JP2022157581A - Method for recovering iridium - Google Patents

Method for recovering iridium Download PDF

Info

Publication number
JP2022157581A
JP2022157581A JP2021061888A JP2021061888A JP2022157581A JP 2022157581 A JP2022157581 A JP 2022157581A JP 2021061888 A JP2021061888 A JP 2021061888A JP 2021061888 A JP2021061888 A JP 2021061888A JP 2022157581 A JP2022157581 A JP 2022157581A
Authority
JP
Japan
Prior art keywords
iridium
hydrochloric acid
acid solution
iron
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021061888A
Other languages
Japanese (ja)
Other versions
JP7498138B2 (ja
Inventor
学 真鍋
Manabu Manabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2021061888A priority Critical patent/JP7498138B2/ja
Priority claimed from JP2021061888A external-priority patent/JP7498138B2/ja
Publication of JP2022157581A publication Critical patent/JP2022157581A/en
Application granted granted Critical
Publication of JP7498138B2 publication Critical patent/JP7498138B2/ja

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for efficiently precipitating and recovering iridium from a hydrochloric acidic liquid containing iridium.SOLUTION: A method for recovering iridium includes heating a hydrochloric acidic liquid containing iridium of less than 100 mg/L to 60°C or higher, and adding iron to iridium in the hydrochloric acidic liquid, the mass of added iron being at least 50 times the mass of iridium, thereby precipitating iridium.SELECTED DRAWING: Figure 1

Description

本発明は、イリジウムの回収方法に係る。 The present invention relates to a method for recovering iridium.

銅乾式製錬では銅精鉱を熔解し、転炉、精製炉で99%以上の粗銅とした後に電解精製工程において例えば純度99.99%以上の電気銅を生産する。近年では転炉においてリサイクル原料として電子部品由来の貴金属を含む金属屑が投入されており、銅以外の有価物は電解精製時にスライムとして沈殿する。 In copper pyrometallurgical refining, copper concentrate is melted, converted into blister copper of 99% or more in a converter and a refining furnace, and then refined copper having a purity of 99.99% or more is produced in an electrolytic refining process. In recent years, metal scraps containing precious metals derived from electronic components have been put into converters as recycled raw materials, and valuables other than copper precipitate as slime during electrolytic refining.

このスライムには貴金族類、希少金属、銅精鉱に含まれているセレンやテルルも同時に濃縮される。銅製錬副産物としてこれらの元素は個別に分離・回収される。 This slime is enriched with precious metals, rare metals, and selenium and tellurium contained in copper concentrates at the same time. These elements are separately separated and recovered as copper smelting by-products.

このスライムの処理には湿式製錬法が適用される場合が多い。例えば特許文献1においてはスライムを塩酸-過酸化水素により銀を回収し、溶解した金は溶媒抽出により回収した後に、その他の有価物を二酸化硫黄で順次還元回収する方法が開示されている。特許文献2には同様の方法で金銀を回収した後、二酸化硫黄で有価物を還元して沈殿せしめ、セレンのみを蒸留して除去して貴金属類を濃縮する方法が開示されている。 Hydrometallurgical methods are often applied to treat this slime. For example, Patent Document 1 discloses a method in which silver is recovered from slime by hydrochloric acid-hydrogen peroxide, dissolved gold is recovered by solvent extraction, and then other valuable substances are successively reduced and recovered with sulfur dioxide. Patent Document 2 discloses a method of recovering gold and silver by a similar method, then reducing and precipitating valuables with sulfur dioxide, distilling and removing only selenium, and concentrating precious metals.

貴金属を回収した後の溶液には希少金属イオン、テルル、セレンが含まれておりさらにこれら有価物を回収することが必要である。回収方法としては還元剤により生じた沈殿を回収する方法、溶液ごと銅精鉱に混合しドライヤーで乾燥させて製錬炉に繰り返す方法が知られている。 The solution after recovering precious metals contains rare metal ions, tellurium, and selenium, and it is necessary to recover these valuables. Known recovery methods include a method of recovering precipitates produced by a reducing agent, and a method of mixing the whole solution with copper concentrate, drying it with a dryer, and repeating it in a smelting furnace.

とりわけ特許文献1に示されている、二酸化硫黄により生じた沈殿を回収する方法は、コストや製造規模の面で利点が多い。加えて各元素が順次沈殿することから分離精製にも効果がある。 In particular, the method of recovering precipitates caused by sulfur dioxide, which is disclosed in Patent Document 1, has many advantages in terms of cost and production scale. In addition, since each element precipitates sequentially, it is also effective for separation and purification.

二酸化硫黄を用いて有価物を回収する方法では、溶解後に順次有価物を還元して回収することができる。初めに白金、パラジウムが沈殿する。次にセレンが還元を受ける。イリジウム、ルテニウム、ロジウムは酸化還元電位が比較的低いため還元を受け難く、最後まで溶液に残留する。なかでもイリジウムについては、特許文献3に記載されているように、溶媒抽出により分離、濃縮後に焼成して回収する方法が広く知られる。もしくは特許文献4に記載されているように不純物をセメンテーションで除いた後に晶析する方法も公知である。また、特許文献5には、イリジウムを含む有機溶媒にマグネシウム、アルミニウム、亜鉛、鉄、錫及び鉛から選ばれた卑金属及び鉱酸を添加し貴金属を還元させて沈殿させる方法が開示されている。 In the method of recovering valuables using sulfur dioxide, valuables can be recovered by sequentially reducing them after dissolution. Platinum and palladium precipitate first. Selenium then undergoes reduction. Iridium, ruthenium, and rhodium have relatively low oxidation-reduction potentials, so they are difficult to be reduced and remain in the solution until the end. Among them, for iridium, as described in Patent Document 3, a method of separating by solvent extraction, concentrating, and then calcining and recovering is widely known. Alternatively, a method of crystallization after removing impurities by cementation as described in Patent Document 4 is also known. Patent Document 5 discloses a method of adding a base metal selected from magnesium, aluminum, zinc, iron, tin and lead and a mineral acid to an organic solvent containing iridium to reduce and precipitate the noble metal.

