but the truss force does not work. Attach and configure to a certain extent. (A) The four-corner reinforcement structure shown in the figure has a weak point in the middle of the surrounding four sides, that is, the part where the oblique reinforcing material is eccentric, but the part parallel to the peripheral frame member also continues the protruding rib 4 as shown in (b). Can be solved.

図3は他の一例であり、矩形金属平板1の周辺枠材2,3と四隅補強材4を充実乃至管状矩形断面部材として平板の片側又は両側面に幅広面で添接して補強している。本補強構造は斜め補強材が偏心する部位での枠組が強くなっており、更に(b)図に示すように補強材を帯板から角管とすることにより力学的安定度は高くなる。   FIG. 3 shows another example, in which the peripheral frame members 2 and 3 and the four-corner reinforcing members 4 of the rectangular metal flat plate 1 are reinforced as a solid or tubular rectangular cross-section member with a wide surface attached to one side or both side surfaces of the flat plate. . This reinforcing structure has a strong frame at the part where the oblique reinforcing material is eccentric, and further, the mechanical stability is increased by changing the reinforcing material from a strip to a square tube as shown in FIG.

図1は板厚6.0mmで大きさ900mmx900mmの正方形金属平板1について周囲四辺枠材2及び四隅斜め補強材4を100mmの突出リブとする構造である。(a)図の四隅斜め補強材を周辺枠材とは近接配置するもののトラス力が働かない程度に僅かに離す場合と、(b)図の斜め補強材を連続して八角形形状4とし且つ周辺枠材2とは平行する部位でも若干離す場合である。   FIG. 1 shows a structure of a square metal plate 1 having a plate thickness of 6.0 mm and a size of 900 mm × 900 mm, in which the surrounding quadrilateral frame member 2 and the four-corner diagonal reinforcing member 4 are 100 mm protruding ribs. (A) The case where the four corner diagonal reinforcement members in the figure are arranged close to the peripheral frame material but slightly separated so that the truss force does not work; and (b) the diagonal reinforcement members in the figure are continuously formed into an octagonal shape 4 and This is a case where the peripheral frame material 2 is slightly separated even in a parallel part.

図2の点線で示す解析結果は(a)図の場合で、枠材を100mmx25mm,補強材を100mmx19mmとし且つ平板側辺の斜材の偏心幅を前者で120mm,150mm,180mmを示している。降伏後のせん断耐力は安定的に維持されているが、降伏開始時点のせん断耐力は斜材偏心幅を小さくすることが必要となる。なお、図中下部の破線は周辺部が突出フランジで囲まれただけであり、急激に耐力低下する。   The analysis result indicated by the dotted line in FIG. 2 is the case of FIG. 2 (a), in which the frame member is 100 mm × 25 mm, the reinforcing member is 100 mm × 19 mm, and the eccentric width of the diagonal member on the flat plate side is 120 mm, 150 mm, and 180 mm. Although the shear strength after yielding is stably maintained, the shear strength at the start of yielding needs to reduce the eccentric width of the diagonal material. In addition, the broken line in the lower part in the figure is only that the peripheral part is surrounded by the projecting flange, and the yield strength is drastically reduced.

図2の実線で示す解析結果は(b)図の場合で、周辺枠材及び補強材は前例と同じとするが四隅補強材を連続することで斜材偏心幅を180mm,210mmと広げている。連続する補強材が両側辺平行部の構造的弱点を補い、降伏荷重の確保及び降伏後のせん断耐力維持に対して斜め補強材配置では平板側辺の平行部幅について許容範囲は大きく力学的安定度も高い。   The analysis result shown by the solid line in Fig. 2 is the case of Fig. (B). The peripheral frame material and the reinforcing material are the same as the previous example, but the eccentric width of the diagonal material is increased to 180mm and 210mm by continuing the four corner reinforcing materials. . Continuous reinforcement compensates for the structural weakness of the parallel parts on both sides, and the tolerance for the parallel part width on the flat plate side is large and mechanical stability is ensured in the case of diagonal reinforcement arrangement for securing the yield load and maintaining the shear strength after yielding. High degree.

