JP2022155186A - インダクタ - Google Patents

インダクタ Download PDF

Info

Publication number
JP2022155186A
JP2022155186A JP2021058572A JP2021058572A JP2022155186A JP 2022155186 A JP2022155186 A JP 2022155186A JP 2021058572 A JP2021058572 A JP 2021058572A JP 2021058572 A JP2021058572 A JP 2021058572A JP 2022155186 A JP2022155186 A JP 2022155186A
Authority
JP
Japan
Prior art keywords
resin
electrode
metal
magnetic powder
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021058572A
Other languages
English (en)
Inventor
亮太 渡辺
Ryota Watanabe
康夫 下村
Yasuo Shimomura
英治 磯
Eiji Iso
佳武 能見
Yoshitake Nomi
健太 野原
Kenta Nohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2021058572A priority Critical patent/JP2022155186A/ja
Publication of JP2022155186A publication Critical patent/JP2022155186A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

【課題】外部電極の固着強度を向上させること。【解決手段】金属磁性粉及び樹脂を含むコア30にコイル導体20が埋設された素体2と、前記素体2の表面に形成された外部電極4と、を有するインダクタ1であって、前記素体2は、前記金属磁性粉と前記樹脂の総重量を基準として、前記金属磁性粉の割合が96.7wt%以上97.4wt%以下であり、前記樹脂の割合が2.6wt%以上3.3wt%以下であり、前記素体2の表面において前記外部電極が接する面は、前記金属磁性粉と前記樹脂との総面積に占める前記金属の面積の割合である金属面積率が65%以上75%以下である。【選択図】図5