特開2001-316735号公報JP-A-2001-316735 特開2016-160479号公報JP 2016-160479 A 特開2004-332041号公報Japanese Patent Application Laid-Open No. 2004-332041 特開2004-190058号公報JP 2004-190058 A 特開2002-115015号公報Japanese Patent Application Laid-Open No. 2002-115015

銅電解澱物溶解液中のイリジウム濃度は1~70mg/L程度である。イリジウムは高価な金属であるがこの程度の低濃度では溶媒抽出による製錬はコストに見合わない。他の金属との分離効率やストリップの効率も高くない。 The iridium concentration in the copper electrolytic precipitate solution is about 1 to 70 mg/L. Iridium is an expensive metal, but at concentrations this low, smelting by solvent extraction is not cost-effective. Separation efficiency from other metals and strip efficiency are not high either.

イリジウムはその水酸化物がアルカリ領域で沈殿することが知られている。しかしながら、イリジウム含有液が強酸性である場合、強酸を中和するためにアルカリ試薬の添加量が増大し、コストが大きくなる。また、ナトリウムイオンやアルカリ土類金属イオンは酸性条件下でも水に難溶性の硫酸塩を沈殿するが、過量のアルカリで中和した時にはこの難溶性硫酸塩が製造設備の配管内に沈着して閉塞を起こすことが予想される。 Iridium is known for its hydroxide to precipitate in the alkaline region. However, if the iridium-containing liquid is strongly acidic, the amount of alkaline reagent added to neutralize the strong acid increases, resulting in increased costs. In addition, sodium ions and alkaline earth metal ions precipitate sparingly soluble sulfates in water even under acidic conditions, but when neutralized with an excessive amount of alkali, the sparingly soluble sulfates deposit in the pipes of manufacturing equipment. Obstruction is expected.

特許文献4に示される方法では、金属ビスマスで不純物をセメンテーションした後に晶析されるが、晶析にはある程度のイリジウム濃度が必要であり低濃度液に適用しても効果は低く、溶解したビスマスの混入も危惧される。 In the method shown in Patent Document 4, crystallization is performed after impurities are cemented with metallic bismuth, but crystallization requires a certain level of iridium concentration. Contamination of bismuth is also feared.

また、従来、安価に効率よく低濃度のイリジウムを沈殿回収する方法は知られていない。特に他元素が共存する条件では選択性も要求されるが、イリジウムを選択的に分離、濃縮する方法は知られていない。 In addition, conventionally, a method for inexpensively and efficiently precipitating and recovering low-concentration iridium has not been known. In particular, selectivity is required under conditions where other elements coexist, but there is no known method for selectively separating and concentrating iridium.

本発明はこのような従来の事情を鑑み、イリジウムを含む塩酸酸性液からイリジウムを効率的に沈殿回収する方法を提供する。特に銅製錬における電解精製工程で発生する電解澱物を酸化溶解して得られた塩酸酸性液は、本発明のイリジウムを含む塩酸酸性液として好対象である。 In view of such conventional circumstances, the present invention provides a method for efficiently precipitating and recovering iridium from a hydrochloric acid acid solution containing iridium. In particular, the hydrochloric acid acid solution obtained by oxidizing and dissolving the electrolytic sediment generated in the electrolytic refining process in copper smelting is suitable as the iridium-containing hydrochloric acid solution of the present invention.

上記課題は以下に特定される発明によって解決することができる。
(1)イリジウムを100mg/L未満含む塩酸酸性液を60℃以上に加熱して、前記塩酸酸性液におけるイリジウムに対し、50質量倍以上の鉄を添加することで、イリジウムを沈殿させる、イリジウムの回収方法。
(2)前記イリジウムを含む塩酸酸性液に、前記鉄として鉄粉を1.5g/L以上になるよう添加する、(1)に記載のイリジウムの回収方法。
(3)前記イリジウムを含む塩酸酸性液に添加する鉄は、表面に銅を析出させており、前記銅の含有量が10~65質量%である、(1)または(2)に記載のイリジウムの回収方法。
(4)前記イリジウムを含む塩酸酸性液を60℃以上に加熱する前に、予め還元剤を添加して銀/塩化銀を参照電極とした酸化還元電位(ORP)を200mV以下に調整しておく、(1)~(3)のいずれか一項に記載のイリジウムの回収方法。
(5)前記イリジウムを含む塩酸酸性液がヒ素を含んでおり、前記塩酸酸性液を60~70℃に加熱して、前記塩酸酸性液におけるイリジウムに対し、50質量倍以上の鉄を添加することで、イリジウムを選択的に沈殿させる、(1)~(4)のいずれかに記載のイリジウムの回収方法。
(6)前記イリジウムを含む塩酸酸性液がヒ素を含んでおり、前記イリジウムを含む塩酸酸性液に、前記鉄として鉄粉を1.5~3.0g/Lになるよう添加することで、イリジウムを選択的に沈殿させる、(1)~(4)のいずれかに記載のイリジウムの回収方法。
The above problems can be solved by the inventions specified below.
(1) Precipitate iridium by heating an acidic hydrochloric acid solution containing less than 100 mg/L of iridium to 60° C. or higher and adding iron at least 50 times the mass of iridium in the acidic hydrochloric acid solution to precipitate iridium. collection method.
(2) The method for recovering iridium according to (1), wherein iron powder as the iron is added to the hydrochloric acid solution containing the iridium so that the amount of the iron becomes 1.5 g/L or more.
(3) The iridium according to (1) or (2), wherein the iron added to the iridium-containing hydrochloric acid solution has copper deposited on its surface, and the copper content is 10 to 65% by mass. collection method.
(4) Before heating the iridium-containing hydrochloric acid solution to 60° C. or higher, a reducing agent is added in advance to adjust the oxidation-reduction potential (ORP) to 200 mV or less using silver/silver chloride as a reference electrode. , the method for recovering iridium according to any one of (1) to (3).
(5) The hydrochloric acid solution containing iridium contains arsenic, the hydrochloric acid solution is heated to 60 to 70° C., and iron is added in an amount of 50 times or more by mass of iridium in the hydrochloric acid solution. The method for recovering iridium according to any one of (1) to (4), wherein iridium is selectively precipitated.
(6) The iridium-containing hydrochloric acid solution contains arsenic, and by adding iron powder as the iron to the iridium-containing hydrochloric acid solution in an amount of 1.5 to 3.0 g/L, the iridium The method for recovering iridium according to any one of (1) to (4), wherein the is selectively precipitated.

