JP2022117393A - Control device, control method, control program, and recording medium - Google Patents

Control device, control method, control program, and recording medium Download PDF

Info

Publication number
JP2022117393A
JP2022117393A JP2021117903A JP2021117903A JP2022117393A JP 2022117393 A JP2022117393 A JP 2022117393A JP 2021117903 A JP2021117903 A JP 2021117903A JP 2021117903 A JP2021117903 A JP 2021117903A JP 2022117393 A JP2022117393 A JP 2022117393A
Authority
JP
Japan
Prior art keywords
platform
command
load
control device
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021117903A
Other languages
Japanese (ja)
Inventor
太樹 小林
Taiki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Publication of JP2022117393A publication Critical patent/JP2022117393A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

To provide a control device, a control method, a control program, and a storage medium that reduce positioning errors, compared with conventional ones.SOLUTION: A control device controls a machine tool comprising: a first stage on which a load is placed; a second stage that movably supports the first stage in a first direction parallel to a horizontal direction; a first driving unit that moves the first stage in the first direction; a table support portion that movably supports a second stage in a second direction crossing the first direction; and a second driving unit that moves the second stage in the second direction. A mass acquisition unit of the control device acquires a mass of the load placed on the first stage. A first command acquisition unit acquires a first position command for commanding a position of the first stage in the first direction (S15). A correction unit uses a coefficient based on the mass acquired by the mass acquisition unit and the position commanded by the first position command so as to correct the position commanded by the first position command by an amount corresponding to a deflection of the second stage due to the load placed on the first stage (S16).SELECTED DRAWING: Figure 6

Description

本発明は、制御装置、制御方法、制御プログラム、及び記憶媒体に関する。 The present invention relates to a control device, control method, control program, and storage medium.

工作機械は、台と、台を第一方向に移動するボール螺子を備える。工作機械を制御する制御装置はボール螺子ピッチ誤差を予め記憶し、台を第一方向に移動する時にピッチ誤差を読出してボール螺子のピッチ誤差を補正する。制御装置は台をボール螺子の全区間移動しながら所定時間毎に台の第一方向の位置を測定することで、ボール螺子全体のピッチ誤差を補正間隔毎に算出する。 The machine tool includes a table and a ball screw that moves the table in a first direction. A controller for controlling the machine tool pre-stores the ball screw pitch error, reads the pitch error when moving the table in the first direction, and corrects the ball screw pitch error. The controller measures the position of the base in the first direction at predetermined time intervals while moving the base over the ball screw, thereby calculating the pitch error of the entire ball screw for each correction interval.

特許第5915436号公報Japanese Patent No. 5915436

上記工作機械の台は、使用時にワーク、ワーク固定治具等の積載物を載せる。工作機械は台を第一方向に移動可能に支持し、且つ第二方向に移動可能な支持台を備える。積載物の質量に応じて、支持台は第一方向に撓みが生じる。該時、制御装置がピッチ誤差を用い第一方向の位置を補正しても、支持台に生じた撓みの影響で台の第一方向の位置決め誤差が増加する。 A load such as a workpiece and a workpiece fixing jig is placed on the table of the machine tool when it is used. The machine tool includes a support table that supports a table for movement in a first direction and is movable in a second direction. The support base is flexed in the first direction according to the mass of the load. At this time, even if the controller corrects the position in the first direction using the pitch error, the positioning error of the table in the first direction increases due to the deflection of the support table.

本発明の目的は、位置決め誤差を従来よりも低減した制御装置、制御方法、制御プログラム、及び記憶媒体を提供することである。 An object of the present invention is to provide a control device, a control method, a control program, and a storage medium in which positioning errors are reduced more than before.

本発明の請求項1の制御装置は、積載物を載せる第一台と、前記第一台を水平方向と平行な第一方向に移動可能に支持する第二台と、前記第一台を前記第一方向に移動する第一駆動部と、前記第二台を前記第一方向と交差する第二方向に移動可能に支持する台支持部と、前記第二台を前記第二方向に移動する第二駆動部とを備える工作機械を制御する制御装置において、前記第一台に載せた前記積載物の質量を取得する質量取得部と、前記第一台の前記第一方向の位置を指令する第一位置指令を取得する第一指令取得部と、前記質量取得部が取得した前記質量に基づく第一係数と、前記第一位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の撓みに応じた量、前記第一位置指令の前記位置を補正する補正部とを備える。制御装置は、補正部が積載物の質量に基づく第一係数と、第一位置指令の位置とを用い、第一位置指令が示す第一台の第一方向の位置を補正するので、第一台に載せる積載物による第二台の撓みに応じた第一台の第一方向の位置決め誤差を従来よりも低減できる。 The control device according to claim 1 of the present invention comprises a first platform on which a load is placed, a second platform that supports the first platform so as to be movable in a first direction parallel to a horizontal direction, and a a first drive unit that moves in a first direction; a table support unit that supports the second table so as to be movable in a second direction that intersects with the first direction; and a table support that moves the second table in the second direction. A control device for controlling a machine tool comprising a second drive unit, wherein a mass acquisition unit acquires the mass of the load placed on the first unit, and commands the position of the first unit in the first direction. Using a first command acquisition unit that acquires a first position command, a first coefficient based on the mass acquired by the mass acquisition unit, and the position of the first position command, the and a correction unit that corrects the position of the first position command by an amount corresponding to the deflection of the second stage due to the load. The controller corrects the position of the first vehicle in the first direction indicated by the first position command using the first coefficient based on the mass of the load and the position of the first position command. The positioning error of the first stage in the first direction due to the deflection of the second stage due to the load placed on the stage can be reduced more than before.

本発明の請求項2の制御装置の前記第一位置指令の前記位置は、前記第一台に載せた前記積載物による前記第二台の撓み角度が最小になる位置である基準からの距離で表す。制御装置の第一位置指令の位置は、撓み角度が最小ではない位置を基準とする時の第一位置指令の位置よりも、第一台に載せる積載物による第二台の撓みに応じた値を表しやすい。故に制御装置は、撓み角度が最小ではない位置を基準とする時よりも、第二台の撓みに応じた量の計算を簡単にできる。 The position of the first position command of the control device according to claim 2 of the present invention is the distance from a reference that is the position at which the deflection angle of the second platform caused by the load placed on the first platform is minimized. show. The position of the first position command of the control device is a value that corresponds to the deflection of the second platform due to the load placed on the first platform, rather than the position of the first position command when the position where the deflection angle is not the minimum is used as the reference. is easy to express. Therefore, the controller can more easily calculate the amount depending on the deflection of the second platform than when it is based on the position where the deflection angle is not the minimum.

本発明の請求項3の制御装置の前記第一係数は、前記工作機械に固有の定数に基づく値である。制御装置は、補正に用いる第一係数を工作機械に固有の定数に基づく値とすることで、工作機械の全個体を測定することなく第一位置指令の位置を補正できる。 Said 1st coefficient of the control apparatus of Claim 3 of this invention is a value based on a constant peculiar to said machine tool. By setting the first coefficient used for correction to a value based on a constant specific to the machine tool, the control device can correct the position of the first position command without measuring the entire individual machine tool.

本発明の請求項4の制御装置の前記基準は前記第一台の移動可能範囲の中心である。制御装置は、基準が第一台の移動可能範囲の端部にある時よりも、第二台の撓み角度の最大値を小さくできる。 The reference of the control device according to claim 4 of the present invention is the center of the movable range of the first unit. The controller can make the maximum deflection angle of the second stage smaller than when the reference is at the end of the movable range of the first stage.