Description

本発明は、インダクタに関する。
特許文献1は、積層セラミック電子部品の端子電極を形成するための導電性ペーストを開示する。また、特許文献1は、導電性ペーストが導電性粉末と樹脂成分とを含み、導電性粉末が銀粉末であり、平均粒径が0.1μm以上10μm以下であることを開示する。
特開2020-088353公報
特許文献1に開示された導電性ペーストを、電子部品の一種であるインダクタの素体に塗布することで、当該インダクタの外部電極の形成に用いた場合、導電性粉末の平均粒径が比較的大きいため、導電性粒子間の接触面積が小さくなって電流路が少なくなり、当該外部電極の抵抗値が比較的大きくなってしまう。
そこで、上記導電性ペーストに、より小さな平均粒径の導電粉末を混合することで外部電極の抵抗値の問題を改善することができる。しかしながら、より小さな平均粒径の導電粉末を混合すると、樹脂への導電性粉末の分散性が悪くなるため、例えばアクリル樹脂などを樹脂成分に用いることで、導電性粉末の分散性を向上させる必要がある。
しかしながら、アクリル樹脂などを樹脂成分に用いた場合、導電性ペーストの素体への固着強度が弱くなり、外部電極が剥がれ易くなる、という問題が生じる。
本発明は、外部電極の固着強度を向上させることができる素体を有したインダクタを提供することを目的とする。
本発明の一態様は、金属磁性粉及び樹脂を含むコアにコイル導体が埋設された素体と、前記素体の表面に形成された外部電極と、を有するインダクタであって、前記素体は、前記金属磁性粉と前記樹脂の総重量を基準として、前記金属磁性粉の割合が96.7wt%以上97.4wt%以下であり、前記樹脂の割合が2.6wt%以上3.3wt%以下であり、前記素体の表面において前記外部電極が接する面は、前記金属磁性粉と前記樹脂との総面積に占める前記金属磁性粉の面積の割合である金属面積率が65%以上75%以下である、ことを特徴とする。
本発明によれば、外部電極の固着強度を向上させることができる。
本発明の第1実施形態に係るインダクタを上面の側から視た斜視図である。 インダクタを実装面の側から視た斜視図である。 インダクタの内部構成を示す透視斜視図である。 インダクタの製造工程の概要図である。 インダクタのLT断面の構成を示す模式図である。 表面粗さと外部電極の固着強度との関係を示す図である。 金属面積率と表面粗さとの関係を示す図である。 インダクタの外部電極の部分の断面を観察した顕微鏡写真を、電極形成箇所の表面を観察した顕微鏡写真とともに示す図である。 本発明の第2実施形態に係るインダクタのLT断面の構成を示す模式図である。 外部電極の延出部を含む箇所の断面構成と、実装面から視たインダクタの平面視構成との対応関係を示す図である。 本発明の第3実施形態に係るインダクタのLT断面の構成を示す模式図である。
以下、図面を参照して本発明の実施形態について説明する。
[第1実施形態]
図1は本実施形態に係るインダクタ1を上面12の側から視た斜視図であり、図2はインダクタ1を実装面10の側から視た斜視図である。
本実施形態のインダクタ1は、表面実装型の電子部品として構成されており、略直方体形状の素体2と、当該素体2の表面に設けられた一対の外部電極4とを備え、素体2の一面が図示しない回路基板の表面に実装される実装面10(図2)として構成されている。
以下、素体2において、実装面10の対向面を上面12と定義し、上面12及び実装面10以外の4面のうち、素体2の長手方向の両端の面を端面14と言い、残りの面を側面16と言う。
図1に示すように、実装面10から上面12までの距離を素体2の厚みTと定義し、一対の側面16の間の距離を素体2の幅Wと定義し、一対の端面14の間の距離を素体2の長さLと定義する。また、厚みTの方向を厚み方向DTと定義し、幅Wの方向を幅方向DWと定義し、長さ距離の方向を長さ方向DLと定義する。
図3はインダクタ1の内部構成を示す透視斜視図である。
素体2は、コイル導体20と、当該コイル導体20が埋設された略直方体形状のコア30と、を備え、かかるコイル導体20をコア30に封入した導体封入型磁性部品として構成されている。
コア30は、金属磁性粉(軟磁性粉)と樹脂を混合した混合粉を、コイル導体20を内包した状態で加圧及び加熱することで略直方体形状に圧縮成型された成型体である。
また、本実施形態の金属磁性粉は、平均粒径が比較的大きな大粒子の第1磁性粒子と、平均粒径が比較的小さな小粒子の第2磁性粒子との2種の粒度の粒子を含んでいる。これにより、圧縮成型時において、大粒子の第1磁性粒子の間に、小粒子である第2磁性粒子が樹脂とともに入り込むことでコア30の充填率を大きくし、また透磁率も高めることができる。本実施形態において、第1磁性粒子および第2磁性粒子の金属粒子の平均粒径はそれぞれ24.4μmおよび4.0μmである。なお、第1磁性粒子の平均粒径は24μm以上39μm以下が好ましく、第2磁性粒子の平均粒径は3μm以上5μm以下が好ましい。また、金属磁性粉が第1磁性粒子と第2磁性粒子の間の平均粒径の粒子を含むことで、3種以上の粒度の粒子を含んでもよい。