本発明の実施形態によれば、イリジウムを含む塩酸酸性液からイリジウムを効率的に沈殿回収する方法を提供することができる。 According to the embodiments of the present invention, it is possible to provide a method for efficiently precipitating and recovering iridium from an iridium-containing hydrochloric acid solution.

実験例4に係るイリジウム濃度の経時変化を示すグラフである。10 is a graph showing changes in iridium concentration over time according to Experimental Example 4. FIG. 実験例4に係るORPとイリジウム濃度との関係を示すグラフである。10 is a graph showing the relationship between ORP and iridium concentration according to Experimental Example 4. FIG.

以下、本発明のイリジウムの回収方法の実施形態について説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the iridium recovery method of the present invention will be described. , is subject to various alterations, modifications and improvements.

<イリジウムの回収方法>
本発明の実施形態に係るイリジウムの回収方法は、イリジウムを100mg/L未満含む塩酸酸性液を60℃以上に加熱して、塩酸酸性液におけるイリジウムに対し、50質量倍以上の鉄を添加することで、イリジウムを沈殿させる。
<Method of collecting iridium>
A method for recovering iridium according to an embodiment of the present invention includes heating an acidic hydrochloric acid solution containing less than 100 mg/L of iridium to 60° C. or higher, and adding iron at least 50 times the mass of iridium in the acidic hydrochloric acid solution. to precipitate iridium.

本発明の実施形態に係るイリジウムの回収方法において、処理対象となるイリジウムを含む塩酸酸性液は、どのような処理を経て得られたものであってもよいが、特に、銅製錬における電解精製工程で発生する電解澱物を酸化溶解して得られた塩酸酸性液は、本発明のイリジウムを含む塩酸酸性液として好対象である。また、非鉄金属製錬、とりわけ銅製錬の電解精製工程で生じる電解澱物は白金族元素がその他希少元素と共に濃縮される。希少元素は単独で製錬されることはなく、他金属の副産物として回収されるか廃触媒等のリサイクル原料から分離される。したがって、本発明の実施形態に係るイリジウムの回収方法は、廃棄物からのリサイクルにも適用することができる。すなわち、当該廃棄物の処理工程で生じた、イリジウムを含む塩酸酸性液を対象とすることができる。 In the iridium recovery method according to the embodiment of the present invention, the hydrochloric acid solution containing iridium to be treated may be obtained through any treatment, but in particular, the electrolytic refining process in copper smelting The hydrochloric acid acid solution obtained by oxidizing and dissolving the electrolytic sediment generated in the step is suitable as the iridium-containing hydrochloric acid solution of the present invention. In addition, platinum group elements are concentrated together with other rare elements in the electrolytic sediment produced in the electrorefining process of non-ferrous metal smelting, especially copper smelting. Rare elements are not smelted by themselves, but are recovered as by-products of other metals or separated from recycled raw materials such as spent catalysts. Therefore, the iridium recovery method according to the embodiment of the present invention can also be applied to recycling from waste. That is, the object can be the hydrochloric acid solution containing iridium generated in the waste treatment process.

本発明の実施形態に係るイリジウムの回収方法において、処理対象となるイリジウムを含む塩酸酸性液は、所定の工程を経て得られた塩酸酸性液である場合、イリジウム(Ir)以外に種々の金属元素を含んでいる。 In the iridium recovery method according to the embodiment of the present invention, when the hydrochloric acid solution containing iridium to be treated is a hydrochloric acid solution obtained through a predetermined process, various metal elements other than iridium (Ir) contains.

イリジウムを含む塩酸酸性液は、例えば、アルカリ金属、アルカリ土類金属等を含んでもよい。これらは、金属鉄による還元を受けないことから、特段の処理が不要である。 The hydrochloric acid solution containing iridium may contain, for example, alkali metals, alkaline earth metals, and the like. Since these are not subject to reduction by metallic iron, no special treatment is required.

セレン(Se)、テルル(Te)、銅(Cu)、アンチモン(Sb)、ビスマス(Bi)等は、イリジウムを含む塩酸酸性液に含まれていてもよいが、金属鉄で還元されるため、詳しくは後述するが、事前にこれら金属の濃度を下げておく必要がある。 Selenium (Se), tellurium (Te), copper (Cu), antimony (Sb), bismuth (Bi), etc. may be contained in the hydrochloric acid solution containing iridium, but they are reduced by metallic iron. Although the details will be described later, it is necessary to reduce the concentration of these metals in advance.

一例として、銅製錬の銅電解精製工程由来の電解澱物からの、イリジウムを含む塩酸酸性液の作製方法を示す。まず、銅製錬の銅電解精製工程由来の電解澱物から硫酸により銅を溶解して除く。次に、濃塩酸と過酸化水素水を添加して溶解し、固液分離してPLS(浸出貴液)を得る。塩化物浴である浸出貴液(PLS)には白金族元素、希少金属元素、カルコゲン元素、ヒ素、アンチモン等が分配する。 As an example, a method for producing an iridium-containing hydrochloric acid acid solution from an electrolytic sediment derived from a copper electrorefining process in copper smelting will be described. First, copper is dissolved and removed with sulfuric acid from the electrolytic sediment derived from the copper electrorefining process of copper smelting. Next, concentrated hydrochloric acid and hydrogen peroxide water are added and dissolved, followed by solid-liquid separation to obtain PLS (precious leach liquor). Platinum group elements, rare metal elements, chalcogen elements, arsenic, antimony, etc. are distributed in the pregnant leach liquor (PLS), which is a chloride bath.

