JP2022148624A - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
JP2022148624A
JP2022148624A JP2021050373A JP2021050373A JP2022148624A JP 2022148624 A JP2022148624 A JP 2022148624A JP 2021050373 A JP2021050373 A JP 2021050373A JP 2021050373 A JP2021050373 A JP 2021050373A JP 2022148624 A JP2022148624 A JP 2022148624A
Authority
JP
Japan
Prior art keywords
antenna
antenna device
line
symmetry
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021050373A
Other languages
English (en)
Inventor
達也 鈴木
Tatsuya Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2021050373A priority Critical patent/JP2022148624A/ja
Publication of JP2022148624A publication Critical patent/JP2022148624A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

【課題】通信信頼性を向上させるとともにアンテナを小型化しつつも、配線パターンの設計の自由度をより高くすることを可能にする。【解決手段】誘電体によって形成された基板10と、基板10上に配置されたアンテナ30と、基板10上に設けられたGND20とを備え、1つのアンテナ30に対して、複数の給電点50L,50Rと、GND20に接地する接地線40とが設けられ、複数の給電点50L,50Rのうちから用いる給電点50L,50Rを切り替えるスイッチと、スイッチの切り替えを制御する送受信回路とを備える。【選択図】図1

Description

本開示は、アンテナ装置に関するものである。
無線通信の信号品質、信頼性、及び伝送速度に対する要求が高まっている。例えば、携帯機器では、アンテナ指向性にヌルが存在すると、通信信頼性が低下するおそれがある。よって、ヌルの補完が、携帯機器における無線通信において重要となっている。これに対して、偏波若しくは指向性の異なる複数のアンテナを設置することで、それぞれのアンテナ特性のヌルを補完し、通信信頼性を向上させるダイバーシティアンテナが知られている。
しかしながら、複数のアンテナを用いる場合、アンテナの設置スペースが増大してしまう。特に、小型でアンテナの設置スペースの限られる携帯機器においては、設計の自由度が低下してしまう。また、アンテナを小型にするために複数のアンテナ同士の距離を近づけると、アンテナ同士の相互結合が生じてアイソレーションが低下し、インピーダンス整合がずれてしまう問題が生じる。
このような問題を解決する技術として、例えば特許文献1には、第1アンテナユニットおよび第2アンテナユニットの近くに、それぞれ第1結合ギャップ,第2結合ギャップといった無給電素子を備え、アンテナ同士の相互結合を抑制する技術が開示されている。
特開2013-214953号公報
しかしながら、特許文献1に開示の技術では、設置する無給電素子の数が増加するため、配線パターンの設計の自由度が低下してしまう問題が生じる。設計の自由度を向上させるためには、アンテナのさらなる小型化が求められる。
この開示のひとつの目的は、通信信頼性を向上させるとともにアンテナを小型化しつつも、配線パターンの設計の自由度をより高くすることを可能にするアンテナ装置を提供することにある。
上記目的は独立請求項に記載の特徴の組み合わせにより達成され、また、下位請求項は、開示の更なる有利な具体例を規定する。特許請求の範囲に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
上記目的を達成するために、本開示のアンテナ装置は、誘電体によって形成された基板(10)と、基板上に配置されたアンテナ(30)と、基板上に設けられたグランド(20,20c)とを備えるアンテナ装置であって、1つのアンテナに対して、複数の給電点(50,50L,50R)と、グランドに接地する接地線(40,40a,40b)とが設けられ、複数の給電点のうちから用いる給電点を切り替えるスイッチ(70)と、スイッチの切り替えを制御する制御回路(80)とを備える。
これによれば、1つのアンテナに対する複数の給電点の何れを用いるか切り替えることにより、異なる偏波若しくは指向性を得ることが可能になる。よって、ヌルの補完を行うことが可能となり、通信信頼性を向上させることが可能になる。また、1つのアンテナに対する複数の給電点の何れを用いるか切り替えることで、ヌルの補完を可能にするので、用いるアンテナの数を減らすことが可能になる。よって、用いるアンテナの数を減らすことが可能になる分だけ、アンテナの小型化が可能になる。他にも、用いるアンテナの数を減らすことが可能になる分だけ、無給電素子を増やす必要がなくなるので、配線パターンの設計の自由度をより高くすることが可能になる。その結果、通信信頼性を向上させるとともにアンテナを小型化しつつも、配線パターンの設計の自由度をより高くすることが可能になる。
