JP2022503796A - ホログラフィックリアリティシステム、マルチビューディスプレイ、および方法 - Google Patents

ホログラフィックリアリティシステム、マルチビューディスプレイ、および方法 Download PDF

Info

Publication number
JP2022503796A
JP2022503796A JP2021516618A JP2021516618A JP2022503796A JP 2022503796 A JP2022503796 A JP 2022503796A JP 2021516618 A JP2021516618 A JP 2021516618A JP 2021516618 A JP2021516618 A JP 2021516618A JP 2022503796 A JP2022503796 A JP 2022503796A
Authority
JP
Japan
Prior art keywords
view
light
holographic reality
virtual
reality system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021516618A
Other languages
English (en)
Inventor
エー. ファタル,デイヴィッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leia Inc
Original Assignee
Leia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leia Inc filed Critical Leia Inc
Publication of JP2022503796A publication Critical patent/JP2022503796A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H3/00Holographic processes or apparatus using ultrasonic, sonic or infrasonic waves for obtaining holograms; Processes or apparatus for obtaining an optical image from them
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1643Details related to the display arrangement, including those related to the mounting of the display in the housing the display being associated to a digitizer, e.g. laptops that can be used as penpads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1686Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04812Interaction techniques based on cursor appearance or behaviour, e.g. being affected by the presence of displayed objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04815Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0061Adaptation of holography to specific applications in haptic applications when the observer interacts with the holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/05Means for tracking the observer

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Holo Graphy (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • User Interface Of Digital Computer (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Planar Illumination Modules (AREA)

Abstract

Figure 2022503796000001
ホログラフィックリアリティシステムとマルチビューディスプレイは、ユーザ位置を監視し、仮想触覚フィードバックをユーザに提供する。ホログラフィックリアリティシステムは、マルチビュー画像を表示するように構成されたマルチビューディスプレイ、ユーザ位置を監視するように構成された位置センサ、および仮想触覚フィードバックを提供するように構成された仮想触覚フィードバックユニットを含む。仮想触覚フィードバックの範囲は、マルチビュー画像内の仮想制御の範囲に対応する。ホログラフィックリアリティマルチビューディスプレイは、異なるビューに対応する方向を有する指向性光ビームを変調することによってマルチビュー画像の異なるビューを提供するように構成されたマルチビューピクセルのアレイと、対応するマルチビューピクセルに指向性光ビームを提供するように構成されたマルチビーム要素のアレイとを含む。