浸出貴液(PLS)を一度冷却し、鉛やアンチモンといった卑金属類の塩化物を沈殿分離する。その後に溶媒抽出により金を有機相に分離する。金の抽出剤はジブチルカルビトール(DBC)が広く使用されている。抽出液には、二酸化硫黄を吹き込むことで、貴金属とセレン、テルルを還元除去し、続いて固液分離することで、イリジウムを含む塩酸酸性液を作製することができる。 Precious leach liquor (PLS) is cooled once to precipitate and separate chlorides of base metals such as lead and antimony. The gold is then separated into the organic phase by solvent extraction. A widely used extractant for gold is dibutyl carbitol (DBC). Sulfur dioxide is blown into the extract to reduce and remove noble metals, selenium, and tellurium, followed by solid-liquid separation to produce a hydrochloric acid solution containing iridium.

本発明の実施形態に係るイリジウムの回収方法ではイリジウムを微量含む塩酸酸性液、具体的には、イリジウムを100mg/L未満含む塩酸酸性液を処理対象とする。銅電解精製工程由来の電解澱物を処理する工程では、イリジウムは、塩酸酸性液から有価金属を分離した後の液中に、塩化物錯イオンとして残留する。この液からイリジウムを効率的に沈殿させるために、塩酸酸性液を60℃以上に加熱して、50質量倍以上の鉄を添加することで、イリジウムを沈殿させる。 In the method for recovering iridium according to the embodiment of the present invention, an acidic hydrochloric acid solution containing a trace amount of iridium, specifically, an acidic hydrochloric acid solution containing less than 100 mg/L of iridium is treated. In the process of treating the electrolytic sediment derived from the copper electrolytic refining process, iridium remains as chloride complex ions in the solution after separating the valuable metals from the hydrochloric acid acid solution. In order to efficiently precipitate iridium from this liquid, iridium is precipitated by heating the hydrochloric acid liquid to 60° C. or higher and adding iron in an amount of 50 times or more by mass.

塩酸酸性液の加熱温度の上限は特に限定されないが、水素が激しく発生して吹きこぼれる問題を生じるとの観点から、85℃以下であることが好ましい。また、塩酸酸性液の加熱温度は、70~80℃であるのがより好ましい。 Although the upper limit of the heating temperature of the hydrochloric acid solution is not particularly limited, it is preferably 85° C. or less from the viewpoint that hydrogen is generated violently and causes a problem of boiling over. Moreover, the heating temperature of the hydrochloric acid solution is more preferably 70 to 80°C.

添加する鉄の上限は特に限定されないが、試薬の節約の観点から、塩酸酸性液におけるイリジウムに対し、400質量倍以下であることが好ましい。また、添加する鉄は、塩酸酸性液におけるイリジウムに対し、100~200質量倍であるのがより好ましい。 The upper limit of iron to be added is not particularly limited, but from the viewpoint of saving reagents, it is preferably 400 times by mass or less that of iridium in the hydrochloric acid acid solution. Further, the amount of iron to be added is more preferably 100 to 200 times the mass of iridium in the hydrochloric acid solution.

添加する鉄としては、鉄粉が、反応性が良く好適である。また、見かけ直径が数cmに及ぶ鉄粒でも代用され得る。鉄の形状は特に制限されず、粉状、粒状、礫状、塊状、板状、線状等いずれの形でもよく、鉄の品位は特に制限はない。 As iron to be added, iron powder is suitable because of its high reactivity. Alternatively, iron grains with an apparent diameter of several centimeters may be used. The shape of the iron is not particularly limited, and may be powdery, granular, gravel, lumpy, plate-like, linear, or the like, and the grade of the iron is not particularly limited.

もしくは鉄板、鉄塊を設置した反応器に塩酸酸性液を通液してもよい。この時、反応器はバッチ式でなく、鉄を投入した容器に連続通液するタイプの反応器が好ましい。しかしながら、操作性と反応性との両面から鉄粉が好適である。本発明において、「鉄粉」とは、粒径としてP80<0.2mmの鉄の粒子を指す。 Alternatively, a hydrochloric acid solution may be passed through a reactor in which an iron plate or an iron lump is installed. At this time, the reactor is not a batch type reactor, but a reactor of a type in which liquid is continuously passed through a vessel containing iron is preferred. However, iron powder is preferable in terms of both operability and reactivity. In the present invention, "iron powder" refers to iron particles having a particle size P80<0.2 mm.

鉄は塩酸酸性溶液に接触すると水素が発生する。水素は鉄の消費ならびに鉄と原料液との接触阻害を引き起こすので鉄濃度は1.5g/L以上とする。また水素は爆発性があるという問題がある。さらに鉄として鉄粉を使用するならば、表面積が大きいため短時間に大量に水素が発生して溶液が吹きこぼれる問題もある。そのため、特に鉄粉を使用する時、その投入量は1.5g/L以上とするが鉄粉の投入量は1.5~10g/Lとすることが好ましい。一度に投入せずに複数回に分けて投入してもよい。 When iron comes into contact with hydrochloric acid acid solution, it generates hydrogen. Since hydrogen consumes iron and inhibits contact between iron and the raw material solution, the iron concentration is set to 1.5 g/L or more. In addition, there is a problem that hydrogen is explosive. Furthermore, if iron powder is used as iron, there is a problem that a large amount of hydrogen is generated in a short time due to its large surface area, causing the solution to boil over. Therefore, especially when iron powder is used, the amount to be added is 1.5 g/L or more, but the amount of iron powder to be added is preferably 1.5 to 10 g/L. You may divide into multiple times and may throw in without throwing in at once.