本実施形態において、第1磁性粒子及び第2磁性粒子はいずれも、金属粒子と、その表面を覆う数nm以上数十nm以下の膜厚の絶縁膜とを有した粒子であり、金属粒子にはFe-Si系アモルファス合金粉が用いられ、絶縁膜にはリン酸亜鉛が用いられている。金属粒子が絶縁膜で覆われることで、絶縁抵抗と耐電圧とが高められる。
また第2磁性粒子の量は、その混合粉に含まれる磁性粒子の総重量を基準として25重量%である。
なお、第1磁性粒子において、金属粒子には、CrレスのFe-C-Si合金粉、Fe-Ni-Al合金粉、Fe-Cr-Al合金粉、Fe-Si-Al合金粉、Fe-Ni合金粉、Fe-Ni-Mo合金粉を用いてもよい。
また、第1磁性粒子及び第2磁性粒子において、絶縁膜には、他のリン酸塩(リン酸マグネシウム、リン酸カルシウム、リン酸マンガン、リン酸カドミウムなど)、又は、樹脂材料(シリコーン系樹脂、エポキシ系樹脂、フェノール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリフェニレンサルファイド系樹脂など)を用いてもよい。
本実施形態の混合粉において、樹脂の材料には、ビスフェノールA型エポキシ樹脂を主剤としたエポキシ樹脂が用いられている。
なお、エポキシ樹脂は、フェノールノボラック型エポキシ樹脂であってもよい。
また、樹脂の材料は、エポキシ樹脂以外であってもよく、また、1種ではなく2種以上であってもよい。例えば、樹脂の材料には、エポキシ樹脂の他にも、フェノール樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリオレフィン樹脂などの熱硬化性樹脂を用いることができる。
コイル導体20は、図3に示すように、導線が巻回された巻回部22と、当該巻回部22から引き出された一対の引出部24とを備える。巻回部22は、導線の両端が外周に位置し、かつ内周で互いに繋がるように導線を渦巻き状に巻回して形成される。素体2の内部において、コイル導体20は、巻回部22の中心軸が素体2の厚み方向DTに沿う姿勢でコア30に埋設されており、また引出部24は、巻回部22から一対の端面14のそれぞれまで引き出され、外部電極4に電気的に接続されている。
外部電極4は、端面14の全面から、当該端面14に隣接する実装面10、上面12、及び一対の側面16のそれぞれの一部に亘って設けられた、いわゆる5面電極であり、はんだなどの適宜の実装手段によって回路基板の配線に電気的に接続される。
かかる構成のインダクタ1は、コンデンサとスイッチとによって電圧を昇圧するチャージポンプ方式のDCDCコンバータ及びLCフィルタを有した電源回路に用いられ、当該電源回路は、パソコン、DVDプレーヤー、デジカメ、TV、携帯電話、スマートフォン、カーエレクトロニクス、医療用・産業用機械などの電子機器に用いられる。ただし、インダクタ1の用途はこれに限られず、例えば、同調回路、フィルタ回路や整流平滑回路などにも用いることもできる。
なお、インダクタ1において、外部電極4の範囲を除く素体2の表面全体に、素体保護層を形成してもよい。素体保護層の材料には、例えばエポキシ樹脂、ポリイミド樹脂、フェノール樹脂等の熱硬化性樹脂、又は、ポリエチレン樹脂、ポリアミド樹脂等の熱可塑性樹脂を用いることができる。なお、これらの樹脂は酸化ケイ素、酸化チタン等を含むフィラーを更に含んでいても良い。
図4は、インダクタ1の製造工程の概要図である。
同図に示すように、インダクタ1の製造工程は、コイル導体成型工程、タブレット成型工程、熱成型・硬化工程、バレル研磨工程、及び、外部電極形成工程を含んでいる。
コイル導体成型工程は、導線からコイル導体20を成型する工程である。当該工程において、コイル導体20は、「アルファ巻」と称される巻き方で導線を巻回することにより、上述した巻回部22、及び一対の引出部24を有した形状に成型される。アルファ巻とは、導体として機能する導線の巻始めと巻終わりの引出部24が外周に位置するように渦巻き状に2段に巻回された状態を言う。コイル導体20のターン数は、特に限定されるものではない。
タブレット成型工程は、タブレットと称される予備成型体を成型する工程である。
予備成型体は、素体2の材料である上記混合粉を加圧することで、取り扱いが容易な固形状に成型したものであり、本実施形態では、コイル導体20が入り込む溝を有した適宜形状(例えばE型など)の第1タブレットと、この第1タブレットの溝を覆う適宜形状(例えばI型や板状など)の第2タブレットとの2種類のタブレットが形成される。