Description

関連出願の相互参照
該当なし
連邦政府による資金提供を受けた研究または開発に関する記載
該当なし
電子ディスプレイは、様々なデバイスや製品のユーザに情報を伝達するためのほぼどこにでもある媒体である。最も一般的に使用されている電子ディスプレイには、ブラウン管(CRT)、プラズマディスプレイパネル(PDP)、液晶ディスプレイ(LCD)、エレクトロルミネセントディスプレイ(EL)、有機発光ダイオード(OLED)、アクティブマトリックスOLED(AMOLED)ディスプレイ、電気泳動ディスプレイ(EP)、および電気機械式または電気流体式の光変調を使用する様々なディスプレイ(デジタルマイクロミラーデバイス、エレクトロウェッティングディスプレイなど)が含まれる。一般に、電子ディスプレイは、アクティブディスプレイ(つまり、光を放射するディスプレイ)またはパッシブディスプレイ(つまり、別の光源から提供される光を変調するディスプレイ)に分類できる。アクティブディスプレイの最も明白な例には、CRT、PDP、OLED/AMOLEDがある。放射光を考慮するときに一般的にパッシブとして分類されるディスプレイは、LCDとEPディスプレイである。パッシブディスプレイは、本質的に低消費電力を含むがこれに限定されない魅力的なパフォーマンス特性を示すことがよくあるが、光を放射する能力がないことを考えると、多くの実際のアプリケーションで使用が多少制限され得る。
本明細書に記載の原理による例および実施形態の様々な特徴は、添付の図面と併せて以下の詳細な説明を参照することにより、より容易に理解することができ、同じ参照番号は同じ構造要素を示す。
本明細書に記載の原理と一致する実施形態による、一例におけるマルチビューディスプレイの斜視図である。
本明細書に記載の原理と一致する実施形態による、一例におけるマルチビューディスプレイのビュー方向に対応する特定の主角度方向を有する光ビームの角度成分のグラフ表示である。
本明細書に記載の原理と一致する実施形態による、一例における回折格子の断面図である。
本明細書に記載の原理と一致する実施形態による、一例におけるホログラフィックリアリティシステムのブロック図である。
本明細書に記載の原理と一致する実施形態による、一例におけるホログラフィックリアリティシステムの斜視図である。
本明細書に記載の原理と一致する実施形態による、別の例における図3Bのホログラフィックリアリティシステムの斜視図である。
本明細書に記載の原理と一致する実施形態による、一例におけるマルチビューディスプレイの断面図である。
本明細書に記載の原理と一致する実施形態による、一例におけるマルチビューディスプレイの平面図である。
本明細書に記載の原理と一致する実施形態による、一例におけるマルチビューディスプレイの斜視図である。
本明細書に記載の原理と一致する実施形態による、一例におけるマルチビーム要素を含むマルチビューディスプレイの一部の断面図である。
本明細書に記載の原理と一致する別の実施形態による、一例におけるマルチビーム要素を含むマルチビューディスプレイの一部の断面図である。
本明細書に記載の原理と一致する別の実施形態による、一例におけるマルチビーム要素を含むマルチビューディスプレイの一部の断面図である。
本明細書に記載の原理と一致する別の実施形態による、一例におけるマルチビーム要素を含むマルチビューディスプレイの一部の断面図である。
本明細書に記載の原理と一致する別の実施形態による、一例におけるマルチビーム要素を含むマルチビューディスプレイの一部の断面図である。
本明細書に記載の原理と一致する実施形態による、一例におけるホログラフィックリアリティマルチビューディスプレイのブロック図である。
本明細書に記載の原理と一致する実施形態による、一例におけるホログラフィックリアリティシステム動作の方法のフローチャートである。
特定の例および実施形態は、上記で参照された図に示された特徴に加えて、およびその代わりに他の特徴を有する。これらの特徴およびその他の特徴については、上記で参照した図を参照して以下で詳しく説明する。
本明細書に記載の原理による例および実施形態は、ユーザのためにホログラフィックリアリティを作成するように構成されたシステムおよびディスプレイを提供する。特に、ホログラフィックリアリティシステムは、マルチビューまたは三次元(3D)コンテンツを含むマルチビュー画像を表示するように構成されたマルチビューディスプレイを含み得る。さらに、ホログラフィックリアリティシステムは、ユーザとマルチビューディスプレイまたは位置センサとの間の接触なしにユーザの手の位置を監視するように構成された位置センサ(静電容量センサ、2つ以上の画像センサ、または飛行時間センサなど)を含み得る。さらに、ホログラフィックリアリティシステムは、少なくとも部分的に監視された位置に基づいて、ユーザとホログラフィックリアリティシステムとの間の接触なしにユーザに仮想触覚フィードバックを提供するように構成されたフィードバックユニットを含み得る。例えば、位置センサユニットは、コマンドに対応するジェスチャを検出することができ、仮想触覚フィードバックユニットは、監視された手の位置に応答して、マルチビュー画像内の仮想制御のアクティブ化に関する情報を提供することができる。さらに、ホログラフィックリアリティシステムは、監視された位置に少なくとも部分的に基づいて、マルチビュー画像のマルチビューコンテンツを変更するように構成され得る。
本明細書において、「二次元ディスプレイ」または「2Dディスプレイ」は、画像が見られる方向(すなわち、2Dディスプレイの所定の視野角または範囲内)に関係なく実質的に同じである画像のビューを提供するように構成されるディスプレイとして定義される。スマートフォンやコンピュータモニタに見られる液晶ディスプレイ(LCD)は、2Dディスプレイの例である。本明細書において対照的に、「マルチビューディスプレイ」は、異なるビュー方向で、または異なるビュー方向からマルチビュー画像の異なるビューを提供するように構成された電子ディスプレイまたはディスプレイシステムとして定義される。特に、異なるビューは、マルチビュー画像のシーンまたはオブジェクトの異なる斜視図を表してもよい。場合によっては、マルチビューディスプレイは、例えば、マルチビュー画像の2つの異なるビューを同時に見ることが、三次元画像を見る知覚を提供するときに、三次元(3D)ディスプレイと呼ばれることもある。
図1Aは、本明細書に記載の原理と一致する実施形態による、一例におけるマルチビューディスプレイ10の斜視図を示している。図1Aに示すように、マルチビューディスプレイ10は、見るべきマルチビュー画像を表示するスクリーン12を備えている。マルチビューディスプレイ10は、スクリーン12に対して異なるビュー方向16でマルチビュー画像の異なるビュー14を提供する。ビュー方向16は、様々な異なる主角度方向にスクリーン12から延びる矢印として示され;異なるビュー14は、矢印(すなわち、ビュー方向16を描いている)の終端に多角形ボックスとして示され;また、4つのビュー14および4つのビュー方向16のみが示されており、これらはすべて例示であって限定ではない。図1Aではスクリーンの上方に異なるビュー14が示されているが、マルチビュー画像がマルチビューディスプレイ10に表示されると、ビュー14は実際にスクリーン12上またはスクリーン12の近くに現れることに留意されたい。スクリーン12の上にビュー14を描くことは、説明を簡単にするためだけであり、特定のビュー14に対応するビュー方向16のそれぞれからマルチビューディスプレイ10を見ることを表すことを意図している。
マルチビューディスプレイのビュー方向に対応する方向を有するビュー方向または同等に光ビームは、一般に、本明細書の定義により、角度成分{θ,φ}によって与えられる主角度方向を有する。本明細書では、角度成分θは、光ビームの「仰角成分」または「仰角」と呼ばれる。角度成分φは、光ビームの「方位角成分」または「方位角」と呼ばれる。定義により、仰角θは垂直面の角度(例えば、マルチビューディスプレイ画面の平面に垂直)であり、方位角φは水平面の角度(例えば、マルチビューディスプレイ画面の平面に平行)である。図1Bは、本明細書に記載の原理と一致する実施形態による、一例におけるマルチビューディスプレイのビュー方向(例えば、図1Aのビュー方向16)に対応する特定の主角度方向を有する光ビーム20の角度成分{θ,φ}のグラフ表示を示している。加えて、光ビーム20は、本明細書の定義により、特定の点から放射または発散される。すなわち、定義により、光ビーム20は、マルチビューディスプレイ内の特定の原点に関連付けられた中心光線を有する。図1Bは、光ビーム(またはビュー方向)の原点Oも示している。
本明細書ではさらに、「マルチビュー画像」および「マルチビューディスプレイ」という用語で使用される「マルチビュー」という用語は、異なる視点を表す、または複数のビューのビュー間の角度視差を含む複数のビューとして定義される。加えて、本明細書では、「マルチビュー」という用語は、本明細書の定義により、明示的に3つ以上の異なるビュー(すなわち、最低3つのビューおよび一般に4つ以上のビュー)を含む。したがって、本明細書で使用される「マルチビューディスプレイ」は、シーンまたは画像を表すために2つの異なるビューのみを含む立体ディスプレイと明示的に区別される。ただし、マルチビュー画像とマルチビューディスプレイには3つ以上のビューが含まれるが、本明細書の定義により、マルチビュー画像は、一度に表示するマルチビューを2つだけを選択して(例えば、片目で1つのビュー)立体画像のペアとして(例えば、マルチビューディスプレイで)見ることができる。
「マルチビューピクセル」は、本明細書では、マルチビューディスプレイの複数の異なるビューの各ビューにおける「ビュー」ピクセルを表すサブピクセル(ライトバルブなど)のセットまたはグループとして定義される。特に、マルチビューピクセルは、マルチビュー画像の異なるビューのそれぞれのビューピクセルに対応する、またはそれを表す個々のサブピクセルを有し得る。さらに、マルチビューピクセルのサブピクセルは、本明細書の定義により、サブピクセルのそれぞれが、異なるビューの内の1つの対応するビューの所定のビュー方向に関連付けられるという点で、いわゆる「方向ピクセル」である。さらに、様々な例および実施形態によれば、マルチビューピクセルのサブピクセルによって表される異なるビューピクセルは、異なるビューのそれぞれにおいて同等または少なくとも実質的に同様の位置または座標を有し得る。例えば、最初のマルチビューピクセルは、マルチビュー画像の異なるビューのそれぞれで{x,y}に位置するビューピクセルに対応する個別のサブピクセルを有し得、2番目のマルチビューピクセルは異なるビューのそれぞれで{x,y}に位置するビューピクセルに対応する個別のサブピクセルを有し得る、などである。
いくつかの実施形態では、マルチビューピクセル内のサブピクセルの数は、マルチビューディスプレイの異なるビューの数に等しくてもよい。例えば、マルチビューピクセルは、64個の異なるビューを有するマルチビューディスプレイに関連する64個のサブピクセルを提供してもよい。別の例では、マルチビューディスプレイは8×4アレイのビュー(すなわち32個のビュー)を提供してもよく、マルチビューピクセルは32個のサブピクセル(すなわち各ビューに1つ)を含んでもよい。加えて、それぞれの異なるサブピクセルは、例えば、64個の異なるビューに対応するビュー方向の異なる1つに対応する関連する方向(例えば、光ビームの主角度方向)を有してもよい。さらに、いくつかの実施形態によれば、マルチビューディスプレイのいくつかのマルチビューピクセルは、マルチビューディスプレイビュー内のいくつかの「ビュー」ピクセル(すなわち、選択されたビューを構成するピクセル)に実質的に等しくてもよい。例えば、ビューに640×480のビューピクセル(つまり、640×480のビュー解像度)が含まれている場合、マルチビューディスプレイは307,200個のマルチビューピクセルを有してもよい。別の例では、ビューが100×100ピクセルを含む場合、マルチビューディスプレイは、合計1万(すなわち、100×100=10,000)のマルチビューピクセルを含んでもよい。
本明細書では、「光ガイド」は、内部全反射を使用して構造内で光をガイドする構造として定義される。特に、光ガイドは、光ガイドの動作波長において実質的に透明であるコアを含み得る。様々な例において、「光ガイド」という用語は一般に、内部全反射を使用して、光ガイドの誘電材料とその光ガイドを囲む材料または媒体との間の界面で光をガイドする誘電体光導波路を指す。定義により、内部全反射の条件は、光ガイドの屈折率が、光ガイド材料の表面に隣接する周囲の媒体の屈折率よりも大きいことである。いくつかの実施形態では、光ガイドは、内部全反射をさらに促進するために、前述の屈折率差に加えて、またはその代わりにコーティングを含んでもよい。コーティングは、例えば、反射コーティングであってもよい。光ガイドは、プレートまたはスラブガイドおよびストリップガイドの一方または両方を含むがこれらに限定されないいくつかの光ガイドのいずれであってもよい。
さらに、本明細書では、「プレート光ガイド」のように光ガイドに適用されるときの「プレート」という用語は、区分的または微分的に平面の層またはシートとして定義され、「スラブ」ガイドと呼ばれることもある。特に、プレート光ガイドは、光ガイドの上面および底面(つまり、対向面)によって境界付けられた2つの実質的に直交する方向に光をガイドするように構成された光ガイドとして定義される。さらに、本明細書の定義により、上面および底面は両方とも互いに分離されており、少なくとも異なる意味で互いに実質的に平行であってもよい。すなわち、プレート光ガイドの異なる小さなセクション内では、上面および底面は実質的に平行または同一平面にある。
いくつかの実施形態では、プレート光ガイドは、実質的に平坦(つまり、平面に限定される)であってよく、したがって、プレート光ガイドは、平面の光ガイドである。他の実施形態では、プレート光ガイドは、1つまたは2つの直交する次元で湾曲していてもよい。例えば、プレート光ガイドは、円筒形のプレート光ガイドを形成するために、単一次元で湾曲させることができる。しかしながら、いかなる曲率も、内部全反射がプレート光ガイド内で維持されて光をガイドすることを保証するのに十分に大きい曲率半径を有する。
ここで、「回折格子」は、回折格子に入射する光の回折を提供するように構成された複数の特徴(つまり、回折特徴)として広範に定義される。いくつかの例では、複数の特徴は、周期的な方法または準周期的な方法で配置されてもよい。他の例では、回折格子は、複数の回折格子を含む混合周期回折格子であってもよく、複数の回折格子のそれぞれは、特徴の異なる周期的配置を有する。さらに、回折格子は、一次元(1D)アレイに配置された複数の特徴(例えば、材料表面の複数の溝またはリッジ)を含んでもよい。あるいは、回折格子は、特徴の二次元(2D)アレイ、または二次元で定義される特徴のアレイを含んでもよい。回折格子は、例えば、材料表面のバンプまたは穴の2Dアレイであってもよい。いくつかの例では、回折格子は、第1の方向または次元で実質的に周期的であり、回折格子を横切るまたはそれに沿った別の方向で実質的に非周期的(例えば、一定、ランダムなど)であってもよい。
したがって、本明細書の定義により、「回折格子」は、回折格子に入射する光の回折を提供する構造である。光が光ガイドから回折格子に入射する場合、提供される回折または回折散乱は、回折格子が光ガイドからの光を回折によって結合することができるという点で、「回折結合」をもたらす可能性があり、したがって「回折結合」と呼ばれる。回折格子はまた、回折によって(つまり、回折角で)光の角度を方向転換または変更する。特に、回折の結果として、回折格子を出る光は、一般に、回折格子に入射する光(つまり、入射光)の伝搬方向とは異なる伝搬方向を有する。本明細書では、回折による光の伝搬方向の変化を「回折方向転換」と呼ぶ。したがって、回折格子は、回折格子に入射する光を回折方向転換する回折特徴を含む構造であると理解することができ、光が光ガイドから入射する場合、回折格子はまた、光ガイドからの光を回折結合することができる。
さらに、本明細書の定義により、回折格子の特徴は「回折特徴」と呼ばれ、材料の表面(つまり、2つの材料間の境界)、表面内、および表面上の1つまたはそれ以上にあり得る。表面は、例えば、光ガイドの表面であり得る。回折特徴は、表面にある、表面内にある、または表面上にある溝、リッジ、穴、およびバンプの1つまたはそれ以上を含むがこれらに限定されない、光を回折する様々な構造のいずれかを含むことができる。例えば、回折格子は、材料表面内に複数の実質的に平行な溝を含み得る。別の例では、回折格子は、材料表面から立ち上がる複数の平行なリッジを含み得る。回折特徴(例えば、溝、リッジ、穴、バンプなど)は、正弦波プロファイル、長方形プロファイル(例えば、バイナリ回折格子)、三角形プロファイルおよび鋸歯プロファイル(例えば、ブレーズド格子)の1つまたはそれ以上を含むがこれらに限定されない回折を提供する様々な断面形状またはプロファイルのいずれかを有することができる。
本明細書に記載の様々な例によれば、回折格子(例えば、以下に記載されるような回折マルチビーム要素の回折格子)を使用して、光ガイド(例えば、プレート光ガイド)からの光を光ビームとして回折散乱または結合することができる。特に、局所的に周期的な回折格子の、またはそれによって提供される回折角θは、式(1)によって以下のように与えられ得る:
Figure 2022503796000002
ここで、λは光の波長、mは回折次数、nは光ガイドの屈折率、dは回折格子の特徴間の距離または間隔、θは回折格子への光の入射角である。簡単にするために、式(1)は、回折格子が光ガイドの表面に隣接し、光ガイドの外側の材料の屈折率が1に等しい(つまり、nout=1)と仮定している。一般に、回折次数mは整数で与えられる(つまり、m=±1,±2,...)。回折格子によって生成される光ビームの回折角θは、式(1)によって与えられ得る。一次回折、より具体的には一次回折角θは、回折次数mが1に等しい場合(すなわち、m=1)に提供される。
図2は、本明細書に記載の原理と一致する実施形態による、一例における回折格子30の断面図を示している。例えば、回折格子30は、光ガイド40の表面に配置されてもよい。さらに、図2は、入射角θで回折格子30に入射する光ビーム50を示している。入射光ビーム50は、光ガイド40内の導波光ビームであってもよい。また、図2には、入射光ビーム50の回折の結果として、光ガイド40から回折格子30によって回折的に生成され、結合または散乱される指向性光ビーム60が示されている。指向性光ビーム50は、式(1)によって与えられるような回折角θ(または本明細書では「主角度方向」)を有する。指向性光ビーム60は、例えば、回折格子30の回折次数「m」に対応し得る。