図3は板厚3.2mmで大きさ900mmx900mmの正方形金属平板1に周辺枠材2,3として平板両面に帯板75mmx12mmをその幅広面で添接する構造である。四隅斜め補強材4として(b)図に示す充実又は管状矩形断面部材を平板両面に前記部材の幅広面で添接するが、周辺枠材とは若干隙間を設けている。本補強構造は周辺枠組みの中間部が広幅く構成され、構造的弱点が補われ偏心幅は大きくとれる。   FIG. 3 shows a structure in which a strip 75 mm × 12 mm is attached to both sides of a flat metal plate 1 having a thickness of 3.2 mm and a size of 900 mm × 900 mm as peripheral frame members 2 and 3 on its both sides. The solid or tubular rectangular cross-section member shown in FIG. 4 (b) as the four-corner diagonal reinforcing member 4 is attached to both sides of the flat plate with the wide surface of the member, but is slightly spaced from the peripheral frame member. This reinforcing structure has a wide middle part of the peripheral frame, which compensates for structural weaknesses and increases the eccentric width.

図4の解析結果として点線は補強材を帯板50mmx9mm,50mmx12mmとする場合で、実線は角管□-50mmx25mmx1.6mm,□-50mmx25mmx2.3mmとする場合である。帯板に比し角管は断面積量で半分程度で、両者の性状は略同じである。図中下部の破線は周辺枠組で囲まれた幅厚比略240の平板の結果で、広幅面で構成する枠材であるため暫く耐力は保たれる。   As a result of the analysis in FIG. 4, the dotted line indicates the case where the reinforcing material is the strip plate 50 mm × 9 mm, 50 mm × 12 mm, and the solid line indicates the case where the square tube is □ -50 mm × 25 mm × 1.6 mm, □ -50 mm × 25 mm × 2.3 mm. The square tube has a cross-sectional area of about half that of the strip, and the properties of both are substantially the same. The broken line in the lower part of the figure is the result of a flat plate having a width-to-thickness ratio of 240 surrounded by a peripheral frame. Since the frame material is composed of a wide surface, the proof stress is maintained for a while.

図5(a)は2,700mmx900mmで板厚6.0mmの長方形金属平板で、前記金属平板1の上下加力部と中間部の両面に150mmx22mmの帯板3をその幅広面で添接して上下2段に区分している。長手方向両側辺の枠材2は200mmx25mmの突出フランジとする場合で、平板内側の補強材4の帯板は正逆くの字に補強している。上下各平板縦長さ1,100mmに対し中央部の補強材の偏心幅は180mmと狭め、構造的弱点を補っている。   FIG. 5 (a) is a rectangular metal flat plate of 2,700 mm x 900 mm and a plate thickness of 6.0 mm. 150 mm x 22 mm strips 3 are attached to both the upper and lower applied portions and the middle portion of the metal flat plate 1 at the upper and lower stages. It is divided into. The frame 2 on both sides in the longitudinal direction is a 200 mm × 25 mm projecting flange, and the strip of the reinforcing material 4 on the inner side of the flat plate is reinforced in a reverse shape. The eccentric width of the reinforcing material at the center is narrowed to 180 mm for each vertical plate length of 1,100 mm, making up for structural weaknesses.

図5(b)は長手方向両側辺の枠材をアングル2L-90x90x13で構成したもので、平板内側の補強材は60mmx12mmを平板両面四隅に添接している。平板毎の斜め補強材は上下連結せず長手方向中央部の長さを前例より大きくしているが、両側辺の枠材が金属平板に幅広面で添接していることでその部位の構造的弱点が解消され、平行する部位の長さに対してその許容範囲は広い。   In FIG. 5B, the frame material on both sides in the longitudinal direction is configured with an angle 2L-90x90x13, and the reinforcing material on the inner side of the flat plate is attached to the four corners on both sides of the flat plate. The diagonal reinforcing material for each flat plate is not connected up and down, and the length of the central part in the longitudinal direction is larger than the previous example, but the frame material on both sides is attached to the metal flat plate with a wide surface, so the structure of that part The weak point is eliminated, and the allowable range is wide with respect to the length of the parallel parts.