アンテナ装置1の概略的な構成の一例を説明するための平面図である。 アンテナ装置1の概略的な構成の一例を説明するための図である。 実施形態1におけるアンテナ特性のシミュレーション結果を示すスミスチャートの図である。 実施形態1におけるアンテナ特性のシミュレーション結果を示すVSWRの図である。 実施形態1におけるアンテナ特性のシミュレーション結果を示すアンテナ指向性の図である。 アンテナ装置1aの概略的な構成の一例を説明するための平面図である。 実施形態2におけるアンテナ特性のシミュレーション結果を示すアンテナ指向性の図である。 アンテナ装置1bの概略的な構成の一例を説明するための平面図である。 実施形態3におけるアンテナ特性のシミュレーション結果を示すアンテナ指向性の図である。 アンテナ装置1cの概略的な構成の一例を説明するための平面図である。 実施形態4におけるアンテナ特性のシミュレーション結果を示すアンテナ指向性の図である。
図面を参照しながら、開示のための複数の実施形態を説明する。なお、説明の便宜上、複数の実施形態の間において、それまでの説明に用いた図に示した部分と同一の機能を有する部分については、同一の符号を付し、その説明を省略する場合がある。同一の符号を付した部分については、他の実施形態における説明を参照することができる。
(実施形態1)
<アンテナ装置1の概略構成>
以下、本実施形態について図面を用いて説明する。以下では、図1及び図2を用いて、アンテナ装置1の概略的な構成の一例を説明する。図1では、アンテナ装置1の概略的な平面図を示す。図2では、アンテナ装置1が備える構成のうちの図1で省略した構成を説明するための図を示す。
アンテナ装置1は、基板10、グランド(以下、GND)20、アンテナ30、接地線40、給電点50、インピーダンス回路60、RFスイッチ70、及び送受信回路80を備える。アンテナ装置1は、例えば携帯機器に用いられる等すればよい。
基板10は、誘電体によって形成される。基板10は、回路基板である。基板10は、例えばプリント基板である。基板10は、平面形状とすればよい。基板10には、絶縁性を有する基材の面に所定の配線パターンが形成されている。
GND20は、基板10上に設けられる。GND20は、図1に示すように、基板10の表面の一部に設けられる。GND20は、基板10の面方向に拡がるベタパターン(つまり、ベタグランドパターン)とする。GND20は、例えば銅箔等で形成される構成とすればよい。
アンテナ30は、図1に示すように、基板10上に配置される。アンテナ30は、基板10上に印刷又はエッチングによって形成されたパターンアンテナとすればよい。なお、アンテナ30は、チップアンテナであってもよい。以下では、アンテナ30がパターンアンテナである場合を例に挙げて説明を続ける。アンテナ30は、基板10上に複数配置される構成としてもよいが、基板10上に1つ配置される構成が好ましい。これは、アンテナ装置1をより小型化することが可能になるためである。以下では、基板10上にアンテナ30が1つ配置される場合を例に挙げて説明を続ける。
アンテナ30は、図1に示すように、逆F型アンテナを、F形状がお互い鏡像の関係になるように背中合わせに並べて2つ繋げた形状とすればよい。つまり、アンテナ30は、ある軸を対称線として左右対称の形状となっている。図1の例では、アンテナ30の対称線をSlで示している。図1では、アンテナ30は、対称線Slに対して左右対称の形状となっている。
接地線40は、アンテナ30をGND20に接地する線である。接地線40は、パターン線とすればよい。図1の例では、接地線40は、対称線Slに対して左右対称の形状となっている。また、図1の例では、接地線40のGND20に接地する位置が、対称線Slに対して左右のいずれにも偏っていない位置となっている。言い換えると、接地線40が対称線Slの中心を通るように設けている。また、GND20のベタパターンも、対称線Slに対して左右対称の形状となっている。接地線40は、1つのアンテナ30に対して複数であってもよいが、1つであることが好ましい。これは、接地線40の数が少ない方が配線パターンの設計の自由度が高くなるためである。
給電点50は、アンテナ30と給電線とを電気的に接続する点である。給電点50は、1つのアンテナ30に対して複数設けられる。図1の例では、対称線Slに対して左右対称の位置にそれぞれ、給電点50Lと給電点50Rとが設けられる。対称線Slの左側については、給電点50Lから給電点50Lが設けられていないアンテナ30の左側の端部までの長さが、およそ電波の波長λとする。対称線Slの右側については、給電点50Rから給電点50Rが設けられていないアンテナ30の右側の端部までの長さが、およそ電波の波長λとする。図1の例では、1つのアンテナ30に給電点50が2つ設けられる場合を例に示したが、必ずしもこれに限らない。例えば、1つのアンテナ30に給電点50が3つ以上設けられる構成としてもよい。なお、給電点50は、1つのアンテナ30に対して左右対称に設けられることが好ましい。
インピーダンス回路60は、インピーダンス整合(つまり、マッチング)のための、集中定数を用いた回路である。インピーダンス回路60としては、集中定数回路を用いればよい。インピーダンス回路60は、マッチングのために給電点50近傍に設けられる。インピーダンス回路60は、複数の給電点50のそれぞれに対して設けられる。図1の例では、給電点50Lに対してインピーダンス回路60Lが設けられ、給電点50Rに対してインピーダンス回路60Rが設けられる。複数のインピーダンス回路60は、対称線Slに対して左右対称に設けられていることが好ましい。これは、インピーダンス整合を容易にするためである。図1の例では、対称線Slに対して左右対称の位置にそれぞれ、インピーダンス回路60Lとインピーダンス回路60Rとが設けられる。また、複数のインピーダンス回路60は、それらのインピーダンス回路60の定数が対称線Slに対して左右対称になっていることが好ましい。図1の例では、インピーダンス回路60Lとインピーダンス回路60Rとの定数が対称線Slに対して左右対称になっていることが好ましい。これは、インピーダンス整合を容易にするためである。