本発明の請求項5の制御装置の前記第一係数は、前記第一台の上面からの前記積載物の高さに応じた値に基づく。制御装置は、補正に用いる第一係数を積載物の高さに応じた値に基づく値とすることで、積載物の高さを考慮して第一位置指令の位置を補正できる。 The first coefficient of the control device according to claim 5 of the present invention is based on a value corresponding to the height of the load from the upper surface of the first platform. By setting the first coefficient used for correction to a value based on a value corresponding to the height of the load, the control device can correct the position of the first position command in consideration of the height of the load.

本発明の請求項6の制御装置において、前記工作機械は工具を装着する主軸と、前記主軸を支持し、上下動可能な主軸ヘッドと、前記主軸ヘッドを上下方向に移動可能に支持するヘッド支持部と、前記主軸ヘッドを前記上下方向に移動する第三駆動部とを備え、前記主軸ヘッドの前記上下方向の位置を指令する第二位置指令を取得する第二指令取得部と、前記主軸が装着した前記工具に応じた工具長補正量と前記第二位置指令に依り、前記工具の先端の前記第一台からの高さを取得する高さ取得部を有し、前記積載物の高さに応じた値は、前記高さ取得部が取得した前記工具の前記先端の前記第一台の前記上面からの高さである。制御装置は、補正に用いる第一係数を工具の先端の第一台の上面からの高さとすることで、第二位置指令が示す主軸ヘッドの上下位置を考慮して第一位置指令の位置を補正できる。 In the control device according to claim 6 of the present invention, the machine tool comprises a spindle on which a tool is mounted, a spindle head supporting the spindle and capable of vertical movement, and a head support supporting the spindle head movably in the vertical direction. and a third driving section for moving the spindle head in the vertical direction, the second command acquiring section for acquiring a second position command for commanding the vertical position of the spindle head; a height acquisition unit that acquires a height of the tip of the tool from the first table according to the tool length correction amount corresponding to the mounted tool and the second position command; is the height of the tip of the tool obtained by the height obtaining unit from the upper surface of the first base. By setting the height of the tip of the tool from the upper surface of the first table as the first coefficient used for correction, the control device adjusts the position of the first position command in consideration of the vertical position of the spindle head indicated by the second position command. can be corrected.

本発明の請求項7の制御装置は、前記第二位置指令が位置決め指令か切削指令かを判断する種別判断部を更に備え、前記高さ取得部は、前記第二位置指令が前記位置決め指令であると前記種別判断部が判断したことに応じ前記工具の前記先端の前記第一台からの高さを取得し、前記補正部は、前記高さ取得部が取得した前記工具の前記先端の前記第一台からの高さを用い前記第一係数を更新し、更新した前記第一係数と前記第二位置指令に対応する前記第一位置指令の前記位置とを用い、前記第一位置指令の前記位置を補正する。制御装置は第二位置指令が位置決め指令である時の第二位置指令が示す主軸ヘッドの上下位置を考慮して第二位置指令に対応する第一位置指令の位置を補正できる。故に制御装置は、第一台に載せる積載物の第一台からの高さが比較的大きい時でも、第一位置指令が示す第一台の第一方向の位置を適切に補正できる。 The control device according to claim 7 of the present invention further includes a type determination unit that determines whether the second position command is a positioning command or a cutting command, and the height acquisition unit determines whether the second position command is the positioning command. Acquires the height of the tip of the tool from the first base in response to the type determination unit determining that there is the tip of the tool acquired by the height acquisition unit updating the first coefficient using the height from the first platform; using the updated first coefficient and the position of the first position command corresponding to the second position command; Correct the position. The controller can correct the position of the first position command corresponding to the second position command by considering the vertical position of the spindle head indicated by the second position command when the second position command is the positioning command. Therefore, the control device can appropriately correct the position of the first vehicle in the first direction indicated by the first position command even when the height of the load placed on the first vehicle from the first vehicle is relatively large.

本発明の請求項8の制御装置は記憶装置と、前記補正部が更新した前記第一係数を前記記憶装置に記憶する記憶制御部とを更に備え、前記補正部は、前記種別判断部が前記第二位置指令が前記切削指令であると判断したことに応じ、前記記憶装置に記憶した前記第一係数と前記第一位置指令の前記位置とを用い、前記第一位置指令の前記位置を補正する。制御装置は切削加工時に切削部分の大きさを第一位置指令が示す大きさよりも大きくする等の悪影響を抑制するように第一位置指令の位置を補正できる。 The control device according to claim 8 of the present invention further comprises a storage device and a storage control section for storing the first coefficient updated by the correction section in the storage device, wherein the correction section is configured such that the type determination section In response to determining that the second position command is the cutting command, the position of the first position command is corrected using the first coefficient stored in the storage device and the position of the first position command. do. The control device can correct the position of the first position command so as to suppress adverse effects such as making the size of the cut portion larger than the size indicated by the first position command during cutting.

本発明の請求項9の制御装置の前記第一係数は、前記第一台の前記上面からの前記積載物の前記高さに応じた前記値と、前記台支持部の上端と、前記第一台の前記上面との間の第一所定位置からの、前記第一台の前記上面の高さとに基づく。制御装置は、第一係数が第一所定位置からの第一台の上面の高さに基づかない装置よりも、第二台の傾きによる第一台の第一方向の位置決め誤差を低減できる。 The first coefficient of the control device according to claim 9 of the present invention includes the value corresponding to the height of the load from the upper surface of the first platform, the upper end of the platform support portion, and the first and the height of said top surface of said first platform from a first predetermined position between said top surface of said platform. The controller can reduce the positioning error of the first carriage in the first direction due to tilting of the second carriage over a device in which the first factor is not based on the height of the top surface of the first carriage from the first predetermined position.

本発明の請求項10の制御装置の前記第一所定位置は、前記第一台に載せた前記積載物による前記第二台の撓みによる前記第一台の前記第一方向の位置の誤差が最小になる位置である。制御装置は第一所定位置からの第一台の上面の高さに応じた、第一台に載せた積載物による第二台の撓みに応じた誤差が最小になるように第一位置指令の位置を補正できる。 In the control device according to claim 10 of the present invention, the first predetermined position has a minimum error in the position of the first platform in the first direction due to deflection of the second platform caused by the load placed on the first platform. is the position where The control device sets the first position command so that the error corresponding to the deflection of the second platform due to the load placed on the first platform is minimized according to the height of the top surface of the first platform from the first predetermined position. Position can be corrected.

本発明の請求項11の制御装置の前記第一台に載せた前記積載物による前記第二台の撓みに応じた前記量は、前記第一係数と、前記距離の三乗との積である。制御装置は、第二台の撓みに応じた量を比較的に簡単に計算できる。 In the control device according to claim 11 of the present invention, the amount according to the deflection of the second platform caused by the load placed on the first platform is the product of the first coefficient and the cube of the distance. . The controller can relatively easily calculate the amount depending on the deflection of the second platform.