熱成型・硬化工程は、第1タブレット、コイル導体、及び第2タブレットを成型金型にセットし、熱を加えながら、第1タブレットと第2タブレットの重なり方向に加圧し、これらを硬化させることとで、第1タブレット、コイル導体、及び第2タブレットを一体化する。これにより、コイル導体20をコア30に内包した素体2が成型される。
バレル研磨工程は、この成型体をバレル研磨する工程であり、当該工程により、素体2の角部へのR付けが行われる。
外部電極形成工程は、外部電極4を素体2に形成する工程であり、レーザ照射工程と、電極層形成工程と、を含んでいる。
図5は、インダクタ1のLT断面の構成を示す模式図である。なお、LT断面は、コア30の長さ方向DL及び厚み方向DTを含むLT面での切断面である。
レーザ照射工程は、素体2の表面のうち、外部電極4を形成する電極形成領域70にレーザ光を照射することで電極形成領域70を表面改質する工程である。
なお、レーザ照射後に、電極形成領域70の表面を清浄するための洗浄処理(例えばエッチング処理)を行っても良い。
金属層形成工程は、レーザ照射によって表面改質された電極形成領域70に各種の金属層を積層して外部電極4を形成する工程である。
具体的には、当該工程では、先ず、電極形成領域70の全面に、導電性樹脂ペーストを塗布することで下地電極74を形成し、この下地電極74の表面に、ニッケル(Ni)層76と、スズ(Sn)層78とを、この順にめっき成長によって積層することで外部電極4を形成する。
下地電極74の材料である導電性樹脂ペーストは、導電粉と樹脂とを混合した混合材料であり、本実施形態において、導電粉の含有量(=導電粉/(導電粉+樹脂))は0.88である。この導電粉の含有量は0.87以上0.89以下であることが好ましい。
また本実施形態において、導電粉は銀粉であり、平均粒径が互いに異なる第1導電粒子と第2導電粒子とを含んでいる。
本実施形態において、第1導電粒子の平均粒径は5μmであり、第1導電粒子の平均粒径は1μm以上30μm以下であることが好ましく、第2導電粒子の平均粒径は80nmであり、第2導電粒子の平均粒径は0.5nm以上200nm以下であることが好ましい。
また本実施形態において、第1導電粒子及び第2導電粒子の平均粒径の比(=第2導電粒子の平均粒径/第1導電粒子の平均粒径)は0.2以上0.11以下、第1導電粒子と第2導電粒子の配合比(重量比)は6:4である。なお、第1導電粒子と第2導電粒子の配合比(重量比)は、第2導電粒子が3.5以上であることが好ましい。
また、第1導電粒子と樹脂の含有比(=第1導電粒子/樹脂)は0.528であり、0.522以上0.534以下が好ましく、第2導電粒子と樹脂の含有比(第2導電粒子/樹脂)は0.352であり、0.348以上0.356以下が好ましい。
また本実施形態において、樹脂はアクリル系熱硬化性樹脂である。
かかる下地電極74によれば、導電粉が平均粒径が互いに異なる第1導電粒子と第2導電粒子とを含有し、第2導電粒子の平均粒径が第1導電粒子の平均粒径よりも小さいため、第2導電粒子が第1導電粒子の隙間に入り込む。これにより、導電粉における導電粒子間の接触は、第1導電粒子同士、及び第2導電粒子同士の接触だけでなく、第1導電粒子と第2導電粒子の接触が生じ、導電粒子間の接触面積が増加する。かかる接触面積の増加によって導電粉における電流路が増えることで、当該下地電極74を含む外部電極4の抵抗値が小さくなることとなる。
ここで、素体2は、外部電極形成工程における電極形成領域70へのレーザ照射を用いた表面改質によって、当該電極形成領域70に形成された外部電極4の固着強度が向上するようになっている。
詳述すると、本実施形態の素体2は、金属磁性粉と樹脂の総重量を基準として、金属磁性粉の割合(=金属磁性粉の重量/(金属磁性粉の重量+樹脂の重量))が97wt%であり、樹脂の割合(=樹脂の重量/(金属磁性粉の重量+樹脂の重量))が3.0wt%の混合粉から成型されている。さらに、レーザ照射後の素体2において、外部電極4が接する面である電極形成領域70は、金属面積率が70%となっているのに対して、電極形成領域70以外の箇所は、金属面積率が38%となっている。
そして、この場合、電極形成領域70は、その表面粗さSaが10μmとなっているのに対し、素体2における電極形成領域70以外の表面は、表面粗さSaが1.8μmとなっており、電極形成領域70が他の箇所に対して約5倍以上粗くなっている。
なお、金属面積率は、金属磁性粉と樹脂との総面積に占める金属磁性粉の面積の割合(=金属磁性粉の面積/(樹脂と金属磁性粉の合計面積))である。
表1は表面粗さSaと外部電極4の固着強度(単位:kg/mm)との関係を調べた実験結果を示し、図6は表1の実験結果をグラフ化したものである。
なお、表1の実験結果は、電極形成領域70に照射するレーザ光の照射強度(エネルギー)を変化させることで表面粗さSaを変化させ、当該電極形成領域70に形成した外部電極4の固着強度を測定して得られた結果である。固着強度は、ボンドテスターを用いて測定した。