さらに、いくつかの実施形態によれば、回折特徴は湾曲していてもよく、光の伝搬方向に対して所定の向き(例えば、傾斜または回転)を有していてもよい。回折特徴の湾曲および回折特徴の向きの一方または両方は、例えば、回折格子によって散乱される光の方向を制御するように構成され得る。例えば、指向性光の主角度方向は、入射光の伝搬方向に対する光が回折格子に入射する点での回折特徴の角度の関数であり得る。
本明細書の定義により、「マルチビーム要素」は、複数の光ビームを含む光を生成するバックライトまたはディスプレイの構造または要素である。「回折」マルチビーム要素は、定義上、回折結合によって、または回折結合を使用して複数の光ビームを生成するマルチビーム要素である。特に、いくつかの実施形態では、回折マルチビーム要素は、バックライトの光ガイドに光学的に結合されて、光ガイドにガイドされる光の一部を回折的に結合することによって複数の光ビームを提供し得る。さらに、本明細書の定義により、回折マルチビーム要素は、マルチビーム要素の境界または範囲内に複数の回折格子を備える。マルチビーム要素によって生成された複数の光ビーム(plurality of light beams)(または「複数の光ビーム(light beam plurality)」)の光ビームは、本明細書の定義により、互いに異なる主角度方向を有する。特に、定義により、複数の光ビームの光ビームは、複数の光ビームの別の光ビームとは異なる所定の主角度方向を有する。様々な実施形態によれば、回折マルチビーム要素の回折格子における回折特徴の間隔または格子ピッチは、サブ波長(すなわち、導波光の波長未満)であり得る。
以下の説明では、複数の回折格子を備えたマルチビーム要素が説明例として使用されるが、いくつかの実施形態では、微小反射要素および微小屈折要素のうちの少なくとも1つなどの他の構成要素がマルチビーム要素で使用されてもよい。例えば、微小反射要素は、三角形の鏡、台形の鏡、ピラミッド形の鏡、長方形の鏡、半球形の鏡、凹面鏡および/または凸面鏡を含み得る。いくつかの実施形態では、微小屈折要素は、三角形の屈折要素、台形の屈折要素、ピラミッド形の屈折要素、長方形の屈折要素、半球形の屈折要素、凹面屈折要素および/または凸面屈折要素を含み得る。
様々な実施形態によれば、複数の光ビームは、ライトフィールドを表すことができる。例えば、複数の光ビームは、空間の実質的に円錐形の領域に限定され得るか、または複数の光ビームにおける光ビームの異なる主角度方向を含む所定の角度広がりを有し得る。したがって、組み合わせた光ビーム(すなわち、複数の光ビーム)の所定の角度広がりは、ライトフィールドを表すことができる。
様々な実施形態によれば、複数の光ビームにおける様々な光ビームの異なる主角度方向は、回折マルチビーム要素内の回折格子の「格子ピッチ」または回折特徴間隔および向きとともに回折マルチビーム要素のサイズ(例えば、長さ、幅、面積などの1つまたはそれ以上)を含むがこれらに限定されない特性によって決定される。いくつかの実施形態では、回折マルチビーム要素は、本明細書の定義により、「拡張点光源」、すなわち、回折マルチビーム要素の範囲全体に分散された複数の点光源と見なすことができる。さらに、回折マルチビーム要素によって生成された光ビームは、本明細書の定義により、および図1Bに関して上記で説明したように、角度成分{θ,φ}によって与えられる主角度方向を有する。
本明細書では、「コリメータ」は、光をコリメートするように構成された実質的に任意の光学デバイスまたは装置として定義される。例えば、コリメータは、コリメートミラーまたは反射器、コリメートレンズ、またはそれらの様々な組み合わせを含み得るが、これらに限定されない。いくつかの実施形態では、コリメート反射器を含むコリメータは、放物面状の湾曲または形状によって特徴付けられる反射面を有し得る。別の例では、コリメート反射器は、成形された放物面反射器を含み得る。「成形された放物面」とは、成形された放物面反射器の湾曲した反射面が、所定の反射特性(例えば、コリメーションの程度)を達成するように決定された方法で「真の」放物曲線から逸脱することを意味する。同様に、コリメートレンズは、球形の表面(例えば、両凸球面レンズ)を含み得る。
いくつかの実施形態では、コリメータは、連続反射器または連続レンズ(すなわち、実質的に滑らかな連続表面を有する反射器またはレンズ)であり得る。他の実施形態では、コリメート反射器またはコリメートレンズは、実質的に不連続な表面、例えば限定されないが、光コリメーションを提供するフレネル反射器またはフレネルレンズを含み得る。様々な実施形態によれば、コリメータによって提供されるコリメーションの量は、所定の程度または量で実施形態ごとに変化してもよい。さらに、コリメータは、2つの直交する方向(例えば、垂直方向および水平方向)の一方または両方でコリメーションを提供するように構成され得る。すなわち、コリメータは、いくつかの実施形態によれば、光コリメーションを提供する2つの直交する方向の一方または両方の形状を含み得る。
本明細書では、σと示される「コリメーション係数」は、光がコリメートされる度合いとして定義される。特に、コリメーション係数は、本明細書の定義により、コリメートされた光のビーム内の光線の角度広がりを定義する。例えば、コリメーション係数σは、コリメートされた光のビーム内の光線の大部分が特定の角度広がり内にあることを指定してもよい(例えば、コリメートされた光ビームの中心方向または主角度方向を中心として+/-σ度)。いくつかの例によれば、コリメート光ビームの光線は角度に関してガウス分布を有してもよく、角度広がりはコリメート光ビームのピーク強度の半分で決定される角度であってもよい。
本明細書では、「光源」は、光の供給源(例えば、光を生成および放射するように構成された光エミッタ)として定義される。例えば、光源は、光エミッタ、例えば、起動またはオンにされたときに光を放射する発光ダイオード(LED)を備えてもよい。特に、本明細書では、光源は、実質的に任意の光の供給源であるか、または発光ダイオード(LED)、レーザー、有機発光ダイオード(OLED)、ポリマー発光ダイオード、プラズマベースの光エミッタ、蛍光灯、白熱灯、および事実上他の光の供給源のうちの1つまたはそれ以上を含むがこれらに限定されない実質的に任意の光エミッタを備えてもよい。光源によって生成される光は、色を有してもよく(つまり、特定の波長の光を含んでもよい)、またはある範囲の波長(例えば、白色光)であってもよい。いくつかの実施形態では、光源は、複数の光エミッタを含んでもよい。例えば、光源は光エミッタのセットまたはグループを含んでもよく、光エミッタの少なくとも1つは、セットまたはグループの少なくとも1つの他の光エミッタによって生成される光の色または波長とは異なる色、または同等に波長を有する光を生成する。異なる色は、例えば、原色(例えば、赤、緑、青)を含み得る。
さらに、本明細書で使用される場合、冠詞「a」は、特許技術におけるその通常の意味、すなわち「1つまたはそれ以上」を有することを意図している。例えば、「要素(an element)」は1つまたはそれ以上の要素を意味し、したがって、「要素(the element)」は、本明細書では「1つまたはそれ以上の要素(the element(s))」を意味する。また、本明細書の任意の参照である「頂部」、「底部」、「上」、「下」、「上方」、「下方」、「前」、「後ろ」、「第1」、「第2」、「左」または「右」は、本明細書において制限を意図するものではない。本明細書において、「約」という用語は、値に適用される場合、通常、値を生成するために使用される機器の許容範囲内を意味し、特に明記しない限り、プラスまたはマイナス10%、プラスまたはマイナス5%、あるいはプラスまたはマイナス1%を意味してもよい。さらに、本明細書で使用される「実質的に」という用語は、大部分、またはほぼすべて、またはすべて、または約51%から約100%の範囲内の量を意味する。さらに、本明細書の例は、例示のみを目的とするものであり、限定目的ではなく、議論の目的で提示されている。
本明細書に記載の原理の実施形態によれば、ホログラフィックリアリティシステムが提供される。図3Aは、本明細書に記載の原理と一致する実施形態による、一例におけるホログラフィックリアリティシステム100のブロック図を示している。図3Bは、本明細書に記載の原理と一致する実施形態による、一例におけるホログラフィックリアリティシステム100の斜視図を示している。図3Cは、本明細書に記載の原理と一致する実施形態による、別の例における図3Bのホログラフィックリアリティシステム100の斜視図を示している。
様々な実施形態によれば、ホログラフィックリアリティシステム100は、マルチビューコンテンツをマルチビュー画像として表示するように構成される。さらに、ホログラフィックリアリティシステム100は、ホログラフィックリアリティシステム100のユーザ(すなわち、以下「ユーザ」)への非接触または「仮想」ユーザ入力および非接触または「仮想」触覚フィードバックの組み合わせを使用して、マルチビューコンテンツとの相互作用を容易にする。特に、ユーザは、仮想ユーザ入力および仮想触覚フィードバックを使用して、マルチビュー画像内の仮想制御を介してマルチビューコンテンツを変更するか、さもなければそれと相互作用し得る。さらに、ホログラフィックリアリティシステム100は、マルチビュー画像内の仮想制御の範囲(すなわち、位置、サイズ、および形状)に対応する範囲を有する仮想触覚フィードバックを提供するように構成される。したがって、仮想触覚フィードバックは、様々な実施形態によれば、ユーザとホログラフィックリアリティシステム100との間の実際のまたは物理的な接触なしに、仮想制御との物理的相互作用の感覚をユーザに提供し得る。
図3Aに示されるように、ホログラフィックリアリティシステム100は、マルチビューディスプレイ110を備える。マルチビューディスプレイ110は、マルチビューコンテンツをマルチビュー画像として表示するように構成される。特に、表示されたマルチビュー画像は、ホログラフィックリアリティシステム100のユーザ101によって見られるように構成される。様々な実施形態によれば、マルチビューディスプレイ110は、マルチビューコンテンツをマルチビュー画像として表示することができる実質的に任意の電子ディスプレイであり得る。例えば、マルチビューディスプレイ110は、限定されないが、携帯電話またはスマートフォン、タブレットコンピュータ、ラップトップコンピュータ、ノートブックコンピュータ、パーソナルコンピュータまたはデスクトップコンピュータ、ネットブックコンピュータ、メディアプレーヤデバイス、電子ブックデバイス、スマートウォッチ、ウェアラブルコンピューティングデバイス、ポータブルコンピューティングデバイス、消費者向け電子デバイス、およびディスプレイヘッドセット(限定されないが、仮想現実ヘッドセットなど)の様々な電子ディスプレイ、またはそれに使用される様々な電子ディスプレイであり得るか、またはそれらを含み得る。いくつかの実施形態(例えば、図4A~図4Cを参照して以下に説明する)では、マルチビューディスプレイ110は、複数の指向性光ビームを提供するように構成されたマルチビーム要素と、マルチビュー画像の異なるビューのビューピクセルとして指向性光ビームを変調するように構成されたライトバルブのアレイとを使用するホログラフィックリアリティマルチビューディスプレイであり得る。
図3Aに示されるホログラフィックリアリティシステム100は、位置センサ120をさらに備える。位置センサ120、またはより一般的には位置センサ120を含む測定サブシステムは、ユーザ101の位置を監視するように構成される。例えば、位置センサ120は、ホログラフィックリアリティシステム100のユーザ101の手の位置または手の1つまたはそれ以上の指の位置を監視するように構成され得る。他の実施形態では、位置センサ120は、監視には限定されないが、ユーザ101の頭の位置、ユーザ101の目の位置、およびユーザ101によって保持されるオブジェクトの位置を監視することができる。本明細書での説明を簡単にするために、ユーザ101の「手」という用語は、手が監視され得るユーザ101の任意の物理的部分または状態を表し得ることを理解して説明される。特に、「手」という用語は、本明細書の定義により、少なくとも手全体、ならびに手の1つまたはそれ以上の指を含むと理解される。さらに、本明細書の定義により、「位置」の監視には、場所の監視および相対運動の監視が含まれるが、これらに限定されない。図3B~図3Cは、限定ではなく例として、位置センサ120によって監視され得るユーザ101の手102を示している。
様々な実施形態によれば、位置センサ120は、位置測定、例えば、ホログラフィックリアリティシステム100のユーザ101の手102の位置および動きの一方または両方を検出するための測定を実行するように構成された1つまたはそれ以上のデバイスまたはセンサ(「感知モジュール」または「感知ユニット」と呼ばれることもある)を備え得る。様々な実施形態によれば、ユーザ101の手の位置および動きの測定の一方または両方は、ユーザ101とホログラフィックリアリティシステム100との間の直接接触の有無にかかわらず実行され得る。物理的接触なしに位置センサ120によって実行される測定は、例えば、「仮想相互作用」または「間接相互作用」または「タッチレス相互作用」と呼ばれることがある。直接または物理的な接触なしでのユーザ位置の監視を図3Aに、破線の矢印を使用して示している。
いくつかの実施形態によれば(例えば、特に仮想または間接相互作用を容易にするために)、位置センサ120は、ユーザ101の手の位置および動きの一方または両方を測定するように構成された静電容量センサ、複数の画像センサ(カメラまたはCMOSもしくはCCD画像センサなど)、および飛行時間センサを含むがこれらに限定されない、いくつかの異なるセンサのいずれかを含み得る。様々な実施形態によれば、静電容量センサは、静電容量の変化を使用して、手の位置および動きの一方または両方を測定または決定するように構成される。例えば、静電容量センサは、ユーザ101の手または指の近接によって誘発される静電容量センサの静電容量の変化に基づいて、手の位置または動きを検出することができる。様々な実施形態によれば、複数の画像センサは、複数の画像センサによってキャプチャされた画像の画像処理を使用することによって、手の位置および動きの一方または両方を決定または測定することができる。例えば、手の異なるフィールドまたはビューまたは視点を有する2つ以上の画像センサが、手の画像をキャプチャすることができる。キャプチャされた画像の分析(例えば、画像処理を使用して)は、ユーザ101の手の位置または動きを決定するために使用され得る(例えば、異なる視点からキャプチャされた画像の比較を使用して)。様々な実施形態によれば、飛行時間センサは、音響信号、無線周波数(RF)、マイクロ波信号、音響信号、赤外線信号、および手の位置または動きを監視するための別の光信号(例えば、可視波長または紫外線波長の一方または両方)のうちの1つまたはそれ以上を含むがこれらに限定されない無線信号を使用することができる。例えば、飛行時間センサは、無線信号を送信することができ、これは、手からの反射時に、無線信号が手と飛行時間センサとの間を往復するのにかかる時間の長さに基づいて位置または動きを決定するために使用され得る。
いくつかの実施形態では、位置センサ120(または位置センサ120を含む測定サブシステム)は、ホログラフィックリアリティシステム100の動きおよび向きの一方または両方を決定するためのセンサをさらに含み得る。例えば、位置センサ120は、ホログラフィックリアリティシステム100の動きおよび向きの一方または両方を測定するように構成されたジャイロスコープや加速度計のうちの1つまたはそれ以上を備え得る。いくつかの実施形態では、手の位置は、例えば、測定された動きおよび測定された向きの一方または両方から推測され得る。さらに他の実施形態では、位置センサ120は、「タッチ」センサ、例えば限定されないが、物理的ボタン、物理的スイッチ、およびタッチセンシティブディスプレイスクリーン(例えば、マルチビューディスプレイ110の静電容量式タッチスクリーン)を備えるか、またはさらに備えることができる。
様々な実施形態によれば、図3Aに示されるホログラフィックリアリティシステム100は、仮想触覚フィードバックユニット130をさらに備える。仮想触覚フィードバックユニット130は、仮想触覚フィードバックをユーザ101に提供するように構成される。特に、仮想触覚フィードバックは、ユーザ101とホログラフィックリアリティシステム100との間の物理的接触なしにユーザ101に提供される。さらに、様々な実施形態によれば、仮想触覚フィードバックの範囲は、マルチビュー画像内の仮想制御の範囲に対応する。物理的接触なしにユーザ101に仮想触覚フィードバックを提供することは、ユーザ101に焦点を合わせた複数の破線の矢印を使用して図3Aに示されている。
図3Bおよび図3Cは、例えば、マルチビュー画像の一部として、ホログラフィックリアリティシステム100のマルチビューディスプレイ110上に表示される三次元ボタンとしての仮想制御104を示している。仮想制御104は、破線の輪郭を使用して示されるように、位置、サイズ(例えば、L×W×H)、および形状を有する。仮想触覚フィードバックの範囲は、仮想制御104の位置、サイズ、および形状に対応し得る。様々な実施形態によれば、ユーザ101の手102が仮想制御104の範囲内に位置する場合、ユーザ101は、仮想触覚フィードバックの結果として、仮想制御104との接触を感じ、感知し、またはそうでなければ知覚することができる。例えば、仮想触覚フィードバックユニット130は、非接触または仮想触覚フィードバックを提供するために、1つまたはそれ以上の超音波を使用して、またはとりわけ超音波圧力、空気圧、または静電荷を使用して仮想触覚フィードバックを提供することができる。超音波圧力、空気圧、または静電荷の範囲は、例えば、仮想制御104の範囲(例えば、視覚的範囲)に対応するように構成され得る。
様々な実施形態によれば、位置センサ120によって提供される位置または動きの測定値を使用して、マルチビューディスプレイ110に表示されるマルチビュー画像のマルチビューコンテンツを変更することができる。例えば、図3B~図3Cに示されるように、マルチビューディスプレイ110は、仮想制御104を使用してコマンドの視覚的表示を提供するように構成され得る。位置センサ120によって提供される手の位置または動きは、ジェスチャまたは制御入力に対応し得る。ジェスチャの効果は、仮想制御104の位置、サイズ、および形状のうちの1つまたはそれ以上を変更することによって、マルチビューコンテンツの変更として提供され得る。例えば、図3Bでは、ジェスチャ(例えば、手が仮想制御104を押す)の前の仮想制御104が示されている。図3Cでは、ジェスチャの後の仮想制御104が描かれている。図示のように、仮想制御104は、コマンド入力が発生したことをユーザ101インターフェースに視覚的に示すために押下されている。したがって、マルチビューディスプレイ110は、表示されたマルチビューコンテンツを変更することによって、ジェスチャに対応するコマンドの入力の視覚的表示を提供することができる。さらに、仮想触覚フィードバックユニット130によって提供される仮想触覚フィードバックは、マルチビューコンテンツの変更を提供するコマンドの入力の物理的表示をシミュレートすることができる。マルチビューコンテンツの変更には、マルチビューコンテンツのピンチ、マルチビューコンテンツの回転、マルチビューコンテンツの移動、およびマルチビューコンテンツの変形または圧縮、例えば、図3Cのように、仮想制御104の押下が含まれ得るが、これらに限定されない。