本発明の請求項12の制御装置の前記補正部は、前記第一係数と、前記積載物と前記第一台の重心を用いて補正した前記第一位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の前記撓みに応じた量、前記第一位置指令の前記位置を補正する。制御装置は積載物の第一台の第一方向の配置を考慮して、第一台に載せた積載物による第二台の撓みに応じた量、第一位置指令の位置を適切に補正できる。 The correcting unit of the control device according to claim 12 of the present invention uses the first coefficient and the position of the first position command corrected using the center of gravity of the load and the first vehicle to obtain the first position. The position of the first position command is corrected by an amount corresponding to the deflection of the second platform caused by the load placed on one platform. The control device can appropriately correct the position of the first position command by the amount corresponding to the deflection of the second stage due to the load placed on the first stage, considering the arrangement of the first stage of the load in the first direction. .

本発明の請求項13の制御装置の前記補正部は、前記第一係数と、前記質量取得部が取得した前記質量に基づく第二係数と、前記第一位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の撓みに応じた前記量と、前記第一台に載せた前記積載物による前記台支持部の撓みに応じた量、前記第一位置指令の前記位置を補正する。制御装置は、第一台に載せる積載物による台支持部の撓みに応じた量を考慮して、第一台の第一方向の位置決め誤差を従来よりも低減できる。 The correction unit of the control device according to claim 13 of the present invention uses the first coefficient, the second coefficient based on the mass acquired by the mass acquisition unit, and the position of the first position command to obtain the The amount according to the deflection of the second stage caused by the load placed on the first stage, the amount according to the deflection of the stage support portion caused by the load placed on the first stage, and the first position command to correct the position of The control device can reduce the positioning error of the first platform in the first direction compared to conventional methods by considering the amount of deflection of the platform support portion caused by the load placed on the first platform.

本発明の請求項14の制御装置の前記第一台に載せた前記積載物による前記台支持部の撓みに応じた前記量は、前記第二係数と、前記距離の積である。制御装置は、台支持部の撓みに応じた量を比較的に簡単に計算できる。 In the control device according to claim 14 of the present invention, the amount according to the deflection of the platform support portion due to the load placed on the first platform is the product of the second coefficient and the distance. The controller can relatively easily calculate the amount depending on the deflection of the platform support.

本発明の請求項15の制御装置の前記第二係数は、前記第一台の前記上面からの前記積載物の前記高さに応じた前記値と、前記台支持部の下端と前記第一台の前記上面との間の第二所定位置からの前記第一台の前記上面の高さとに基づく。制御装置は、第二係数が第二所定位置からの第一台の上面の高さに基づかない装置よりも、台支持部の撓みによる第一台の第一方向の位置決め誤差を低減できる。 The second coefficient of the control device according to claim 15 of the present invention includes the value corresponding to the height of the load from the upper surface of the first platform, the lower end of the platform support portion, and the first platform. and the height of the top surface of the first platform from a second predetermined position between the top surface of the . The controller can reduce the positioning error of the first platform in the first direction due to deflection of the platform support over devices in which the second factor is not based on the height of the top surface of the first platform from the second predetermined position.

本発明の請求項16の制御装置の前記第二所定位置は、前記第一台に載せた前記積載物による前記台支持部の撓みによる前記第一台の前記第一方向の位置の誤差が最小になる位置である。制御装置は第二所定位置からの第一台の上面の高さに応じた、第一台に載せた積載物による台支持部の撓みに応じた誤差が最小になるように第一位置指令の位置を補正できる。 In the second predetermined position of the control device according to claim 16 of the present invention, an error in the position of the first platform in the first direction due to deflection of the platform support portion due to the load placed on the first platform is minimized. is the position where The control device outputs the first position command so as to minimize the error corresponding to the deflection of the table support portion due to the load placed on the first table, according to the height of the top surface of the first table from the second predetermined position. Position can be corrected.

本発明の請求項17の制御装置の前記補正部は、前記第二係数と、前記積載物と前記第一台の重心を用いて補正した前記第一位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記台支持部の撓みに応じた前記量、前記第一位置指令の前記位置を補正する。制御装置は積載物の第一台の第一方向の配置を考慮して、第一台に載せた積載物による台支持部の撓みに応じた量、第一位置指令の位置を適切に補正できる。 The correction unit of the control device according to claim 17 of the present invention uses the second coefficient and the position of the first position command corrected using the center of gravity of the load and the first vehicle to obtain the first position. The position of the first position command is corrected by the amount according to the deflection of the platform support portion caused by the load placed on one platform. The control device can appropriately correct the position of the first position command by the amount corresponding to the deflection of the table support portion due to the load placed on the first table, considering the arrangement of the first table in the first direction of the load. .

本発明の請求項18の制御方法は積載物を載せる第一台と、前記第一台を水平方向と平行な第一方向に移動可能に支持する第二台と、前記第一台を前記第一方向に移動する第一駆動部と、前記第二台を前記第一方向と交差する第二方向に移動可能に支持する台支持部と、前記第二台を前記第二方向に移動する第二駆動部とを備える工作機械の制御方法において、前記第一台に載せた前記積載物の質量を取得する質量取得工程と、前記第一台の前記第一方向の位置を指令する位置指令を取得する指令取得工程と、前記質量取得工程で取得した前記質量に基づく係数と、前記位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の撓みに応じた量、前記位置指令の前記位置を補正する補正工程とを備える。制御方法は、補正部が積載物の質量に基づく係数と、位置指令の位置とを用い、位置指令が示す第一台の第一方向の位置を補正するので、第一台に載せる積載物の質量に応じた第一台の第一方向の位置決め誤差を従来よりも低減できる。 A control method according to claim 18 of the present invention comprises a first platform on which a load is placed, a second platform that supports the first platform so as to be movable in a first direction parallel to the horizontal direction, and a a first drive unit that moves in one direction; a table support unit that supports the second table so as to be movable in a second direction that intersects with the first direction; and a second table that moves in the second direction. A method of controlling a machine tool comprising two drive units, comprising: a mass acquisition step of acquiring the mass of the load placed on the first machine; and a position command of commanding the position of the first machine in the first direction. Using the command acquisition step to acquire, the coefficient based on the mass acquired in the mass acquisition step, and the position of the position command, according to the deflection of the second platform caused by the load placed on the first platform and a correction step of correcting the position of the position command by the amount. In the control method, the correction unit uses a coefficient based on the mass of the load and the position of the position command to correct the position of the first machine in the first direction indicated by the position command. The positioning error in the first direction of the first unit according to the mass can be reduced more than before.

本発明の請求項19の制御プログラムは積載物を載せる第一台と、前記第一台を水平方向と平行な第一方向に移動可能に支持する第二台と、前記第一台を前記第一方向に移動する第一駆動部と、前記第二台を前記第一方向と交差する第二方向に移動可能に支持する台支持部と、前記第二台を前記第二方向に移動する第二駆動部とを備える工作機械を制御する制御装置の制御部が実行可能な制御プログラムにおいて、前記第一台に載せた前記積載物の質量を取得する質量取得処理と、前記第一台の前記第一方向の位置を指令する位置指令を取得する指令取得処理と、前記質量取得処理で取得した前記質量に基づく係数と、前記位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の撓みに応じた量、前記位置指令の前記位置を補正する補正処理とを前記制御装置の前記制御部に実行させる指示を含む。制御プログラムに従い制御装置は、補正部が積載物の質量に基づく係数と、位置指令の位置とを用い、位置指令が示す第一台の第一方向の位置を補正するので、第一台に載せる積載物の質量に応じた第一台の第一方向の位置決め誤差を従来よりも低減できる。 The control program according to claim 19 of the present invention comprises a first platform on which a load is placed, a second platform that supports the first platform so as to be movable in a first direction parallel to the horizontal direction, and a a first drive unit that moves in one direction; a table support unit that supports the second table so as to be movable in a second direction that intersects with the first direction; and a second table that moves in the second direction. In a control program executable by a control unit of a control device that controls a machine tool comprising two drive units, a mass acquisition process for acquiring the mass of the load placed on the first machine; Using a command acquisition process for acquiring a position command for commanding a position in the first direction, a coefficient based on the mass acquired by the mass acquisition process, and the position of the position command, the It includes an instruction to cause the control unit of the control device to perform a correction process for correcting the position of the position command by an amount corresponding to the deflection of the second platform due to the load. According to the control program, the control device corrects the position of the first machine in the first direction indicated by the position command using the coefficient based on the mass of the load and the position of the position command. The positioning error of the first unit in the first direction according to the mass of the load can be reduced more than before.