水素発生による吹きこぼれや爆発の危険を避ける方法として、鉄表面を銅で一部被覆した金属を使用することも可能である。銅品位が高すぎるとイリジウムとの反応が悪くなるおそれがあるため、表面を銅で被覆した鉄の銅の含有量は、好ましくは65質量%以下、さらに好ましくは40質量%以下である。また、表面を銅で被覆した鉄の銅の含有量は、10~65質量%であるのがより好ましい。銅で被覆した鉄を使用する場合は、鉄含有量が低くなるため、鉄含有量として1.5~10g/Lとなるよう塩酸酸性液に添加することが好ましい。 As a method of avoiding the danger of boiling over and explosion due to hydrogen generation, it is also possible to use a metal in which the iron surface is partially coated with copper. If the copper grade is too high, the reaction with iridium may deteriorate, so the copper content of the iron whose surface is coated with copper is preferably 65% by mass or less, more preferably 40% by mass or less. Further, the copper content of the iron whose surface is coated with copper is more preferably 10 to 65% by mass. When iron coated with copper is used, the iron content is low, so it is preferable to add it to the hydrochloric acid acid solution so that the iron content is 1.5 to 10 g/L.

鉄の添加量が過多になった場合でも、溶液は塩酸酸性であるので余剰分は溶解する。したがって、余剰分の鉄は沈殿物を回収後のイリジウム精製工程に持ち込まれても問題にはならない。 Even if the added amount of iron becomes excessive, the excess is dissolved because the solution is acidified with hydrochloric acid. Therefore, surplus iron does not pose a problem even if it is brought into the iridium refining process after collecting the precipitate.

銅電解殿物由来の処理対象液は多くの場合、テルル、セレン、各種金属イオンを含む。これらの元素は鉄によりセメンテーションされて表面に析出し、反応速度を低下させる恐れがある。そのため、イリジウムを含む塩酸酸性液を60℃以上に加熱する前に、予め還元剤を添加して溶液の塩酸酸性液の酸化還元電位(参照電極は銀/塩化銀)を200mV以下に調整し、沈殿させて除くことが好ましい。当該酸化還元電位は、銅の酸化還元電位である120mV以下に調整しておくことがより好ましい。還元剤としては、二酸化硫黄、亜硫酸塩、チオ硫酸塩、硫化水素等が好適である。鉄粉を分割投入して酸化還元電位を調節することも可能である。 Many of the liquids to be treated derived from copper electrolytic precipitates contain tellurium, selenium, and various metal ions. These elements may be cemented by iron and deposited on the surface, reducing the reaction rate. Therefore, before heating the iridium-containing hydrochloric acid solution to 60° C. or higher, a reducing agent is added in advance to adjust the oxidation-reduction potential of the solution to 200 mV or less (reference electrode: silver/silver chloride), It is preferably removed by settling. It is more preferable to adjust the oxidation-reduction potential to 120 mV or less, which is the oxidation-reduction potential of copper. Suitable reducing agents include sulfur dioxide, sulfites, thiosulfates, and hydrogen sulfide. It is also possible to adjust the oxidation-reduction potential by dividing the iron powder.

イリジウムを含む塩酸酸性液が亜ヒ酸イオンを含む場合は、鉄が亜ヒ酸イオンをヒ素まで還元する。ヒ素の沈殿を防止するには、塩酸酸性液の銅濃度を0.1~0.7g/Lに調整しておく。ヒ素より先に銅がセメンテーションを受けて鉄表面を被覆し、ヒ素の混入を抑制できる。上記のように銅被覆鉄粉を使用してもヒ素の混入は抑えることができる。 When the hydrochloric acid solution containing iridium contains arsenite ions, iron reduces the arsenite ions to arsenic. In order to prevent precipitation of arsenic, the copper concentration of the hydrochloric acid solution is adjusted to 0.1 to 0.7 g/L. Copper is subjected to cementation before arsenic and coats the iron surface, thereby suppressing the contamination of arsenic. Even if the copper-coated iron powder is used as described above, arsenic contamination can be suppressed.

イリジウムを含む塩酸酸性液がヒ素を含んでいる場合、塩酸酸性液を60~70℃に加熱して、塩酸酸性液におけるイリジウムに対し、50質量倍以上の鉄を添加することで、イリジウムを選択的に沈殿させることができる。塩酸酸性液を60~70℃に加熱することで、ヒ素が沈殿して混入することを抑制することができる。 When the hydrochloric acid acid solution containing iridium contains arsenic, iridium is selected by heating the hydrochloric acid acid solution to 60 to 70° C. and adding iron at least 50 times the mass of iridium in the hydrochloric acid acid solution. can be precipitated. By heating the hydrochloric acid acid solution to 60 to 70° C., arsenic can be prevented from being precipitated and mixed.

また、イリジウムを含む塩酸酸性液がヒ素を含んでいる場合、イリジウムを含む塩酸酸性液に、鉄として鉄粉を1.5~3.0g/Lになるよう添加することで、イリジウムを選択的に沈殿させることができる。鉄粉を1.5~3.0g/Lになるよう添加することで、ヒ素が沈殿して混入することを抑制することができる。 Further, when the hydrochloric acid solution containing iridium contains arsenic, by adding iron powder as iron to the hydrochloric acid solution containing iridium in an amount of 1.5 to 3.0 g / L, iridium is selectively removed. can be precipitated at By adding iron powder in an amount of 1.5 to 3.0 g/L, arsenic can be prevented from being precipitated and mixed.

沈殿したイリジウム含有物は、固液分離後に適切な方法で未反応の鉄とイリジウムを分離する。例えば、鉱酸で鉄のみを溶解分離してイリジウムを残渣に濃縮する方法があげられる。 The precipitated iridium-containing material is separated from unreacted iron and iridium by a suitable method after solid-liquid separation. For example, there is a method of dissolving and separating only iron with a mineral acid and concentrating iridium into a residue.

以下、実施例により本発明をさらに具体的に説明する。ただし、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these.