スイッチ70は、複数の給電点50のうちから用いる給電点50を切り替えるスイッチである。図1の例では、給電点50Lと給電点50Rとのいずれを用いるかを切り替える。スイッチ70としては例えばRFスイッチを用いればよい。スイッチ70は、電子式のRFスイッチとすればよい。スイッチ70は、図2に示すように、各給電点50L,50Rの給電線に接続される構成とすればよい。スイッチ70については、基板10のアンテナ30が配置される側の面(以下、表面)に設けられる構成としてもよいし、その面と逆側の裏面に設けられる構成としてもよい。
送受信回路80は、スイッチ70を制御する。送受信回路80が制御回路に相当する。送受信回路80は、スイッチ70に制御信号を出力することで、スイッチ70を制御すればよい。送受信回路80は、スイッチ70を制御することで、複数の給電点50のうちから用いる給電点50を切り替える。送受信回路80は、スイッチ70を介して給電点50と電気的に接続される。送受信回路80は、信号を無線送信するための変調回路、アンテナ30が受信した電波から信号を復調する復調回路、アンテナ30が受信した電波から受信感度を特定する回路等も備えているものとすればよい。
送受信回路80は、例えば周期的に、複数の給電点50のうちから用いる給電点50を逐次切り替えさせればよい。また、送受信回路80は、複数の給電点50別の受信感度を全て特定し終えた場合には、受信感度の最も高くなる給電点50を用いるようにスイッチ70を切り替えさせればよい。
<アンテナ特性のシミュレーション結果>
続いて、図1,図2で示したアンテナ30のアンテナ特性のシミュレーション結果の一例を、図3~図5を用いて説明する。図3~5の例では、Bluetooth(登録商標)に準拠した通信に用いられる2.4GHzの電波についてのアンテナ特性のシミュレーション結果を示す。図3は、アンテナ30のアンテナ特性のシミュレーション結果を示すスミスチャートの図である。図3の円の水平軸が複素反射係数の実数部、垂直軸が虚数部を表す。図4は、アンテナ30のアンテナ特性のシミュレーション結果を示す電圧定在波比(以下、VSWR)の図である。図4の縦軸がVSWR、横軸が周波数を表す。図5は、アンテナ30のアンテナ特性のシミュレーション結果を示すアンテナ指向性の図である。図3~図5のA,Bは、給電点50L,50Rをそれぞれ用いた場合の例を示している。
図3に示すように、スミスチャートにおいて、A,Bのいずれの例でも、軌跡が中心付近に描かれる。よって、2.4GHz付近でインピーダンス整合できているといえる。また、図4に示すように、VSWRにおいて、A,Bのいずれの例でも、2.4GHz付近でVSWRが小さい値をとる。よって、この点でも、2.4GHz付近でインピーダンス整合できているといえる。さらに、図6に示すように、A,Bのそれぞれの例での指向性がお互いの指向性のヌルを補完できている。よって、アンテナ30の指向性のヌルの補完ができており、1つのアンテナ30でダイバーシティアンテナと同様の役割を十分に果たしている。
<実施形態1のまとめ>
実施形態1の構成によれば、1つのアンテナ30に対する複数の給電点50L,50Rの何れを用いるか切り替えることにより、異なる偏波若しくは指向性を得ることが可能になる。よって、ヌルの補完を行うことが可能となり、通信信頼性を向上させることが可能になる。また、1つのアンテナ30に対する複数の給電点50L,50Rの何れを用いるか切り替えることで、ヌルの補完を可能にするので、用いるアンテナ30の数を減らすことが可能になる。よって、用いるアンテナ30の数を減らすことが可能になる分だけ、アンテナ30の小型化が可能になる。つまり、アンテナ30の設置面積を小型化することが可能になる。他にも、用いるアンテナ30の数を減らすことが可能になる分だけ、無給電素子を増やす必要がなくなるので、配線パターンの設計の自由度をより高くすることが可能になる。その結果、通信信頼性を向上させるとともにアンテナを小型化しつつも、配線パターンの設計の自由度をより高くすることが可能になる。小型でアンテナの設置スペースの限られる携帯機器においては、特にアンテナの小型化が望まれる。よって、実施形態1の構成は、携帯機器に適用することがより好ましい。
なお、実施形態1では、アンテナ装置1にアンテナ30を1つ備える場合を例に挙げて説明したが、アンテナ装置1にアンテナ30を複数備える場合であっても、給電点を1つのアンテナに1つしか設けない構成に比べれば、ヌルの補完をしつつアンテナを小型化することが可能になる。よって、給電点を1つのアンテナに1つしか設けない構成に比べれば、通信信頼性を向上させるとともにアンテナを小型化しつつも、配線パターンの設計の自由度をより高くすることが可能になる。
また、実施形態1に示すアンテナ装置1は、複数の給電点50を持つものの、アンテナ30が給電点50ごとに独立しているわけではない。よって、アンテナ30が給電点50ごとに独立したダイバーシティアンテナと比べて、インピーダンス整合が困難になりやすい。しかしながら、実施形態1の構成では、アンテナ30のパターンの形状,インピーダンス回路60の形状,インピーダンス回路の定数を、アンテナ30の対称線に対して左右対称とするので、インピーダンス整合を容易に行うことが可能になる。その結果、アンテナ30を介して伝達されるエネルギーの伝達損失を低減することが可能になる。
(実施形態2)
実施形態1では、接地線40が、対称線Slに対して左右対称の形状となっている構成を示したが、必ずしもこれに限らない。例えば、以下の実施形態2の構成としてもよい。以下では、実施形態2の一例について図を用いて説明する。