上記のように、仮想触覚フィードバックユニット130は、監視された位置または動きに応答するマルチビューコンテンツ内の仮想アイコン(例えば、仮想制御104)のアクティブ化など、コマンドへの応答に関する情報をユーザ101に提供することができる。例えば、仮想触覚フィードバックユニット130は、上記のように、超音波もしくは超音波圧力、空気圧、または静電荷を使用して仮想触覚フィードバックを提供することができる。特に、超音波圧力、空気圧、または静電荷は、例えばユーザ101が仮想制御104を物理的かつ直接押下したかのように「感じる」ように、ユーザ101の手に力を提供することができる。様々な実施形態によれば、手への力によって提供される仮想触覚フィードバックは、ユーザ101が実際にはホログラフィックリアリティシステム100(すなわち、マルチビューディスプレイ110またはその上に表示される仮想制御104)と直接接触していなくても、仮想制御104に触れて相互作用するという知覚をユーザ101に与えることができる。仮想触覚フィードバックは、表示されたマルチビューコンテンツの変更と同時に仮想触覚フィードバックユニット130によって提供され得るので、ホログラフィックリアリティシステム100は、ジェスチャまたはコマンド入力への応答について、統合された直感的なフィードバックをユーザ101に提供することに留意されたい。
いくつかの実施形態では、表示されたマルチビューコンテンツの変更は、ホログラフィックリアリティシステム100に対するユーザ101の位置、ユーザ101の注視方向、および頭部追跡のうちの1つまたはそれ以上に基づくこともできる。例えば、ホログラフィックリアリティシステム100は、ホログラフィックリアリティシステム100に対するユーザ101の位置を追跡または監視することができる。さらに、いくつかの実施形態では、マルチビューコンテンツの変更は、少なくとも部分的に、ホログラフィックリアリティシステム100の監視された向きを含むがこれに限定されないホログラフィックリアリティシステム100の条件にさらに基づくことができる。例えば、向きは、ジャイロスコープ、加速度計、および別のタイプの向きの測定(カメラまたは画像センサを使用して取得された画像の分析など)のうちの1つまたはそれ以上を使用して監視され得る。したがって、表示されたマルチビューコンテンツの変更は、いくつかの実施形態によれば、位置センサ120を使用して実行された測定と、ホログラフィックリアリティシステム100の監視された向きとの両方に基づくことができる。
いくつかの実施形態では、マルチビューコンテンツの変更は、ホログラフィックリアリティシステム100のマルチビューディスプレイ110に提示されるコンテンツに少なくとも部分的に基づくことができる。例えば、コンテンツが広い幅または軸を有するパノラマシーンを含む場合、ホログラフィックリアリティシステム100によって表示されるマルチビューコンテンツは、幅または軸に沿ってより多くのビューを提供するように変更され得る。より一般的には、コンテンツを分析して、1つまたはそれ以上の異なる軸(長さおよび幅など)に沿った情報空間密度を決定することができ、表示されたマルチビューコンテンツを変更して、情報空間密度が最も高い軸に沿ってより多くのビューを提供することができる。
いくつかの実施形態(図3Aには明示的に示されていない)では、ホログラフィックリアリティシステム100は、処理サブシステム、メモリサブシステム、電力サブシステム、およびネットワーキングサブシステムをさらに備え得る。処理サブシステムは、計算動作を実行するように構成された1つまたはそれ以上のデバイス、例えば限定されないが、マイクロプロセッサ、グラフィックス処理ユニット(GPU)またはデジタル信号プロセッサ(DSP)を含み得る。メモリサブシステムは、ホログラフィックリアリティシステム100の動作を提供および制御するために処理サブシステムによって使用され得るデータおよび命令の一方または両方を格納するための1つまたはそれ以上のデバイスを含み得る。例えば、格納されたデータおよび命令は、限定されないが、マルチビューディスプレイ110上にマルチビュー画像としてマルチビューコンテンツを表示する、表示されるマルチビューコンテンツまたはマルチビュー画像を処理する、制御ジェスチャを表すユーザ101の手の位置を含む入力に応答してマルチビューコンテンツを制御する、および仮想触覚フィードバックユニット130を介して仮想触覚フィードバックを提供する、のうちの1つまたはそれ以上を実行するように構成されたデータおよび命令を含み得る。例えば、メモリサブシステムは、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、および様々な形式のフラッシュメモリを含むがこれらに限定されない1つまたはそれ以上のタイプのメモリを含み得る。
いくつかの実施形態では、メモリサブシステムに格納され、処理サブシステムによって使用される命令には、例えば、プログラム命令または命令のセット、およびオペレーティングシステムが含まれるが、これらに限定されない。プログラム命令およびオペレーティングシステムは、例えば、ホログラフィックリアリティシステム100の動作中に処理サブシステムによって実行され得る。1つまたはそれ以上のコンピュータプログラムは、コンピュータプログラムメカニズム、コンピュータ可読記憶媒体またはソフトウェアを構成し得ることに留意されたい。さらに、メモリサブシステム内の様々なモジュールの命令は、1つまたはそれ以上の高レベルの手続き型言語、オブジェクト指向プログラミング言語、およびアセンブリ言語または機械語で実装され得る。さらに、プログラミング言語は、様々な実施形態に従って、処理サブシステムによって実行されるように、コンパイルまたは解釈実行され得、例えば、構成可能であるまたは構成され得る(この議論において同じ意味で使用できる)。
様々な実施形態では、電力サブシステムは、ホログラフィックリアリティシステム100内の他の構成要素に電力を供給するように構成された1つまたはそれ以上のエネルギー貯蔵構成要素(バッテリなど)を含み得る。ネットワーキングサブシステムは、有線ネットワークと無線ネットワークの一方または両方に結合して通信するように(すなわち、ネットワーク動作を実行するように)構成された1つまたはそれ以上のデバイスおよびサブシステムまたはモジュールを含み得る。例えば、ネットワーキングサブシステムは、ブルートゥース(登録商標)ネットワーキングシステム、セルラネットワーキングシステム(例えば、UMTS、LTEなどの3G/4G/5Gネットワーク)、ユニバーサルシリアルバス(USB)ネットワーキングシステム、IEEE802.12で説明されている標準に基づくネットワーキングシステム(WiFiネットワークシステムなど)、イーサネットネットワーキングシステムのいずれかまたはすべてを含み得る。
前の実施形態の動作のいくつかは、ハードウェアまたはソフトウェアで実装され得るが、一般に、前の実施形態の動作は、多種多様な構成およびアーキテクチャで実装され得ることに留意されたい。したがって、前述の実施形態の動作の一部またはすべては、ハードウェア、ソフトウェア、またはその両方で実行され得る。例えば、表示技術における動作の少なくともいくつかは、プログラム命令、オペレーティングシステム(表示サブシステム用のドライバなど)、またはハードウェアを使用して実装され得る。
図4Aは、本明細書に記載の原理と一致する実施形態による、一例におけるマルチビューディスプレイ200の断面図を示している。図4Bは、本明細書に記載の原理と一致する実施形態による、一例におけるマルチビューディスプレイ200の平面図を示している。図4Cは、本明細書に記載の原理と一致する実施形態による、一例におけるマルチビューディスプレイ200の斜視図を示している。図4Cの斜視図は、本明細書での議論のみを容易にするために部分的な切り取りで示されている。いくつかの実施形態によれば、図4A~図4Cに示されるマルチビューディスプレイ200は、ホログラフィックリアリティシステム100のマルチビューディスプレイ110として使用され得る。
図4A~図4Cに示されるように、マルチビューディスプレイ200は、(例えば、ライトフィールドとして)互いに異なる主角度方向を有する複数の指向性光ビーム202を提供するように構成される。特に、提供された複数の指向性光ビーム202は、様々な実施形態による、マルチビューディスプレイのそれぞれのビュー方向に対応する異なる主角度方向に散乱され、マルチビューディスプレイ200から離れるように向けられ得る。いくつかの実施形態では、指向性光ビーム202は、マルチビューコンテンツ、例えば、マルチビュー画像を有する情報の表示を容易にするために(例えば、以下に説明するように、ライトバルブを使用して)変調され得る。図4A~図4Cはまた、サブピクセルおよびライトバルブ230のアレイを含むマルチビューピクセル206を示しており、これらは以下でさらに詳細に説明される。
図4A~図4Cに示されるように、マルチビューディスプレイ200は、光ガイド210を備える。光ガイド210は、導波光204(すなわち、導波光ビーム)として光ガイド210の長さに沿って光をガイドするように構成される。例えば、光ガイド210は、光導波路として構成された誘電材料を含み得る。誘電材料は、誘電体光導波路を取り囲む媒体の第2の屈折率より大きい第1の屈折率を有することができる。屈折率の差は、例えば、光ガイド210の1つまたはそれ以上の導波モードに従って、導波光204の内部全反射を促進するように構成される。
いくつかの実施形態では、光ガイド210は、光学的に透明な誘電材料の拡張された実質的に平面のシートを含むスラブまたはプレート光導波路(つまり、プレート光ガイド)であってもよい。実質的に平面の誘電材料シートは、内部全反射を使用して導波光204をガイドするように構成される。様々な例によれば、光ガイド210の光学的に透明な材料は、1つまたはそれ以上の様々なタイプのガラス(例えば、シリカガラス、アルカリアルミノシリケートガラス、ホウケイ酸ガラスなど)および実質的に光学的に透明なプラスチックまたはポリマー(例えば、ポリ(メチルメタクリレート)または「アクリルガラス」、ポリカーボネートなど)を含むがこれらに限定されない様々な誘電材料のいずれかを含むか、またはそれから構成され得る。いくつかの例では、光ガイド210は、光ガイド210の表面(例えば、上面および底面の一方または両方)の少なくとも一部にクラッド層(図示せず)をさらに含んでもよい。いくつかの例によれば、クラッド層を使用して、内部全反射をさらに促進することができる。
さらに、いくつかの実施形態によれば、光ガイド210は、光ガイド210の第1の表面210’(例えば、「前」面または側面)と第2の表面210’’(例えば、「背」面または側面)との間でゼロでない伝搬角度での内部全反射に応じて、(例えば、導波光ビームとして)導波光204をガイドするように構成される。特に、導波光204は、ゼロでない伝搬角度で光ガイド210の第1の表面210’と第2の表面210’’との間で反射または「バウンス」することによって伝搬する。いくつかの実施形態では、異なる色の光を含む複数の導波光ビームとしての導波光204は、光ガイド210によってガイドされ得、各導波光ビームは、ゼロでない伝搬角度で、複数の異なる色固有のそれぞれの1つでガイドされる。説明を簡単にするために、図4A~図4Cにはゼロでない伝搬角度は示されていない。ただし、太い矢印は、図4Aの光ガイド長に沿った導波光204の伝搬方向203を示している。
本明細書で定義されるように、「ゼロでない伝搬角度」は、光ガイド210の表面(例えば、第1の表面210’または第2の表面210’’)に対する角度である。さらに、様々な実施形態によれば、ゼロでない伝搬角度は、ゼロより大きく、光ガイド210内の内部全反射の臨界角度未満である。例えば、導波光204のゼロでない伝搬角度は、約10度から約50度の間、またはいくつかの例では、約20度から約40度の間、または約25度から約35度の間であり得る。例えば、ゼロでない伝搬角度は、約30度であり得る。他の例では、ゼロでない伝搬角度は、約20度、または約25度、または約35度であり得る。さらに、特定のゼロでない伝搬角度が、光ガイド210内の内部全反射の臨界角度未満に選択される限り、特定のゼロでない伝搬角度は、特定の実装のために(例えば、任意に)選択されてもよい。
光ガイド210内の導波光204は、ゼロでない伝搬角度(例えば、約30~35度)で光ガイド210に導入または結合され得る。いくつかの例では、結合構造、例えば限定されないが、レンズ、ミラーまたは同様の反射器(例えば、傾斜コリメート反射器)、回折格子、およびプリズム、ならびにそれらの様々な組み合わせが、ゼロでない伝搬角度での導波光204としての光ガイド210の入力端部への光の結合を容易にすることができる。他の例では、光は、結合構造を使用せずに、または実質的に使用せずに、光ガイド210の入力端部に直接導入され得る(すなわち、直接または「突き合わせ」結合が使用され得る)。光ガイド210に結合されると、導波光204は、光ガイド210に沿って、一般に入力端部から離れていてもよい伝搬方向203に伝搬するように構成される(例えば、図4Aのx軸に沿って指す太い矢印によって示される)。
さらに、様々な実施形態によれば、光を光ガイド210に結合することによって生成される導波光204または同等の導波光204は、コリメート光ビームであってもよい。本明細書では、「コリメート光」または「コリメート光ビーム」は、一般に、光ビームの光線が光ビーム内で互いに実質的に平行である光のビーム(例えば、導波光204)として定義される。また、本明細書の定義により、コリメート光ビームから発散または散乱する光線は、コリメート光ビームの一部とは見なされない。いくつかの実施形態(図示せず)では、マルチビューディスプレイ200は、例えば光源からの光をコリメートするために、上記のように、レンズ、反射器またはミラーなどのコリメータ(例えば、傾斜コリメート反射器)を含み得る。いくつかの実施形態では、光源自体がコリメータを備える。光ガイド210に提供されるコリメート光は、コリメートされた導波光ビームである。いくつかの実施形態において、導波光204は、コリメーション係数σに従って、またはコリメーション係数σを有するようにコリメートされてもよい。あるいは、他の実施形態では、導波光204は、コリメートされていない場合がある。
いくつかの実施形態では、光ガイド210は、導波光204を「リサイクル」するように構成され得る。特に、光ガイド長に沿ってガイドされた導波光204は、伝搬方向203とは異なる別の伝搬方向203’でその長さに沿って戻るように方向転換され得る。例えば、光ガイド210は、光源に隣接する入力端部とは反対側の光ガイド210の端部に反射器(図示せず)を含み得る。反射器は、導波光204をリサイクルされた導波光として入口端に向かって反射して戻すように構成され得る。いくつかの実施形態では、別の光源は、光のリサイクルの代わりに、またはそれに加えて(例えば、反射器を使用して)、他の伝搬方向203’に導波光204を提供し得る。導波光204をリサイクルすること、および別の光源を使用して他の伝搬方向203’を有する導波光204を提供することの一方または両方は、導波光を、例えば、以下に説明するマルチビーム要素に複数回利用可能にすることによって、マルチビューディスプレイ200の輝度を増加させる(例えば、指向性光ビーム202の強度を増加させる)ことができる。図4Aにおいて、リサイクルされた導波光の伝搬方向203’を示す太い矢印(例えば、負のx方向に向けられている)は、光ガイド210内のリサイクルされた導波光の一般的な伝搬方向を示している。
図4A~図4Cに示されるように、マルチビューディスプレイ200は、光ガイド長に沿って互いに間隔を置いて配置された複数のマルチビーム要素220をさらに備える。特に、複数のマルチビーム要素220は、有限空間によって互いに分離されており、光ガイド長に沿った個々の別個の要素を表す。すなわち、本明細書の定義により、複数のマルチビーム要素220は、有限の(すなわち、ゼロでない)要素間距離(例えば、有限の中心間距離)に従って、互いに間隔を置いて配置される。さらに、いくつかの実施形態によれば、複数のマルチビーム要素220は一般に、互いに交差したり、重なり合ったり、さもなければ互いに触れたりしない。すなわち、複数のマルチビーム要素220のそれぞれは、一般に別個であり、マルチビーム要素220の他のものから分離されている。
いくつかの実施形態によれば、複数のマルチビーム要素220は、一次元(1D)アレイまたは二次元(2D)アレイのいずれかに配置され得る。例えば、マルチビーム要素220は、線形1Dアレイとして配置され得る。別の例では、マルチビーム要素220は、長方形の2Dアレイまたは円形の2Dアレイとして配置され得る。さらに、いくつかの例では、アレイ(すなわち、1Dまたは2Dアレイ)は、規則的または均一なアレイであり得る。特に、マルチビーム要素220間の要素間距離(例えば、中心間距離または間隔)は、アレイ全体で実質的に均一または一定であり得る。他の例では、マルチビーム要素220間の要素間距離は、アレイ全体および光ガイド210の長さに沿っての一方または両方で変化させることができる。
様々な実施形態によれば、複数のマルチビーム要素のうちのマルチビーム要素220は、導波光204の一部を複数の指向性光ビーム202として提供する、結合する、または散乱させるように構成される。例えば、導波光部分は、様々な実施形態によれば、回折散乱、反射散乱、および屈折散乱または結合のうちの1つまたはそれ以上を使用して結合または散乱され得る。図4Aおよび図4Cは、光ガイド210の第1の(または前面)表面210’から方向付けられた方法で描かれた複数の発散矢印として指向性光ビーム202を示している。さらに、様々な実施形態によれば、マルチビーム要素220のサイズは、上で定義され、以下でさらに説明され、図4A~図4Cに示されるように、マルチビューピクセル206のサブピクセル(または同等にライトバルブ230)のサイズに相当する。本明細書では、「サイズ」は、長さ、幅、または面積を含むがこれらに限定されない様々な方法のいずれかで定義されてもよい。例えば、サブピクセルまたはライトバルブ230のサイズは、その長さであり得、マルチビーム要素220の相当するサイズはまた、マルチビーム要素220の長さであり得る。別の例では、サイズは、マルチビーム要素220の面積がサブピクセル(または光値230)の領域に相当し得るような面積を指すことができる。