図6は図5(a)に対し2本の実線はの斜め補強材を60mmx19mm,60mmx12mmとする場合で、何れもせん断降伏荷重に到達し且つ両者共高い塑性変形能力となる。2本の点線は一定軸圧縮力P=500kN(両側辺枠材の降伏軸力の20%弱)が作用する場合で、実線と比し力学性状にはそれ程の差異は見られない。なお、周辺枠組構造だけの解析結果が最下段の破線で、突出フランジであることで耐力維持されない。   FIG. 6 shows the case where the two diagonal lines are 60 mm × 19 mm and 60 mm × 12 mm, respectively, in comparison with FIG. 5A, and both reach the shear yield load and both have high plastic deformation capacity. The two dotted lines show the case where a constant axial compression force P = 500kN (less than 20% of the yield axial force of both side frame members) acts, and there is no significant difference in mechanical properties compared to the solid line. Note that the analysis result of only the peripheral frame structure is the lowermost broken line, and the proof strength is not maintained because it is a protruding flange.

図7は長手両側辺枠材をアングルL-90x90x13の2本とし、四隅補強部材を分散配置した結果である。2本の実線は斜め補強材を60mmx12mmとし中間部の偏心幅を240mm,360mmとする場合であり、塑性変形能力は高い。又、2本の点線は一定軸圧縮力P=500kNが作用した場合で、実線の結果と比較しても十分安定した状態にある。なお、周辺枠組構造だけの解析結果が最下段の破線で、せん断降伏荷重の略70%耐力で暫くは維持される。   FIG. 7 shows a result of disposing the four corner reinforcing members in a distributed manner with two long side frame members of angle L-90x90x13. The two solid lines show the case where the diagonal reinforcement is 60mmx12mm and the eccentric width of the middle part is 240mm and 360mm, and the plastic deformation capacity is high. The two dotted lines are when a constant axial compression force P = 500 kN is applied, and are sufficiently stable compared to the solid line results. In addition, the analysis result of only the peripheral framework structure is the lowermost broken line, and it is maintained for a while with approximately 70% proof stress of the shear yield load.

図8は2,700mmx900mmで板厚3.2mmの長方形金属平板1に対し上下加力部及び中間部の平板短手方向の枠材3に帯板150mmx12mmを、長手方向枠材2に帯板90mmx12mmを平板両面から添接し、更に長手両側辺部の片側に角管を重ねて添接している。(a)図は上下平板四隅部の表裏両面から帯板60mmx12mmを添接し、(b)図は直角二等辺三角形平板300mmx300mmの補強平板4を四隅に添接し且つ中間部に補剛平板をあて面外曲げ変形を抑える。   8 shows a rectangular metal flat plate 1 with a thickness of 2,700 mm x 900 mm and a thickness of 3.2 mm. The strip plate 150 mm x 12 mm is applied to the frame member 3 in the short plate direction of the upper and lower applied parts and the middle part. It is welded from both sides, and a square tube is superimposed on one side of both sides of the longitudinal side. (A) The figure shows the belt plate 60mmx12mm attached from both front and back sides of the upper and lower flat plate corners. (B) The figure shows the right isosceles triangular plate 300mmx300mm reinforcing plate 4 attached to the four corners and the stiffening flat plate in the middle. Reduces outward bending deformation.

図9(a)は図8(a)に対し長手方向両側辺に角管□-90x90x2.3と□-90x90x3.2が添接される場合の結果である。2本の実線はせん断降伏荷重に到達し且つ高い塑性変形能力が確保される。点線は一定軸圧縮力P=500kN(両側辺枠材の降伏軸力の略25%)が作用した場合で、実線に比し塑性変形能力が若干劣るものの降伏耐力は維持される。なお、平板長手両枠材はせん断変形に伴う面外への変形は自由としている。   FIG. 9 (a) shows the result when square tubes □ -90x90x2.3 and □ -90x90x3.2 are attached to both sides in the longitudinal direction with respect to FIG. 8 (a). The two solid lines reach the shear yield load and ensure a high plastic deformation capacity. The dotted line shows the case where a constant axial compression force P = 500kN (approximately 25% of the yield axial force of both side frame members) is applied, and the yield strength is maintained although the plastic deformation ability is slightly inferior to the solid line. It should be noted that the flat plate longitudinal both frame members are free to be deformed out of the plane due to shear deformation.