実施形態2のアンテナ装置1aは、基板10、GND20、アンテナ30、接地線40a、給電点50、インピーダンス回路60、RFスイッチ70、及び送受信回路80を備える。実施形態2のアンテナ装置1aは、接地線40の代わりに接地線40aを備える点を除けば、実施形態1のアンテナ装置1と同様である。接地線40aは、図6に示すように、対称線Slに対して左右非対称の形状となっている点を除けば、実施形態1の接地線40と同様である。
実施形態2の構成によれば、接地線40aの形状を対称線Slに対して左右非対称の形状に変形させる程度に応じて、インピーダンス整合及びアンテナ30の指向性の偏りのずれる程度を調整することが可能になる。これにより、さらなるヌルの補完が可能になる。
ここで、実施形態2におけるアンテナ30のアンテナ特性のシミュレーション結果の一例を示す。図7は、実施形態2におけるアンテナ30のアンテナ特性のシミュレーション結果を示すアンテナ指向性の図である。図7のA,Bは、給電点50L,50Rをそれぞれ用いた場合の例を示している。
図7に示すように、実施形態2の構成によれば、A,Bのそれぞれの例での指向性がお互いの指向性のヌルを補完できている。実施形態2の構成によれば、実施形態1の構成に比べて、ヌルの補完を大幅に向上させるものではないものの、アンテナ30の設置面積を変えることなく、インピーダンス整合にほとんど影響を与えない範囲で指向性の偏りをずらすことが可能となる。
(実施形態3)
実施形態1では、接地線40のGND20に接地する位置が、対称線Slに対して左右のいずれにも偏っていない構成を示したが、必ずしもこれに限らない。例えば、以下の実施形態3の構成としてもよい。以下では、実施形態3の一例について図を用いて説明する。
実施形態3のアンテナ装置1bは、基板10、GND20、アンテナ30、接地線40b、給電点50、インピーダンス回路60、RFスイッチ70、及び送受信回路80を備える。実施形態3のアンテナ装置1bは、接地線40の代わりに接地線40bを備える点を除けば、実施形態1のアンテナ装置1と同様である。接地線40bは、GND20に接地する位置が、対称線Slに対して左右いずれかに偏っている。図8の例では、接地線40bのGND20に接地する位置が、対称線Slに対して右側に偏っている。接地線40bは、GND20に接地する位置が対称線Slに対して左右いずれかに偏っている点を除けば、実施形態1の接地線40と同様である。
実施形態3の構成によれば、接地線40bのGND20に接地する位置を対称線Slに対して左右のいずれかに偏らせる程度に応じて、インピーダンス整合及びアンテナ30の指向性の偏りのずれる程度を調整することが可能になる。これにより、さらなるヌルの補完が可能になる。
ここで、実施形態3におけるアンテナ30のアンテナ特性のシミュレーション結果の一例を示す。図9は、実施形態3におけるアンテナ30のアンテナ特性のシミュレーション結果を示すアンテナ指向性の図である。図9のA,Bは、給電点50L,50Rをそれぞれ用いた場合の例を示している。
図9に示すように、実施形態3の構成によれば、A,Bのそれぞれの例での指向性がお互いの指向性のヌルを補完できている。実施形態3の構成によれば、実施形態1の構成に比べて、ヌルの補完を大幅に向上させるものではないものの、アンテナ30の設置面積を変えることなく、インピーダンス整合にほとんど影響を与えない範囲で指向性の偏りをずらすことが可能となる。また、実施形態3の構成によれば、接地線40bのGND20に接地する位置を、対称線Slに対して左右いずれかに1mm程度ずらすことで、実施形態2の構成よりも大きく指向性を偏らせることが可能になる。
(実施形態4)
実施形態1では、GND20のベタパターンが、対称線Slに対して左右対称の形状となっている構成を示したが、必ずしもこれに限らない。例えば、以下の実施形態4の構成としてもよい。以下では、実施形態4の一例について図を用いて説明する。
実施形態4のアンテナ装置1cは、基板10、GND20c、アンテナ30、接地線40、給電点50、インピーダンス回路60、RFスイッチ70、及び送受信回路80を備える。実施形態4のアンテナ装置1cは、GND20の代わりにGND20cを備える点を除けば、実施形態1のアンテナ装置1と同様である。GND20cは、図10に示すように、ベタパターンが対称線Slに対して左右非対称の形状となっている点を除けば、実施形態1のGND20と同様である。
実施形態4の構成によれば、GND20cのベタパターンを対称線Slに対して左右非対称の形状に変形させる程度に応じて、インピーダンス整合及びアンテナ30の指向性の偏りのずれる程度を調整することが可能になる。これにより、さらなるヌルの補完が可能になる。
ここで、実施形態4におけるアンテナ30のアンテナ特性のシミュレーション結果の一例を示す。図11は、実施形態4におけるアンテナ30のアンテナ特性のシミュレーション結果を示すアンテナ指向性の図である。図11のA,Bは、給電点50L,50Rをそれぞれ用いた場合の例を示している。
図11に示すように、実施形態4の構成によれば、A,Bのそれぞれの例での指向性がお互いの指向性のヌルを補完できている。実施形態4の構成によれば、実施形態1の構成に比べて、ヌルの補完を大幅に向上させるものではないものの、アンテナ30の設置面積を変えることなく、インピーダンス整合にほとんど影響を与えない範囲で指向性の偏りをずらすことが可能となる。実施形態4の構成は、実施形態2,3の構成と比較して、インピーダンス整合への影響が小さい。また、実施形態4の構成は、基板10上のアンテナ30以外の回路パターンの都合に応じて採用することが容易である。
なお、本開示は、上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。
1 アンテナ装置、10 基板、20,20c GND(グランド)、30 アンテナ、40,40a,40b 接地線、50,50L,50R 給電点、60,60L,60R インピーダンス回路、70 スイッチ、80 送受信回路(制御回路)