本発明の請求項20の記憶媒体は積載物を載せる第一台と、前記第一台を水平方向と平行な第一方向に移動可能に支持する第二台と、前記第一台を前記第一方向に移動する第一駆動部と、前記第二台を前記第一方向と交差する第二方向に移動可能に支持する台支持部と、前記第二台を前記第二方向に移動する第二駆動部とを備える工作機械を制御する制御装置の制御部が実行可能な制御プログラムを記憶する記憶媒体において、前記第一台に載せた前記積載物の質量を取得する質量取得処理と、前記第一台の前記第一方向の位置を指令する位置指令を取得する指令取得処理と、前記質量取得処理で取得した前記質量に基づく係数と、前記位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の撓みに応じた量、前記位置指令の前記位置を補正する補正処理とを前記制御装置の前記制御部に実行させる指示を含む前記制御プログラムを記憶する。記憶媒体が記憶する制御プログラムに従い制御装置は、補正部が積載物の質量に基づく係数と、位置指令の位置とを用い、位置指令が示す第一台の第一方向の位置を補正するので、第一台に載せる積載物の質量に応じた第一台の第一方向の位置決め誤差を従来よりも低減できる。 According to a twentieth aspect of the present invention, there is provided a storage medium comprising: a first stage on which a load is placed; a second stage that supports the first stage so as to be movable in a first direction parallel to the horizontal direction; a first drive unit that moves in one direction; a table support unit that supports the second table so as to be movable in a second direction that intersects with the first direction; and a second table that moves in the second direction. In a storage medium storing a control program executable by a control unit of a control device for controlling a machine tool comprising two drive units, mass acquisition processing for acquiring the mass of the load placed on the first machine; Using a command acquisition process for acquiring a position command for commanding the position of the first machine in the first direction, a coefficient based on the mass acquired by the mass acquisition process, and the position of the position command, the first Stores the control program including an instruction to cause the control unit of the control device to execute a correction process for correcting the position of the position command by an amount corresponding to the deflection of the second platform due to the load placed on the platform. do. According to the control program stored in the storage medium, the controller corrects the position of the first vehicle in the first direction indicated by the position command using the coefficient based on the mass of the load and the position of the position command. Positioning error in the first direction of the first machine according to the mass of the load placed on the first machine can be reduced more than before.

工作機械1の斜視図。2 is a perspective view of the machine tool 1; FIG. テーブル装置10の斜視図。3 is a perspective view of the table device 10; FIG. 制御装置30と工作機械1の電気的構成のブロック図。FIG. 2 is a block diagram of an electrical configuration of the control device 30 and the machine tool 1; テーブル装置10の正面模式図。FIG. 2 is a schematic front view of the table device 10; 質量取得処理の流れ図。Flowchart of mass acquisition processing. 第一実施形態の主処理の流れ図。4 is a flowchart of main processing of the first embodiment; (A)は第一位置指令の位置補正前の基準Rからの第一位置指令の位置迄の距離xと誤差との関係を示すグラフ、(B)は第一実施形態の主処理で第一位置指令の位置補正後の基準Rからの第一位置指令の位置迄の距離xと誤差との関係を示すグラフ。(A) is a graph showing the relationship between the distance x from the reference R before position correction of the first position command to the position of the first position command and the error; 7 is a graph showing the relationship between the distance x from the reference R to the position of the first position command after position correction of the position command and the error. 第二実施形態の主処理の流れ図。The flowchart of the main process of 2nd embodiment. 軸動作指令処理の流れ図。4 is a flowchart of axis motion command processing; (A)は第一位置指令の位置補正前の基準Rからの第一位置指令の位置迄の距離xと誤差との関係を示すグラフ、(B)は第二実施形態の主処理で第一位置指令の位置補正後の基準Rからの第一位置指令の位置迄の距離xと誤差との関係を示すグラフ。(A) is a graph showing the relationship between the error and the distance x from the reference R before position correction of the first position command to the position of the first position command; 7 is a graph showing the relationship between the distance x from the reference R to the position of the first position command after position correction of the position command and the error. (A)は第一位置指令の位置補正前の基準Rからの第一位置指令の位置迄の距離xと誤差との関係を示すグラフ、(B)は第一変形例の主処理で第一位置指令の位置補正後の基準Rからの第一位置指令の位置迄の距離xと誤差との関係を示すグラフ。(A) is a graph showing the relationship between the error and the distance x from the reference R before position correction of the first position command to the position of the first position command; 7 is a graph showing the relationship between the distance x from the reference R to the position of the first position command after position correction of the position command and the error. テーブル装置10の正面模式図。FIG. 2 is a schematic front view of the table device 10; (A)は第一位置指令の位置補正前の基準Rからの第一位置指令の位置迄の距離xと誤差との関係を示すグラフ、(B)は第二変形例の主処理で第一位置指令の位置補正後の基準Rからの第一位置指令の位置迄の距離xと誤差との関係を示すグラフ。(A) is a graph showing the relationship between the error and the distance x from the reference R before position correction of the first position command to the position of the first position command; 7 is a graph showing the relationship between the distance x from the reference R to the position of the first position command after position correction of the position command and the error. テーブル装置10の正面模式図。FIG. 2 is a schematic front view of the table device 10; (A)は第一位置指令の位置補正前の基準Rからの第一位置指令の位置迄の距離xと誤差との関係を示すグラフ、(B)は第三変形例の主処理で第一位置指令の位置補正後の基準Rからの第一位置指令の位置迄の距離xと誤差との関係を示すグラフ。(A) is a graph showing the relationship between the error and the distance x from the reference R before position correction of the first position command to the position of the first position command; 7 is a graph showing the relationship between the distance x from the reference R to the position of the first position command after position correction of the position command and the error.

工作機械1の構成を説明する。以下説明は、図中に矢印で示す左右、前後、上下を使用する。工作機械1の左右方向、前後方向、上下方向は夫々工作機械1のX軸方向、Y軸方向、Z軸方向である。X軸方向は第一方向であり、Y軸方向は第二方向である。図1、図2を用いて工作機械1の構成を説明する。工作機械1は主軸9に装着した工具4を回動し、第一台13の上面11に保持した被削材3に切削加工を施す機械である。制御装置30は工作機械1の動作を制御する。 A configuration of the machine tool 1 will be described. In the following description, left and right, front and rear, and top and bottom indicated by arrows in the drawings are used. The horizontal direction, the longitudinal direction, and the vertical direction of the machine tool 1 are the X-axis direction, the Y-axis direction, and the Z-axis direction of the machine tool 1, respectively. The X-axis direction is the first direction and the Y-axis direction is the second direction. The configuration of the machine tool 1 will be described with reference to FIGS. 1 and 2. FIG. The machine tool 1 is a machine that rotates a tool 4 mounted on a main shaft 9 and cuts a work material 3 held on an upper surface 11 of a first table 13 . A control device 30 controls the operation of the machine tool 1 .

