JP2022137595A - センサ装置 - Google Patents

センサ装置 Download PDF

Info

Publication number
JP2022137595A
JP2022137595A JP2021037142A JP2021037142A JP2022137595A JP 2022137595 A JP2022137595 A JP 2022137595A JP 2021037142 A JP2021037142 A JP 2021037142A JP 2021037142 A JP2021037142 A JP 2021037142A JP 2022137595 A JP2022137595 A JP 2022137595A
Authority
JP
Japan
Prior art keywords
output
pixel
sensor device
pulse
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021037142A
Other languages
English (en)
Inventor
雅樹 榊原
Masaki Sakakibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Group Corp filed Critical Sony Group Corp
Priority to JP2021037142A priority Critical patent/JP2022137595A/ja
Priority to US18/548,591 priority patent/US20240147099A1/en
Priority to CN202280018770.1A priority patent/CN116918344A/zh
Priority to PCT/JP2022/005985 priority patent/WO2022190788A1/ja
Publication of JP2022137595A publication Critical patent/JP2022137595A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • H04N25/773Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/443Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by reading pixels from selected 2D regions of the array, e.g. for windowing or digital zooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/47Image sensors with pixel address output; Event-driven image sensors; Selection of pixels to be read out based on image data

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【課題】人の目の感光特性を模したスパイクカメラを実現する。【解決手段】本技術に係るセンサ装置は、SPAD素子と、SPAD素子によるフォトン受光反応を検出してフォトン受光反応を示すパルスを出力すると共に、パルスの出力に応じて自身の状態をフォトン受光反応の検出可能状態にリセットする検出部と、検出部が出力するパルスの数をカウントするパルス計数部とを備えるものである。【選択図】図2

Description

本技術は、センサ装置に関するものであり、特には、人の目の感光特性を模したスパイクカメラを実現するためのセンシング技術に関する。
例えば、下記非特許文献1,2には、人の目の感光特性を模したスパイク列の信号を演算することで画像を構成する技術が開示されている。人の目においては、受光に応じてスパイクトレイン(スパイク列)と呼ばれる信号が得られる。このスパイクトレインは、受光の強度によってスパイクの間隔が変化する信号として得られるもので、具体的に、受光強度が高い場合はスパイクの間隔が狭まるものとなる。
Lin Zhu,et.al,"Retina-like Visual Image Reconstruction via Spiking Neural Model",CVPR2020 Lin Zhu,et.al,"A retina-inspired sampling method for visual texture reconstruction"In 2019 IEEE International Conference on Multimedia and Expo (ICME),pages 1432?1437,2019.1,2,7
ここで、人の目の感光特性を模したカメラ装置、換言すれば、人の目と同様に受光強度に応じたスパイク列を発生させることで輝度を検出するカメラ装置(以下「スパイクカメラ」と表記する)を実現することを考える。
上記非特許文献1,2では、受光に応じたスパイク列の信号を演算する手法については開示されているものの、それを実現する具体的なハードウエア構成については開示がない。
本技術は上記事情に鑑み為されたものであり、人の目の感光特性を模したスパイクカメラを実現することを目的とする。
本技術に係るセンサ装置は、SPAD素子と、前記SPAD素子によるフォトン受光反応を検出して前記フォトン受光反応を示すパルスを出力すると共に、前記パルスの出力に応じて自身の状態を前記フォトン受光反応の検出可能状態にリセットする検出部と、前記検出部が出力する前記パルスの数をカウントするパルス計数部と、を備えたものである。
検出部が上記のリセットを行う構成とされることで、高照度状態においてもスパイク列を適正に得ることが可能となり、また、上記のパルス計数部により、スパイク列におけるスパイクの数(パルス数)を適切にカウントすることが可能となる。
上記した本技術に係るセンサ装置においては、前記SPAD素子、前記検出部、及び前記パルス計数部を有する画素が二次元に複数配列された構成とすることが可能である。
これにより、二次元の撮像画像を取得可能なスパイクカメラを実現することが可能となる。
上記した本技術に係るセンサ装置においては、前記画素は、自画素における前記検出部による前記フォトン受光反応の検出結果と、少なくとも自画素に隣接する他画素を含む所定数の他画素における前記検出部による前記フォトン受光反応の検出結果とに基づき自画素の出力値を得るための演算を行う演算部を有する構成とすることが可能である。
自画素のみでなく少なくとも隣接する他画素のフォトン受光反応も考慮して自画素の出力値を得るようにすることで、人の目における水平細胞の役割を再現することが可能となる。
上記した本技術に係るセンサ装置においては、前記演算部は、前記自画素における前記検出部と、前記所定数の他画素の前記検出部とが前記フォトン受光反応を検出したことを条件に前記パルス計数部に前記パルスのカウントを実行させる構成とすることが可能である。
上記のように自画素のみでなく隣接他画素を含む近傍所定数の他画素がフォトン受光反応を検出したことを条件に自画素のパルスカウントを実行することで、人の目における水平細胞の役割を再現することが可能となる。
上記した本技術に係るセンサ装置においては、前記演算部は、ANDゲート回路を用いて前記条件の成立有無を判定する構成とすることが可能である。
これにより、デジタル論理回路を用いて適切に条件判定を行うことが可能となる。
上記した本技術に係るセンサ装置においては、前記演算部は、自画素における前記検出部が出力する前記パルスのカウント値に対し、前記所定数の他画素それぞれにおける前記検出部が出力する前記パルスのカウント値を反映させる構成とすることが可能である。
上記のように自画素のパルスカウント値に対し隣接他画素を含む近傍所定数の他画素のパルスカウント値を反映させることで、人の目における水平細胞の役割を再現することが可能となる。
上記した本技術に係るセンサ装置においては、前記所定数の他画素がカーネルにより選択される構成とすることが可能である。
これにより、自画素の出力値に影響させる他画素として何れの画素を用いるかをカーネルにより可変設定することが可能となる。
上記した本技術に係るセンサ装置においては、前記パルス計数部は、前記パルスのカウント数が閾値以上となった場合に信号出力を行う構成とすることが可能である。
これにより、画素の出力値として輝度が一定以上であるか否かを表す値を出力することが可能となる。
上記した本技術に係るセンサ装置においては、前記パルス計数部はデジタルカウンタにより前記パルスの数をカウントする構成とすることが可能である。
これにより、デジタル論理回路を用いてパルスカウントを適切に行うことが可能となる。
上記した本技術に係るセンサ装置においては、前記パルス計数部はアナログカウンタにより前記パルスの数をカウントする構成とすることが可能である。
アナログのカウンタを用いることでパルスの数を簡易な構成によりカウントすることが可能となる。
上記した本技術に係るセンサ装置においては、前記アナログカウンタは、前記検出部による前記パルスの出力に応じて充電量が変化する容量を用いたカウンタとされた構成とすることが可能である。
上記のような容量を用いたカウンタとすることで、簡易な構成によりパルスカウントを実現することが可能となる。
上記した本技術に係るセンサ装置においては、前記画素の出力値の読み出しを画素行ごとに実行させる行制御回路を備えた構成とすることが可能である。
これにより、画素の出力値はスキャン方式により読み出される。
上記した本技術に係るセンサ装置においては、アービタ方式により前記画素の出力値の読み出しを行う構成とすることが可能である。
アービタ方式を採用することで、所定態様によるフォトン受光反応のあった画素の値を迅速に読み出すことが可能となる。
本技術に係る第一実施形態としてのセンサ装置の内部構成例を示したブロック図である。 第一実施形態としてのセンサ装置が有する画素の内部構成の概要を説明するための図である。 スパイクトレインの特性を例示した図である。 第一実施形態としてのセンサ装置が有するスパイク出力部の回路構成を例示した図である。 第一実施形態としてのセンサ装置が有する演算部、計数部、及び出力部の内部構成例を説明するための図である。 第二実施形態の第一例としての画素の構成を説明するための図である。 第二実施形態の第二例としての画素の構成を説明するための図である。 第三実施形態としてのセンサ装置の内部構成例を示したブロック図である。 第三実施形態としてのセンサ装置が有する画素の構成を説明するための図である。 図9に示すAERロジック回路の内部構成例を示した図である。 変形例としてのスパイク出力部の回路構成を例示した図である。 カーネルの例の説明図である。 図11に示すカーネルの係数に基づく演算の例の説明図である。 カーネルによる画素選択をアナログ方式で実現する場合の構成例の説明図である。 アナログカウンタの別例についての説明図である。
以下、実施の形態を次の順序で説明する。