いくつかの実施形態では、マルチビーム要素220のサイズは、マルチビーム要素のサイズがサブピクセルサイズの約50パーセント(50%)から約200パーセント(200%)の間であるように、サブピクセルサイズに相当する。例えば、マルチビーム要素のサイズが「s」で示され、サブピクセルサイズが「S」で示される場合(例えば、図4Aに示すように)、マルチビーム要素のサイズsを次の式で与えることができる。
Figure 2022503796000003
他の例では、マルチビーム要素サイズは、サブピクセルサイズの約60パーセント(60%)より大きいか、サブピクセルサイズの約70パーセント(70%)より大きいか、またはサブピクセルサイズの約80パーセント(80%)より大きいか、またはサブピクセルサイズの約90パーセント(90%)より大きい範囲にあり、また、サブピクセルサイズの約180パーセント(180%)未満であるか、サブピクセルサイズの約160パーセント(160%)未満であるか、サブピクセルサイズの約140パーセント(140%)未満であるか、またはサブピクセルサイズの約120パーセント(120%)未満の範囲にある。例えば、「相当するサイズ」では、マルチビーム要素のサイズは、サブピクセルサイズの約75パーセント(75%)から約150パーセント(150%)になり得る。別の例では、マルチビーム要素220は、マルチビーム要素のサイズがサブピクセルサイズの約125パーセント(125%)から約85パーセント(85%)の間であるサブピクセルにサイズが相当し得る。いくつかの実施形態によれば、マルチビーム要素220およびサブピクセルの相当するサイズは、マルチビューディスプレイのビュー間のダークゾーンを低減するために、またはいくつかの例では最小化するために選択され得る。さらに、マルチビーム要素220およびサブピクセルの相当するサイズは、マルチビューディスプレイ200のビュー(またはビューピクセル)間のオーバーラップを低減し、いくつかの例では最小化するために選択され得る。
図4A~図4Cに示されるマルチビューディスプレイ200は、複数の指向性光ビームの指向性光ビーム202を変調するように構成されたライトバルブ230のアレイをさらに含む。図4A~図4Cに示されるように、異なる主角度方向を有する指向性光ビーム202の異なるものが通過し、ライトバルブアレイ内のライトバルブ230の異なるものによって変調され得る。さらに、図示のように、アレイのライトバルブ230は、マルチビューピクセル206のサブピクセルに対応し、ライトバルブ230のセットは、マルチビューディスプレイのマルチビューピクセル206に対応する。特に、ライトバルブアレイの異なるセットのライトバルブ230は、マルチビーム要素220の対応する1つからの指向性光ビーム202を受信および変調するように構成される、すなわち、図示のように、各マルチビーム要素220に対して1つの固有のライトバルブ230のセットが存在する。様々な実施形態では、液晶ライトバルブ、電気泳動ライトバルブ、およびエレクトロウェッティングに基づくライトバルブのうちの1つまたはそれ以上を含むがこれらに限定されない、ライトバルブアレイのライトバルブ230として異なるタイプのライトバルブが使用されてもよい。
図4Aに示されるように、第1のライトバルブセット230aは、第1のマルチビーム要素220aからの指向性光ビーム202を受信および変調するように構成される。さらに、第2のライトバルブセット230bは、第2のマルチビーム要素220bからの指向性光ビーム202を受信および変調するように構成される。したがって、ライトバルブアレイ内のライトバルブセット(例えば、第1および第2のライトバルブセット230a,230b)のそれぞれは、それぞれ、異なるマルチビーム要素220(例えば、要素220a,220b)および異なるマルチビューピクセル206に対応し、図4Aに示されるように、ライトバルブセットの個々のライトバルブ230はそれぞれのマルチビューピクセル206のサブピクセルに対応する。
いくつかの実施形態では、マルチビーム要素220と対応するマルチビューピクセル206との間の関係(すなわち、サブピクセルのセットおよび対応するライトバルブ230のセット)は、1対1の関係であり得る。すなわち、同数のマルチビューピクセル206およびマルチビーム要素220が存在し得る。図4Bは、例として、1対1の関係を明示的に示しており、異なるセットのライトバルブ230(および対応するサブピクセル)を含む各マルチビューピクセル206は、破線で囲まれて示されている。他の実施形態(図示せず)では、いくつかのマルチビューピクセル206およびいくつかのマルチビーム要素220は、互いに異なっていてもよい。
いくつかの実施形態では、複数の一対のマルチビーム要素220間の要素間距離(例えば、中心間距離)は、例えばライトバルブセットで表される、一対の対応するマルチビューピクセル206間のピクセル間距離(例えば、中心間距離)に等しくてもよい。例えば、図4Aに示されるように、第1のマルチビーム要素220aと第2のマルチビーム要素220bとの間の中心間距離dは、第1のライトバルブセット230aと第2のライトバルブセット230bとの間の中心間距離Dに実質的に等しい。他の実施形態(図示せず)では、マルチビーム要素220の対および対応するライトバルブセットの相対的な中心間距離は異なっていてもよく、例えば、マルチビーム要素220は、マルチビューピクセル206を表すライトバルブセット間の間隔(すなわち、中心間距離D)よりも大きいまたは小さい要素間距離(すなわち、中心間距離d)を有してもよい。
いくつかの実施形態では、マルチビーム要素220の形状は、マルチビューピクセル206の形状、または同等に、マルチビューピクセル206に対応するライトバルブ230のセット(または「サブアレイ」)の形状に類似している。例えば、マルチビーム要素220は正方形の形状を有してもよく、マルチビューピクセル206(または対応するライトバルブ230のセットの配置)は実質的に正方形であってもよい。別の例では、マルチビーム要素220は、長方形の形状を有してもよく、すなわち、幅または横寸法よりも大きい長さまたは縦寸法を有してもよい。この例では、マルチビーム要素220に対応するマルチビューピクセル206(または同等にライトバルブ230のセットの配置)は、類似の長方形形状を有してもよい。図4Bは、正方形のマルチビーム要素220と、正方形のライトバルブ230のセットを含む対応する正方形のマルチビューピクセル206の上面図すなわち平面図を示している。さらに他の例(図示せず)では、マルチビーム要素220および対応するマルチビューピクセル206は、三角形、六角形、および円形を含むか少なくとも似ているがこれらに限定されない様々な形状を有する。したがって、これらの実施形態では、一般に、マルチビーム要素220の形状とマルチビューピクセル206の形状との間に関係がない場合がある。
さらに(例えば、図4Aに示されるように)、各マルチビーム要素220は、いくつかの実施形態による、特定のマルチビューピクセル206に現在割り当てられているサブピクセルのセットに基づいて、所与の時間に唯一のマルチビューピクセル206に指向性光ビーム202を提供するように構成される。特に、マルチビーム要素220の所与の1つおよび特定のマルチビューピクセル206へのサブピクセルのセットの現在の割り当てについて、マルチビューディスプレイの異なるビューに対応する異なる主角度方向を有する指向性光ビーム202は、図4Aに示されるように、単一の対応するマルチビューピクセル206およびそのサブピクセル、すなわち、マルチビーム要素220に対応する単一のセットのライトバルブ230に実質的に限定される。したがって、マルチビューディスプレイ200の各マルチビーム要素220は、マルチビューディスプレイの現在の異なるビューに対応する異なる主角度方向のセット(すなわち、指向性光ビーム202のセットは、現在の異なるビュー方向のそれぞれに対応する方向を有する光ビームを含む)を有する、対応する指向性光ビーム202のセットを提供する。
再び図4Aを参照すると、マルチビューディスプレイ200は、光源240をさらに備える。様々な実施形態によれば、光源240は、光ガイド210内にガイドされる光を提供するように構成される。特に、光源240は、光ガイド210の入口面または端部(入力端部)に隣接して配置され得る。様々な実施形態において、光源240は、LED、レーザー(例えば、レーザーダイオード)またはそれらの組み合わせを含むがこれらに限定されない実質的に任意の光源(例えば、光エミッタ)を備え得る。いくつかの実施形態では、光源240は、特定の色によって示される狭帯域スペクトルを有する実質的に単色の光を生成するように構成された光エミッタを備え得る。特に、単色光の色は、特定の色空間またはカラーモデル(例えば、赤緑青(RGB)カラーモデル)の原色であり得る。他の例では、光源240は、実質的に広帯域または多色の光を提供するように構成された実質的に広帯域の光源であり得る。例えば、光源240は白色光を提供し得る。いくつかの実施形態では、光源240は、異なる色の光を提供するように構成された複数の異なる光エミッタを備え得る。異なる光エミッタは、異なる色の光のそれぞれに対応する導波光の異なる、色固有の、ゼロでない伝搬角度を有する光を提供するように構成され得る。
いくつかの実施形態では、光源240は、コリメータをさらに備え得る。コリメータは、光源240の1つまたはそれ以上の光エミッタから実質的にコリメートされていない光を受け取るように構成され得る。コリメータは、実質的にコリメートされていない光をコリメートされた光に変換するようにさらに構成される。特に、コリメータは、いくつかの実施形態によれば、ゼロでない伝搬角度を有し、所定のコリメーション係数に従ってコリメートされるコリメート光を提供し得る。さらに、異なる色の光エミッタが使用される場合、コリメータは、異なる色固有のゼロでない伝搬角度の一方または両方を有し、異なる色固有のコリメーション係数を有するコリメート光を提供するように構成され得る。コリメータは、コリメート光ビームを光ガイド210に伝達して、上述の導波光204として伝搬するようにさらに構成される。
いくつかの実施形態では、マルチビューディスプレイ200は、導波光204の伝搬方向203,203’に直交する(または実質的に直交する)光ガイド210を通る方向の光に対して実質的に透明であるように構成される。特に、いくつかの実施形態では、光ガイド210および間隔を置いて配置されたマルチビーム要素220は、光が、第1の表面210’および第2の表面210’’の両方を通って光ガイド210を通過することを可能にする。比較的小さいサイズのマルチビーム要素220およびマルチビーム要素220の比較的大きい要素間間隔(例えば、マルチビューピクセル206との1対1の対応)の両方のために、透明性は、少なくとも部分的に促進され得る。さらに、いくつかの実施形態によれば、マルチビーム要素220はまた、光ガイド表面210’,210’’に直交して伝搬する光に対して実質的に透明であり得る。
図5Aは、本明細書に記載の原理と一致する実施形態による、一例におけるマルチビーム要素220を含むマルチビューディスプレイ200の一部の断面図を示している。図5Bは、本明細書に記載の原理と一致する別の実施形態による、一例におけるマルチビーム要素220を含むマルチビューディスプレイ200の一部の断面図を示している。特に、図5A~図5Bは、回折格子222を含むマルチビーム要素220を示している。回折格子222は、導波光204の一部を複数の指向性光ビーム202として回折散乱させるように構成される。回折格子222は、導波光部分から回折結合を提供するように構成された回折特徴間隔または回折特徴または格子ピッチによって互いに間隔を置いて配置された複数の回折特徴を備える。様々な実施形態によれば、回折格子222内の回折特徴の間隔または格子ピッチは、サブ波長(すなわち、導波光の波長未満)であり得る。
いくつかの実施形態では、マルチビーム要素220の回折格子222は、マルチビューディスプレイ200の光ガイド210の表面に、またはそれに隣接して配置され得る。例えば、回折格子222は、図5Aに示されるように、光ガイド210の第1の表面210’にあるか、またはそれに隣接していてもよい。光ガイドの第1の表面210’における回折格子222は、指向性光ビーム202として第1の表面210’を通して導波光部分を回折的に散乱させるように構成された透過モード回折格子であり得る。別の例では、図5Bに示されるように、回折格子222は、光ガイド210の第2の表面210’’に、またはそれに隣接して配置され得る。第2の表面210’’に配置される場合、回折格子222は、反射モード回折格子であり得る。反射モード回折格子として、回折格子222は、導波光部分を回折し、かつ回折された導波光部分を第1の表面210’に向かって反射して、回折指向性光ビーム202として第1の表面210’を通って出るように構成される。他の実施形態(図示せず)では、回折格子は、例えば、透過モード回折格子および反射モード回折格子の一方または両方として、光ガイド210の表面の間に配置され得る。
いくつかの実施形態によれば、回折格子222の回折特徴は、互いに間隔を置いて配置された溝およびリッジの一方または両方を含み得る。溝またはリッジは、光ガイド210の材料を含み得、例えば、光ガイド210の表面に形成され得る。別の例では、溝またはリッジは、光ガイド材料以外の材料、例えば、光ガイド210の表面上の別の材料のフィルムまたは層から形成され得る。
いくつかの実施形態では、マルチビーム要素220の回折格子222は、回折特徴間隔が実質的に一定であるか、または回折格子222全体にわたって不変である均一な回折格子である。他の実施形態では、回折格子222はチャープ回折格子である。定義により、「チャープ」回折格子は、チャープ回折格子の範囲または長さにわたって変化する回折特徴の回折間隔(すなわち、格子ピッチ)を示すか、または有する回折格子である。いくつかの実施形態では、チャープ回折格子は、距離と共に線形に変化する回折特徴間隔のチャープを有するか、または示すことができる。そのため、チャープ回折格子は、定義上、「線形チャープ」回折格子である。他の実施形態では、マルチビーム要素220のチャープ回折格子は、回折特徴間隔の非線形チャープを示し得る。指数チャープ、対数チャープ、または別の実質的に不均一もしくはランダムであるが単調な方法で変化するチャープを含むがこれらに限定されない、様々な非線形チャープを使用することができる。非単調チャープ、例えば限定されないが、正弦波チャープまたは三角形もしくは鋸歯状チャープが使用されてもよい。これらのタイプのチャープのいずれかの組み合わせも使用することができる。
図6Aは、本明細書に記載の原理と一致する別の実施形態による、一例におけるマルチビーム要素220を含むマルチビューディスプレイ200の一部の断面図を示している。図6Bは、本明細書に記載の原理と一致する別の実施形態による、一例におけるマルチビーム要素220を含むマルチビューディスプレイ200の一部の断面図を示している。特に、図6Aおよび図6Bは、微小反射要素を備えるマルチビーム要素220の様々な実施形態を示している。マルチビーム要素220としてまたはその中で使用される微小反射要素は、反射材料またはその層を使用する反射器(例えば、反射金属)または内部全反射(TIR)に基づく反射器を含み得るが、これらに限定されない。いくつかの実施形態によれば(例えば、図6A~図6Bに示されるように)、微小反射要素を備えるマルチビーム要素220は、光ガイド210の表面(例えば、第2の表面210’’)に、またはそれに隣接して配置され得る。他の実施形態(図示せず)では、微小反射要素は、光ガイド210内の第1の表面210’と第2の表面210’’との間に配置され得る。
例えば、図6Aは、光ガイド210の第2の表面210’’に隣接して配置された反射ファセット(例えば、「角柱」微小反射要素)を有する微小反射要素224を備えるマルチビーム要素220を示している。図示の角柱微小反射要素224のファセットは、光ガイド210から導波光204の一部を反射する(すなわち、反射的に結合する)ように構成される。ファセットは、例えば、光ガイド210から導波光部分を反射するために、導波光204の伝搬方向に対して傾斜され得る(すなわち、傾斜角を有する)。ファセットは、様々な実施形態によれば、光ガイド210内の反射材料を使用して形成され得るか(例えば、図6Aに示されるように)、または第2の表面210’’内の角柱キャビティの表面であり得る。角柱キャビティが使用される場合、いくつかの実施形態では、キャビティ表面での屈折率変化が反射(例えば、TIR反射)を提供するか、またはファセットを形成するキャビティ表面を反射材料でコーティングして反射を提供することができる。
別の例では、図6Bは、実質的に滑らかな曲面を有する微小反射要素224、例えば限定されないが、半球形の微小反射要素224を備えるマルチビーム要素220を示している。微小反射要素224の特定の表面曲線は、例えば、導波光204が接触する曲面への入射点に応じて、導波光部分を異なる方向に反射するように構成され得る。図6Aおよび図6Bに示されるように、光ガイド210から反射的に散乱される導波光部分は、限定ではなく例として、第1の表面210’から出るか、または放射される。図6Aの角柱微小反射要素224と同様に、図6Bの微小反射要素224は、限定ではなく例として図6Bに示されているように、光ガイド210内の反射材料、または第2の表面210’’に形成されたキャビティ(例えば、半円形キャビティ)のいずれかであり得る。図6Aおよび図6Bはまた、限定ではなく例として、2つの伝搬方向203,203’(すなわち、太い矢印として示されている)を有する導波光204を示している。2つの伝搬方向203,203’を使用することにより、例えば、複数の指向性光ビーム202に対称的な主角度方向を提供することが容易になり得る。
図7は、本明細書に記載の原理と一致する別の実施形態による、一例におけるマルチビーム要素220を含むマルチビューディスプレイ200の一部の断面図を示している。特に、図7は、微小屈折要素226を備えるマルチビーム要素220を示している。様々な実施形態によれば、微小屈折要素226は、光ガイド210から導波光204の一部を屈折的に結合するように構成される。すなわち、微小屈折要素226は、図7に示されるように、屈折(例えば、回折または反射とは対照的に)を使用して、光ガイド210からの導波光部分を指向性光ビーム202として結合または散乱させるように構成される。微小屈折要素226は、半球形、長方形、または角柱形(すなわち、傾斜したファセットを有する形状)を含むがこれらに限定されない様々な形状を有することができる。様々な実施形態によれば、微小屈折要素226は、図示のように、光ガイド210の表面(例えば、第1の表面210’)から延在または突出し得るか、または表面(図示されていない)のキャビティであり得る。さらに、いくつかの実施形態では、微小屈折要素226は、光ガイド210の材料を含み得る。他の実施形態では、微小屈折要素226は、光ガイド表面に隣接し、いくつかの例では、光ガイド表面と接触している別の材料を含み得る。