図9(b)は、両側辺枠材が角管□-90x90x3.2,斜め補強材が帯板60mmx12mmについて面外曲げ変形の成長を示したものである。実線は両側枠中央部の面外変形で、最終的に上下に大きく乖離し捩り変形が起きている。点線は平板中央部の複数箇所の面外変形で、前記2本の実線の推移に支配されている。図9(a)との対比で、耐力低下は長手方向両側の枠材を含む平板全体の捩り破壊であると考えられる。   FIG. 9 (b) shows the growth of out-of-plane bending deformation when the side frame material is square tube □ -90x90x3.2 and the diagonal reinforcing material is 60mmx12mm. The solid line is the out-of-plane deformation at the center of both side frames. The dotted lines are out-of-plane deformations at a plurality of locations in the center of the flat plate, and are governed by the transition of the two solid lines. In contrast with FIG. 9A, the decrease in yield strength is considered to be torsional destruction of the entire flat plate including the frame members on both sides in the longitudinal direction.

図10は図8(b)に対し長手両側辺の角管が□-90x90x3.2の結果である。図中下段の点線は周辺枠組だけの場合であり、板厚6.0mmの三角形補強板を四隅部に配置した結果が破線である。所定のせん断降伏荷重より僅かに下回るため、中間部の平板両面に720mmx200mmx6.0mmを添接し面外変形を抑えた結果が実線であり又一定軸圧縮力P=500kNが作用する場合が点線である。   FIG. 10 shows the result of square tube □ -90x90x3.2 on both sides in the longitudinal direction compared to FIG. The dotted line in the lower part of the figure is the case of only the peripheral frame, and the result of arranging triangular reinforcing plates with a thickness of 6.0 mm at the four corners is a broken line. Since the result is slightly less than the predetermined shear yield load, the result of suppressing out-of-plane deformation by attaching 720mmx200mmx6.0mm to both sides of the flat plate in the middle is the solid line, and the case where the constant axial compression force P = 500kN acts is the dotted line .

図11は大型耐震壁板として板厚6.0mmの正方形平板2,700mmx2,700mmで、上下加力部に帯板200mmx22mm,両側枠材に角管□-200mmx100mmx6.0mm,斜め補強材に角管□-150mmx100mmx6.0mmそれぞれを平板両面から添接している。更に、周辺枠中間部に生ずる偏心幅はb=400mmであり、前記区間内にC-300mmx75mmx6.0mmを平板表裏両面に添接し貫通ボルトで止める。平板全域での幅厚比は略400であるが、極めて少ない補強材数で構成されている。   Fig. 11 shows a large flat plate with a thickness of 6.0mm, 2,700mmx2,700mm as a large earthquake-resistant wall plate. 150mmx100mmx6.0mm is attached from both sides of the flat plate. Further, the eccentric width generated in the middle part of the peripheral frame is b = 400 mm, and C-300 mm × 75 mm × 6.0 mm is abutted on both the front and back surfaces of the flat plate within the section and is fastened with a through bolt. The width-thickness ratio in the entire area of the flat plate is approximately 400, but the number of reinforcing members is extremely small.

図12は大型耐震壁板の解析結果で、破線は四隅補強のみの場合であり、実線は四隅補強に加え壁板中央部に角管を添接した場合である。図中下段の実線と破線はせん断変形を拡大表示したもので、降伏開始時点の荷重には若干の差異がある。2本の点線は軸圧縮力1,000kN(両側枠材の降伏軸力の略25%)とする場合であるが、中間部の補強材があることによりせん断耐力は安定して維持される。   FIG. 12 shows an analysis result of a large earthquake-resistant wall plate. A broken line indicates a case where only the four corners are reinforced, and a solid line indicates a case where a square tube is attached to the central portion of the wall plate in addition to the four corners. The solid and broken lines in the lower part of the figure are enlarged displays of shear deformation, and there is a slight difference in the load at the start of yielding. The two dotted lines show the case where the axial compression force is 1,000 kN (approximately 25% of the yield axial force of the both side frame members), but the shear strength is stably maintained due to the presence of the intermediate reinforcement.