工作機械1は基台2、コラム5、主軸ヘッド7、主軸9、テーブル装置10、工具交換装置20、制御箱6、操作パネル15(図3参照)等を備える。基台2は金属製であり、且つ略直方体状の土台である。コラム5は略角柱状であり、且つ基台2上部後方に固定する。主軸ヘッド7はコラム5前面に沿ってZ軸方向に移動する。主軸ヘッド7は内部に主軸9を回転可能に支持する。主軸9は主軸モータ52(図3参照)の駆動で回転する。主軸モータ52は主軸ヘッド7に設ける。主軸ヘッド7はコラム5前面に設けたZ軸移動機構(不図示)でZ軸方向に移動する。制御装置30はZ軸モータ51(図3参照)の駆動を制御して、主軸ヘッド7をZ軸方向に移動制御する。 The machine tool 1 includes a base 2, a column 5, a spindle head 7, a spindle 9, a table device 10, a tool changer 20, a control box 6, an operation panel 15 (see FIG. 3), and the like. The base 2 is made of metal and has a substantially rectangular parallelepiped shape. The column 5 has a substantially prismatic shape and is fixed to the upper rear portion of the base 2 . The spindle head 7 moves along the front surface of the column 5 in the Z-axis direction. The spindle head 7 rotatably supports the spindle 9 therein. The main shaft 9 is rotated by driving a main shaft motor 52 (see FIG. 3). A spindle motor 52 is provided on the spindle head 7 . The spindle head 7 is moved in the Z-axis direction by a Z-axis movement mechanism (not shown) provided on the front surface of the column 5 . The control device 30 controls the drive of the Z-axis motor 51 (see FIG. 3) to control the movement of the spindle head 7 in the Z-axis direction.

テーブル装置10はボール螺子駆動系の機構である。テーブル装置10はY軸移動機構18、第二台12、X軸移動機構17、第一台13等を備える。Y軸移動機構18は基台2上面前側に設け、Y軸軌道61、Y軸ボール螺子62、Y軸モータ54等を備える。Y軸軌道61とY軸ボール螺子62はY軸方向に延びる。第二台12は略直方体状に形成し、且つ底部外面にナット(不図示)を備える。該ナットはY軸ボール螺子62に螺合する。Y軸モータ54がY軸ボール螺子62を回転すると、第二台12はナットと共にY軸軌道61に沿って移動する。故にY軸移動機構18は第二台12をY軸方向に移動可能に支持する。 The table device 10 is a mechanism of a ball screw drive system. The table device 10 includes a Y-axis movement mechanism 18, a second table 12, an X-axis movement mechanism 17, a first table 13, and the like. The Y-axis movement mechanism 18 is provided on the front side of the upper surface of the base 2, and includes a Y-axis track 61, a Y-axis ball screw 62, a Y-axis motor 54, and the like. The Y-axis track 61 and the Y-axis ball screw 62 extend in the Y-axis direction. The second table 12 is formed in a substantially rectangular parallelepiped shape, and has a nut (not shown) on its bottom outer surface. The nut threads onto the Y-axis ball screw 62 . When the Y-axis motor 54 rotates the Y-axis ball screw 62 , the second table 12 moves along the Y-axis track 61 together with the nut. Therefore, the Y-axis moving mechanism 18 supports the second table 12 so as to be movable in the Y-axis direction.

X軸移動機構17は第二台12上面に設け、且つX軸軌道63、X軸ボール螺子64、X軸モータ53等を備える。X軸軌道63とX軸ボール螺子64はX軸方向に延びる。第一台13は平面視矩形板状に形成し、且つ第二台12上面に設ける。第一台13は底部にナット(不図示)を備える。該ナットはX軸ボール螺子64に螺合する。X軸モータ53がX軸ボール螺子64を回転すると、第一台13はナットと共にX軸軌道63に沿って移動する。X軸移動機構17は第一台13をX軸方向に移動可能に支持する。故に第一台13はY軸移動機構18、第二台12、X軸移動機構17により、基台2上をX軸方向とY軸方向に移動する。 The X-axis moving mechanism 17 is provided on the upper surface of the second table 12, and has an X-axis track 63, an X-axis ball screw 64, an X-axis motor 53, and the like. The X-axis track 63 and the X-axis ball screw 64 extend in the X-axis direction. The first table 13 is formed in a rectangular plate shape in plan view, and is provided on the upper surface of the second table 12 . The first platform 13 has a nut (not shown) on its bottom. The nut threads onto the X-axis ball screw 64 . When the X-axis motor 53 rotates the X-axis ball screw 64, the first table 13 moves along the X-axis track 63 together with the nut. The X-axis moving mechanism 17 supports the first table 13 so as to be movable in the X-axis direction. Therefore, the first table 13 is moved on the base 2 in the X-axis direction and the Y-axis direction by the Y-axis moving mechanism 18, the second table 12, and the X-axis moving mechanism 17. FIG.

左右一対のカバー67はX軸軌道63とX軸ボール螺子64の一部を覆う。カバー67は第一台13のX軸方向への移動に伴い伸縮する。前カバー69と後カバー(不図示)はY軸軌道61とY軸ボール螺子62の一部を覆う。前カバー69と後カバーは第二台12のY軸方向への移動に伴い伸縮する。 A pair of left and right covers 67 partially cover the X-axis track 63 and the X-axis ball screw 64 . The cover 67 expands and contracts as the first table 13 moves in the X-axis direction. A front cover 69 and a rear cover (not shown) partially cover the Y-axis track 61 and the Y-axis ball screw 62 . The front cover 69 and the rear cover expand and contract as the second table 12 moves in the Y-axis direction.

工具交換装置20は主軸ヘッド7の前側に設け、円盤型の工具マガジン21を備える。工具マガジン21はフレーム71、複数のアーム73を備え、且つ工具4A、4Bを含む複数の工具4を収納可能である。フレーム71は円筒状である。複数のアーム73はフレーム71の外周に沿って揺動可能に設ける。工具交換装置20はマガジンモータ55(図3参照)により工具マガジン21をマガジン軸J周りに回動し、工具交換指令が指示する工具4を交換位置に位置決めする。工具交換指令はNCプログラムで指令する。交換位置は工具マガジン21の最下部位置である。工具交換装置20は主軸9が装着する使用済みの工具4と次に主軸9に装着する工具4を交換する。工具の交換は、主軸ヘッド7の上昇、工具マガジン21の回動、主軸ヘッド7の下降の一連の動作で行う。 A tool changer 20 is provided on the front side of the spindle head 7 and has a disk-shaped tool magazine 21 . The tool magazine 21 has a frame 71 and a plurality of arms 73, and can accommodate a plurality of tools 4 including tools 4A and 4B. Frame 71 is cylindrical. A plurality of arms 73 are provided swingably along the outer circumference of the frame 71 . The tool changer 20 rotates the tool magazine 21 around the magazine axis J by means of the magazine motor 55 (see FIG. 3) to position the tool 4 indicated by the tool change command at the change position. The tool change command is issued by the NC program. The exchange position is the lowest position of the tool magazine 21 . The tool changer 20 exchanges the used tool 4 mounted on the spindle 9 with the tool 4 mounted on the spindle 9 next. Tool exchange is performed by a series of operations of lifting the spindle head 7, rotating the tool magazine 21, and lowering the spindle head 7. FIG.