本明細書に記載の原理のいくつかの実施形態によれば、ホログラフィックリアリティマルチビューディスプレイが提供される。ホログラフィックリアリティマルチビューディスプレイは、マルチビュー画像のピクセルとして、またはそれを形成する変調された指向性光ビームを放射するように構成される。放射され、変調された指向性光ビームは、マルチビュー画像のビューの異なるビュー方向に対応して、互いに異なる主角度方向を有する。様々な非限定的な例において、ホログラフィックリアリティマルチビューディスプレイによって提供されるマルチビュー画像は、4×4ビュー、4×8ビュー、および8×8ビューの1つまたはそれ以上を含み得、それぞれに対応する数のビュー方向がある。いくつかの例では、マルチビュー画像は、マルチビュー画像のマルチビューコンテンツとして情報(例えば、シーンまたはオブジェクト)の三次元(3D)表現を提供するように構成される。したがって、様々な実施形態によれば、放射され、変調された指向性光ビームの異なるものは、マルチビュー画像に関連する異なるビューの個々のピクセルに対応し得る。さらに、異なるビューは、ホログラフィックリアリティマルチビューディスプレイによって表示されているマルチビュー画像内の情報またはマルチビューコンテンツの「眼鏡不要」(例えば、オートステレオスコピック)表現を提供し得る。
図8は、本明細書に記載の原理と一致する実施形態による、一例におけるホログラフィックリアリティマルチビューディスプレイ300のブロック図を示している。様々な実施形態によれば、ホログラフィックリアリティマルチビューディスプレイ300は、異なるビュー方向の異なるビューに従ってマルチビューコンテンツを含むマルチビュー画像を表示するように構成される。特に、ホログラフィックリアリティマルチビューディスプレイ300によって放射される変調された指向性光ビーム302は、マルチビュー画像を表示するために使用され、マルチビュー画像の異なるビューのピクセル(すなわち、ビューピクセル)に対応し得る。変調された指向性光ビーム302は、図8のホログラフィックリアリティマルチビューディスプレイ300から発する矢印として示されている。破線は、限定ではなく例として、その変調を強調するために、放射され変調された指向性光ビーム302の矢印に使用される。
様々な実施形態によれば、図8に示されるホログラフィックリアリティマルチビューディスプレイ300は、マルチビューピクセル330のアレイを含む。マルチビューピクセル330のアレイは、マルチビュー画像の複数の異なるビューを提供するように構成される。様々な実施形態によれば、マルチビューピクセルアレイのマルチビューピクセル330は、複数の指向性光ビーム304を変調し、放射され変調された指向性光ビーム302を生成するように構成された複数のサブピクセルを含む。いくつかの実施形態では、マルチビューピクセル330は、上記で説明したマルチビューディスプレイ200に関して上記で説明したマルチビューピクセル206に対応するライトバルブ230のアレイのライトバルブ230のセットと実質的に同様であり得る。特に、マルチビューピクセル330のサブピクセルは、上記のライトバルブ230と実質的に同様であり得る。すなわち、ホログラフィックリアリティマルチビューディスプレイ300のマルチビューピクセル330は、ライトバルブのセット(例えば、ライトバルブ230のセット)を含み得、マルチビューピクセル330のサブピクセルは、そのセットのライトバルブ(例えば、単一のライトバルブ230)を含み得る。
様々な実施形態によれば、図8に示されるホログラフィックリアリティマルチビューディスプレイ300は、マルチビーム要素320のアレイをさらに含む。マルチビーム要素アレイの各マルチビーム要素320は、複数の指向性光ビーム304を対応するマルチビューピクセル330に提供するように構成される。複数の指向性光ビーム304のうちの指向性光ビーム304は、互いに異なる主角度方向を有する。特に、指向性光ビーム304の異なる主角度方向は、様々な実施形態による、ホログラフィックリアリティマルチビューディスプレイ300の異なるビューの異なるビュー方向に対応する。
いくつかの実施形態では、マルチビーム要素アレイのマルチビーム要素320は、上記のマルチビューディスプレイ200のマルチビーム要素220と実質的に同様であり得る。例えば、マルチビーム要素320は、上記で説明され、図5A~図5Bに示されている回折格子222と実質的に同様の回折格子を含み得る。別の例では、マルチビーム要素320は、上記で説明され、図6A~図6Bに示されている微小反射要素224と実質的に同様である微小反射要素を備え得る。さらに別の例では、マルチビーム要素320は、微小屈折要素を備え得る。微小屈折要素は、上記で説明され、図7に示されている微小屈折要素226と実質的に同様であり得る。
いくつかの実施形態では(例えば、図8に示されるように)、ホログラフィックリアリティマルチビューディスプレイ300は、光ガイド310をさらに備え得る。光ガイド310は、光を導波光としてガイドするように構成される。様々な実施形態において、光は、例えば、内部全反射に従って、例えば、導波光ビームとしてガイドされ得る。例えば、光ガイド310は、その光入力エッジからの光を導波光ビームとしてガイドするように構成されたプレート光ガイドであり得る。いくつかの実施形態では、ホログラフィックリアリティマルチビューディスプレイ300の光ガイド310は、マルチビューディスプレイ200に関して上記で説明した光ガイド210と実質的に同様であり得る。したがって、マルチビーム要素アレイのマルチビーム要素320は、導波光の一部を指向性光ビーム304として光ガイド310から散乱させるように構成され得る。
さらに、様々な実施形態によれば、マルチビーム要素アレイのマルチビーム要素320のサイズは、マルチビューピクセル330内の複数のサブピクセルのうちのサブピクセルのサイズに相当し得る。例えば、いくつかの実施形態では、マルチビーム要素320のサイズは、サブピクセルサイズの半分より大きく、サブピクセルサイズの2倍未満であり得る。さらに、いくつかの実施形態によれば、マルチビーム要素アレイのマルチビーム要素320間の要素間距離は、マルチビューピクセルアレイのマルチビューピクセル330間のピクセル間距離に対応し得る。例えば、マルチビーム要素320間の要素間距離は、マルチビューピクセル330間のピクセル間距離に実質的に等しくてもよい。いくつかの例では、マルチビーム要素320間の要素間距離、およびマルチビューピクセル330間の対応するピクセル間距離は、中心間距離または間隔もしくは距離の同等の尺度として定義され得る。
さらに、マルチビューピクセルアレイのマルチビューピクセル330とマルチビーム要素アレイのマルチビーム要素320との間には1対1の対応があり得る。特に、いくつかの実施形態では、マルチビーム要素320間の要素間距離(例えば、中心間)は、マルチビューピクセル330間のピクセル間距離(例えば、中心間)に実質的に等しくてもよい。したがって、マルチビューピクセル330内の各サブピクセルは、対応するマルチビーム要素320によって提供される複数の指向性光の指向性光ビーム304の異なる1つを変調するように構成され得る。さらに、各マルチビューピクセル330は、様々な実施形態による、ただ1つのマルチビーム要素320からの指向性光ビーム304を受信および変調するように構成され得る。
光ガイド310を含むいくつかの実施形態(図示せず)では、ホログラフィックリアリティマルチビューディスプレイ300は、光源をさらに備え得る。光源は、ゼロでない伝搬角度を有し、いくつかの実施形態では、例えば光ガイド310内の導波光の所定の角度広がりを提供するためにコリメーション係数に従ってコリメートされる光ガイド310に光を提供するように構成され得る。いくつかの実施形態によれば、光源は、上記のマルチビューディスプレイ200の光源240と実質的に同様であり得る。いくつかの実施形態では、複数の光源を使用することができる。例えば、一対の光源を、光ガイド310の2つの異なるエッジまたは端部(例えば、両端)で使用して、光ガイド310に光を提供することができる。
図8に示されるように、ホログラフィックリアリティマルチビューディスプレイ300は、位置センサ340をさらに備える。位置センサ340は、ユーザの手の位置を監視するように構成される。さらに、位置センサ340は、ユーザとホログラフィックリアリティマルチビューディスプレイ300との間の物理的接触なしに手の位置を監視するように構成される。例えば、位置センサ340は、ホログラフィックリアリティマルチビューディスプレイ300の制御を提供するためのコマンドまたは同等のユーザ入力に対応するユーザによるジェスチャを検出するように構成され得る。
特に、様々な実施形態によれば、ジェスチャは、ホログラフィックリアリティマルチビューディスプレイ300の上または近くで実行され得る。さらに、ジェスチャは、ホログラフィックリアリティマルチビューディスプレイ300によって表示される仮想制御(すなわち、オブジェクト、仮想アイコン、または別の制御など)との仮想相互作用として実行され得る。様々な実施形態によれば、ホログラフィックリアリティマルチビューディスプレイ300は、実行されたジェスチャ中またはその結果としての手の監視された位置に基づいて、マルチビュー画像のマルチビューコンテンツを変更するように構成される。さらに、ジェスチャは、そのような物理的接触がなくても、ユーザの手と仮想制御との間の物理的相互作用が発生したかのように、マルチビューコンテンツを変更する場合がある。すなわち、ホログラフィックリアリティマルチビューディスプレイ300は、ユーザとホログラフィックリアリティマルチビューディスプレイ300との間の接触を含まない仮想相互作用に従って実行されたジェスチャを使用してマルチビューコンテンツの制御を提供するように構成される。
いくつかの実施形態では、位置センサ340は、上記のホログラフィックリアリティシステム100の位置センサ120(または測定サブシステム)と実質的に同様であり得る。例えば、位置センサ340は、1つまたはそれ以上の静電容量センサ、複数の画像センサ(例えば、限定されないがCMOSまたはCCD画像センサを備えるデジタルカメラ)、および飛行時間を備え得る。いくつかの実施形態では、飛行時間センサは、RF/マイクロ波信号、音響信号、赤外線信号、および可視波長または紫外線波長を含む光信号を含むがこれらに限定されない無線信号を使用することができる。
様々な実施形態によれば、図8に示されるホログラフィックリアリティマルチビューディスプレイ300は、仮想触覚フィードバックユニット350をさらに備える。仮想触覚フィードバックユニット350は、仮想触覚フィードバックをユーザに提供するように構成され、仮想触覚フィードバックは、監視された位置に基づく。さらに、仮想触覚フィードバックの範囲は、仮想制御の範囲に対応する。つまり、仮想触覚フィードバックの範囲は、マルチビュー画像内の仮想制御のサイズ、形状、および位置の1つまたはそれ以上に対応する。したがって、ユーザは、様々な実施形態によれば、仮想触覚フィードバックの結果として、仮想制御との物理的相互作用を有する接触を知覚することができる。さらに、物理的相互作用の知覚は、ユーザによるジェスチャへの応答をシミュレートする感覚情報をユーザに提供し得る。例えば、マルチビュー画像内の仮想制御は、仮想アイコンに対応し得、仮想触覚フィードバックユニット350は、監視された位置に応答した仮想アイコンのアクティブ化に対応する感覚情報をユーザに提供するように構成され得る。
本明細書に記載の原理の他の実施形態によれば、ディスプレイシステム動作の方法が提供される。図9は、本明細書に記載の原理と一致する実施形態による、一例におけるホログラフィックリアリティシステム動作の方法400のフローチャートを示している。図9に示されるように、ホログラフィックリアリティシステム動作の方法400は、ホログラフィックリアリティシステムのマルチビューディスプレイを使用して、マルチビューコンテンツをマルチビュー画像として表示するステップ410を含む。いくつかの実施形態では、マルチビューコンテンツを表示するステップ410は、マルチビュー画像の異なるビュー方向に対応する異なる主角度方向を有する指向性光ビームを提供し、複数のライトバルブを使用して(または同等にライトバルブのアレイを使用して)指向性光ビームを変調するステップを含み得る。いくつかの実施形態では、指向性光ビームは、互いに間隔を置いて配置された複数のマルチビーム要素を使用して提供され得、複数のマルチビーム要素のうちのマルチビーム要素は、指向性光ビームとして光ガイドからの導波光の一部を散乱させるように構成される。
いくつかの実施形態では、複数のマルチビーム要素のうちのマルチビーム要素は、上記のマルチビューディスプレイ200のマルチビーム要素220と実質的に同様であり得る。例えば、マルチビーム要素は、マルチビューディスプレイ200の上記の回折格子222、微小反射要素224、および微小屈折要素226と実質的に同様の回折格子、微小反射要素、または微小屈折要素のうちの1つまたはそれ以上を含み得る。さらに、マルチビーム要素は、マルチビューピクセルのサブピクセルのサイズに相当するサイズを有し得る。
いくつかの実施形態によれば、複数のライトバルブは、マルチビューディスプレイ200に関して上記で説明されたライトバルブ230のアレイと実質的に同様であり得る。特に、ライトバルブの異なるセットは、上記のように、第1および第2のライトバルブセット230a,230bの異なるマルチビューピクセル206への対応と同様の方法で、異なるマルチビューピクセルに対応し得る。さらに、上記のライトバルブ230は、マルチビューディスプレイ200の上記の説明におけるサブピクセルに対応するため、ライトバルブアレイの個々のライトバルブは、マルチビューピクセルのサブピクセルに対応し得る。
いくつかの実施形態(図示せず)では、ホログラフィックディスプレイシステム動作の方法400は、光源を使用して光ガイドに光を提供するステップをさらに含む。光は、光ガイド内にゼロでない伝搬角度を有すること、および所定のコリメーション係数に従ってコリメートされることの一方または両方で提供され得る。いくつかの実施形態によれば、光ガイドは、マルチビューディスプレイ200に関して上記で説明した光ガイド210と実質的に同様であり得る。特に、様々な実施形態によれば、光は、光ガイド内の内部全反射に従ってガイドされ得る。さらに、光源は、同じく上記の光源240と実質的に同様であり得る。
いくつかの実施形態(図示せず)では、ディスプレイシステム動作の方法は、導波光として光ガイドに沿って光をガイドするステップをさらに含む。いくつかの実施形態では、光は、ゼロでない伝搬角度でガイドされ得る。さらに、導波光はコリメートされ得、例えば、所定のコリメーション係数に従ってコリメートされ得る。いくつかの実施形態によれば、光ガイドは、マルチビューディスプレイ200に関して上記で説明した光ガイド210と実質的に同様であり得る。特に、様々な実施形態によれば、光は、光ガイド内の内部全反射に従ってガイドされ得る。
図9に示されるように、ホログラフィックリアリティシステム動作の方法400は、ユーザの手の位置(または動き)を監視するステップ420をさらに含む。様々な実施形態によれば、手の位置を監視するステップ420は、ホログラフィックリアリティシステムの位置センサを使用することができる。さらに、手の位置の監視するステップ420は、ユーザとホログラフィックリアリティシステム(すなわち、位置センサおよびマルチビューディスプレイを含む)との間の物理的接触なしに実行され得る。例えば、位置センサは、1つまたはそれ以上の静電容量センサ、複数の画像センサ(例えば、カメラまたはCMOSもしくはCCD画像センサ)、および飛行時間センサを含み得る。特に、位置センサを使用して手の位置を監視するステップは、静電容量センサを使用して手の位置に対応する静電容量の変化を監視するステップ、複数の画像センサの異なる画像センサによってキャプチャされた画像の画像処理を使用して手の位置を監視するステップ、および飛行時間センサを使用して手による無線信号の反射を使用して手の位置を監視するステップの1つまたはそれ以上を含み得る。さらに、飛行時間センサは、RF/マイクロ波信号、音響信号、赤外線信号、および可視または紫外線波長の別の光信号を含むがこれらに限定されない1つまたはそれ以上の無線信号を使用することができる。いくつかの実施形態では、位置センサは、ホログラフィックリアリティシステム100に関して上記で説明した位置センサ120と実質的に同様であり得る。
図9に示されるホログラフィックリアリティシステム動作の方法400は、仮想触覚フィードバックユニットを使用してユーザに仮想触覚フィードバックを提供するステップ430をさらに含む。様々な実施形態によれば、430で提供される仮想触覚フィードバックは、監視された手の位置に基づく。さらに、430で提供される仮想触覚フィードバックは、ユーザとホログラフィックリアリティシステム(すなわち、仮想触覚フィードバックユニットおよびマルチビューディスプレイを含む)との間の物理的接触なしに提供される。様々な実施形態によれば、仮想触覚フィードバックの範囲は、マルチビュー画像内の仮想制御の範囲に対応する。
いくつかの実施形態では、430で仮想触覚フィードバックを提供する際に使用される仮想触覚フィードバックユニットは、上記のホログラフィックリアリティシステム100の仮想触覚フィードバックユニット130と実質的に同様であり得る。特に、仮想触覚フィードバックユニットを使用して仮想触覚フィードバックを提供するステップ430は、超音波圧力、空気圧、および静電荷の1つまたはそれ以上を使用して手元に物理的感覚を生成するステップを含み得、物理的感覚は、仮想触覚フィードバックの範囲に対応する空間の領域で生成される。いくつかの実施形態(図示せず)では、ホログラフィックリアリティシステム動作の方法400は、監視された位置または動きに少なくとも部分的に基づいて、マルチビュー画像のマルチビューコンテンツを変更するステップをさらに含む。
したがって、ホログラフィックリアリティシステム、ホログラフィックリアリティマルチビューディスプレイ、ならびに非接触監視および非接触仮想触覚フィードバックを使用して、表示されたマルチビュー画像内のマルチビューコンテンツの場合のユーザの相互作用および制御を提供するホログラフィックリアリティシステム動作の方法の例および実施形態が説明されてきた。上記の例は、本明細書に記載の原理を表す多くの特定の例の一部を単に例示するものであることを理解されたい。明らかに、当業者は、添付の特許請求の範囲によって定義される範囲から逸脱することなく、多数の他の構成を容易に考案することができる。