Figure 2022155186000002
実用上、剥がれの問題を生じない固着強度の閾値Athは0.4(kg/mm)であることを踏まえると、表1及び図6に示されるように、表面粗さSaが約4.8(μm)以上であれば、閾値Ath以上の固着強度が得られていることが分かる。
上述の通り、本実施形態のインダクタ1においては、電極形成領域70の表面粗さSaは10μmであるため、十分な固着強度が得られていることが分かる。
表2は金属面積率と表面粗さSaとの関係を調べた実験結果を示し、図7は表2の実験結果をグラフ化したものである。
なお、表2において、面積エネルギー(単位:mJ/mm)は、単位面積当たりのレーザエネルギーである。
また、表2の実験結果は、3つの素体2について測定した金属面積率の平均値であり、各素体2についての金属面積率は次のように測定されている。
先ず、素体2の端面14、上面12、及び実装面10ごとに、撮影ポイントを電極形成領域70の表面内に設定する。撮影ポイントは、撮影対象の各面において電極形成領域70の4隅の角をそれぞれ対角に結んだ交点である。次いで、走査電子顕微鏡の反射電子モードを使って500倍の倍率で各撮影ポイントを撮影し、各撮影ポイントの撮影画像を2値化する。次に、2値化後の各撮影画像内において金属磁性粉を特定し、各撮影画像において金属磁性粉が占める面積の割合を金属面積率として求める。そして、各撮影画像の金属面積率の平均値を素体2の金属面積率とする。
また、素体2において電極形成領域70以外の表面の金属面積率については、素体2の上面12、及び実装面10ごとに、撮影対象の各面において4隅の角をそれぞれ対角に結んだ交点を撮影ポイントとし、電極形成領域70の金属面積率についての上述の測定手順と同様に測定している。
Figure 2022155186000003
表2及び図7に示すように、表面粗さSaは金属面積率が大きくなるほど粗くなることが分かる。上述の閾値Ath以上の固着強度は、図6に示すように、表面粗さSaが4.8(μm)(図6中、Bth)以上であれば得られることが分かり、かかる表面粗さSaは、図7に示すように、金属面積率が約65%以上(図7中、Cth)であれば得られることが分かる。
図8はインダクタ1の外部電極4の部分の断面を観察した顕微鏡写真を、電極形成領域70の表面を観察した顕微鏡写真とともに示す図である。
同図に示すように、素体2の電極形成領域70(表面)には、多数の磁性粒子80(上記第1磁性粒子及び第2磁性粒粒子)が存在しており、当該電極形成領域70にレーザが照射されることで、表面の樹脂が除去され、また、隣接する磁性粒子80同士が融着する。電極形成領域70における磁性粒子80の融着はレーザ照射強度が強くなるほど顕著となり、これにより、金属面積率が増大することとなる。
ただし、図7及び図8の測定を通じて、レーザ照射強度が強くなり過ぎると、電極形成領域70に脱粒が発生し、そこに形成された外部電極4の表面に凹凸を生じるとの知見が得られている。具体的には、金属面積率が75%(図7中、Cmax)以下の場合は脱粒による外部電極4の凹凸は観察されないものの、金属面積率が78%以上では外部電極4の凹凸が観察された。
したがって、外部電極4の表面の凹凸を生じさせないために、金属面積率は75%以下であることが好ましいと言える。
以上のことから、電極形成領域70の金属面積率が65%以上75%以下であることで、外部電極4の固着強度が十分なものとなり、なおかつ、外部電極4の表面における凹凸の発生を抑えることができることが分かる。
発明者らは、素体2において、金属磁性粉と樹脂の総重量を基準として、金属磁性粉の割合(=金属磁性粉の重量/(金属磁性粉の重量+樹脂の重量))が96.7wt%以上97.4wt%以下であり、樹脂の割合(=樹脂の重量/(金属磁性粉の重量+樹脂の重量))が2.6以上3.3wt%以下であれば、金属面積率と、固着強度及び外部電極4の表面における凹凸発生との上述した関係が得られることを実験によって確かめている。
本実施形態によれば、次の効果を奏する。
本実施形態のインダクタ1は、金属磁性粉及び樹脂を含むコア30にコイル導体20が埋設された素体2と、前記素体2の表面の電極形成領域70に形成された外部電極4と、を有するインダクタ1である。そして、素体2は、金属磁性粉と樹脂の総重量を基準として、金属磁性粉の割合が96.7wt%以上97.4wt%以下であり、樹脂の割合が2.6以上3.3wt%以下であり、素体2の電極形成領域70は、金属磁性粉から生じる金属と樹脂との総面積に占める金属の面積の割合である金属面積率が65%以上75%以下となっている。
これにより、外部電極4の固着強度が十分なものとなり、なおかつ、外部電極4の表面における凹凸の発生が抑えられる。