制御箱6は制御装置30(図3参照)を格納する。制御装置30は工作機械1に設けたZ軸モータ51、主軸モータ52、X軸モータ53、Y軸モータ54を制御し、第一台13及び工具4をX軸方向、Y軸方向、Z軸方向に沿って相対移動する。該時、第一台13上に固定した被削材3と主軸9に装着した工具4は相対移動し、被削材3に各種加工を施す。各種加工はドリル、タップ等を用いた穴空け加工、エンドミル、フライス等を用いた側面加工等である。制御装置30はマガジンモータ55を制御し、工具マガジン21を回動する。 The control box 6 houses a control device 30 (see FIG. 3). A control device 30 controls a Z-axis motor 51, a spindle motor 52, an X-axis motor 53, and a Y-axis motor 54 provided in the machine tool 1, and moves the first table 13 and the tool 4 in the X-axis direction, the Y-axis direction, and the Z-axis direction. Relative movement along the direction. At this time, the work piece 3 fixed on the first table 13 and the tool 4 mounted on the spindle 9 are moved relative to each other, and the work piece 3 is processed in various ways. Various types of processing include drilling using a drill, tap, etc., side surface processing using an end mill, milling cutter, and the like. The control device 30 controls the magazine motor 55 to rotate the tool magazine 21 .

操作パネル15(図3参照)は工作機械1を覆うカバー(不図示)の外壁に設ける。操作パネル15は入力部16と表示部14(図3参照)を備える。入力部16は各種情報、操作指示等の入力を受付け後、該操作指示等を制御装置30に出力する。表示部14は制御装置30からの指令により、各種画面を表示する。 An operation panel 15 (see FIG. 3) is provided on the outer wall of a cover (not shown) that covers the machine tool 1 . The operation panel 15 includes an input section 16 and a display section 14 (see FIG. 3). After receiving inputs such as various information and operation instructions, the input unit 16 outputs the operation instructions and the like to the control device 30 . The display unit 14 displays various screens according to commands from the control device 30 .

図3を参照し、電気的構成を説明する。制御装置30と工作機械1はCPU31、ROM32、RAM33、記憶装置34、入出力部35、駆動回路51A~55A等を備える。CPU31は制御装置30を統括制御する。ROM32は主プログラム、質量プログラム等を記憶する。主プログラムはNCプログラムを一行ずつ読み込んで各種動作を実行する。NCプログラムは各種制御指令を含む複数行で構成し、CPU31は工作機械1の軸移動、工具交換等を含む各種動作を行単位で制御する。質量プログラムは質量取得処理(図5参照)を実行する為のプログラムである。RAM33は各種情報を一時的に記憶する。記憶装置34は不揮発性であり、且つNCプログラム、各種情報を記憶する。CPU31は作業者が操作パネル15の入力部16で入力したNCプログラムに加え、外部入力で読み込んだNCプログラム等を記憶装置34に記憶できる。 The electrical configuration will be described with reference to FIG. The control device 30 and the machine tool 1 are provided with a CPU 31, a ROM 32, a RAM 33, a storage device 34, an input/output section 35, drive circuits 51A to 55A, and the like. The CPU 31 centrally controls the control device 30 . A ROM 32 stores a main program, a mass program, and the like. The main program reads the NC program line by line and executes various operations. The NC program consists of a plurality of lines containing various control commands, and the CPU 31 controls various operations including axis movement of the machine tool 1, tool exchange, etc. line by line. The mass program is a program for executing mass acquisition processing (see FIG. 5). The RAM 33 temporarily stores various information. The storage device 34 is non-volatile and stores NC programs and various information. The CPU 31 can store, in the storage device 34, the NC programs input by the operator through the input unit 16 of the operation panel 15 as well as the NC programs read by external input.

駆動回路51AはZ軸モータ51とエンコーダ51Bに接続する。駆動回路52Aは主軸モータ52とエンコーダ52Bに接続する。駆動回路53AはX軸モータ53とエンコーダ53Bに接続する。駆動回路54AはY軸モータ54とエンコーダ54Bに接続する。駆動回路55Aはマガジンモータ55とエンコーダ55Bに接続する。Z軸モータ51、主軸モータ52、X軸モータ53、Y軸モータ54、マガジンモータ55は何れもサーボモータである。駆動回路51A~55AはCPU31から指令を受け、対応するモータ51~55に指令に基づく駆動電流を夫々出力する。駆動回路51A~55Aはエンコーダ51B~55Bからフィードバック信号を受け、位置と速度(角速度)のフィードバック制御を行う。入出力部35は操作パネル15の入力部16と表示部14に接続する。 The drive circuit 51A is connected to the Z-axis motor 51 and the encoder 51B. Drive circuit 52A is connected to spindle motor 52 and encoder 52B. The drive circuit 53A is connected to the X-axis motor 53 and the encoder 53B. Drive circuit 54A is connected to Y-axis motor 54 and encoder 54B. Drive circuit 55A is connected to magazine motor 55 and encoder 55B. The Z-axis motor 51, the main shaft motor 52, the X-axis motor 53, the Y-axis motor 54, and the magazine motor 55 are all servo motors. The driving circuits 51A to 55A receive commands from the CPU 31 and output drive currents based on the commands to the corresponding motors 51 to 55, respectively. Drive circuits 51A to 55A receive feedback signals from encoders 51B to 55B and perform feedback control of position and velocity (angular velocity). The input/output unit 35 is connected to the input unit 16 and the display unit 14 of the operation panel 15 .