Claims (20)

  1. マルチビューコンテンツをマルチビュー画像として表示するように構成されたマルチビューディスプレイと、
    ユーザの手の位置を監視し、監視された手の位置を提供するように構成された位置センサであって、前記監視された位置は、前記ユーザと前記ホログラフィックリアリティシステムとの間の接触なしに前記位置センサによって提供される、位置センサと、
    前記監視された位置に基づいて仮想触覚フィードバックを前記ユーザに提供するように構成された仮想触覚フィードバックユニットであって、前記仮想触覚フィードバックは、前記ユーザと前記ホログラフィックリアリティシステムとの間の接触なしに提供される、仮想触覚フィードバックユニットと、
    を備え、
    前記仮想触覚フィードバックの範囲は、前記マルチビュー画像内の仮想制御の範囲に対応する、
    ホログラフィックリアリティシステム。
  2. 前記ホログラフィックリアリティシステムが、前記監視された位置に従って前記表示されたマルチビューコンテンツを変更するように構成される、請求項1に記載のホログラフィックリアリティシステム。
  3. 前記位置センサが、静電容量センサ、複数の画像センサ、および飛行時間センサの1つまたはそれ以上を備える、請求項1に記載のホログラフィックリアリティシステム。
  4. 前記飛行時間センサが、無線周波数、マイクロ波信号、音響信号、赤外線信号、および別の光信号のうちの1つまたはそれ以上を使用するように構成される、請求項3に記載のホログラフィックリアリティシステム。
  5. 前記位置センサが、前記手の1つまたはそれ以上の指の動きを検出するように構成される、請求項1に記載のホログラフィックリアリティシステム。
  6. 前記位置センサが、コマンドに対応する前記ユーザによるジェスチャを検出するように構成される、請求項1に記載のホログラフィックリアリティシステム。
  7. 前記仮想触覚フィードバックユニットが、超音波圧力、空気圧、および静電荷のうちの1つまたはそれ以上を使用して前記触覚フィードバックを提供するように構成される、請求項1に記載のホログラフィックリアリティシステム。
  8. 前記仮想触覚フィードバックユニットが、前記監視された位置に応答して前記マルチビューコンテンツ内の前記仮想制御のアクティブ化に関する情報を提供するように構成される、請求項1に記載のホログラフィックリアリティシステム。
  9. 前記マルチビューディスプレイが、前記マルチビューディスプレイの複数の異なるビューに対応する複数の指向性光ビームを提供するように構成され、前記複数の指向性光ビームは、前記異なるビューの異なるビュー方向に対応して、互いに異なる主角度方向を有する、請求項1に記載のホログラフィックリアリティシステム。
  10. 前記マルチビューディスプレイが、
    光ガイドの長さに沿って伝搬方向に光を導波光としてガイドするように構成された光ガイドと、
    前記光ガイドの長さに沿って分散される複数のマルチビーム要素であって、前記複数のマルチビーム要素のうちのマルチビーム要素は、前記異なるビューの前記異なる主角度方向を有する前記複数の指向性光ビームとして、前記導波光の一部を前記光ガイドから散乱させるように構成される、複数のマルチビーム要素と
    を備える、請求項9に記載のホログラフィックリアリティシステム。
  11. 前記マルチビューディスプレイが、前記複数の指向性光ビームの指向性光ビームを変調することによって前記異なるビューを提供するように構成された複数のサブピクセルをそれぞれが含むマルチビューピクセルのアレイをさらに含む、請求項10に記載のホログラフィックリアリティシステム。
  12. 前記マルチビューディスプレイが、前記光ガイドの入力に光学的に結合された光源をさらに備え、前記光源は、前記導波光としてガイドされる前記光を提供するように構成される、請求項10に記載のホログラフィックリアリティシステム。
  13. マルチビュー画像の複数の異なるビューを提供するように構成されたマルチビューピクセルのアレイであって、前記マルチビューピクセルは前記異なるビューのビュー方向に対応する方向を有する複数の指向性光ビームを変調するように構成された複数のサブピクセルを含む、マルチビューピクセルのアレイと、
    マルチビーム要素のアレイであって、各マルチビーム要素は、対応するマルチビューピクセルに前記複数の指向性光ビームを提供するように構成される、マルチビーム要素のアレイと、
    前記ユーザとホログラフィックリアリティマルチビューディスプレイとの間の接触なしに、前記マルチビュー画像内の仮想制御に対するユーザの手の位置を監視するように構成された位置センサと、
    前記監視された手の位置に基づいて前記ユーザに仮想触覚フィードバックを提供するように構成された仮想触覚フィードバックユニットであって、前記仮想触覚フィードバックの範囲は前記仮想制御の範囲に対応する、仮想触覚フィードバックユニットと
    を備える、ホログラフィックリアリティマルチビューディスプレイ。
  14. 前記ホログラフィックリアリティディスプレイが、前記監視された位置に基づいて前記マルチビュー画像のマルチビューコンテンツを変更するように構成される、請求項13に記載のホログラフィックリアリティマルチビューディスプレイ。
  15. 前記位置センサが、静電容量センサ、複数の画像センサ、および飛行時間センサの1つまたはそれ以上を備える、請求項13に記載のホログラフィックリアリティマルチビューディスプレイ。
  16. 前記仮想触覚フィードバックユニットが、超音波圧力、空気圧、および静電荷のうちの1つまたはそれ以上を使用して前記仮想触覚フィードバックを提供するように構成される、請求項13に記載のホログラフィックリアリティマルチビューディスプレイ。
  17. 前記マルチビュー画像内の前記仮想制御が、仮想アイコンを含み、前記仮想触覚フィードバックユニットは、前記監視された位置に応答して前記仮想アイコンのアクティブ化に対応する感覚情報を前記ユーザに提供するように構成される、請求項13に記載のホログラフィックリアリティマルチビューディスプレイ。
  18. ホログラフィックリアリティシステム動作の方法であって、
    前記ホログラフィックリアリティシステムのマルチビューディスプレイを使用して、マルチビューコンテンツをマルチビュー画像として表示するステップと、
    前記ユーザと前記ホログラフィックリアリティシステムとの間の物理的接触なしに、前記ホログラフィックリアリティシステムの位置センサを使用してユーザの手の位置を監視するステップと、
    仮想触覚フィードバックユニットを使用して前記ユーザに仮想触覚フィードバックを提供するステップであって、前記仮想触覚フィードバックは、前記監視された手の位置に基づいており、前記ユーザと前記ホログラフィックリアリティシステムとの間の物理的接触なしに提供される、ステップと、
    を含み、
    前記仮想触覚フィードバックの範囲は、前記マルチビュー画像内の仮想制御の範囲に対応する、
    ホログラフィックリアリティシステム動作の方法。
  19. 位置センサを使用して前記手の位置を監視するステップが、静電容量センサを使用して前記手の位置に対応する静電容量の変化を監視するステップ、複数の画像センサの異なる画像センサによってキャプチャされた画像の画像処理を使用して前記手の位置を監視するステップ、および飛行時間センサを使用して前記手による無線信号の反射を使用して前記手の位置を監視するステップの1つまたはそれ以上を含む、請求項18に記載のホログラフィックリアリティシステム動作の方法。
  20. 仮想触覚フィードバックユニットを使用して仮想触覚フィードバックを提供するステップが、超音波圧力、空気圧、および静電荷の1つまたはそれ以上を使用して手元に物理的感覚を生成するステップを含み、前記物理的感覚は、前記仮想触覚フィードバックの範囲に対応する空間の領域で生成される、請求項18に記載のホログラフィックリアリティシステム動作の方法。
JP2021516618A 2018-10-01 2018-10-01 ホログラフィックリアリティシステム、マルチビューディスプレイ、および方法 Pending JP2022503796A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2018/053816 WO2020072034A1 (en) 2018-10-01 2018-10-01 Holographic reality system, multiview display, and method