本明細書の実施例で扱った金属材料は降伏点応力度σy=30kN/cm2,ヤング係数=20,500kN/cm2としているが、本補強構造は金属材料が高降伏点鋼,低降伏点鋼でも対応でき、更に軽金属材料であってもヤング率の違いに配慮すれば同様に対処できる。なお、金属平板と周辺枠材や補強材との添接方法として、溶接乃至金属接着剤による固着とするかボルト接合とするかの選択は自由である。 Metallic material covered in the examples herein yield stress of σ y = 30kN / cm 2, although the Young's modulus = 20,500kN / cm 2, the reinforcing structure comprises a metal material high yield steel, low yield Even point steel can be used, and even light metal materials can be handled in the same way by considering the difference in Young's modulus. In addition, as a method for attaching the metal flat plate to the peripheral frame member or the reinforcing material, it is possible to freely select welding or fixing with a metal adhesive or bolt joining.

本発明は面内せん断を受ける矩形金属平板に対する補強構造を提案したもので、平板の面内応力の安定的釣合いにある斜張力を意識した補強構造であり、平板四隅部の斜め補強が基本的構成であり補強材の本数も極めて少なく、従前の補強構造と比し簡単に製作でき且つコスト安が見込まれ、金属系建物の壁面構成パネル,制振ないし耐震を目的とするせん断パネルとして最適である。   The present invention proposes a reinforcement structure for rectangular metal flat plates subjected to in-plane shear, and is a reinforcement structure that is conscious of diagonal tension in the stable balance of in-plane stress of the flat plate. The structure and the number of reinforcing materials are extremely small, and it can be easily manufactured and cost-effective compared to the conventional reinforcing structure. It is ideal as a wall panel for metal buildings and a shear panel for vibration control or earthquake resistance. is there.

本発明は面内せん断を受ける矩形金属平板に対する補強構造を提案したもので、平板面内の斜張力との釣合いを前提として初期のせん断降伏荷重を確保し降伏後もせん断耐力の維持を図ったが、長方形金属平板に対しては長手方向両側辺部に角管を添接することで長手方向の変形を拘束する必要はなくなり、建物構成上簡便であり建築施工上の観点からも有利なものと考えられる。   The present invention proposes a reinforcement structure for a rectangular metal flat plate subjected to in-plane shear, ensuring the initial shear yield load on the premise of balancing with the oblique tension in the flat plate surface and maintaining the shear strength after yielding. However, for rectangular metal flat plates, it is no longer necessary to constrain the deformation in the longitudinal direction by attaching a square tube to both sides in the longitudinal direction, and it is convenient for building construction and advantageous from the viewpoint of construction work. Conceivable.

1 面内せん断を受ける金属平板
2 平板周囲側辺に沿う枠材
3 平板短辺方向加力部枠材
4 平板四隅斜め補強材
5 四隅補強材間の補剛板
DESCRIPTION OF SYMBOLS 1 Metal flat plate which receives in-plane shear 2 Frame material along flat plate circumference side edge 3 Flat plate short side direction force part frame material 4 Flat plate corner diagonal reinforcement material 5 Stiffening plate between four corner reinforcement materials

Claims (4)