本実施形態において、上記外部電極4は、平均粒径が互いに異なる第1導電粒子と第2導電粒子と樹脂を含有する導電性樹脂ペーストによって素体2の電極形成領域70に形成された下地電極74と、この下地電極74の表面に形成されためっき層(ニッケル層76と、スズ層78)と、を備える。
下地電極74が、平均粒径が互いに異なる第1導電粒子と第2導電粒子とを含有することで、下地電極74における電流の流路と面積が増え、当該下地電極74を含む外部電極4の抵抗値を小さくできる。
[第2実施形態]
図9は、本発明の第2実施形態に係るインダクタ1のLT断面の構成を示す模式図である。図10は、外部電極4の延出部90を含む箇所の断面構成と、実装面10から視たインダクタ1の平面視構成との対応関係を示す図である。
発明者らは、素体2の電極形成領域70の金属面積率が65%以上75%以下である場合、上記導電性樹脂ペーストの固着強度のみならず、ニッケル層76の固着強度も当該導電性樹脂ペーストと同程度に向上し、なおかつ、外部電極4の表面における凹凸の発生が抑えられる、との知見を、第1実施形態の図6及び図7に係る実験と同様の実験を通じて得た。
詳述すると、電極形成領域70の金属面積率が65%以上である場合、当該電極形成領域70の導電率が高まることで、電極形成領域70でめっきが成長し易くなり、また、金属磁性粉とニッケル層76の接触面積も増やすことができるため、固着強度が向上する。一方、電極形成領域70の金属面積率が75%を超える場合、レーザ照射強度が強くなり過ぎて金属磁性粉が脱粒し、めっきが成長し難くなったり、外部電極4の表面に凹凸が発生したりする。
このように、電極形成領域70の金属面積率に応じてニッケル層76の固着強度も高められる。
したがって、導電性樹脂ペーストによる下地電極74と、当該下地電極74の上のニッケル層86(めっき層)と、当該ニッケル層76の上のスズ層78とを有し、金属面積率が65%以上75%以下の電極形成領域70に下地電極74が形成された外部電極4において、次のようにすることで、外部電極4の固着強度を第1実施形態よりも高めることができる。すなわち、図9、及び図10に示すように、外部電極4が備えるニッケル層76(めっき層)に、電極形成領域70の表面に直接触れる延出部90を設けることで、下地電極74と電極形成領域70との固着に加え、当該延出部90によっても外部電極4の固着強度を高めて、より剥がれ難くできる。また、図9に示すように、一対の外部電極4の両方が、実装面10及び上面12のそれぞれに延出部90を備え、更に、図10に示すように、各延出部90がインダクタ1の一対の側面16の間に亘って延びることで、延出部90が無い場合よりも固着強度が高められる。
なお、本実施形態の外部電極4は、延出部90が接する電極形成領域70の表面の金属面積率が、素体2の電極形成領域70以外の表面の金属面積率よりも高く、かつ、65%未満であっても、下地電極74の固着強度と当該延出部90の固着強度とによって第1実施例よりも固着強度を強くできる。また、延出部90が接する電極形成領域70の表面の金属面積率を65%以上75%以下とすることにより、金属面積率が65%未満の場合に比べ、当該電極形成領域70の導電率が高まることで、電極形成領域70でめっきが成長し易くなり、また、金属磁性粉とニッケル層76の接触面積も増やすことができるため、延出部90の固着強度を高めることができる。
[第3実施形態]
図11は、本発明の第3実施形態に係るインダクタ1のLT断面の構成を示す模式図である。
第2実施形態で述べた通り、素体2の電極形成領域70の金属面積率が65%以上75%以下である場合、当該電極形成領域70へのニッケル層76の固着強度が向上し、なおかつ、外部電極4の表面における凹凸の発生が抑えられる。
したがって、図11に示すように、素体2の電極形成領域70に下地電極74を形成することなく、めっき層であるニッケル層76及びスズ層78を電極形成領域70に直接形成した外部電極4を構成することもできる。この場合、外部電極4において、コイル導体20の引出部24には、めっき層が直接接続される。
なお、めっき層は、銅(Cu)層、ニッケル層76、及びスズ層78の順で形成されてもよく、当該めっき層においても十分な固着強度の外部電極4が得られる。
上述した各実施形態は本発明の一態様を例示したものであって、本発明の趣旨を逸脱しない範囲において任意に変形及び応用が可能である。
上述した各実施形態において、外部電極4の形状は5面電極に限らず、例えばL字電極や底面電極でもよい。
上述した実施形態における水平、及び垂直等の方向や各種の数値、形状、材料は、特段の断りがない限り、それら方向や数値、形状、材料と同じ作用効果を奏する範囲(いわゆる均等の範囲)を含む。
1 インダクタ
2 素体
4 外部電極
20 コイル導体
30 コア
70 電極形成領域(外部電極が接する面)
74 下地電極
76 ニッケル層(めっき層)
78 スズ層
90 延出部