(実験例1)
銅製錬の銅電解精製工程由来の電解澱物から硫酸により銅を溶解して除いた。濃塩酸と60%過酸化水素水を添加して溶解し、固液分離してPLS(浸出貴液)を得た。PLSを6℃まで冷却して卑金属分を沈殿除去した。酸濃度を2N以上に調整しDBC(ジブチルカルビトール)とPLSを混合して金を抽出した。金抽出後のPLSを70℃に加温し、二酸化硫黄を吹き込んで貴金属とセレン、テルルを還元除去した。これを固液分離し、イリジウムを含む塩酸酸性液を得た。
(Experimental example 1)
Copper was dissolved and removed with sulfuric acid from the electrolytic sediment derived from the copper electrorefining process of copper smelting. Concentrated hydrochloric acid and 60% aqueous hydrogen peroxide were added to dissolve the solution, followed by solid-liquid separation to obtain PLS (leaching solution). The PLS was cooled to 6° C. to precipitate and remove base metals. Gold was extracted by adjusting the acid concentration to 2N or more and mixing DBC (dibutyl carbitol) and PLS. The PLS after the gold extraction was heated to 70° C., and sulfur dioxide was blown into the PLS to reduce and remove the noble metals, selenium, and tellurium. This was subjected to solid-liquid separation to obtain a hydrochloric acid acid solution containing iridium.

イリジウムを含む塩酸酸性液のイリジウム濃度は26mg/Lであった。イリジウム含有液はその他の元素としてヒ素を1.5g/L、銅を0.55g/L、セレンを6mg/L、テルルを13mg/L含有していた。当該イリジウムを含む塩酸酸性液を200mL分取し、75~80℃もしくは60~65℃に加熱して、表1に示す量(g)のP80=0.2mmの鉄粉を添加して攪拌した。撹拌しつつ、10分後に5mL程度サンプルを分取し、ろ過して溶液中の各元素濃度を定量した(実施例1~4)。また、比較例1として、同じイリジウムを含む塩酸酸性液に対し、80~85℃の加熱を行い、二酸化硫黄と空気の混合気を吹き込んで還元を行った。さらに、比較例2として、実施例1~4に対して、鉄粉ではなく銅粉を添加した以外は同様の手順で実験を行った。 The iridium concentration of the hydrochloric acid solution containing iridium was 26 mg/L. The iridium-containing liquid contained 1.5 g/L of arsenic, 0.55 g/L of copper, 6 mg/L of selenium, and 13 mg/L of tellurium as other elements. 200 mL of the hydrochloric acid acid solution containing the iridium was taken, heated to 75 to 80° C. or 60 to 65° C., and the amount (g) of iron powder of P80=0.2 mm shown in Table 1 was added and stirred. . After 10 minutes with stirring, a sample of about 5 mL was collected and filtered to quantify the concentration of each element in the solution (Examples 1 to 4). Further, as Comparative Example 1, the same acid solution of hydrochloric acid containing iridium was heated to 80 to 85° C., and a mixture of sulfur dioxide and air was blown thereinto for reduction. Further, as Comparative Example 2, an experiment was conducted in the same manner as in Examples 1 to 4, except that copper powder was added instead of iron powder.

全ての溶液中の元素濃度の定量は溶液2mLを分取して50mLに規正後、ICP-OES(セイコー社製SPS3100)により濃度を定量した。評価結果を表1に示す。 Quantification of elemental concentrations in all the solutions was carried out by aliquoting 2 mL of the solution, adjusting it to 50 mL, and then quantifying the concentration using ICP-OES (SPS3100 manufactured by Seiko). Table 1 shows the evaluation results.

Figure 2022157581000002
Figure 2022157581000002

表1の結果から、鉄粉添加量が増えるほどイリジウムの濃度が低下し、セメンテーションを受けたことが分かる。実施例1~3を見ると、鉄の添加量とイリジウムの濃度減少幅は比例関係にあるように思われ、鉄0.5g添加、すなわち2.5g/Lの添加に対してイリジウム濃度の減少幅はおよそ9mg/Lで、鉄の反応比率はイリジウムに対しておよそ250質量倍であった。このイリジウムの現象幅から計算すると、50質量倍の鉄添加でも5%程度の回収率の改善が見込まれる。一般的手法である、比較例1のイリジウム回収率は1%以下であった。また、比較例2の銅粉添加の場合は、イリジウムの還元効果が鉄粉を用いた場合に比べて低かった。 From the results in Table 1, it can be seen that as the amount of iron powder added increased, the concentration of iridium decreased and cementation occurred. Looking at Examples 1 to 3, it seems that the amount of iron added and the width of the decrease in the iridium concentration are in a proportional relationship. The width was approximately 9 mg/L, and the reaction ratio of iron was approximately 250 mass times that of iridium. Calculating from this phenomenon width of iridium, it is expected that the recovery rate is improved by about 5% even if iron is added 50 times by mass. The iridium recovery rate of Comparative Example 1, which is a general method, was 1% or less. Further, in the case of adding copper powder in Comparative Example 2, the effect of reducing iridium was lower than in the case of using iron powder.

しかしながら、実施例4に見るように加熱温度が60℃であると、鉄粉1g添加、すなわち鉄粉を5g/Lとなるよう添加した場合では、セメンテーション効果が見られるものの大きくないことも分かる。この時のセメンテーションの効果は、実施例1の鉄粉添加量0.3gの時と変わらない。このため、塩酸酸性液の加熱温度(液温)は60℃以上とすべきであり、さらに好ましくは75℃以上であることが分かる。 However, as seen in Example 4, when the heating temperature is 60° C., when 1 g of iron powder is added, that is, when iron powder is added to 5 g/L, the cementation effect is observed, but it is not large. . The effect of cementation at this time is the same as in Example 1 when the amount of iron powder added was 0.3 g. Therefore, it can be seen that the heating temperature (liquid temperature) of the hydrochloric acid solution should be 60° C. or higher, and more preferably 75° C. or higher.