主に面内せん断を受ける矩形金属平板に対し、平板の周囲四辺に枠組を設け且つ枠組四隅の角を頂点とする斜辺に補強材を添接するもので、前記斜め補強材と周辺枠材とは僅かに離してトラス力が働かないようにし、対角にある斜め補強材が平板面内の引張主応力を均等に受けるようにし且つ他の対角にある斜め補強材により圧縮主応力の影響を阻止し、矩形金属平板のせん断降伏荷重の確保と降伏後のせん断大変形領域に於けるせん断耐力の維持を図る制振乃至耐震補強構造。   For rectangular metal flat plates that are subject to in-plane shear, a frame is provided on the four sides around the flat plate, and a reinforcing material is attached to the hypotenuse with the corners of the four corners as vertices. Keep the truss force away from each other slightly so that diagonal diagonal reinforcements receive the tensile principal stress in the flat plate evenly, and other diagonal diagonal reinforcements influence the compressive principal stress. Anti-vibration or seismic reinforcement structure that prevents and secures the shear yield load of rectangular metal plates and maintains the shear strength in the large shear deformation region after yielding. 主に面内せん断を受ける矩形金属平板に対し、平板の周囲四辺に枠組を設け且つ枠組四隅の角を頂点とする斜辺に補強材を添接するもので、周辺枠組近傍で偏心して配される前記斜め補強材同士の一部乃至全てを結び、対角にある斜め補強材が平板面内の引張主応力を均等に受けるようにし且つ他の対角にある斜め補強材により圧縮主応力の影響を阻止し、矩形金属平板のせん断降伏荷重の確保と降伏後のせん断大変形領域に於けるせん断耐力の維持を図る制振乃至耐震補強構造。   For rectangular metal flat plates that are subject to in-plane shear, a frame is provided on the four sides of the flat plate and a reinforcing material is attached to the hypotenuse with the corners of the four corners as vertices. Connect some or all of the diagonal reinforcements so that the diagonal diagonal reinforcements receive the tensile principal stress in the flat plate evenly, and the diagonal diagonal reinforcements influence the compression main stress. Anti-vibration or seismic reinforcement structure that prevents and secures the shear yield load of rectangular metal plates and maintains the shear strength in the large shear deformation region after yielding. 主に面内せん断を受ける矩形金属平板に対し、平板の周囲四辺に充実乃至管状矩形断面部材を幅広面で添接して枠組とし且つ枠組四隅の角を頂点とする斜辺に充実乃至管状矩形断面部材を幅広面で添接し乃至直角三角形形状の平板を添接し、対角にある斜め補強材が平板面内の引張主応力を均等に受けるようにし且つ他の対角にある斜め補強材により圧縮主応力の影響を阻止し、矩形金属平板のせん断降伏荷重の確保と降伏後のせん断大変形領域に於けるせん断耐力の維持を図る制振乃至耐震補強構造。   A solid or tubular rectangular cross-section member that is solid on a rectangular metal flat plate subject to in-plane shear, and has a solid or tubular rectangular cross-section member attached to the four sides around the flat plate with a wide surface to form a frame and a hypotenuse with the corners of the four corners of the frame as vertices. Is attached to a wide flat surface or a right triangular plate, so that diagonal diagonal reinforcements receive the tensile principal stress in the flat plane evenly and are compressed by diagonal diagonal reinforcements. Damping or seismic reinforcement structure that prevents the influence of stress and ensures the shear yield load of rectangular metal plates and maintains the shear strength in the large deformation region after yielding. 主に面内せん断を受け必要に応じ圧縮荷重を支える長方形金属平板に対し、平板の周囲四辺に枠組を設け且つ必要に応じ長手方向中間部の短手方向にも枠組を設け上下二分し、前記各領域の枠組四隅の角を頂点とする斜辺に斜め補強材を添接し、更に前記斜め補強材の間隔が広くなる場合には枠組の一方と平行に補強材を添接し、矩形金属平板のせん断降伏荷重の確保と降伏後のせん断大変形領域に於けるせん断耐力の維持を図る請求項1,請求項2,請求項3に記載の制振乃至耐震補強構造。   For a rectangular metal plate that mainly receives in-plane shear and supports a compressive load as necessary, a frame is provided on the four sides around the plate and, if necessary, a frame is also provided in the short direction of the middle portion in the longitudinal direction, and divided into upper and lower parts, A diagonal reinforcing material is attached to the hypotenuse with the corners of the four corners of each frame as vertices, and when the interval between the diagonal reinforcing materials is widened, the reinforcing material is attached parallel to one of the frames, and the rectangular metal plate is sheared. The damping or seismic reinforcement structure according to any one of claims 1, 2 and 3, which secures a yield load and maintains a shear strength in a large shear deformation region after yielding.
JP2011113262A 2011-05-20 2011-05-20 Four corner reinforcement structure of rectangular metal flat plate Expired - Fee Related JP4829384B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011113262A JP4829384B1 (en) 2011-05-20 2011-05-20 Four corner reinforcement structure of rectangular metal flat plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011113262A JP4829384B1 (en) 2011-05-20 2011-05-20 Four corner reinforcement structure of rectangular metal flat plate