Claims (4)

  1. 金属磁性粉及び樹脂を含むコアにコイル導体が埋設された素体と、前記素体の表面に形成された外部電極と、を有するインダクタであって、
    前記素体は、
    前記金属磁性粉と前記樹脂の総重量を基準として、前記金属磁性粉の割合が96.7wt%以上97.4wt%以下であり、前記樹脂の割合が2.6wt%以上3.3wt%以下であり、
    前記素体の表面において前記外部電極が接する面は、前記金属磁性粉と前記樹脂との総面積に占める前記金属磁性粉の面積の割合である金属面積率が65%以上75%以下である、
    ことを特徴とするインダクタ。
  2. 前記外部電極は、
    平均粒径が互いに異なる第1導電粒子と第2導電粒子と樹脂を含有する導電性樹脂によって前記素体の表面に形成された下地電極と、
    前記下地電極の表面に形成されためっき層と、
    を備えることを特徴とする請求項1に記載のインダクタ。
  3. 前記めっき層は、
    前記下地電極から前記素体の表面に延出した延出部を有する
    ことを特徴とする請求項2に記載のインダクタ。
  4. 前記外部電極は、
    前記素体の表面に形成された、めっき層
    を備えることを特徴とする請求項1に記載のインダクタ。
JP2021058572A 2021-03-30 2021-03-30 インダクタ Pending JP2022155186A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021058572A JP2022155186A (ja) 2021-03-30 2021-03-30 インダクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021058572A JP2022155186A (ja) 2021-03-30 2021-03-30 インダクタ