(実験例2)
実験例1と同じイリジウムを含む塩酸酸性液を200mL分取した。これを75~80℃に加熱した。次に、予め硫酸銅溶液に浸して表面に銅を析出させた銅被覆鉄粉を1g添加した。銅被覆鉄粉は銅の含有量が33質量%(実施例5)と64質量%(実施例6)の2種類を調製し、それぞれ別にセメンテーション試験を行った。0.5h経過、1h時間経過後のサンプルを採取した。分析方法は実験例1に準じる。評価結果を表2に示す。
(Experimental example 2)
200 mL of the same iridium-containing hydrochloric acid solution as in Experimental Example 1 was taken. It was heated to 75-80°C. Next, 1 g of copper-coated iron powder, which had previously been soaked in a copper sulfate solution to deposit copper on the surface, was added. Two types of copper-coated iron powder having a copper content of 33% by mass (Example 5) and 64% by mass (Example 6) were prepared, and cementation tests were conducted separately for each of them. After 0.5 hours and 1 hour, samples were collected. The analysis method conforms to Experimental Example 1. Table 2 shows the evaluation results.

Figure 2022157581000003
Figure 2022157581000003

表2の結果から、銅を表面に析出させた鉄粉でもイリジウムセメンテーション効果は高く、また、銅品位は低い方がイリジウムのセメンテーション効果が高いことが分かる。ヒ素との選択性についても、イリジウムの残濃度に対してヒ素の残濃度は銅品位が低いほど高いことが分かる。銅粉を添加するのではなく、鉄粉の表面に銅を一部析出した状態で添加すると、水素発生を避けつつ、イリジウム還元効果が得られることが分かる。 From the results in Table 2, it can be seen that the iridium cementation effect is high even with iron powder having copper deposited on the surface, and that the lower the copper grade, the higher the iridium cementation effect. Regarding the selectivity with respect to arsenic, it can be seen that the lower the copper grade, the higher the residual concentration of arsenic with respect to the residual concentration of iridium. It can be seen that the iridium reduction effect can be obtained while avoiding the generation of hydrogen by adding copper partially deposited on the surface of the iron powder instead of adding the copper powder.

しかしながら、加熱温度が75℃以上では、ヒ素が銅と反応してヒ化銅を生じることが知られている。ヒ素との選択性に関しては反応温度を下げると金属銅とヒ素の反応が低下すると予想される。70℃以下では銅品位は高い方がヒ素の還元反応が抑制される。したがって、銅被覆鉄粉の銅品位は、反応温度が70℃以下で実施例6のように70質量%以下が好適である。より好ましくは実施例5に見られるようにあらゆる温度で効果が高い銅含有量40質量%以下である。 However, it is known that arsenic reacts with copper to form copper arsenide at a heating temperature of 75° C. or higher. Regarding the selectivity to arsenic, it is expected that the reaction between metallic copper and arsenic will decrease when the reaction temperature is lowered. At 70° C. or lower, the higher the copper grade, the more the arsenic reduction reaction is suppressed. Therefore, the copper content of the copper-coated iron powder is preferably 70% by mass or less as in Example 6 at a reaction temperature of 70° C. or less. More preferably, as seen in Example 5, the copper content is 40% by mass or less, which is highly effective at all temperatures.

(実験例3)
実験例1で使用したイリジウム含有液を200mL分取し、75~80℃に加熱した。最初に鉄粉0.3g添加した時を0hとし鉄粉を30分ごとに0.3gずつ添加した。30分ごとに分析用のサンプルを採取した。サンプル採取は鉄粉添加前に行った。分析方法は実験例1に準じる。評価結果を表3に示す。
(Experimental example 3)
200 mL of the iridium-containing liquid used in Experimental Example 1 was taken and heated to 75 to 80°C. The time when 0.3 g of iron powder was first added was taken as 0 hour, and 0.3 g of iron powder was added every 30 minutes. Samples were taken for analysis every 30 minutes. Sampling was performed before iron powder addition. The analysis method conforms to Experimental Example 1. Table 3 shows the evaluation results.

Figure 2022157581000004
Figure 2022157581000004

表3の結果から、鉄の添加に従って定量的にイリジウム濃度が低下していることが分かる。鉄粉は1.5g/L(0.5h時)でも機能し、以後は0.3g添加する(鉄濃度は1.5g/Lずつ増える)毎に6mg/Lのイリジウムが低下した。同時にヒ素濃度も大きく低下した。 The results in Table 3 show that the iridium concentration decreases quantitatively with the addition of iron. Iron powder worked even at 1.5 g/L (at 0.5 h), after that every 0.3 g added (iron concentration increased by 1.5 g/L) reduced iridium by 6 mg/L. At the same time, the arsenic concentration also decreased significantly.

(実験例4)
実験例1と同じ方法で調整したイリジウム含有液を300mL分取し、80℃に加熱した。イリジウム濃度は25mg/L、ヒ素濃度は1.51g/L、酸化還元電位は455mVであった。最初に鉄粉0.1g添加した時を0hとし、鉄粉を15分ごとに0.1gずつ添加した。鉄粉を添加する直前に酸化還元電位を測定し、成分分析用のサンプルを2mL採取した。分析方法は実験例1に準じる。イリジウム濃度の経時変化を図1に示す。ORPとイリジウム濃度との関係を図2に示す。
(Experimental example 4)
300 mL of an iridium-containing liquid prepared in the same manner as in Experimental Example 1 was taken and heated to 80°C. The iridium concentration was 25 mg/L, the arsenic concentration was 1.51 g/L, and the redox potential was 455 mV. The time when 0.1 g of the iron powder was first added was defined as 0 hours, and 0.1 g of the iron powder was added every 15 minutes. The oxidation-reduction potential was measured immediately before adding the iron powder, and 2 mL of a sample for component analysis was collected. The analysis method conforms to Experimental Example 1. FIG. 1 shows the change in iridium concentration over time. FIG. 2 shows the relationship between ORP and iridium concentration.