Publications (1)

Publication Number Publication Date
JP2022503796A true JP2022503796A (ja) 2022-01-12

Family

ID=70054674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021516618A Pending JP2022503796A (ja) 2018-10-01 2018-10-01 ホログラフィックリアリティシステム、マルチビューディスプレイ、および方法

Country Status (8)

Country Link
US (1) US11698605B2 (ja)
EP (1) EP3861384A4 (ja)
JP (1) JP2022503796A (ja)
KR (1) KR20210052574A (ja)
CN (1) CN112823299B (ja)
CA (1) CA3109757C (ja)
TW (1) TWI714250B (ja)
WO (1) WO2020072034A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11422292B1 (en) 2018-06-10 2022-08-23 Apple Inc. Super-blazed diffractive optical elements with sub-wavelength structures
US11212514B2 (en) * 2019-03-25 2021-12-28 Light Field Lab, Inc. Light field display system for cinemas
US11754767B1 (en) 2020-03-05 2023-09-12 Apple Inc. Display with overlaid waveguide
TWI757941B (zh) * 2020-10-30 2022-03-11 幻景啟動股份有限公司 影像處理系統以及影像處理裝置
CN114894354B (zh) * 2022-04-11 2023-06-13 汕头大学 基于表面结构色的压力感知反馈装置及深度学习识别方法
CN114833826B (zh) * 2022-04-20 2023-07-04 上海傅利叶智能科技有限公司 实现机器人碰撞触觉的控制方法、装置以及康复机器人
TWI832654B (zh) * 2023-01-04 2024-02-11 財團法人工業技術研究院 觸覺回饋裝置及產生觸覺回饋的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140176432A1 (en) * 2011-12-15 2014-06-26 Industry-University Cooperation Foundation Hanyang University Apparatus and method for providing tactile sensation in cooperation with display device
JP2017027401A (ja) * 2015-07-23 2017-02-02 株式会社デンソー 表示操作装置
WO2017132579A1 (en) * 2016-01-30 2017-08-03 Leia Inc. Multibeam element-based backlighting having converging views
JP2017162195A (ja) * 2016-03-09 2017-09-14 株式会社Soken 触覚提示装置

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113028A (ja) 1997-09-30 1999-04-23 Toshiba Corp 3次元映像表示装置
US6191796B1 (en) * 1998-01-21 2001-02-20 Sensable Technologies, Inc. Method and apparatus for generating and interfacing with rigid and deformable surfaces in a haptic virtual reality environment
EP1649309A4 (en) * 2003-07-03 2011-03-09 Holo Touch Inc HOLOGRAPHIC HUMAN MACHINE INTERFACES
DE10339076B4 (de) * 2003-08-26 2007-10-31 Seereal Technologies Gmbh Autostereoskopisches Multi-User-Display
US7834850B2 (en) * 2005-11-29 2010-11-16 Navisense Method and system for object control
US20150121287A1 (en) * 2006-07-03 2015-04-30 Yoram Ben-Meir System for generating and controlling a variably displayable mobile device keypad/virtual keyboard
GB2461294B (en) * 2008-06-26 2011-04-06 Light Blue Optics Ltd Holographic image display systems
US8963954B2 (en) * 2010-06-30 2015-02-24 Nokia Corporation Methods, apparatuses and computer program products for providing a constant level of information in augmented reality
WO2012038856A1 (en) 2010-09-21 2012-03-29 Koninklijke Philips Electronics N.V. Multi-view display device
US8847919B2 (en) * 2011-02-02 2014-09-30 Apple Inc. Interactive holographic display device
EP2518590A1 (en) * 2011-04-28 2012-10-31 Research In Motion Limited Portable electronic device and method of controlling same
JP6157486B2 (ja) * 2011-10-20 2017-07-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 医療処置のためのホログラフィユーザインターフェース
TW201326972A (zh) 2011-12-30 2013-07-01 Ind Tech Res Inst 顯示裝置
US8711118B2 (en) * 2012-02-15 2014-04-29 Immersion Corporation Interactivity model for shared feedback on mobile devices
US9389415B2 (en) 2012-04-27 2016-07-12 Leia Inc. Directional pixel for use in a display screen
US9459461B2 (en) 2012-05-31 2016-10-04 Leia Inc. Directional backlight
US9201270B2 (en) 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
US9298168B2 (en) 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
US9367136B2 (en) * 2013-04-12 2016-06-14 Microsoft Technology Licensing, Llc Holographic object feedback
EP2938919B1 (en) 2013-07-30 2018-10-24 LEIA Inc. Multibeam diffraction grating-based backlighting
CN106030371B (zh) 2014-02-19 2020-05-05 Pa·科特家族控股有限公司 显示装置
WO2015152776A1 (en) * 2014-04-02 2015-10-08 Telefonaktiebolaget L M Ericsson (Publ) Multi-view display control
US9865089B2 (en) * 2014-07-25 2018-01-09 Microsoft Technology Licensing, Llc Virtual reality environment with real world objects
US9557466B2 (en) 2014-07-30 2017-01-31 Leia, Inc Multibeam diffraction grating-based color backlighting
US10427034B2 (en) * 2014-12-17 2019-10-01 Igt Canada Solutions Ulc Contactless tactile feedback on gaming terminal with 3D display
CN104460115B (zh) 2014-12-31 2017-09-01 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
JP6633087B2 (ja) * 2015-01-28 2020-01-22 レイア、インコーポレイテッドLeia Inc. 3次元(3d)電子ディスプレイ
US11347354B1 (en) * 2015-09-03 2022-05-31 sigmund lindsay clements Laser mid-air hologram touch input buttons for a toilet bidet
KR102274753B1 (ko) 2015-09-05 2021-07-08 레이아 인코포레이티드 집광 백라이트 및 이를 이용한 근안 디스플레이
WO2017131807A1 (en) 2016-01-30 2017-08-03 Leia Inc. Multibeam element-based backlight and display using same
WO2017041072A1 (en) 2015-09-05 2017-03-09 Leia Inc. Multibeam diffraction grating-based display with head tracking
US10798371B2 (en) * 2015-09-05 2020-10-06 Leia Inc. Multiview display with head tracking
KR20170029320A (ko) * 2015-09-07 2017-03-15 엘지전자 주식회사 이동 단말기 및 그 제어방법
KR102639118B1 (ko) * 2015-09-08 2024-02-22 소니그룹주식회사 정보 처리 장치, 방법 및 컴퓨터 프로그램
CA3036787A1 (en) * 2015-09-17 2017-03-23 Lumii, Inc. Multi-view displays and associated systems and methods
EP3363197B1 (en) 2015-10-16 2024-06-26 LEIA Inc. Multibeam diffraction grating-based near-eye display
KR20170096420A (ko) * 2016-02-16 2017-08-24 삼성전자주식회사 대화형 3차원 디스플레이 장치 및 방법
WO2017141228A1 (en) * 2016-02-20 2017-08-24 Vats Nitin Realistic gui based interactions with virtual gui of virtual 3d objects
US10055867B2 (en) * 2016-04-25 2018-08-21 Qualcomm Incorporated Accelerated light field display
CA3021958C (en) 2016-05-23 2021-11-16 Leia Inc. Diffractive multibeam element-based backlighting
US10663657B2 (en) * 2016-07-15 2020-05-26 Light Field Lab, Inc. Selective propagation of energy in light field and holographic waveguide arrays
US20190147665A1 (en) * 2016-07-16 2019-05-16 Hewlett-Packard Development Company, L.P. Gesture based 3-dimensional object transformation
DE102016216577A1 (de) 2016-09-01 2018-03-01 Volkswagen Aktiengesellschaft Verfahren zur Interaktion mit Bildinhalten, die auf einer Anzeigevorrichtung in einem Fahrzeug dargestellt werden
US20180095635A1 (en) * 2016-10-04 2018-04-05 Facebook, Inc. Controls and Interfaces for User Interactions in Virtual Spaces
US10216145B2 (en) * 2016-10-27 2019-02-26 International Business Machines Corporation Interaction between multiple holograms
WO2018100575A1 (en) * 2016-11-29 2018-06-07 Real View Imaging Ltd. Tactile feedback in a display system
US10261470B2 (en) * 2017-06-01 2019-04-16 International Business Machines Corporation Extended projection boundary of holographic display device
CN107221223B (zh) * 2017-06-01 2020-04-14 北京航空航天大学 一种带有力/触觉反馈的虚拟现实飞机座舱***
GB201709199D0 (en) * 2017-06-09 2017-07-26 Delamont Dean Lindsay IR mixed reality and augmented reality gaming system
CN107340871A (zh) * 2017-07-25 2017-11-10 深识全球创新科技(北京)有限公司 集成手势识别与超声波触觉反馈的装置及其方法和用途
US11048329B1 (en) * 2017-07-27 2021-06-29 Emerge Now Inc. Mid-air ultrasonic haptic interface for immersive computing environments
KR20240008419A (ko) * 2017-08-23 2024-01-18 인터디지털 매디슨 페턴트 홀딩스 에스에이에스 투사형 3d 라이트 필드 생성을 위한 라이트 필드 이미지 엔진 방법 및 장치
US10512839B2 (en) * 2017-09-28 2019-12-24 Igt Interacting with three-dimensional game elements using gaze detection
CN107908000B (zh) * 2017-11-27 2019-05-21 西安交通大学 一种带有超声虚拟触觉的混合现实***
KR20200116942A (ko) * 2018-01-14 2020-10-13 라이트 필드 랩 인코포레이티드 3d 환경에서 데이터를 렌더링하는 시스템 및 방법
WO2019221993A1 (en) * 2018-05-17 2019-11-21 Pcms Holdings, Inc. 3d display directional backlight based on diffractive elements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140176432A1 (en) * 2011-12-15 2014-06-26 Industry-University Cooperation Foundation Hanyang University Apparatus and method for providing tactile sensation in cooperation with display device
JP2017027401A (ja) * 2015-07-23 2017-02-02 株式会社デンソー 表示操作装置
WO2017132579A1 (en) * 2016-01-30 2017-08-03 Leia Inc. Multibeam element-based backlighting having converging views
JP2017162195A (ja) * 2016-03-09 2017-09-14 株式会社Soken 触覚提示装置

Also Published As

Publication number Publication date
TWI714250B (zh) 2020-12-21
KR20210052574A (ko) 2021-05-10
EP3861384A4 (en) 2022-05-11
US20210200150A1 (en) 2021-07-01
CN112823299B (zh) 2024-03-29
TW202017367A (zh) 2020-05-01
CN112823299A (zh) 2021-05-18
EP3861384A1 (en) 2021-08-11
US11698605B2 (en) 2023-07-11
CA3109757C (en) 2024-05-28
WO2020072034A1 (en) 2020-04-09
CA3109757A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
TWI714250B (zh) 全像實境系統、多視像顯示器以及其方法
JP6776359B2 (ja) 収束ビューを有するマルチビーム要素型バックライティング
KR102309395B1 (ko) 공유 카메라를 구비하는 카메라 서브-어레이들을 갖는 멀티뷰 카메라 어레이, 멀티뷰 시스템, 및 방법
KR102309397B1 (ko) 크로스-렌더 멀티뷰 카메라, 시스템 및 방법
JP2021536588A (ja) ユーザ追跡を使用したマルチビューディスプレイ、システム、および方法
TWI729515B (zh) 使用方向性光源和水平漫射器的靜態多視像顯示器和方法
TW202034043A (zh) 多方向性背光件、多使用者多視像顯示器和方法
US20210250572A1 (en) Contextual lightfield display system, multiview display, and method
JP7256830B2 (ja) 動的に再構成可能なマルチビューピクセルを用いるマルチビューディスプレイおよび方法
TW202143196A (zh) 動畫靜態顯示器和方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230110