Publications (1)

Publication Number Publication Date
JP2022155186A true JP2022155186A (ja) 2022-10-13

Family

ID=83557763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021058572A Pending JP2022155186A (ja) 2021-03-30 2021-03-30 インダクタ

Country Status (1)

Country Link
JP (1) JP2022155186A (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284342A (ja) * 1997-04-02 1998-10-23 Matsushita Electric Ind Co Ltd 導電接続構造体
JP2003297646A (ja) * 2002-04-03 2003-10-17 Matsushita Electric Ind Co Ltd チップ型電子部品
JP2005159064A (ja) * 2003-11-27 2005-06-16 Murata Mfg Co Ltd セラミック電子部品、及びセラミック電子部品の製造方法
JP2007201022A (ja) * 2006-01-24 2007-08-09 Murata Mfg Co Ltd 電子部品
JP2014203910A (ja) * 2013-04-03 2014-10-27 太陽誘電株式会社 セラミック電子部品
JP2014225590A (ja) * 2013-05-17 2014-12-04 東光株式会社 面実装インダクタの製造方法
JP2015026815A (ja) * 2013-06-19 2015-02-05 株式会社村田製作所 セラミック電子部品およびその製造方法
WO2015146814A1 (ja) * 2014-03-27 2015-10-01 株式会社村田製作所 電子部品
WO2016035861A1 (ja) * 2014-09-05 2016-03-10 東光株式会社 表面実装インダクタ及びその製造方法
JP2016146431A (ja) * 2015-02-09 2016-08-12 Tdk株式会社 コイル装置
WO2017135057A1 (ja) * 2016-02-01 2017-08-10 株式会社村田製作所 コイル部品およびその製造方法
WO2017135058A1 (ja) * 2016-02-01 2017-08-10 株式会社村田製作所 電子部品およびその製造方法
JP2019186279A (ja) * 2018-04-03 2019-10-24 株式会社村田製作所 表面実装インダクタおよびその製造方法
JPWO2018235539A1 (ja) * 2017-06-19 2020-04-02 株式会社村田製作所 コイル部品

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284342A (ja) * 1997-04-02 1998-10-23 Matsushita Electric Ind Co Ltd 導電接続構造体
JP2003297646A (ja) * 2002-04-03 2003-10-17 Matsushita Electric Ind Co Ltd チップ型電子部品
JP2005159064A (ja) * 2003-11-27 2005-06-16 Murata Mfg Co Ltd セラミック電子部品、及びセラミック電子部品の製造方法
JP2007201022A (ja) * 2006-01-24 2007-08-09 Murata Mfg Co Ltd 電子部品
JP2014203910A (ja) * 2013-04-03 2014-10-27 太陽誘電株式会社 セラミック電子部品
JP2014225590A (ja) * 2013-05-17 2014-12-04 東光株式会社 面実装インダクタの製造方法
JP2015026815A (ja) * 2013-06-19 2015-02-05 株式会社村田製作所 セラミック電子部品およびその製造方法
WO2015146814A1 (ja) * 2014-03-27 2015-10-01 株式会社村田製作所 電子部品
WO2016035861A1 (ja) * 2014-09-05 2016-03-10 東光株式会社 表面実装インダクタ及びその製造方法
JP2016058418A (ja) * 2014-09-05 2016-04-21 東光株式会社 表面実装インダクタ及びその製造方法
JP2016146431A (ja) * 2015-02-09 2016-08-12 Tdk株式会社 コイル装置
WO2017135057A1 (ja) * 2016-02-01 2017-08-10 株式会社村田製作所 コイル部品およびその製造方法
WO2017135058A1 (ja) * 2016-02-01 2017-08-10 株式会社村田製作所 電子部品およびその製造方法
JPWO2018235539A1 (ja) * 2017-06-19 2020-04-02 株式会社村田製作所 コイル部品
JP2019186279A (ja) * 2018-04-03 2019-10-24 株式会社村田製作所 表面実装インダクタおよびその製造方法

Similar Documents

Publication Publication Date Title
US20200098506A1 (en) Inductor component
US11978579B2 (en) Coil component
KR102214223B1 (ko) 코일 부품
US11069474B2 (en) Inductor
US20210043366A1 (en) Inductor
JP2023053297A (ja) 積層コイル部品
US20210043363A1 (en) Inductor
CN114446575A (zh) 线圈部件
JP7404744B2 (ja) コイル部品の製造方法
JP2019197781A (ja) 表面実装インダクタ
US20220328240A1 (en) Inductor and method of manufacturing inductor
JP2022155186A (ja) インダクタ
JP7384187B2 (ja) インダクタおよびインダクタの製造方法
US20210358682A1 (en) Electronic component
JP2020035966A (ja) コイル部品及び電子機器
JP7322919B2 (ja) インダクタおよびインダクタの製造方法
JP2023147051A (ja) インダクタおよびインダクタの製造方法
JP2022151167A (ja) インダクタ
US20240071676A1 (en) Inductor and method for manufacturing inductor
JP2023154653A (ja) インダクタ
JP2023150279A (ja) インダクタ
JP7355065B2 (ja) アルファ巻きコイルおよびコイル部品
US20240071677A1 (en) Inductor and method for manufacturing inductor
JP7322920B2 (ja) コイル、及び、コイル部品
US20220310314A1 (en) Inductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240226

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240426