図1の結果から鉄粉を添加していくとヒ素とイリジウム濃度が低下していくことが分かる。図2からは溶液のORPが200mVを下回るとイリジウムの濃度低下が明瞭になったことが分かる。 It can be seen from the results in FIG. 1 that the arsenic and iridium concentrations decrease as iron powder is added. It can be seen from FIG. 2 that when the ORP of the solution fell below 200 mV, the iridium concentration decreased clearly.

ヒ素は135分経過後から大きく濃度が低下しており、鉄粉が0.9g添加された時である。ヒ素との分離は鉄粉添加量を3g/L以下にすることが好ましい。 The concentration of arsenic decreased significantly after 135 minutes, and this was when 0.9 g of iron powder was added. For separation from arsenic, the amount of iron powder added is preferably 3 g/L or less.

Claims (6)

イリジウムを100mg/L未満含む塩酸酸性液を60℃以上に加熱して、前記塩酸酸性液におけるイリジウムに対し、50質量倍以上の鉄を添加することで、イリジウムを沈殿させる、イリジウムの回収方法。 A method for recovering iridium, comprising heating an acidic hydrochloric acid solution containing less than 100 mg/L of iridium to 60° C. or higher and adding iron in an amount of 50 times or more by mass of iridium in the acidic hydrochloric acid solution to precipitate iridium. 前記イリジウムを含む塩酸酸性液に、前記鉄として鉄粉を1.5g/L以上になるよう添加する、請求項1に記載のイリジウムの回収方法。 2. The method for recovering iridium according to claim 1, wherein iron powder as said iron is added to said hydrochloric acid acid solution containing said iridium so as to be 1.5 g/L or more. 前記イリジウムを含む塩酸酸性液に添加する鉄は、表面に銅を析出させており、前記銅の含有量が10~65質量%である、請求項1または2に記載のイリジウムの回収方法。 The method for recovering iridium according to claim 1 or 2, wherein the iron added to the hydrochloric acid solution containing iridium has copper deposited on its surface, and the copper content is 10 to 65% by mass. 前記イリジウムを含む塩酸酸性液を60℃以上に加熱する前に、予め還元剤を添加して銀/塩化銀を参照電極とした酸化還元電位(ORP)を200mV以下に調整しておく、請求項1~3のいずれか一項に記載のイリジウムの回収方法。 Before heating the hydrochloric acid solution containing iridium to 60° C. or higher, a reducing agent is added in advance to adjust the oxidation-reduction potential (ORP) to 200 mV or less using silver/silver chloride as a reference electrode. 4. The method for recovering iridium according to any one of 1 to 3. 前記イリジウムを含む塩酸酸性液がヒ素を含んでおり、前記塩酸酸性液を60~70℃に加熱して、前記塩酸酸性液におけるイリジウムに対し、50質量倍以上の鉄を添加することで、イリジウムを選択的に沈殿させる、請求項1~4のいずれかに記載のイリジウムの回収方法。 The hydrochloric acid acid solution containing iridium contains arsenic, and the hydrochloric acid acid solution is heated to 60 to 70° C., and iron is added in an amount of 50 times or more by mass of iridium in the hydrochloric acid acid solution. The method for recovering iridium according to any one of claims 1 to 4, wherein the is selectively precipitated. 前記イリジウムを含む塩酸酸性液がヒ素を含んでおり、前記イリジウムを含む塩酸酸性液に、前記鉄として鉄粉を1.5~3.0g/Lになるよう添加することで、イリジウムを選択的に沈殿させる、請求項1~4のいずれかに記載のイリジウムの回収方法。 The iridium-containing hydrochloric acid solution contains arsenic, and by adding iron powder as the iron to the iridium-containing hydrochloric acid solution in an amount of 1.5 to 3.0 g/L, iridium is selectively removed. The method for recovering iridium according to any one of claims 1 to 4, wherein the iridium is precipitated in.
JP2021061888A 2021-03-31 イリジウムの回収方法 JP7498138B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021061888A JP7498138B2 (ja) 2021-03-31 イリジウムの回収方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021061888A JP7498138B2 (ja) 2021-03-31 イリジウムの回収方法

Publications (2)

Publication Number Publication Date
JP2022157581A true JP2022157581A (en) 2022-10-14
JP7498138B2 JP7498138B2 (ja) 2024-06-11

Family

ID=

Similar Documents

Publication Publication Date Title
US4293332A (en) Hydrometallurgical process for recovering precious metals from anode slime
Ubaldini et al. Process flow-sheet for gold and antimony recovery from stibnite
JP3474526B2 (en) How to recover silver
RU1838437C (en) Method of extraction of noble metals
Dehghanpoor et al. Extraction of copper and gold from anode slime of Sarcheshmeh Copper Complex
US4662938A (en) Recovery of silver and gold
JP2012246198A (en) Method for purifying selenium by wet process
JP7198079B2 (en) Method for treating acidic liquids containing precious metals, selenium and tellurium
EP3575420A1 (en) Bismuth purification method
US4874429A (en) Hydrometallurgical process for the recovery of silver from copper electrolysis anode sludge
JP6994983B2 (en) How to recover ruthenium
EP1577408A1 (en) Method for separating platinum group element
Liu et al. Selective separation of base metals and high-efficiency enrichment of precious metals from scrap copper anode slime
JP7247050B2 (en) Method for treating selenosulfuric acid solution
EP0061468B1 (en) Recovery of silver from ores and concentrates
JP2022157581A (en) Method for recovering iridium
Liu et al. Comprehensive recovery of Sn-Cu bearing residue and preparation of high purity SnO2 and CuSO4· 5H2O
JP7247049B2 (en) Method for treating selenosulfuric acid solution
JP3407600B2 (en) Silver extraction and recovery method
JP2022155328A (en) Classification method of ruthenium and iridium
JP7337209B2 (en) Iridium recovery method
JP7423479B2 (en) Ruthenium recovery method
JP7423467B2 (en) Ruthenium recovery method
JP7325363B2 (en) Method for treating mixtures containing selenium and tellurium
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240523