Claims (8)

  1. 誘電体によって形成された基板(10)と、
    前記基板上に配置されたアンテナ(30)と、
    前記基板上に設けられたグランド(20,20c)とを備えるアンテナ装置であって、
    1つの前記アンテナに対して、複数の給電点(50,50L,50R)と、前記グランドに接地する接地線(40,40a,40b)とが設けられ、
    複数の前記給電点のうちから用いる前記給電点を切り替えるスイッチ(70)と、
    前記スイッチの切り替えを制御する制御回路(80)とを備えるアンテナ装置。
  2. 請求項1に記載のアンテナ装置であって、
    前記基板上に配置されたアンテナが1つであるアンテナ装置。
  3. 請求項1又は2に記載のアンテナ装置であって、
    前記アンテナは、ある軸を対称線として左右対称の形状となっているアンテナ装置。
  4. 請求項3に記載のアンテナ装置であって、
    前記接地線(40a)は、前記対称線に対して左右非対称の形状となっているアンテナ装置。
  5. 請求項3又は4に記載のアンテナ装置であって、
    前記接地線(40b)は、前記グランドに接地する位置が、前記対称線に対して左右いずれかに偏っているアンテナ装置。
  6. 請求項3~5のいずれか1項に記載のアンテナ装置であって、
    前記グランド(20c)は、前記対称線に対して左右非対称の形状となっているアンテナ装置。
  7. 請求項3~6のいずれか1項に記載のアンテナ装置であって、
    複数の前記給電点に対してそれぞれインピーダンス回路(60,60L,60R)が設けられており、
    複数の前記インピーダンス回路は、前記対称線に対して左右対称に設けられているアンテナ装置。
  8. 請求項3~7のいずれか1項に記載のアンテナ装置であって、
    複数の前記給電点に対してそれぞれインピーダンス回路(60,60L,60R)が設けられており、
    複数の前記インピーダンス回路は、それらのインピーダンス回路の定数が前記対称線に対して左右対称になっているアンテナ装置。
JP2021050373A 2021-03-24 2021-03-24 アンテナ装置 Pending JP2022148624A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021050373A JP2022148624A (ja) 2021-03-24 2021-03-24 アンテナ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021050373A JP2022148624A (ja) 2021-03-24 2021-03-24 アンテナ装置