図4を参照し、第一台13に載せた積載物Wにより、第二台12が撓む影響を補正する補正処理の概要を説明する。第一台13が後述する位置Pxに位置し、且つ第一台13に載せた積載物Wにより第二台12が撓み角度θ(Px)だけ撓む時、θ(Px)は式(1)の如く第一台13のX軸方向の基準Rから位置Px迄の距離xの三乗に比例すると仮定する。仮想面Dは水平面と平行な面である。撓み角度θ(Px)は仮想面Dと第二台12が撓んだ時の第一台13の底面がなす角度である。第一台13が位置Pxに位置する時、第一台13の底面は曲線Fにおける距離xに対応する点を通る接線に沿う。本実施形態の基準Rは第一台13に載せた積載物Wによる第二台12の撓み角度θが最小になるX軸の位置である。基準Rは、第一台13の移動可能範囲の中心であり、第一台13のX軸方向の中心が第二台12のX軸方向の中心と一致する位置である。距離xは基準Rからの移動距離を示している。第一台13が基準Rにある時を実線で示し、第一台13が位置Pxにある時を一点鎖線で示す。第一台13が位置Pxにある時、積載物Wは不図示である。第一台13が基準Rよりも右方にある時の距離をプラスの距離とし、第一台13が基準Rよりも左方にある時の距離をマイナスの距離とする。
θ(Px)=K×M×x ・・・式(1)
ここで、Kは機械固有の定数である。Mは第一台13に載せた積載物Wの質量である。積載物Wの質量Mは、第一台13に設けた治具の質量と治具が保持する被削材3の質量の合計である。
With reference to FIG. 4, the outline of the correction process for correcting the influence of bending of the second platform 12 by the load W placed on the first platform 13 will be described. When the first platform 13 is positioned at a position Px, which will be described later, and the load W placed on the first platform 13 bends the second platform 12 by the deflection angle θ (Px), θ (Px) is given by the following equation (1): is proportional to the cube of the distance x from the reference R in the X-axis direction of the first table 13 to the position Px. A virtual plane D is a plane parallel to the horizontal plane. The bending angle θ (Px) is the angle formed by the imaginary plane D and the bottom surface of the first table 13 when the second table 12 is bent. When the first platform 13 is positioned at the position Px, the bottom surface of the first platform 13 is along the tangent line passing through the point on the curve F corresponding to the distance x. The reference R in this embodiment is the position of the X-axis at which the deflection angle θ of the second platform 12 due to the load W placed on the first platform 13 is minimized. The reference R is the center of the movable range of the first table 13 and the position where the center of the first table 13 in the X-axis direction coincides with the center of the second table 12 in the X-axis direction. A distance x indicates a moving distance from the reference R. A solid line indicates when the first platform 13 is at the reference R, and a dashed line indicates when the first platform 13 is at the position Px. The load W is not shown when the first platform 13 is at the position Px. The distance when the first platform 13 is on the right side of the reference R is defined as a positive distance, and the distance when the first platform 13 is on the left side of the reference R is defined as a negative distance.
θ(Px)=K×M×x 3 Expression (1)
where K is a machine specific constant. M is the mass of the load W placed on the first platform 13 . The mass M of the load W is the sum of the mass of the jig provided on the first table 13 and the mass of the work material 3 held by the jig.

θ(Px)は1よりも十分に小さいので、第一台13に載せた積載物Wにより、第二台12が撓むことに起因するX軸方向の推定誤差E(x)は式(2)で求まる。
E(x)=H×sin(θ(Px))
≒H×θ(Px)
≒K×M×H×x ・・・式(2)
ここで、Hは第一台13の上面11から積載物Wの高さH2に応じた値である。第一実施形態のHは第一台13の上面11から積載物Wの高さH2であり記憶装置34に予め記憶する。第二実施形態のHは第一台13の上面11から工具4の先端迄の高さH1である。高さH1は予め計算で求めた後、記憶装置34に記憶する。第一、第二実施形態では、式(2)の内、K×M×Hを係数Cとして扱う。
Since θ(Px) is sufficiently smaller than 1, the estimated error E(x) in the X-axis direction caused by the bending of the second platform 12 due to the load W placed on the first platform 13 is expressed by the formula (2 ).
E(x)=H×sin(θ(Px))
≈H×θ(Px)
≈K×M×H×x 3 Expression (2)
Here, H is a value corresponding to the height H2 of the load W from the upper surface 11 of the first platform 13 . H in the first embodiment is the height H2 of the load W from the upper surface 11 of the first platform 13 and is stored in advance in the storage device 34 . H in the second embodiment is the height H1 from the upper surface 11 of the first table 13 to the tip of the tool 4 . The height H1 is calculated in advance and then stored in the storage device 34 . In the first and second embodiments, K×M×H is treated as the coefficient C in Equation (2).

図5を参照し、第一、第二実施形態に共通する質量取得処理を説明する。CPU31は工作機械1起動時、ROM32に記憶したプログラムを読出して実行して、質量取得処理を開始する。CPU31は、第一台13に載せた積載物Wの質量Mを取得したか否かを判断する(S1)。積載物Wの質量Mは推定誤差E(x)を求める為の係数Cの設定に用いる。積載物Wの質量Mの取得方法は適宜設定してよい。CPU31は作業者が入力部16を操作して積載物Wの質量を入力時、入力値を積載物Wの質量Mとして取得してもよい。CPU31は、積載物Wの質量Mをテーブル装置10による第一台13の加速度と加速時のトルクから求めてもよい。 Mass acquisition processing common to the first and second embodiments will be described with reference to FIG. When the machine tool 1 is activated, the CPU 31 reads out and executes a program stored in the ROM 32 to start mass acquisition processing. The CPU 31 determines whether or not the mass M of the load W placed on the first platform 13 has been obtained (S1). The mass M of the load W is used to set the coefficient C for obtaining the estimation error E(x). A method for obtaining the mass M of the load W may be set as appropriate. When the operator operates the input unit 16 to input the mass of the load W, the CPU 31 may acquire the input value as the mass M of the load W. FIG. The CPU 31 may obtain the mass M of the load W from the acceleration of the first table 13 by the table device 10 and the torque during acceleration.

積載物Wの質量Mを求める時、CPU31は以下の手順を実行する。一例としてX軸モータ53を使用する時を説明する。CPU31はX軸モータ53を駆動し、第一台13を静止状態から一定の速度Vとなる迄一定の加速度で加速する。その後、CPU31は第一台13を一定の速度Vで一定の距離X軸方向に移動させる。その後、CPU31は一定の減速度で減速して第一台13を停止する。加速時の推定積載物質量と減速時の推定積載物質量を、次の二つの式(3)、(4)で示す。式(3)では加速時の任意の速度V1の時の加速度をα、トルクをT1とする。式(4)では減速時の速度V1の時の加速度を-α、トルクをT2とする。kは、総質量をモータ軸換算イナーシャに変換するパラメータである。総質量は、積載物質量と積載物無し時の第一台13の質量との和である。
加速時の推定積載物質量=[(T1-粘性抵抗×V1+第一台13の摺動抵抗)/(α×k)]-積載物無し時の第一台13の質量 ・・・式(3)
減速時の推定積載物質量=-[(T2-粘性抵抗×V1+第一台13の摺動抵抗)/(α×k)]-積載物無し時の第一台13の質量 ・・・式(4)
式(3)、式(4)に基づく加速時の推定積載物質量と減速時の推定積載物質量の平均を、式(5)で示す。
加速時の推定積載物質量と減速時の推定積載物質量の平均=[(T1-T2)/(2×α×k)]-積載物無し時の第一台13の質量 ・・・式(5)
CPU31は式(5)を用いて機械の環境温度や経年変化によって生ずる変動分を相殺して積載物Wの質量Mを推定できる。
When obtaining the mass M of the load W, the CPU 31 executes the following procedure. A case where the X-axis motor 53 is used will be described as an example. The CPU 31 drives the X-axis motor 53 to accelerate the first table 13 from a stationary state to a constant speed V at a constant acceleration. After that, the CPU 31 moves the first table 13 at a constant speed V by a constant distance in the X-axis direction. After that, the CPU 31 decelerates at a constant deceleration and stops the first machine 13 . The estimated loading material amount during acceleration and the estimated loading material amount during deceleration are expressed by the following two equations (3) and (4). In equation (3), the acceleration at an arbitrary speed V1 during acceleration is α, and the torque is T1. In equation (4), the acceleration at the speed V1 during deceleration is -α, and the torque is T2. k is a parameter for converting the total mass into motor shaft equivalent inertia. The total mass is the sum of the amount of loaded material and the mass of the first platform 13 when there is no loaded material.
Estimated amount of loaded material during acceleration=[(T1−viscous resistance×V1+sliding resistance of first stage 13)/(α×k)]−mass of first stage 13 when there is no load Expression (3 )
Estimated amount of loaded material during deceleration = - [(T2 - viscous resistance x V1 + sliding resistance of first stage 13) / (α x k)] - mass of first stage 13 when there is no load Expression ( 4)
The average of the estimated loading material amount during acceleration and the estimated loading material amount during deceleration based on equations (3) and (4) is shown in equation (5).
Average of the estimated loading material amount during acceleration and the estimated loading material amount during deceleration = [(T1-T2)/(2 x α x k)] - Mass of the first platform 13 when there is no load Expression ( 5)
The CPU 31 can estimate the mass M of the load W by using the equation (5) to offset variations caused by the ambient temperature of the machine and aging.