<1.第一実施形態>
(1-1.センサ装置の全体構成)
(1-2.画素の構成概要)
(1-3.スパイク出力部の構成)
(1-4.演算部、計数部、及び出力部の構成)
<2.第二実施形態>
<3.第三実施形態>
<4.変形例>
<5.実施形態のまとめ>
<6.本技術>
<1.第一実施形態>
(1-1.センサ装置の全体構成)
図1は、本技術に係る第一実施形態としてのセンサ装置1の内部構成例を示したブロック図である。
図示のようにセンサ装置1は、画素アレイ部2、行制御回路3、信号処理・出力回路4を備えている。
画素アレイ部2は、複数の画素20が行方向及び列方向の行列状に二次元に配列された構成となっている。ここで、行方向とは、水平方向の画素配列方向を言い、列方向とは、垂直方向の画素配列方向を言う。図中では、行方向を横方向、列方向を縦方向としている。
各画素20は、光電変換を行う光電変換素子(光検出器)を有している。具体的に、本例のセンサ装置1において、各画素20は、光検出器としてSPAD(Single Photon Avalanche Diode)素子(後述するSPAD素子21)を有している。
画素アレイ部2においては、行列状の画素配列に対して、画素行ごとに行制御線WORDが行方向に沿って配線されると共に、各画素列に垂直信号線Liがそれぞれ列方向に沿って配線されている。
行制御線WORDは、画素20から信号を読み出す際の駆動を行うためのワード信号を伝送する。各行制御線WORDの一端は、行制御回路3の各行に対応した出力端に接続されている。
行制御回路3は、例えば各種のタイミング信号を生成するタイミングジェネレータやシフトレジスタ、アドレスデコーダ等を有して構成され、行制御線WORDを通じたワード信号の出力を行うことで画素20を駆動し、画素20からの信号読み出しについての制御を行う。具体的に、本例における行制御回路3は、画素20からの信号読み出しを行順次に実行させる。
垂直信号線Liは、画素20から読み出された信号を信号処理・出力回路4に対して伝送するための配線とされ、各垂直信号線Liの一端は信号処理・出力回路4の各列に対応した出力端に接続されている。
信号処理・出力回路4は、画素20から垂直信号線Liを通じて読み出された信号を取得し、所定の信号処理を施して出力する。
(1-2.画素の構成概要)
図2は、画素20の内部構成の概要を説明するための図である。
図2に示すように画素20は、スパイク出力部20a、演算部24、計数部25、及び出力部26を有している。
スパイク出力部20aは、SPAD素子21を有し、受光強度に応じた間隔でスパイクを出力するように構成されている。
ここで、本実施形態は、人の目の感光特性を模したスパイクカメラの実現を目的とするものである。前述もしたように、人の目においては、受光に応じてスパイクトレイン(スパイク列)と呼ばれる信号が得られる。このスパイクトレインは、受光の強度によってスパイクの間隔が変化する信号として得られるものである。
図3は、スパイクトレインの特性を例示している。
図示のようにスパイクトレインにおいては、受光の強度が高いほどスパイクの間隔が狭まるものとなる。
説明を図2に戻す。
スパイク出力部20aは、SPAD素子21と共に、クエンチ部22と検出部23とを有している。
スパイク出力部20aにおいて、SPAD素子21にフォトンが入射されると、アバランシェ現象が発生し、信号線Vi1における電圧が変化する。クエンチ部22では、電流に応じた電圧降下が発生するため、SPAD素子21の端子間電圧は、降伏電圧まで低下し、アバランシェ現象が停止する。
検出部23は、切替部23a、増幅部23b、及び初期化部23cを有しており、上記のアバランシェ現象としての、SPAD素子21によるフォトン受光反応を検出してフォトン受光反応を示すパルスを出力すると共に、該パルスの出力に応じて自身の状態をフォトン受光反応の検出可能状態にリセットするように構成されている。
切替部23aは、SPAD素子21におけるフォトン受光反応の検出を行う検出動作と、自身の内部状態をリセットするリセット動作との切り替えを行う。
増幅部23bは、SPAD素子21におけるフォトン受光反応が検出された際に切替部23aで得られる検出信号を増幅して、出力電圧Voutとして出力する。この出力電圧Voutは、パルス電圧として出力される。
初期化部23cは、上記のリセット動作時に検出部23内の電圧レベルを変更し、検出部23が再度フォトン受光反応を検出できるようにする。
演算部24は、自画素における検出部23によるフォトン受光反応の検出結果と、少なくとも自画素に隣接する他画素を含む所定数の他画素における検出部23によるフォトン受光反応の検出結果とに基づき自画素の出力値を得るための演算を行う。
具体的に、本例における演算部24は、自画素における検出部23と、上記所定数の他画素の検出部23とがフォトン受光反応を検出したことを条件に計数部25にパルスのカウントを実行させるように構成される。
ここで、自画素のみでなく少なくとも隣接する他画素のフォトン受光反応も考慮して自画素の出力値を得るようにすることで、人の目における水平細胞の役割を再現することが可能となる。
計数部25は、検出部23が出力するパルスの数をカウントする。本例では、上記の演算部24が設けられることで、計数部25は、自画素における検出部23と上記所定数の他画素の検出部23とがフォトン受光反応を検出したことを条件に、自画素における検出部23が出力するパルスをカウントすることになる。
出力部26は、計数部25の出力値を画素20の出力値として出力する。
(1-3.スパイク出力部の構成)
図4は、スパイク出力部20aの回路構成を例示した回路図である。
図中、P-MOSトランジスタによるトランジスタ10は、図2に示したクエンチ部22の一例である。なお、クエンチ部22の構成素子としては、SPAD素子21に対する負荷素子に相当するものが用いられればよく、トランジスタ10の代わりに抵抗器を配置することもできる。
また、スパイク出力部20aにおいて、図示のように検出部23は、トランジスタ11、トランジスタ12、トランジスタ13、及びトランジスタ14と、インバータ15とパルス生成器16とを有する。トランジスタ11とトランジスタ13は、P-MOSトランジスタとされ、トランジスタ12とトランジスタ14はN-MOSトランジスタとされる。
トランジスタ10、トランジスタ11、及びトランジスタ13のソースは、電源電圧Vddに接続されている。一方、トランジスタ10のドレインは、SPAD素子21のカソードに接続されている。また、SPAD素子21のカソードは、信号線Vi1を介してトランジスタ12のソースに接続されている。SPAD素子21のアノードには、電圧Vanが印加されている。SPAD素子21のカソード/アノード間(端子間)に、降伏電圧以上の逆電圧が印加されるよう、電圧Vanの値を決めることができる。トランジスタ12のドレインは、トランジスタ11のドレインとトランジスタ13のゲートに接続されている。信号線Vi2は、トランジスタ11とトランジスタ12のドレイン同士の接続点と、トランジスタ13のゲートとを接続する。
トランジスタ13のドレインは、信号線Vi3を介してインバータ15の入力端子とトランジスタ14のドレインに接続されている。インバータ15の出力端子には、出力電圧Voutの出力ラインが接続されている。また、インバータ15の出力端子は、パルス生成器16の入力端子にも接続されている。さらに、インバータ15の出力端子は、信号線FBを介してトランジスタ11のゲートとトランジスタ12のゲートにも接続されている。一方、トランジスタ14のゲートは、信号線INIを介してパルス生成器16の出力端子に接続されている。トランジスタ14のソースは、グランド(GND)電位に接続されている。グランド電位として、例えば、スパイク出力部20aの基準電位、信号線の基準電位、接地電位を用いることができる。ただし、グランド電位として使われる電位の種類については問わない。なお、図中では、信号線Vi3とグランド電位との間の寄生容量Cpが示されている。
ここで、トランジスタ10、トランジスタ11、及びトランジスタ13のソースは、何れも共通の電源電圧Vddに接続されていてもよい。また、トランジスタ10、トランジスタ11、及びトランジスタ13のうち、少なくとも何れかのソースは、異なる電源電圧に接続されていてもよい。
上記構成によるスパイク出力部20aの動作を説明する。
SPAD素子21がフォトンと反応し、SPAD素子21のカソード/アノード間の電流が増えると、トランジスタ10のソース/ドレイン間における電圧降下に応じて、信号線Vi1の電圧が低下する。このため、信号線Vi1に対しトランジスタ12を介して接続された信号線Vi2の電圧がHIGHからLOWに変化する。トランジスタ13のゲートにLOWの電圧が印加されると、トランジスタ13のソース/ドレイン間がオンとなり、信号線Vi3の電圧が電源電圧VddによってHIGHに引き上げられる。信号線Vi3よりHIGHの信号を入力されたインバータ15は、LOWの信号を出力する。このように本例のスパイク出力部20aでは、フォトン受光反応の検出時に出力電圧VoutとしてLOWレベル(負極性)のパルスが出力される。
このとき、トランジスタ11のゲートとトランジスタ12のゲートにはLOWの電圧が印加される。これに応じ、P-MOSトランジスタによるトランジスタ11のソース/ドレイン間はオンとなり、N-MOSトランジスタによるトランジスタ12のドレイン/ソース間はオフになる。このため、信号線Vi2は、信号線Vi1より電気的に切り離され、電源電圧Vddによって電圧がHIGHに引き上げられる。HIGHの電圧がトランジスタ13のゲートに印加されるため、トランジスタ13のソース/ドレイン間はオフになる。
パルス生成器16は、インバータ15の出力電圧がLOWになると、所定の時間遅れをもって、信号線INIにHIGHレベル(正極性)のパルスを出力する。これにより、トランジスタ14のゲートにHIGHレベルの電圧が印加され、トランジスタ14のドレイン/ソース間がオンになる。このため、信号線Vi3は、グランド電位によって初期化され、LOWの電圧になる。信号線Vi3の電圧がLOWになると、インバータ15の出力電圧はHIGHになる。このため、出力電圧VoutのLOWレベル期間が終了する。すなわち、1回分のパルス出力が終了する。
パルス生成器16にインバータ15よりLOWレベルのパルスが入力されてから、パルス生成器16がHIGHレベルのパルスを生成するまでの時間遅れを調整することによって、出力電圧VoutのLOWレベル期間、すなわちフォトン受光反応を示すパルスの長さを変えることができる。
インバータ15の出力電圧がHIGHになると、トランジスタ11のゲートとトランジスタ12のゲートに、それぞれHIGHの電圧が印加される。このため、トランジスタ11のソース/ドレイン間はオフになり、また、トランジスタ12のドレイン/ソース間はオンになる。信号線Vi1/Vi2間が導通するため、再びフォトン受光反応の検出を行うことが可能となる。
上記の動作説明から理解されるように、スパイク出力部20aでは、フォトン受光反応に応じてパルスが出力されるごとに、回路内の電圧がリセットされる。このため、SPAD素子21に高照度の光が入射される場合、すなわち単位時間あたりのフォトン受光反応回数が増大する場合であっても、検出部23がそれぞれのフォトン受光反応を適切に検出することができる。
上記構成によるスパイク出力部20aによれば、SPAD素子21に入射する光の照度(換言すれば強度)が高くなるほど検出部23が出力するパルスの間隔が狭くなる。すなわち、スパイク出力部20aは、図3に示したスパイクトレインと同様の特性による信号出力を行うことができるように構成されている。
(1-4.演算部、計数部、及び出力部の構成)
図5は、演算部24、計数部25、及び出力部26の内部構成例を説明するための図である。
演算部24は、自画素におけるスパイク出力部20a(検出部23)と、少なくとも自画素に隣接する他画素を含む所定数の他画素におけるスパイク出力部20a(検出部23)とがフォトン受光反応を検出したことを条件に計数部25にパルスのカウントを実行させるための論理回路を有する。
図5では説明上の例として、上記所定数の他画素が三つであり、演算部24にはこれら三つの他画素と自画素の計四つの画素20のスパイク出力部20aによる出力パルスのANDをとるための論理回路として、二つのNORゲート回路24aと一つのANDゲート回路24bとが設けられた場合を示している。この場合、一方のNORゲート回路24aには自画素と何れか一つの他画素のスパイク出力部20aの出力が入力され、他方のNORゲート回路24aには残余の二つの他画素のスパイク出力部20aの出力が入力される。そして、ANDゲート回路24bには、それぞれのNORゲート回路24aの出力が入力される。
上記構成による演算部24では、自画素と上記所定数の他画素の全てでほぼ同時にフォトン受光反応が検出されて、二つのNORゲート回路24aの各入力端子にそれぞれ前述したLOWレベルのパルスが入力された場合に、ANDゲート回路24bの出力がHIGHとなる。
計数部25は、デジタルカウンタ25aと、出力選択部25bとを有する。デジタルカウンタ25aは、本例では少なくとも3以上のDフリップフロップを縦列接続した構成とされる。具体的に、最後段のDフリップフロップを除く各Dフリップフロップは、自身のD端子とQバー端子とが接続され、それらD端子とQバー端子の接続点が次段のDフリップフロップのクロック端子に接続されている。最前段のDフリップフロップのクロック端子には、演算部24におけるANDゲート回路24bの出力が入力される。
これにより、デジタルカウンタ25aは、ANDゲート回路24bの出力がHIGHとなった回数をカウントすることが可能とされる。すなわち、自画素のみでなく上記所定数の他画素が同時にフォトン受光反応を検出した回数をカウント可能なものである。これは、自画素のみでなく上記所定数の他画素が同時にフォトン受光反応を検出したことを条件に、自画素のフォトン受光反応の回数がカウントされると換言できる。
デジタルカウンタ25aによるカウント値は、外部からのリセット信号(図中のReset)によりリセット可能とされる。
なお、デジタルカウンタ25aの構成は、上記で例示したものに限定されず、公知の他の構成を採用することができる。
出力選択部25bは、デジタルカウンタ25aによるカウント値が予め定められた値以上となったか否かを判定し、カウント値が予め定められた値以上となったと判定した場合にその旨を示す信号を出力部26に対して出力する。
出力選択部25bには、デジタルカウンタ25aにおける2段目以降の各Dフリップフロップの出力が入力される。出力選択部25bにおいては、何れの段のDフリップフロップの出力を判定基準とするかが定められ、該判定基準とされた段のDフリップフロップの出力がHIGHとなったことに応じて、出力部26に対する信号出力を行う。これは、カウント値が予め定められた閾値(2以上の自然数)以上となったら、その旨を示す信号を出力部26に出力するものと換言できる。
出力部26は、出力選択部25bの出力信号を行制御線WORDを介したワード信号の入力に応じて垂直信号線Liに出力する。具体的に、本例の出力部26は、出力選択部25bによる出力信号がゲートに供給されるN-MOSトランジスタによるトランジスタ26aと、ゲートが行制御線WORDに接続されたN-MOSトランジスタによるトランジスタ26bとを有し、これらトランジスタ26aとトランジスタ26bの直列接続回路が垂直信号線Liとグランド電位間に挿入されている。
行制御線WORDを介してトランジスタ26bのゲートにワード信号が入力されることで、出力選択部25bによる出力信号がトランジスタ26a及び26bを介して垂直信号線Liに出力される。
これにより、1フレーム期間内でデジタルカウンタ25aのカウント値が所定閾値以上となれば、その旨を示す信号が画素20の出力信号として垂直信号線Liを介して読み出される。
なお、デジタルカウンタ25aにおけるカウント値のリセットタイミングは、上記ワード信号の供給に応じて自画素の出力値が読み出されたタイミングとすることが考えられる。或いは、出力選択部25bの出力がHIGHとなったタイミング(つまりカウント値が所定閾値以上となったタイミング)とすることも考えられる。
ここで、上記では出力選択部25bを設けてデジタルカウンタ25aのカウント値が所定閾値以上となったことを示す信号を画素20の出力信号とする例としたが、出力選択部25bを設けずにデジタルカウンタ25aのカウント値を示す信号を画素20の出力信号とする構成を採ることもできる。
<2.第二実施形態>
続いて、第二実施形態について説明する。第二実施形態は、フォトン受光反応が検出されたことを示すパルスのカウントにアナログカウンタを用いるものである。
なお、以下の説明において、既に説明済みとなった部分と同様となる部分については同一符号を付して説明を省略する。
図6は、第二実施形態の第一例としての画素20Aの構成を説明するための図である。
画素20Aは、画素20と比較して、計数部25に代えて計数部25Aが設けられた点が異なる。計数部25Aは、デジタルカウンタ25aに代えてアナログカウンタ25aAが、出力選択部25bに代えてコンパレータ25bAが設けられた点が異なる。
アナログカウンタ25aAは、第一キャパシタC1、第一スイッチSW1、及び第二スイッチSW2を備えて構成されるディスチャージ部DSと、リセットトランジスタTrs、第二キャパシタC2、及びオペアンプOPとを有している。
ディスチャージ部DSにおいて、第一スイッチSW1は、第一キャパシタC1の一端を電源電圧Vddに接続する状態と接地させる状態とを切り替え可能に構成されている。第二スイッチSW2は、第一キャパシタC1の他端を接地させる状態と第二キャパシタC2の一端に接続する状態とを切り替え可能に構成されている。
第一スイッチSW1、及び第二スイッチSW2に対しては、演算部24の出力信号が切り替え制御信号として供給される。具体的に、第一スイッチSW1は、演算部24の出力信号がHIGHであれば第一キャパシタC1の一端を電源電圧Vddに接続し、該出力信号がLOWであれば第一キャパシタC1の一端を接地させるように動作する。また、第二スイッチSW2は、演算部24の出力信号がHIGHであれば第一キャパシタC1の他端を接地させ、該出力信号がLOWであれば第一キャパシタC1の他端を第二キャパシタC2の一端に接続させるように動作する。
第二キャパシタC2の一端は、オペアンプOPの反転入力端子と接続され、第二キャパシタC2の他端はオペアンプOPの出力端子と接続されている。オペアンプOPの非反転入力端子には基準電圧VREFが入力されている。
リセットトランジスタTrsは、本例ではP-MOSトランジスタが用いられており、第二キャパシタC2に対して並列接続されている。リセットトランジスタTrsのゲートはリセット信号xRSTの供給ラインに接続されている。リセット信号xRSTは、例えば前述したワード信号のように行単位でON/OFFされる信号である。或いは、リセット信号xRSTは、全画素同時にグローバルに制御される信号の場合もある。
上記構成によるアナログカウンタ25aAにおいては、第二キャパシタC2の他端とオペアンプOPの出力端子との接続点にカウント結果を示す出力電圧が得られる。
アナログカウンタ25aAでは、リセット信号xRSTがONとされると、リセットトランジスタTrsのリセット動作により第二キャパシタC2が満充電状態とされる。その後、演算部24の出力がHIGHとなると、上述した第一スイッチSW1、第二スイッチSW2の動作により、第一キャパシタC1に電源電圧Vddに応じた電荷がチャージされる。つまり、第一キャパシタC1には、演算部24からの出力パルス一つ分の電荷がチャージされる。そして、演算部24の出力がHIGHからLOWに転じると、第一キャパシタC1は一端が接地され、他端が第二キャパシタC2の一端と接続された状態となる。
上記の動作により、演算部24からのパルス出力に応じては、第一キャパシタC1に出力パルス一つ分の電荷がチャージされた後、該第一キャパシタC1にチャージされた分の電荷が第二キャパシタC2から引き抜かれる。
この結果、第二キャパシタC2の充電電荷は、演算部24からのパルス出力回数に応じた分だけディスチャージされる。すなわち、第二キャパシタC2の端子間電圧が、パルスの発生回数を示すものとなる。
コンパレータ25bAは、アナログカウンタ25aAの出力電圧が非反転入力端子に、所定の閾値電圧Vthが反転入力端子にそれぞれ入力され、アナログカウンタ25aAの出力電圧が閾値電圧Vth以上となったことに応じて出力電圧がHIGHとなる。これにより、前述した出力選択部25bと同様に、パルスの発生回数が所定閾値以上となったことに応じて、その旨を示す信号を出力するように動作する。
図7は、第二実施形態の第二例としての画素20Bの構成を説明するための図である。この第二例は、第一例と同様にパルス数のカウントにアナログカウンタを用いるが、自画素におけるスパイク出力部20aが出力するパルスのカウント値に対し、少なくとも自画素に隣接する他画素を含む所定数の他画素それぞれにおけるスパイク出力部20aが出力するパルスのカウント値を反映させる点が異なる。
画素20Bは、画素20Aと比較して、演算部24と計数部25Aとが省略された代わりに演算・計数部30が設けられた点が異なる。
演算・計数部30は、計数部25Aと同様に第二キャパシタC2、オペアンプOP、第二キャパシタC2、及びコンパレータ25bAを備えると共に、ディスチャージ部DSを複数備えている。
演算・計数部30において、ディスチャージ部DSは、上記した所定数をn(nは2以上の自然数)とすると、自画素用の一つを含め、合計でn+1個が設けられる。各ディスチャージ部DSには、それぞれ対応する一つの画素20Bにおけるスパイク出力部20aの出力電圧Voutが第一スイッチSW1及び第二スイッチSW2の切り替え制御信号として入力される。
この場合、各ディスチャージ部DSの第一スイッチSW1、第二スイッチSW2は、それぞれ対応する出力電圧VoutのHIGH/LOWの変化に対して次のように動作する。すなわち、各第一スイッチSW1は、対応する出力電圧VoutがLOW(つまりフォトン受光反応検出)であれば、第一キャパシタC1の一端を電源電圧Vddに接続し、出力電圧VoutがHIGHであれば第一キャパシタC1の一端を接地させるように動作する。また、各第二スイッチSW2は、対応する出力電圧VoutがLOWであれば第一キャパシタC1の他端を接地させ、出力電圧VoutがHIGHであれば第一キャパシタC1の他端を第二キャパシタC2の一端に接続させるように動作する。
上記のような構成により、この場合の第二キャパシタC2の充電電荷は、フォトン受光反応が検出された画素20Bのディスチャージ部DSによりそれぞれディスチャージされていく。すなわち、演算・計数部30では、自画素におけるスパイク出力部20aが出力するパルスのカウント値に対し、n個の他画素それぞれにおけるスパイク出力部20aが出力するパルスのカウント値が反映されるものとなる。
このように自画素のパルスカウント値に対し隣接他画素を含む近傍所定数の他画素のパルスカウント値を反映させることで、人の目における水平細胞の役割を再現することが可能となる。
なお、上記ではアナログカウンタの後段にコンパレータ25bAを設ける例を挙げたが、コンパレータ25bAを設けずにアナログカウンタによるカウント値を示す信号を出力部26に対して出力する構成とすることもできる。
<3.第三実施形態>
第三実施形態は、アービタ方式により画素の出力値の読み出しを行うものである。
図8は、第三実施形態としてのセンサ装置1Cの内部構成例を示したブロック図である。
図示のようにセンサ装置1Cは、画素アレイ部2Cと、アービタを構成するxアービタ5x及びyアービタ5yと、出力部6とを備えている。画素アレイ部2Cは、画素20に代えて画素20Cを備える点が画素アレイ部2と異なる。各画素20Cは、xアービタ5xに対する読み出しリクエストとしてのx方向(行方向)のリクエストReqxを出力可能とされると共に、xアービタ5xからの肯定応答としての肯定応答Ackxを受信可能に構成されている。さらに各画素20Cは、yアービタ5yに対する読み出しリクエストとしてのy方向(列方向)のリクエストReqyを出力可能とされると共に、yアービタ5yからの肯定応答としてのy方向の肯定応答Ackyを受信可能に構成されている。
xアービタ5x、yアービタ5yの少なくとも何れかには、読み出しリクエストを行った画素20Cを特定するためのアドレス情報(ADDRESS)を生成するためのアドレスデコーダが設けられる。図中では、xアービタ5xがアドレスデコーダを有する場合を例示しているが、yアービタ5yにアドレスデコーダが設けられてもよい。
出力部6は、xアービタ5xが画素20CからのリクエストReqxに応じて行うリクエストであるリクエストAReqx、及びyアービタ5yが画素20CからのリクエストReqyに応じて行うリクエストAReqyを受信可能とされると共に、xアービタ5xに対する肯定応答AAckxとyアービタ5yに対する肯定応答AAckyとを送信可能とされている。
出力部6は、xアービタ5x、yアービタ5yとの間でそれぞれ上記のリクエストAReqxや肯定応答AAckx、リクエストAReqyや肯定応答AAckyのやりとりを行って、センサ装置1Cの外部装置(外部チップ)に対し、読み出しリクエストを行った画素20Cのアドレス情報(ADDRESS)を出力する。このアドレス情報の出力において、出力部6は、上記外部装置に対するリクエストCHIPReqの送信や、上記外部装置からの肯定応答CHIPAckの受信を行う。
なお、本例の場合、上記のxアービタ5x、yアービタ5y、及び出力部6が行う具体的な処理は、下記参考文献1に記載のものと同様である。
但し、これらxアービタ5x、yアービタ5y、及び出力部6の具体的な処理は参考文献1に記載のものに限らず、少なくとも画素20Cからの読み出しリクエストを調停し、読み出しリクエストを行った画素20Cのアドレス情報を出力するものであればよい。
なお、アービタ方式において、読み出しリクエストを行った画素20Cのアドレス情報のみでなく該リクエストが行われた時刻(換言すれば、イベントの発生時刻)を示すタイムスタンプを扱う構成を採ることもできる。
・参考文献1:Event-Based Neuromorphic Systems, Shih-Chi Liu et,al., ISBN-13 : 978-0470018491
図9は、画素20Cの構成を説明するための図である。
画素20Cは、図6に示した画素20Aと比較して、出力部26に代えてAER(Address Event Representation)ロジック回路27が設けられる点が異なる。
AERロジック回路27は、計数部25Aにおけるコンパレータ25bAの出力信号を入力し、該出力信号がHIGHとなったことに応じてリクエストReqx、リクエストReqyをそれぞれxアービタ5x、yアービタ5yに対して出力する。これは、自画素及び所定数の他画素におけるフォトン受光反応検出回数が所定閾値以上となったことを示す信号をイベント信号として入力し、該イベント信号の入力に応じてxアービタ5x、yアービタ5yにリクエストを行うものであると換言できる。
また、AERロジック回路27は、リクエストReqx及びReqyに応じてxアービタ5x、yアービタ5yから肯定応答Ackx及びAckyを受信したことに応じて、リセット信号xrstを計数部25AのリセットトランジスタTrsのゲートに出力する。これにより、この場合の計数部25Aでは、イベントの読み出しごとにアナログカウンタ25aAのカウント値がリセットされ、新たなイベントを検出可能な状態となる。
ここで、図9では、コンパレータ25bAの出力信号(出力電圧)を「Vco」と表記している。
図10は、AERロジック回路27の内部構成例を示した図である。
図示のように本例では、AERロジック回路27として一般的なAERロジックの構成を採用している。本例では、図10の左側に示す構成により、イベントの発生(出力電圧VcoがHIGH)に応じて、yアービタ5yに対するリクエストReqyが出力され、その後、yアービタ5yからの肯定応答Ackyに応じてxアービタ5xに対するリクエストReqxが行われるものとなる。また、図10の右側の構成により、yアービタ5yからの肯定応答Ackyとxアービタ5xからの肯定応答Ackxとを受信したことに応じて、リセット信号xrstが出力される。
なお、図9では計数部25Aを用いる場合に対応した構成例を示したが、アービタ方式は演算・計数部30(図7)を用いる場合やデジタルカウンタ25aを有する計数部25(図5)を用いる場合にも適用できる。例えば、演算・計数部30を用いる場合には、出力部26に代えてAERロジック回路27を設け、AERロジック回路27からのリセット信号xrstがリセットトランジスタTrsのゲートに出力されるように構成すればよい。また、計数部25を用いる場合には、出力部26に代えてAERロジック回路27を設ける。この場合のAERロジック回路27は、計数部25における出力選択部25bによる出力信号がHIGHとなったことに応じてリクエストReqx、Reqyをxアービタ5x、yアービタ5yにそれぞれ出力するように構成する。
<4.変形例>
ここで、実施形態としては上記に例示した具体例に限定されるものではなく、多様な変形例としての構成を採り得る。
例えば、スパイク出力部20aについては、図11に例示するようなスパイク出力部20aDに置き換えることも可能である。このスパイク出力部20aDは、スパイク出力部20aと比較してトランジスタの数が削減されたものとなる。
スパイク出力部20aDは、SPAD素子21と、抵抗器R1と、トランジスタ10と、トランジスタ40と、トランジスタ41と、トランジスタ42と、トランジスタ43と、インバータ15と、パルス生成器16Dとを備えている。パルス生成器16Dは、内部の構成要素として、遅延器D3と、NANDゲート回路NPとを備えている。トランジスタ10、トランジスタ40、トランジスタ41、及びトランジスタ42は、P-MOSトランジスタとされる。一方、トランジスタ43はN-MOSトランジスタとされる。
トランジスタ10は、スパイク出力部20aの場合と同様、SPAD素子21の負荷素子に相当するものである。
トランジスタ10及びトランジスタ41のソースは、電源電圧Vddに接続されている。トランジスタ10のドレインは、信号線Vi1を介してトランジスタ42のゲートに接続されている。また、トランジスタ10のドレインは、トランジスタ40のソースにも接続されている。トランジスタ40のドレインとSPAD素子21のカソードとの間には抵抗器R1が接続されている。SPAD素子21のアノードには、電圧Vanが印加されている。
トランジスタ42のソースは、トランジスタ41のドレインに接続されている。一方、トランジスタ42のドレインは、信号線Vi3を介してインバータ15に接続されている。また、トランジスタ42のドレインは、トランジスタ43のドレインにも接続されている。トランジスタ43のソースはグランド電位に接続されている。トランジスタ43のゲートは、NANDゲート回路NPの出力端子及びトランジスタ41のゲートに接続されている。インバータ15の出力端子は、出力電圧Voutの出力ラインに接続されている。遅延器D3は、出力電圧Voutの出力ラインと、NANDゲート回路NPの一方の入力端子との間に接続されている。NANDゲート回路NPの他方の入力端子は、端子xRSTに接続されている。
上記構成によるスパイク出力部20aDの動作を説明する。
SPAD素子21がフォトンと反応すると、カソード/アノード間の電流が増加し、トランジスタ10のソース/ドレイン間の電圧降下により信号線Vi1の電圧がLOWになる。このため、トランジスタ42のゲートにLOWの電圧が印加され、トランジスタ42のソース/ドレイン間はオンとなる。これに伴い、トランジスタ41のソース/ドレイン間に流れる電流が増加する。このため、Id-Vgs特性によってトランジスタ41のゲート/ソース間電圧が大きくなる。
すなわち、トランジスタ42のソース/ドレイン間がオンになるのとほぼ同時に、トランジスタ41のゲート/ソース間もオンとなる。トランジスタ41と、トランジスタ42の双方がオンになるため、信号線Vi3の電圧が電源電圧VddによりHIGHに引き上げられる。インバータ15は、HIGHの電圧を入力されると、出力電圧VoutとしてLOWの電圧を出力する。このように、スパイク出力部20aDでは、フォトン受光反応の検出時に出力電圧VoutとしてLOWレベル(負極性)のパルスを出力する。なお、フォトン受光反応の検出時に出力するパルスの極性については特に限定されるものではない。
出力電圧VoutがLOWになると、これに遅れてNANDゲート回路NPの一方の入力端子の電圧もLOWになる。このため、NANDゲート回路NPは、信号線INIにHIGHの電圧を出力する。トランジスタ43のゲートにHIGHの電圧が印加され、トランジスタ43のドレイン/ソース間がオンになる。また、トランジスタ41もドレイン/ソース間がオフとなり、電源からグランドへの貫通電流が抑制される。従って、信号線Vi3の電圧は、グランド電位によって初期化され、LOWになる。信号線Vi3の電圧がLOWになると、インバータ15は出力電圧VoutとしてHIGHの電圧を出力する。このため、スパイク出力部20aDはLOWレベルのパルスの出力を終了する。
なお、スパイク出力部20aDにおいて、トランジスタ40又は抵抗器R1の少なくとも何れかを省略する構成とすることも可能である。
ここで、これまでの説明では、自画素の出力値として、自画素におけるフォトン受光反応の検出結果と、少なくとも自画素に隣接する他画素を含む所定数の他画素におけるフォトン受光反応の検出結果とに基づく値を得る場合において、上記所定数の他画素が固定とされる前提としたが、これら所定数の他画素を可変とすることもできる。例えば、上記所定数の他画素がカーネルKnにより選択されるようにすることが可能である。
例えば、カーネルKnとして、図12の左側に示すような3×3=9画素のカーネルKnを想定する。ここで、カーネルKnについて、各画素の位置を(i,j)座標で定義する。例えば、最も左側に位置する画素列のiの値を「0」とし、そこから右方向にずれるに従ってiの値が大きくなるものとする。また、jの値については、最も上側に位置する画素行のjの値を「0」としそこから下方向にずれるに従ってjの値が大きくなるものとする。
このカーネルKnについて、例えば図中の右側に示すように画素位置ごとの係数が設定されたとする。カーネルKnにおいて、処理対象の画素は、中心に位置する(i,j)=(1,1)の画素である。図12に例示する係数の設定によれば、処理対象の画素のフォトン受光反応検出結果と、処理対象の画素の左上、右下にそれぞれ隣接する画素のフォトン受光反応検出結果とを用いて処理対象の画素の出力値を得ることを意味する。この場合、係数=0は、該当する位置の画素のフォトン受光反応検出結果を使用しないことを意味する。
図13に示すように、図12で例示したカーネルKnの係数に従って該当する画素の論理積(AND)をとるとすると、それら該当する画素で時間的にほぼ同時に反応(発火、イベントの発生)があった場合にのみ、対象の画素の出力が得られるようになる。
なお、上記のようなカーネルKnの設定はハードワイヤではなくプログラマブルに実現することが望ましい。例えば、各画素の検出結果について有効/無効を切り替えるイネーブル回路を設けることで容易に実現可能である。
また、他の実現方式として、アナログ方式を挙げることができる。このアナログ方式について、図14を参照して説明する。
図14に示すように、アナログ方式の場合、(i,j)=(0,0)から(2,2)までの各画素の出力を受け電流源を共通のノードへ接続するN-MOS、P-MOSのトランジスタと、電流の絶対値により決まる電流源と電流を蓄積する容量と、初期電圧(電荷)やリーク電流としてオフセットを規定する電流源と比較器とを設ける。カーネルKnの係数は電流源の絶対値で規定される。カーネルKnの係数が正であれば、P-MOS側のトランジスタがオンして、その電流源(|Aij|)からの電流を共通ノードへと流す。
カーネルKnの係数がゼロであれば、P-MOS、N-MOSの何れのトランジスタもオンせず、電流はゼロである。カーネルKnの係数が負であった場合は、N-MOS側のトランジスタがオンして共通ノードからある係数(|Aij|)で電流を引き抜く。最終的な電流値は、所定の閾値電圧Vthと比較され、閾値を超えたか否かで対象の画素の出力を行う。
なお、アナログカウンタの構成は、先の図6や図7で例示した構成に限定されない。
図15は、アナログカウンタの別例についての説明図である。
ここでは、スパイク列を出力するための構成としてスパイク出力部20aDを用いる場合を例示しているが、スパイク出力部20a等の他の構成を用いるようにしてもよい。
インバータ15からの出力電圧Voutを入力する第一NORゲート回路と、出力電圧Voutを遅延器D3で遅延して得られる遅延後出力電圧Voutdを入力する第二NORゲート回路とを設け、図示のように第一NORゲート回路の出力を第二NORゲート回路に入力すると共に、第二NORゲート回路の出力を第一NORゲート回路に入力する。
スパイク出力部20aDがパルスを出力した際には、第一NORゲート回路の出力電圧Vi5にパルスが発生し、後段のキャパシタCdeltaの電荷をディスチャージする。パルスの発生後は、第二NORゲート回路の出力電圧Vi5’で制御されるトランジスタが接続されたオペアンプの出力へ接続され、電圧VdeltaでキャパシタCdeltaがチャージされる。この動作を繰り返すことで、図中のRSTにより初期化されたキャパシタCoutの電荷から何回引き抜いたかによってアナログ電圧が変動し、例えばN回の引き抜き動作によって「Vdd-N*Cdelta*Vdelta」の電圧に出力電圧Vout’が制御される。
なお、図15で例示した構成の他にも、演算の有効無効の制御や、容量の比率を可変にしたりするなどの機構も考えられる。後段のアナログ演算は、図7等の構成を用いてもよいし、一旦外部へアナログ信号を出力し、A/D変換器で変換した後に演算を行ってもよい。
<5.実施形態のまとめ>
上記のように実施形態のセンサ装置(同1、1C)は、SPAD素子(同21)と、SPAD素子によるフォトン受光反応を検出してフォトン受光反応を示すパルスを出力すると共に、パルスの出力に応じて自身の状態をフォトン受光反応の検出可能状態にリセットする検出部(同23)と、検出部が出力するパルスの数をカウントするパルス計数部(計数部25、25A、演算・計数部30)と、を備えたものである。
検出部が上記のリセットを行う構成とされることで、高照度状態においてもスパイク列を適正に得ることが可能となり、また、上記のパルス計数部により、スパイク列におけるスパイクの数(パルス数)を適切にカウントすることが可能となる。
従って、人の目の感光特性を模したスパイクカメラを実現することができる。
また、実施形態のセンサ装置においては、SPAD素子、検出部、及びパルス計数部を有する画素が二次元に複数配列されている。
これにより、二次元の撮像画像を取得可能なスパイクカメラを実現することができる。
さらに、実施形態のセンサ装置においては、画素は、自画素における検出部によるフォトン受光反応の検出結果と、少なくとも自画素に隣接する他画素を含む所定数の他画素における検出部によるフォトン受光反応の検出結果とに基づき自画素の出力値を得るための演算を行う演算部(同24、演算・計数部30)を有している(図5,6,7,14参照)。
自画素のみでなく少なくとも隣接する他画素のフォトン受光反応も考慮して自画素の出力値を得るようにすることで、人の目における水平細胞の役割を再現することが可能となる。
従って、人の目の感光特性について再現性の向上を図ることができる。
さらにまた、実施形態のセンサ装置においては、演算部(同24)は、自画素における検出部と、所定数の他画素の検出部とがフォトン受光反応を検出したことを条件にパルス計数部にパルスのカウントを実行させている(図5,6等参照)。
上記のように自画素のみでなく隣接他画素を含む近傍所定数の他画素がフォトン受光反応を検出したことを条件に自画素のパルスカウントを実行することで、人の目における水平細胞の役割を再現することが可能となる。
従って、人の目の感光特性について再現性の向上を図ることができる。
また、実施形態のセンサ装置においては、演算部は、ANDゲート回路を用いて条件の成立有無を判定している。
これにより、デジタル論理回路を用いて適切に条件判定を行うことができる。
さらに、実施形態のセンサ装置においては、演算部(演算・計数部30)は、自画素における検出部が出力するパルスのカウント値に対し、所定数の他画素それぞれにおける検出部が出力するパルスのカウント値を反映させている(図7,14等参照)。
上記のように自画素のパルスカウント値に対し隣接他画素を含む近傍所定数の他画素のパルスカウント値を反映させることで、人の目における水平細胞の役割を再現することが可能となる。
従って、人の目の感光特性について再現性の向上を図ることができる。
さらにまた、実施形態のセンサ装置においては、所定数の他画素がカーネルにより選択される(図12から図14参照)。
これにより、自画素の出力値に影響させる他画素として何れの画素を用いるかをカーネルにより可変設定することができる。
また、実施形態のセンサ装置においては、パルス計数部(計数部25、25A、演算・計数部30)は、パルスのカウント数が閾値以上となった場合に信号出力を行っている(図5,6,7,14,15等参照)。
これにより、画素の出力値として輝度が一定以上であるか否かを表す値を出力することができる。
さらに、実施形態のセンサ装置においては、パルス計数部はデジタルカウンタによりパルスの数をカウントしている。
これにより、デジタル論理回路を用いてパルスカウントを適切に行うことができる。
さらにまた、実施形態のセンサ装置においては、パルス計数部はアナログカウンタによりパルスの数をカウントしている。
アナログのカウンタを用いることでパルスの数を簡易な構成によりカウントすることができる。
また、実施形態のセンサ装置においては、アナログカウンタは、検出部によるパルスの出力に応じて充電量が変化する容量(第二キャパシタC2)を用いたカウンタとされている。
上記のような容量を用いたカウンタとすることで、簡易な構成によりパルスカウントを実現することができる。
さらに、実施形態のセンサ装置(同1)においては、画素の出力値の読み出しを画素行ごとに実行させる行制御回路(同3)を備えている。
これにより、画素の出力値はスキャン方式により読み出される。
スキャン方式により画素値を読み出すための既存の回路構成を流用することができるため、センサ装置のコスト削減を図ることができる。
さらにまた、実施形態のセンサ装置(同1C)においては、アービタ方式により画素の出力値の読み出しを行っている。
アービタ方式を採用することで、所定態様によるフォトン受光反応のあった画素の値を迅速に読み出すことができる。
なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
<6.本技術>
なお本技術は以下のような構成も採ることができる。
(1)
SPAD素子と、
前記SPAD素子によるフォトン受光反応を検出して前記フォトン受光反応を示すパルスを出力すると共に、前記パルスの出力に応じて自身の状態を前記フォトン受光反応の検出可能状態にリセットする検出部と、
前記検出部が出力する前記パルスの数をカウントするパルス計数部と、を備えた
センサ装置。
(2)
前記SPAD素子、前記検出部、及び前記パルス計数部を有する画素が二次元に複数配列された
前記(1)に記載のセンサ装置。
(3)
前記画素は、自画素における前記検出部による前記フォトン受光反応の検出結果と、少なくとも自画素に隣接する他画素を含む所定数の他画素における前記検出部による前記フォトン受光反応の検出結果とに基づき自画素の出力値を得るための演算を行う演算部を有する
前記(2)に記載のセンサ装置。
(4)
前記演算部は、前記自画素における前記検出部と、前記所定数の他画素の前記検出部とが前記フォトン受光反応を検出したことを条件に前記パルス計数部に前記パルスのカウントを実行させる
前記(3)に記載のセンサ装置。
(5)
前記演算部は、ANDゲート回路を用いて前記条件の成立有無を判定する
前記(4)に記載のセンサ装置。
(6)
前記演算部は、自画素における前記検出部が出力する前記パルスのカウント値に対し、前記所定数の他画素それぞれにおける前記検出部が出力する前記パルスのカウント値を反映させる
前記(3)に記載のセンサ装置。
(7)
前記所定数の他画素がカーネルにより選択される
前記(3)から(6)の何れかに記載のセンサ装置。
(8)
前記パルス計数部は、前記パルスのカウント数が閾値以上となった場合に信号出力を行う
前記(1)から(7)の何れかに記載のセンサ装置。
(9)
前記パルス計数部はデジタルカウンタにより前記パルスの数をカウントする
前記(1)から(8)の何れかに記載のセンサ装置。
(10)
前記パルス計数部はアナログカウンタにより前記パルスの数をカウントする
請求項1に記載のセンサ装置。
(11)
前記アナログカウンタは、前記検出部による前記パルスの出力に応じて充電量が変化する容量を用いたカウンタとされた
前記(10)に記載のセンサ装置。
(12)
前記画素の出力値の読み出しを画素行ごとに実行させる行制御回路を備えた
前記(2)から(11)の何れかに記載のセンサ装置。
(13)
アービタ方式により前記画素の出力値の読み出しを行う
前記(2)から(11)の何れかに記載のセンサ装置。
1,1C センサ装置
2、2C 画素アレイ部
3 行制御回路
4 信号処理・出力回路
5x xアービタ
5y yアービタ
6 出力部
20,20A,20B,20C 画素
20a,20aD スパイク出力部
21 SPAD素子
22 クエンチ部
23 検出部
24 演算部
24a NORゲート回路
24b ANDゲート回路
25,25A 計数部
25a デジタルカウンタ
25aA アナログカウンタ
25b 出力選択部
25bA コンパレータ
26 出力部
26a,26b トランジスタ
27 AERロジック回路
30 演算・計数部
C1 第一キャパシタ
SW1 第一スイッチ
SW2 第二スイッチ
DS ディスチャージ部
C2 第二キャパシタ
OP オペアンプ
Kn カーネル

Claims (13)

  1. SPAD素子と、
    前記SPAD素子によるフォトン受光反応を検出して前記フォトン受光反応を示すパルスを出力すると共に、前記パルスの出力に応じて自身の状態を前記フォトン受光反応の検出可能状態にリセットする検出部と、
    前記検出部が出力する前記パルスの数をカウントするパルス計数部と、を備えた
    センサ装置。
  2. 前記SPAD素子、前記検出部、及び前記パルス計数部を有する画素が二次元に複数配列された
    請求項1に記載のセンサ装置。
  3. 前記画素は、自画素における前記検出部による前記フォトン受光反応の検出結果と、少なくとも自画素に隣接する他画素を含む所定数の他画素における前記検出部による前記フォトン受光反応の検出結果とに基づき自画素の出力値を得るための演算を行う演算部を有する
    請求項2に記載のセンサ装置。
  4. 前記演算部は、前記自画素における前記検出部と、前記所定数の他画素の前記検出部とが前記フォトン受光反応を検出したことを条件に前記パルス計数部に前記パルスのカウントを実行させる
    請求項3に記載のセンサ装置。
  5. 前記演算部は、ANDゲート回路を用いて前記条件の成立有無を判定する
    請求項4に記載のセンサ装置。
  6. 前記演算部は、自画素における前記検出部が出力する前記パルスのカウント値に対し、前記所定数の他画素それぞれにおける前記検出部が出力する前記パルスのカウント値を反映させる
    請求項3に記載のセンサ装置。
  7. 前記所定数の他画素がカーネルにより選択される
    請求項3に記載のセンサ装置。
  8. 前記パルス計数部は、前記パルスのカウント数が閾値以上となった場合に信号出力を行う
    請求項1に記載のセンサ装置。
  9. 前記パルス計数部はデジタルカウンタにより前記パルスの数をカウントする
    請求項1に記載のセンサ装置。
  10. 前記パルス計数部はアナログカウンタにより前記パルスの数をカウントする
    請求項1に記載のセンサ装置。
  11. 前記アナログカウンタは、前記検出部による前記パルスの出力に応じて充電量が変化する容量を用いたカウンタとされた
    請求項10に記載のセンサ装置。
  12. 前記画素の出力値の読み出しを画素行ごとに実行させる行制御回路を備えた
    請求項2に記載のセンサ装置。
  13. アービタ方式により前記画素の出力値の読み出しを行う
    請求項2に記載のセンサ装置。
JP2021037142A 2021-03-09 2021-03-09 センサ装置 Pending JP2022137595A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021037142A JP2022137595A (ja) 2021-03-09 2021-03-09 センサ装置
US18/548,591 US20240147099A1 (en) 2021-03-09 2022-02-15 Sensor device
CN202280018770.1A CN116918344A (zh) 2021-03-09 2022-02-15 传感器装置
PCT/JP2022/005985 WO2022190788A1 (ja) 2021-03-09 2022-02-15 センサ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021037142A JP2022137595A (ja) 2021-03-09 2021-03-09 センサ装置

Publications (1)

Publication Number Publication Date
JP2022137595A true JP2022137595A (ja) 2022-09-22

Family

ID=83227654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021037142A Pending JP2022137595A (ja) 2021-03-09 2021-03-09 センサ装置

Country Status (4)

Country Link
US (1) US20240147099A1 (ja)
JP (1) JP2022137595A (ja)
CN (1) CN116918344A (ja)
WO (1) WO2022190788A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062842A1 (ja) * 2022-09-21 2024-03-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11195866B2 (en) * 2017-06-08 2021-12-07 Semiconductor Energy Laboratory Co., Ltd. Imaging device including photoelectic conversion element and transistor
CN107091688B (zh) * 2017-06-26 2018-06-26 北方电子研究院安徽有限公司 一种宽电流输入范围的门控淬灭电路
JP2019047383A (ja) * 2017-09-04 2019-03-22 ソニーセミコンダクタソリューションズ株式会社 撮像装置、および、固体撮像素子の制御方法
JP2019075440A (ja) * 2017-10-13 2019-05-16 キヤノン株式会社 光検出装置、撮像装置、及び撮像システム
JP2020096347A (ja) * 2018-11-29 2020-06-18 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2020250494A1 (ja) * 2019-06-10 2020-12-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
CN114616443A (zh) * 2019-11-05 2022-06-10 索尼半导体解决方案公司 感测装置和测距设备

Also Published As

Publication number Publication date
WO2022190788A1 (ja) 2022-09-15
CN116918344A (zh) 2023-10-20
US20240147099A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
US10257452B2 (en) Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
CN111033193B (zh) 检测光电传感器中的高强度光
US9197233B2 (en) Low power ADC for high dynamic range integrating pixel arrays
US7489354B2 (en) CMOS active pixel with hard and soft reset
JP2020505855A (ja) 拡張されたダイナミックレンジを備えたイメージングアレイ
KR101509433B1 (ko) 데이터 출력 회로 및 이를 포함하는 씨아이에스
US20140319325A1 (en) Lamp signal generation circuit and cmos image sensor
JP2007281540A (ja) 物理量分布検出装置および撮像装置
US8450673B2 (en) Pixel circuit, imaging integrated circuit, and method for image information acquisition
US9961282B2 (en) Image pickup apparatus and image pickup system
US20170339358A1 (en) Phase delay counting analog-to-digital converter circuitry
JP2011513702A (ja) X線検出器における直接検出現象の抑制
US20090295453A1 (en) Signal reading method, signal reading circuit, and image sensor
WO2022190788A1 (ja) センサ装置
US8779342B2 (en) Compact digital pixel for a focal plane array
JP6108878B2 (ja) 撮像装置、撮像装置の駆動方法、撮像システム、撮像システムの駆動方法
JP2003219278A (ja) 固体撮像装置
JP3578648B2 (ja) 増幅型固体撮像装置およびその駆動方法
JP2006295833A (ja) 固体撮像装置
CN112492237B (zh) 影像传感器及其中的转移电路与转移方法
CN113920915B (zh) 一种光感驱动电路、驱动方法及显示面板
KR20200113817A (ko) 이미지 센서
JP2015115743A (ja) 光電変換装置及び光電変換アレイ
Bharathi et al. PERFORMANCE ANALYSIS OF AN EFFICIENT TIME-TO-THRESHOLD PWM ARCHIECTURE USING CMOS TECHNOLOGY
JP2003289249A (ja) 相関演算回路、a/d変換器、d/a変換器、及び信号処理システム