Publications (1)

Publication Number Publication Date
JP2022148624A true JP2022148624A (ja) 2022-10-06

Family

ID=83462838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021050373A Pending JP2022148624A (ja) 2021-03-24 2021-03-24 アンテナ装置

Country Status (1)

Country Link
JP (1) JP2022148624A (ja)

Similar Documents

Publication Publication Date Title
CN110970728B (zh) 具有天线模块隔离结构的电子设备
CN107534206B (zh) 无线电子装置
US20210367358A1 (en) Dual-band cross-polarized 5g mm-wave phased array antenna
US9407012B2 (en) Antenna with dual polarization and mountable antenna elements
US6483463B2 (en) Diversity antenna system including two planar inverted F antennas
CN112563728A (zh) 具有连续堆叠的辐射元件的毫米波天线
KR20180105833A (ko) 다이폴 안테나 장치 및 이를 이용한 배열 안테나 장치
KR20160004720A (ko) 무선 통신 기기에서 안테나 장치
JP2009272685A (ja) アンテナ及びそのアンテナを有する通信装置
US10862212B2 (en) Antenna device and wireless communication device
US11936125B2 (en) Antenna module and communication device equipped with the same
US10797408B1 (en) Antenna structure and method for manufacturing the same
JP2017195589A (ja) アンテナおよび当該アンテナを含むアンテナモジュール
KR20190039060A (ko) 안테나 및 이를 구비하는 안테나 모듈
US11888234B2 (en) Zig-zag antenna array and system for polarization control
JP2015171108A (ja) パッチアンテナ
US11769943B2 (en) Antenna device and communication device
JP4127087B2 (ja) アンテナ装置および無線装置
US11837801B2 (en) Antenna module and communication device equipped with the same
JP2022148624A (ja) アンテナ装置
US11588243B2 (en) Antenna module and communication apparatus equipped with the same
CN117096594A (zh) 天线及通信设备
JP3006399B2 (ja) デュアルバンドアンテナ
JP2008244733A (ja) 平面アレーアンテナ装置とそれを備えた無線通信装置
KR101983059B1 (ko) 버튼 장치를 이용한 고이득 광대역 안테나 및 통신 단말기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231211