Publications (2)

Publication Number Publication Date
JP4829384B1 true JP4829384B1 (en) 2011-12-07
JP2012241436A JP2012241436A (en) 2012-12-10

Family

ID=45418123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011113262A Expired - Fee Related JP4829384B1 (en) 2011-05-20 2011-05-20 Four corner reinforcement structure of rectangular metal flat plate

Country Status (1)

Country Link
JP (1) JP4829384B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097886B1 (en) * 2012-04-23 2012-12-12 株式会社 構造材料研究会 Circular ring reinforced metal flat plate
JP5110482B1 (en) * 2012-07-24 2012-12-26 株式会社 構造材料研究会 Circular ring framework structure of multi-layer circular metal flat plate
CN105507456A (en) * 2016-01-29 2016-04-20 广东工业大学 Composite shear wall with FRP (fiber reinforced polymer) tubes and metal tubes arranged inside
CN115217081A (en) * 2021-04-14 2022-10-21 中国电建集团华东勘测设计研究院有限公司 Novel hydropower engineering water delivery system square-round gradual change structure and construction method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384905B2 (en) * 2014-04-23 2018-09-05 株式会社竹中工務店 Rigid plate shear wall and frame mechanism with rigid plate shear wall

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095989A (en) * 2008-09-17 2010-04-30 Kozo Zairyo Kenkyukai:Kk Anisotropic reinforcing metal plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095989A (en) * 2008-09-17 2010-04-30 Kozo Zairyo Kenkyukai:Kk Anisotropic reinforcing metal plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097886B1 (en) * 2012-04-23 2012-12-12 株式会社 構造材料研究会 Circular ring reinforced metal flat plate
JP5110482B1 (en) * 2012-07-24 2012-12-26 株式会社 構造材料研究会 Circular ring framework structure of multi-layer circular metal flat plate
CN105507456A (en) * 2016-01-29 2016-04-20 广东工业大学 Composite shear wall with FRP (fiber reinforced polymer) tubes and metal tubes arranged inside
CN115217081A (en) * 2021-04-14 2022-10-21 中国电建集团华东勘测设计研究院有限公司 Novel hydropower engineering water delivery system square-round gradual change structure and construction method thereof

Also Published As

Publication number Publication date
JP2012241436A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
JP4829384B1 (en) Four corner reinforcement structure of rectangular metal flat plate
JP5885950B2 (en) Seismic control wall frame structure
JP5432763B2 (en) Buckling-restrained brace and load-bearing frame using the same
JP7196886B2 (en) Steel beam with floor slab
JP5301337B2 (en) Anisotropic reinforced metal flat plate
JP5510597B1 (en) Circular ring reinforcing beam member
JP2012026123A (en) Structure of load bearing frame
JP4688234B1 (en) Rectangular metal plate square tube reinforcement structure
JP4883639B2 (en) Reinforcement structure of tubular metal flat plate
JP4618805B2 (en) Reinforcement structure of multi-layer metal flat plate
JP5500472B1 (en) Cross-section corner reinforcement structural member
JP2007277911A (en) Structure of seismic response control column
JP5097886B1 (en) Circular ring reinforced metal flat plate
JP5654060B2 (en) Damper brace and damping structure
KR20120042239A (en) Steel plate shear wall which columns bear only gravity load
JP6171596B2 (en) Wall panels
WO2010116660A1 (en) Anisotropic reinforcing metal plate
JP4923641B2 (en) Column-beam joints, steel frames and steel structures with excellent seismic performance
JP5098034B2 (en) Plane stiffening structure of rectangular metal plate
JP2005042423A (en) Shear reinforcement structure of metal plate
JP7262518B2 (en) Stud type steel damper
JP5110482B1 (en) Circular ring framework structure of multi-layer circular metal flat plate
JP2015134992A (en) Wall column structure and building
JP5769458B2 (en) Reinforcement structure of frame
JP2010242322A (en) Aseismatic reinforcing structure of opening in existing rc rigid frame structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees