JP2022118887A - Cold tool steel excellent in surface treatment characteristics and tool - Google Patents

Cold tool steel excellent in surface treatment characteristics and tool Download PDF

Info

Publication number
JP2022118887A
JP2022118887A JP2021015697A JP2021015697A JP2022118887A JP 2022118887 A JP2022118887 A JP 2022118887A JP 2021015697 A JP2021015697 A JP 2021015697A JP 2021015697 A JP2021015697 A JP 2021015697A JP 2022118887 A JP2022118887 A JP 2022118887A
Authority
JP
Japan
Prior art keywords
hardness
less
nitrided layer
layer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021015697A
Other languages
Japanese (ja)
Inventor
孝 細田
Takashi Hosoda
雅人 前田
Masahito Maeda
優 梅岡
Masaru Umeoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2021015697A priority Critical patent/JP2022118887A/en
Publication of JP2022118887A publication Critical patent/JP2022118887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

To provide a cold tool steel excellent in surface treatment characteristics such as toughness and peeling resistance.SOLUTION: A cold tool steel comprises, % by mass, C: 0.7 to 1.0%, Si: 0.3 to 1.0%, Mn: 0.5% or less, Cr: 3.5 to 9.0%, Mo: 1.5 to 6.0%, W: 8.0% or less, V and Nb: 0.2 to 2.0% at V + Nb/2, N: less than 500 ppm, and the balance consisting of Fe and unavoidable impurities, in which a value of formula S (2.0Cr + 14.0Mo + 3.3W + 6.7 (V + Nb/2)) is 35 or more, a value of formula I (70Si-Cr + 63Mo-153V + 23W) is 150 or more, and steel material hardness is 58 HRC or larger in a quenched and tempered state.SELECTED DRAWING: None

Description

本発明は、冷間工具鋼と、この冷間工具鋼を基材に窒化とPVD法(物理気相蒸着法)による表面処理を施した金型及び工具に関する。 The present invention relates to a cold work tool steel, and a die and a tool obtained by subjecting the cold work tool steel to surface treatment by nitriding and PVD (Physical Vapor Deposition).

各種部材の軽量化や生産効率の向上を目的として、被加工材の高硬度化やニアネットシェイプ化が進展している。これに伴って、冷間金型および工具には、さらなる耐久力の向上が求められている。 In order to reduce the weight of various parts and improve production efficiency, work materials are being made to have higher hardness and near-net shape. Along with this, cold-work dies and tools are required to have further improved durability.

冷間工具鋼を基材とする金型にて飛躍的に耐久性を高める手法として、まず工具鋼に窒化を施して表面硬さを高め、さらにその上にPVDにて硬質膜をコーティングさせる方法がある。
この際、窒化層の硬さが低いと、使用中に窒化層が変形しPVD処理膜が早期に剥離し、期待した耐久性が得られなくなる。
一方、窒化層が高硬度の場合も、窒化層内の硬度変化の勾配が急であると、窒化層と基材の工具鋼との境界に負荷が集中して剥離し、PVD処理膜ごと欠落してしまい、期待する耐久性が得らなくなるという問題があった。
As a method for dramatically increasing the durability of molds that use cold work tool steel as a base material, the tool steel is first nitrided to increase its surface hardness, and then a PVD coating is applied on top of that to form a hard film. There is
At this time, if the hardness of the nitrided layer is low, the nitrided layer will be deformed during use and the PVD treated film will peel off early, making it impossible to obtain the expected durability.
On the other hand, even if the nitrided layer has a high hardness, if the gradient of the hardness change in the nitrided layer is steep, the load concentrates on the boundary between the nitrided layer and the tool steel of the base material, resulting in peeling and chipping of the entire PVD-treated film. As a result, there is a problem that the expected durability cannot be obtained.

出願人は、成分元素やその比率、そして結晶粒度を制御することによって、窒化の効果を有効に活用できる窒化処理に適したマトリクスハイス鋼を発明している(特許文献1参照。)。 The applicant has invented a matrix high-speed steel suitable for nitriding treatment in which the effect of nitriding can be effectively utilized by controlling the constituent elements, their ratios, and grain size (see Patent Document 1).

また、所定の成分の鋼を工具に成形し、その表面を窒化処理した後に、PVD法又はCVD法による表面改質で形成した硬質被膜を形成する工具鋼が提案されている(特許文献2参照。)。この提案では硬質膜の密着性向上のためにAlが含有されている。 Further, a tool steel has been proposed in which a steel having a predetermined composition is formed into a tool, the surface of which is nitrided, and then a hard coating is formed by surface modification by PVD or CVD (see Patent Document 2). .). In this proposal, Al is contained in order to improve the adhesion of the hard film.

特許第4738912号公報Japanese Patent No. 4738912 特開平10-298710号公報JP-A-10-298710

もっとも、前述の特許文献1では窒化層内の硬さ勾配までは考慮していない。また特許文献2も、窒化後の表面硬さや窒化深さ、また窒化層内の硬さ勾配については十分な考慮がなされておらず、PVDなどの硬質皮膜の剥離が生じる場合があった。 However, the aforementioned Patent Document 1 does not consider the hardness gradient in the nitride layer. Also, Patent Document 2 does not give sufficient consideration to the surface hardness after nitriding, the depth of nitriding, and the hardness gradient in the nitrided layer, so that peeling of hard coatings such as PVD may occur.

冷間加工用の金型では、PVD処理膜の密着性を向上させるために、母材をプラズマ窒化処理して、母材の表面に化合物層のない窒化層を形成して硬化させたうえで、硬化被膜を付与することが有効と考えられる。
もっとも、窒化層の硬さが低いと、使用中に窒化層が変形し、PVD処理膜が早期に剥離してしまう。一方、窒化層が高硬度であっても、窒化層内硬度変化が急だと、冷間加工時の応力で母材が変形したときに窒化層がその変形に追随できず、窒化層と母材の境界で剥離し、PVD処理膜ごと欠落する場合があった。
In the mold for cold working, in order to improve the adhesion of the PVD-treated film, the base material is plasma-nitrided to form a nitrided layer without a compound layer on the surface of the base material, which is then hardened. , it is considered effective to apply a cured film.
However, if the hardness of the nitride layer is low, the nitride layer deforms during use, and the PVD-treated film peels off early. On the other hand, even if the nitrided layer has high hardness, if the hardness change in the nitrided layer is rapid, the nitrided layer cannot follow the deformation when the base material is deformed by the stress during cold working. In some cases, the material peeled off at the boundary of the material, and the entire PVD-treated film was missing.

そこで、本発明は、工具や金型表面に形成されたPVDによる硬質皮膜と高い密着性を有して被膜の剥離を抑制する冷間工具鋼の提供、及びこの冷間工具鋼を母材に用いて表面にPVDによる硬質皮膜が形成された金型や工具を提供することを目的としている。すなわち、靭性や耐剥離性といった表面処理特性に優れた冷間工具鋼の提供を目的とする。 Therefore, the present invention provides a cold work tool steel that has high adhesion to the PVD hard coating formed on the tool or mold surface and suppresses peeling of the coating, and this cold work tool steel is used as a base material. It is an object of the present invention to provide a mold or a tool having a surface formed with a hard coating by PVD using a hard coating. That is, the object is to provide a cold work tool steel excellent in surface treatment properties such as toughness and peeling resistance.

発明者らは鋭意開発を進めた結果、合金成分範囲、式、硬さ、さらに窒化した場合の表面硬さ、窒化層深さ、窒化層硬度変化を規定することで、PVD処理等にて成膜した硬質膜と高い密着性を有する鋼および金型、工具が得られることを見出した。 As a result of diligent development, the inventors defined the alloy composition range, formula, hardness, surface hardness when nitrided, nitrided layer depth, and nitrided layer hardness change. It was found that a steel, a die and a tool having a hard film and high adhesiveness can be obtained.

すなわち、本発明の課題を解決するための第1の手段は、
質量%で、C:0.7~1.0%、Si:0.3~1.0%、Mn:0.5%以下、Cr:3.5~9.0%、Mo:1.5~6.0%、W:8.0%以下、V及びNb:V+Nb/2で0.2~2.0%、N:500ppm未満、残部Fe及び不可避的不純物からなり、式SのS値が35以上、式IのI値が150以上の鋼を、さらに焼入焼戻しされた状態で鋼材硬さが58HRC以上である、冷間工具鋼。
式S:S=2.0Cr+14.0Mo+3.3W+6.7(V+Nb/2)
式I:I=70Si-Cr+63Mo-153V+23W
但し、式の元素記号には当該成分の%値を代入する。
That is, the first means for solving the problems of the present invention is
% by mass, C: 0.7 to 1.0%, Si: 0.3 to 1.0%, Mn: 0.5% or less, Cr: 3.5 to 9.0%, Mo: 1.5 ~ 6.0%, W: 8.0% or less, V and Nb: 0.2 to 2.0% at V + Nb / 2, N: less than 500 ppm, balance Fe and unavoidable impurities, S value of formula S is 35 or more, the I value of formula I is 150 or more, and the steel hardness in the quenched and tempered state is 58 HRC or more.
Formula S: S=2.0Cr+14.0Mo+3.3W+6.7(V+Nb/2)
Formula I: I=70Si-Cr+63Mo-153V+23W
However, the % value of the component concerned is substituted for the symbol of the element in the formula.

その第2の手段は、第1の手段に記載の冷間工具鋼に、さらに窒化層が表層に形成されたものであって、窒化層の最表面から30μmの深さでの硬さが800HV以上、その窒化層深さが60μm以上、窒化層の最表面から30μm位置と60μm位置とでの硬度変化が75HV以内である、窒化層を備えた冷間工具鋼である。 The second means is the cold work tool steel described in the first means, in which a nitride layer is further formed on the surface layer, and the hardness at a depth of 30 μm from the outermost surface of the nitride layer is 800 HV. As described above, the cold work tool steel provided with a nitrided layer has a nitrided layer depth of 60 μm or more and a hardness change of 75 HV or less between positions 30 μm and 60 μm from the outermost surface of the nitrided layer.

その第3の手段は、第1又は第2の手段の冷間工具鋼を母材として、表層にさらにPVD法で形成された硬質被膜を備える金型である。 The third means is a mold that uses the cold work tool steel of the first or second means as a base material and further has a hard coating formed on the surface layer by a PVD method.

その第4の手段は、第1又は第2の手段の冷間工具鋼を母材として、表層にさらにPVD法で形成された硬質被膜を備える工具である。 The fourth means is a tool comprising the cold work tool steel of the first or second means as a base material and further having a hard coating formed on the surface layer by a PVD method.

本発明の冷間工具鋼を母材とすると、冷間工具鋼としての靭性と硬さといった母材の特性を備え、さらに表層にPVDによる硬質被膜を形成すると、表面硬さが確保され、また表面での急激な硬度変化が抑制されるので、PVD硬質皮膜の剥離や欠落が抑制されることとなる。母材表層に窒化層を形成したうえに、PVD硬質被膜を形成させた金型や工具は、硬質被膜との密着性に優れ、急激な硬度変化も抑制され、剥離や欠落がより抑制されることとなる。すなわち、本発明の冷間工具鋼を母材として表層にPVDの硬質被膜を形成させたものは、シャルピー衝撃試験でシャルピー衝撃値が20J/cm2以上で、スクラッチ試験による剥離臨界荷重も80N以上であるから、靭性、耐剥離性のいずれにも優れるものとなる。 When the cold work tool steel of the present invention is used as a base material, it has the characteristics of the base material such as toughness and hardness as a cold work tool steel, and when a hard coating is formed on the surface layer by PVD, the surface hardness is ensured. Since rapid changes in hardness on the surface are suppressed, peeling and chipping of the PVD hard coating are suppressed. Dies and tools with a nitride layer formed on the surface of the base material and a PVD hard coating have excellent adhesion to the hard coating, suppress rapid changes in hardness, and further suppress peeling and chipping. It will happen. That is, when the cold work tool steel of the present invention is used as a base material and a PVD hard coating is formed on the surface layer, the Charpy impact value in the Charpy impact test is 20 J/cm 2 or more, and the peeling critical load in the scratch test is 80 N or more. Therefore, it is excellent in both toughness and peeling resistance.

本発明を実施するための形態の説明に先立って、本願の手段における鋼の化学成分を規定する理由、式S及び式Iの値を規定する理由、焼入焼戻し後の鋼材硬さ、窒化層の硬さ、窒化層の硬度変化を規定する理由について説明する。
なお、以下の化学成分における%は質量%である。
Prior to the description of the mode for carrying out the present invention, the reasons for specifying the chemical composition of the steel in the means of the present application, the reasons for specifying the values of formula S and formula I, the hardness of the steel material after quenching and tempering, and the nitride layer The reason for specifying the hardness of the nitride layer and the hardness change of the nitride layer will be explained.
In addition, % in the following chemical components is mass %.

C:0.7~1.0%
Cは、鋼中への固溶および炭化物形成にて工具鋼に必要な高硬度を付与させるのに必須の元素である。工具としての硬度を得るためには、少なくともCは0.7%は必要である。もっとも、Cが1.0%を超えると、粗大炭化物を多く形成し易くなり、鋼材自体の靭性と基材と膜との密着性を低下させる。そこで、Cは0.7~1.0%、好ましくは、Cは0.7~0.9%である。
C: 0.7-1.0%
C is an essential element for imparting the necessary high hardness to the tool steel through solid solution and carbide formation in the steel. At least 0.7% of C is required to obtain hardness as a tool. However, if C exceeds 1.0%, a large amount of coarse carbides is likely to be formed, which lowers the toughness of the steel material itself and the adhesion between the substrate and the film. Therefore, C is 0.7-1.0%, preferably C is 0.7-0.9%.

Si:0.3~1.0%
Siは製鋼での脱酸効果、焼入性、固溶強化に寄与する。そのためには少なくともSiは0.3%以上必要である。もっとも、Siが1.0%を超えると靭性が低下する。そこで、Siは0.3~1.0%とする。好ましくは、Siは0.4~1.0%である。
Si: 0.3-1.0%
Si contributes to the deoxidizing effect, hardenability, and solid-solution strengthening in steelmaking. For that purpose, at least 0.3% or more of Si is required. However, when Si exceeds 1.0%, the toughness decreases. Therefore, Si should be 0.3 to 1.0%. Preferably, Si is 0.4-1.0%.

Mn:0.5%以下
Mnは、0.5%を超えると残留オーステナイトの増大や偏析帯の形成を促して靭性、変寸異方性を悪化させる。そこで、Mnは0.5%以下とする。
Mn: 0.5% or less When Mn exceeds 0.5%, it promotes an increase in retained austenite and the formation of segregation bands, thereby deteriorating toughness and dimensional anisotropy. Therefore, Mn should be 0.5% or less.

Cr:3.5~9.0%
Crは、焼入性の向上と焼戻硬さの確保に必要な元素である。もっとも、Crが3.5%未満ではこれらの効果が不十分である。他方、Crが9.0%を超えると、粗大炭化物を多く形成し易くなり、鋼材自体の靭性と基材と膜との密着性を低下させる。そこで、Crは3.5~9.0%とする。好ましくはCrは4.5~8.5%である。
Cr: 3.5-9.0%
Cr is an element necessary for improving hardenability and securing temper hardness. However, if Cr is less than 3.5%, these effects are insufficient. On the other hand, when Cr exceeds 9.0%, a large amount of coarse carbides is likely to be formed, degrading the toughness of the steel material itself and the adhesion between the substrate and the film. Therefore, Cr should be 3.5 to 9.0%. Cr is preferably 4.5 to 8.5%.

Mo:1.5~6.0%
Moは、焼入性改善と、焼戻硬さ向上に寄与する。その効果を得る為にはMoは少なくとも1.5%は必要である。他方、Moが6.0%を超えると、これらの効果は飽和し、過剰添加は粗大炭化物の形成を促して膜との密着性を低下させる。そこでMoは1.5~6.0%とする。好ましくは、Moは1.5~5.0%である。
Mo: 1.5-6.0%
Mo contributes to improvement of hardenability and temper hardness. At least 1.5% of Mo is required to obtain the effect. On the other hand, when Mo exceeds 6.0%, these effects are saturated, and excessive addition promotes the formation of coarse carbides and reduces adhesion to the film. Therefore, Mo is set to 1.5 to 6.0%. Preferably, Mo is 1.5-5.0%.

W:8.0%以下
WはMoと似た効果を持つが、8.0%を超えるとMo同様、逆効果となる。そこで、Wは8.0%以下とする。
W: 8.0% or less W has an effect similar to that of Mo, but if it exceeds 8.0%, it has the opposite effect like Mo. Therefore, W is set to 8.0% or less.

V+Nb/2:0.2~2.0%
V及びNbは、いずれも焼戻し時に微細かつ硬質な析出硬化物を形成し二次硬化に寄与する。それらの効果を得る為には、VとNbの合計量で、少なくともV+Nb/2が0.2%以上であることが必要である。もっとも、V+Nb/2が2.0%を超えると、V及びNbが過剰となって粗大炭化物の形成を促し、膜との密着性の低下を招く。
そこで、V及びNbは、V+Nb/2で0.2~2.0%とする。好ましくはV+Nb/2が0.2~1.8%である。
V+Nb/2: 0.2 to 2.0%
Both V and Nb form fine and hard precipitation hardened substances during tempering and contribute to secondary hardening. In order to obtain these effects, the total amount of V and Nb should be at least V+Nb/2 of 0.2% or more. However, if V+Nb/2 exceeds 2.0%, V and Nb become excessive and promote the formation of coarse carbides, resulting in a decrease in adhesion to the film.
Therefore, V and Nb are set to 0.2 to 2.0% as V+Nb/2. V+Nb/2 is preferably 0.2 to 1.8%.

N:500ppm以下
NはCと似た効果を持つが、500ppmを超えると、硬質で固溶し難い窒化物を形成して鋼材の靭性を著しく低下させる。そこでNは500ppm以下とする。好ましくはNは400ppm以下である。
N: 500 ppm or less N has an effect similar to that of C, but if it exceeds 500 ppm, it forms hard nitrides that are difficult to form a solid solution, and significantly lowers the toughness of the steel material. Therefore, N is set to 500 ppm or less. Preferably N is 400 ppm or less.

S=2.0Cr+14.0Mo+3.3W+6.7(V+Nb/2)≧35
式Sの値Sは、各添加元素の種類と量(式の元素記号には%の値を代入する。)から窒化処理後の表面硬さ予測する指標である。Sの値が大きい程、表面硬さも大きくなる。Sが35より小さいと、表面硬さが不足して密着性が低下する。そこで、Sの値は35以上とする。
S=2.0Cr+14.0Mo+3.3W+6.7(V+Nb/2)≧35
The value S of the formula S is an index for predicting the surface hardness after nitriding from the type and amount of each additive element (substitute the value of % for the symbol of the element in the formula). The higher the value of S, the higher the surface hardness. When S is less than 35, the surface hardness is insufficient and the adhesion is lowered. Therefore, the value of S is set to 35 or more.

I=70Si-1Cr+63Mo-153V+23W≧150
式Iの値Iは、各添加元素の種類と量(式の元素記号には%の値を代入する。)から窒化層内の硬さ分布を予測する指標である。Iの値が大きい程、窒化層内の硬度変化は小さくなる。Iの値が150より小さいと、膜の剥離や欠落が生じやすくなる。そこで、Iの値は150以上とする。
I=70Si-1Cr+63Mo-153V+23W≧150
The value I in Formula I is an index for predicting the hardness distribution in the nitrided layer from the type and amount of each additive element (the value of % is substituted for the symbol of the element in the formula). The higher the value of I, the smaller the hardness variation in the nitrided layer. If the value of I is less than 150, peeling or chipping of the film is likely to occur. Therefore, the value of I is set to 150 or more.

焼入焼戻し後の鋼材硬さ:58HRC以上
焼入焼戻ししたときの硬さが58HRCを下回ると、硬質被膜との密着性が悪化することから、母材の鋼材硬さは、58HRC以上とする。
Steel hardness after quenching and tempering: 58 HRC or more If the hardness after quenching and tempering is less than 58 HRC, the adhesion with the hard coating deteriorates.

母材表層の窒化処理後の表面硬さ:窒化層の最表面から深さ30μmの位置で800HV以上
母材となる本発明の冷間工具鋼を窒化処理したとき、その表面(最表面から深さ30μmの位置)の硬さを800HV以上とすると、PVD硬質皮膜及び母材との密着性が特に向上する。そこで、窒化層の最表面から深さ30μmの位置の表面硬さを800HV以上とする。
なお、窒化処理はプラズマ窒化処理が好適である。以下の説明ではプラズマ窒化処理を例に説明する。
Surface hardness after nitriding treatment of base material surface layer: 800 HV or more at a position 30 μm deep from the outermost surface of the nitrided layer When the cold work tool steel of the present invention, which is the base material, is nitrided, When the hardness at the position of 30 μm in height) is 800 HV or more, the adhesion between the PVD hard coating and the base material is particularly improved. Therefore, the surface hardness of the nitride layer at a depth of 30 μm from the outermost surface is set to 800 HV or more.
Plasma nitriding is suitable for the nitriding. In the following explanation, the plasma nitriding treatment will be explained as an example.

窒化処理後の窒化層の深さ:60μm以上
プラズマ窒化処理で形成される窒化層は、その窒化層深さが60μmより小さくなると、PVD硬質皮膜及び母材との密着性が低下する。このため、窒化層深さは60μm以上とした。
Depth of Nitrided Layer after Nitriding Treatment: 60 μm or More When the depth of the nitrided layer formed by plasma nitriding treatment is less than 60 μm, the adhesion between the PVD hard coating and the base material decreases. Therefore, the depth of the nitride layer is set to 60 μm or more.

窒化層の硬度変化:75HV以内
窒化層の最表面から深さ30μm位置と深さ60μm位置での硬度変化の度合いが75HVより大きくなると、膜直下と内部で硬度差が大きくなっているため剥離を助長してしまい、母材との密着性が低下する。そこで、上記の硬度変化は75HV以下とした。
Nitrided layer hardness change: within 75 HV If the degree of hardness change at a depth of 30 μm and a depth of 60 μm from the top surface of the nitrided layer is greater than 75 HV, peeling will occur due to the large difference in hardness between directly under the film and inside. The adhesion to the base material deteriorates. Therefore, the above hardness change is set to 75 HV or less.

(実施例について)
まず、表1に示す化学成分と残部Feからなる鋼100kgを真空誘導溶解炉にて溶製し、各々鍛伸温度1100~1200℃で角30mmに鍛伸後切断、焼入焼戻し処理を行った。
その後、ロックウェル硬度計にて角材断面中周部の鋼材硬さを測定した。次いで、角材長手方向と平行にシャルピー衝撃試験片(10R-Cノッチ)を作製し、シャルピー衝撃試験にて靭性を評価した。
(About Examples)
First, 100 kg of steel composed of the chemical composition shown in Table 1 and the balance Fe was melted in a vacuum induction melting furnace, and each was forged and stretched to a square of 30 mm at a forging temperature of 1100 to 1200 ° C., cut, and quenched and tempered. .
After that, the hardness of the steel material at the central portion of the cross section of the square bar was measured with a Rockwell hardness tester. Next, a Charpy impact test piece (10R-C notch) was prepared parallel to the longitudinal direction of the square bar, and the toughness was evaluated by the Charpy impact test.

Figure 2022118887000001
Figure 2022118887000001

(評価I)
シャルピー衝撃試験値が20J/cm2以上のものを靭性に優れるとして○、それ未満のものを靭性に劣るとして×と評価した。
(Evaluation I)
A sample with a Charpy impact test value of 20 J/cm 2 or more was evaluated as excellent in toughness, and a sample with a Charpy impact test value of less than 20 J/cm 2 was rated as poor in toughness.

評価Iの後、各鋼材について、焼入焼戻し後の角30mm材から幅25×厚さ7mm×長さ50mm小片を割出し、その表面にプラズマ窒化処理(500℃加熱)を行って窒化膜層を形成した後、さらに窒化膜層の上にPVD処理にてTiAlNを成膜した。 After evaluation I, for each steel material, a 25 mm wide x 7 mm thick x 50 mm long small piece was indexed from the 30 mm square material after quenching and tempering, and plasma nitriding treatment (heating at 500 ° C.) was performed on the surface to form a nitride film layer. was formed, a TiAlN film was further formed on the nitride film layer by PVD processing.

PVD処理後の小片から長さ5mm程度切出し、その切断面にて窒化層深さと窒化層の硬度変化を計測した。 A piece of about 5 mm in length was cut from the small piece after the PVD treatment, and the depth of the nitrided layer and the change in hardness of the nitrided layer were measured on the cut surface.

(窒化層深さの測定について)
マイクロビッカース硬度計にて切断面の被膜直下、つまり窒化層再表面から深さ30μmの位置を始点とし、深さ200μmまで10μmピッチで窒化層内の硬さ分布を測定した。
(Measurement of nitride layer depth)
Using a micro Vickers hardness meter, the hardness distribution in the nitrided layer was measured at a pitch of 10 μm up to a depth of 200 μm starting from a position immediately below the film on the cut surface, that is, at a depth of 30 μm from the surface of the nitrided layer.

また、窒化層再表面から深さ1100μm位置を始点とし、深さ2000μmまで100μmピッチで硬さを測定して、その10点の硬さの平均値を「内部ビッカース硬さ」とした。 Further, the hardness was measured at a pitch of 100 μm to a depth of 2000 μm from a position of 1100 μm deep from the surface of the nitrided layer as a starting point, and the average value of hardness at 10 points was defined as “internal Vickers hardness”.

窒化層深さは、10μmピッチで測定した窒化層内30~200μmの硬さ分布において、上記内部ビッカース硬さよりも25ポイント以上高い値を示す位置の中で最も深い位置を「窒化層深さ」とした。 The nitrided layer depth is the deepest position among the positions showing a value higher than the internal Vickers hardness by 25 points or more in the hardness distribution of 30 to 200 μm in the nitrided layer measured at a pitch of 10 μm. and

(窒化層の硬度変化)
上記窒化層深さの際に測定した、マイクロビッカース硬度計による窒化層最表面から深さ30μmおよび60μm位置の硬さの差を硬度差とした。
(Change in hardness of nitrided layer)
The difference in hardness at positions of 30 μm and 60 μm in depth from the outermost surface of the nitrided layer measured with a micro Vickers hardness tester at the time of determining the depth of the nitrided layer was taken as the difference in hardness.

(スクラッチ試験による剥離臨界荷重の計測)
評価Iにて○の評価となったもの、すなわち十分な靭性が得られたものについてのみ、さらに幅25×厚さ7mm×長さ50mm小片の残材を使用して、スクラッチ試験による剥離臨界荷重を計測した。したがって、比較鋼No.19~31については、靭性がなく、そもそも冷間工具鋼としての特性を備えていないため、スクラッチ試験は実施していない。
(Measurement of peeling critical load by scratch test)
Only those that were evaluated as ○ in Evaluation I, that is, those that had sufficient toughness, were further subjected to a peeling critical load by a scratch test using a remaining piece of width 25 × thickness 7 mm × length 50 mm. was measured. Therefore, comparative steel No. No scratch test was conducted for Nos. 19 to 31 because they lacked toughness and inherently did not have the characteristics of cold work tool steel.

試験条件は、最小荷重:1N、荷重スピード:30N/min、スクラッチスピード:1.51mm/min、圧子:ダイアモンド、圧子曲率半径:200μmとした。 The test conditions were as follows: minimum load: 1 N, load speed: 30 N/min, scratch speed: 1.51 mm/min, indenter: diamond, and indenter curvature radius: 200 μm.

(評価II)
スクラッチ試験による剥離臨界荷重が100N以上のものを耐剥離性に優れるものとして○、80以上のものを可として△に、それ未満のものを耐剥離性不良として×と評価した。
(Evaluation II)
Those with a peeling critical load of 100 N or more in the scratch test were evaluated as excellent in peel resistance, those with 80 or more were evaluated as acceptable, and those below that were evaluated as poor in peel resistance.

表2にシャルピー衝撃試験の評価Iとスクラッチ試験の評価IIの結果をに示す。 Table 2 shows the results of evaluation I of the Charpy impact test and evaluation II of the scratch test.

Figure 2022118887000002
Figure 2022118887000002

発明鋼No.1~18は、プラズマ窒化処理により形成された窒化層の上に、さらに形成されたPVD硬質被膜が付与されることで、靭性に優れる一方、硬質皮膜が母材から剥離しにくいものとなっていることが確認された。 Invention Steel No. In Nos. 1 to 18, a PVD hard coating is further formed on the nitrided layer formed by plasma nitriding treatment, resulting in excellent toughness and hard coating peeling off from the base material. It was confirmed that

比較鋼No.19~31は、シャルピー衝撃値が20J/cm2未満であり、靭性に劣るものとなった。比較鋼No.32~34は、剥離臨界荷重が74N以下であり、80Nを下回ったので、耐剥離性に劣る結果となった。 Comparative steel no. 19 to 31 had a Charpy impact value of less than 20 J/cm 2 and were inferior in toughness. Comparative steel no. In Nos. 32 to 34, the peeling critical load was 74 N or less, which was lower than 80 N, resulting in inferior peeling resistance.

Claims (4)

質量%で、C:0.7~1.0%、Si:0.3~1.0%、Mn:0.5%以下、Cr:3.5~9.0%、Mo:1.5~6.0%、W:8.0%以下、V及びNb:V+Nb/2で0.2~2.0%、N:500ppm未満、残部Fe及び不可避的不純物からなり、式SのS値が35以上、式IのI値が150以上の鋼を、さらに焼入焼戻しされた状態で鋼材硬さが58HRC以上である、冷間工具鋼。
式S:S=2.0Cr+14.0Mo+3.3W+6.7(V+Nb/2)
式I:I=70Si-Cr+63Mo-153V+23W
但し、式の元素記号には当該成分の%値を代入する。
% by mass, C: 0.7 to 1.0%, Si: 0.3 to 1.0%, Mn: 0.5% or less, Cr: 3.5 to 9.0%, Mo: 1.5 ~ 6.0%, W: 8.0% or less, V and Nb: 0.2 to 2.0% at V + Nb / 2, N: less than 500 ppm, balance Fe and unavoidable impurities, S value of formula S is 35 or more, the I value of formula I is 150 or more, and the steel hardness in the quenched and tempered state is 58 HRC or more.
Formula S: S=2.0Cr+14.0Mo+3.3W+6.7(V+Nb/2)
Formula I: I=70Si-Cr+63Mo-153V+23W
However, the % value of the component concerned is substituted for the symbol of the element in the formula.
請求項1に記載の冷間工具鋼にさらに窒化層が表層に形成されたものであって、窒化層の最表面から30μmの深さでの硬さが800HV以上、その窒化層深さが60μm以上、窒化層の最表面から30μm位置と60μm位置とでの硬度変化が75HV以内である、窒化層を備えた冷間工具鋼。 The cold work tool steel according to claim 1 is further formed with a nitrided layer on the surface, wherein the nitrided layer has a hardness of 800 HV or more at a depth of 30 µm from the outermost surface of the nitrided layer, and the depth of the nitrided layer is 60 µm. As described above, a cold work tool steel provided with a nitrided layer having a hardness change of 75 HV or less between positions of 30 μm and 60 μm from the outermost surface of the nitrided layer. 請求項1又は請求項2に記載の冷間工具鋼を母材として、表層にさらにPVD法で形成された硬質被膜を備える金型。 A mold comprising the cold work tool steel according to claim 1 or 2 as a base material, and further comprising a hard coating formed on the surface layer by a PVD method. 請求項1又は請求項2に記載の冷間工具鋼を母材として、表層にさらにPVD法で形成された硬質被膜を備える工具。 A tool comprising the cold work tool steel according to claim 1 or 2 as a base material, and further comprising a hard coating formed on the surface layer by a PVD method.
JP2021015697A 2021-02-03 2021-02-03 Cold tool steel excellent in surface treatment characteristics and tool Pending JP2022118887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021015697A JP2022118887A (en) 2021-02-03 2021-02-03 Cold tool steel excellent in surface treatment characteristics and tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021015697A JP2022118887A (en) 2021-02-03 2021-02-03 Cold tool steel excellent in surface treatment characteristics and tool

Publications (1)

Publication Number Publication Date
JP2022118887A true JP2022118887A (en) 2022-08-16

Family

ID=82845149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021015697A Pending JP2022118887A (en) 2021-02-03 2021-02-03 Cold tool steel excellent in surface treatment characteristics and tool

Country Status (1)

Country Link
JP (1) JP2022118887A (en)

Similar Documents

Publication Publication Date Title
JP5276330B2 (en) Cold mold steel and cold press mold
JP5843173B2 (en) Manufacturing method of cold working mold
JP2010065280A (en) Mold for hot working
WO2007123164A1 (en) Piston ring material for internal combustion engine
KR102242475B1 (en) Steel for mold
EP3006601B1 (en) Method for manufacturing mold for cold working use
JP4860774B1 (en) Cold work tool steel
JP2019218582A (en) Mechanical component
EP1696045A1 (en) Hot work tool steel and mold member excellent in resistance to melting
WO2016075951A1 (en) Hot work tool steel
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP5316425B2 (en) Alloy for surface coating treatment and sliding member
JP7264117B2 (en) Steel part and its manufacturing method
JPH06212253A (en) Production of cold tool steel
JP2007002333A (en) Press die with excellent self-lubricating property
JP2022118887A (en) Cold tool steel excellent in surface treatment characteristics and tool
JPS5831066A (en) Punch for cold working
JP2005187900A (en) Cold tool steel having excellent surface treatability, component for die, and die
JPH0688166A (en) Die for hot working excellent in heat cracking resistance
JP3629851B2 (en) Cold tool steel for plasma carburizing
JP7310723B2 (en) Steel part and its manufacturing method
JP2021095606A (en) High-strength hot work tool steel having excellent softening resistance and nitriding properties
JPH09324848A (en) Carbon sintered gear component
JP3196901B2 (en) Steel for aluminum extrusion dies
JP3252969B2 (en) Hot tool steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240109