積載物Wの質量Mを求める他の方法ではCPU31は工作機械1を早送り動作している間の加速度αとトルクTを式(6)に代入して負荷質量Qを推定する。早送り動作は被削材3に工具4を接近又は離隔する為、切削移動よりも速い速度で被削材3に対し主軸9を移動する動作である。
Q=T/α ・・・式(6)
CPU31は更に、式(7)に基づき積載物Wの質量Mを推定する。
積載物Wの質量M=負荷質量Q-送り機構の等価質量-第一台13の質量 ・・・式(7)
送り機構の等価質量は、Y軸移動機構18の構成要素のイナーシャの合計を質量に換算した値である。
In another method of obtaining the mass M of the load W, the CPU 31 substitutes the acceleration α and the torque T while the machine tool 1 is fast-forwarding into the equation (6) to estimate the load mass Q. The rapid feed operation is an operation of moving the spindle 9 with respect to the work material 3 at a faster speed than the cutting movement in order to bring the tool 4 closer to or away from the work material 3 .
Q=T/α Expression (6)
The CPU 31 further estimates the mass M of the load W based on Equation (7).
Mass M of loaded object W=load mass Q−equivalent mass of feed mechanism−mass of first stage 13 Equation (7)
The equivalent mass of the feed mechanism is a value obtained by converting the total inertia of the components of the Y-axis movement mechanism 18 into mass.

CPU31は、積載物Wの質量Mを取得時(S1:YES)、取得した質量Mを式(8)に代入して係数Cを更新し、更新した係数Cを記憶装置34に記憶する(S2)。CPU31は式(8)において、KとHは記憶装置34に記憶した定数を用いて係数Cを求める。
係数C=K×M×H ・・・式(8)
When acquiring the mass M of the load W (S1: YES), the CPU 31 substitutes the acquired mass M into the equation (8) to update the coefficient C, and stores the updated coefficient C in the storage device 34 (S2 ). The CPU 31 uses the constants K and H stored in the storage device 34 to obtain the coefficient C in the equation (8).
Coefficient C=K×M×H Expression (8)

積載物Wの質量Mを未取得時(S1:NO)、又はS2の次に、CPU31は終了指示を取得したか否かを判断する(S3)。作業者は入力部16を操作して終了指示を入力する。終了指示を未取得時(S3:NO)、CPU31は処理をS1に戻す。終了指示を取得時(S3:YES)、CPU31は質量取得処理を終了する。 When the mass M of the load W has not been obtained (S1: NO), or after S2, the CPU 31 determines whether or not an end instruction has been obtained (S3). The operator operates the input unit 16 to input an end instruction. When the end instruction is not acquired (S3: NO), the CPU 31 returns the process to S1. When the end instruction is acquired (S3: YES), the CPU 31 ends the mass acquisition process.

図6、図7を参照し、第一実施形態の主処理を説明する。CPU31はNCプログラム実行指示を取得時、ROM32に記憶した主プログラムを読出して実行することで、主処理を開始する。 The main processing of the first embodiment will be described with reference to FIGS. 6 and 7. FIG. When the CPU 31 acquires the NC program execution instruction, the main process is started by reading out and executing the main program stored in the ROM 32 .

CPU31はNCプログラムを一ブロック読出し(S11)、読出したブロックが終了指令か否かを判断する(S12)。読出したブロックが終了指令ではない時(S12:NO)、CPU31は読出したブロックが軸動作指令か否かを判断する(S13)。軸動作は第一台13に対する主軸9の位置を相対的に移動する動作である。軸動作指令は位置決め指令又は切削指令である。位置決め指令は相対的に第一台13に対し主軸9を目標位置(目標値)に位置決めする指令である。切削指令は例えばタップ、ドリル等の工具4による穴空け、フライス、エンドミル等の工具4による側面加工を行う指令である。軸動作指令は第一位置指令、第二位置指令、第三位置指令の少なくとも何れかを含む。第一位置指令は第一台13のX軸方向の位置を指令する。第二位置指令は主軸ヘッド7の上下方向の位置を指令する。第三位置指令は第一台13のY軸方向の位置を指令する。 The CPU 31 reads one block of the NC program (S11), and determines whether or not the read block is an end command (S12). When the read block is not an end command (S12: NO), the CPU 31 determines whether or not the read block is an axis operation command (S13). Axial motion is the motion of moving the position of the spindle 9 relative to the first table 13 . An axis motion command is a positioning command or a cutting command. The positioning command is a command to position the spindle 9 at a target position (target value) relative to the first table 13 . The cutting command is, for example, a command for boring a hole with a tool 4 such as a tap or a drill, or side machining with a tool 4 such as a milling cutter or an end mill. The axis motion command includes at least one of a first position command, a second position command and a third position command. The first position command commands the position of the first table 13 in the X-axis direction. The second position command commands the vertical position of the spindle head 7 . The third position command commands the position of the first table 13 in the Y-axis direction.

ブロックが「G0X200.Y250;」の時、CPU31は読出したブロックが軸動作指令と判断し(S13:YES)、記憶装置34を参照して係数Cを取得する(S14)。CPU31はブロックから第一台13のX軸方向の位置を指令する第一位置指令を取得する(S15)。ブロックが「G0X200.Y250;」の時、CPU31は第一位置指令「X200」を取得する。第一位置指令の「200」は基準Rからの距離に対応する。CPU31は、S1で取得した質量Mに基づく係数Cと第一位置指令の位置とを用い、第一台13に載せた積載物Wによる第二台12の撓みを補正した位置を演算する(S16)。CPU31は第一位置指令のX座標の値xを式(2)に代入して推定誤差E(x)を求める。CPU31は式(9)を用い、補正した第一方向の位置x´を求める。
x´=x-E(x) ・・・式(9)
When the block is "G0X200.Y250;", the CPU 31 determines that the read block is an axis operation command (S13: YES), and refers to the storage device 34 to acquire the coefficient C (S14). The CPU 31 acquires a first position command for commanding the position of the first machine 13 in the X-axis direction from the block (S15). When the block is "G0X200.Y250;", the CPU 31 acquires the first position command "X200". The first position command "200" corresponds to the distance from the reference R. The CPU 31 uses the coefficient C based on the mass M obtained in S1 and the position of the first position command to calculate the position where the bending of the second platform 12 due to the load W placed on the first platform 13 is corrected (S16 ). The CPU 31 substitutes the X-coordinate value x of the first position command into the equation (2) to obtain the estimated error E(x). The CPU 31 uses the equation (9) to find the corrected position x' in the first direction.
x'=x−E(x) Expression (9)

CPU31はS11で読出したブロックに応じて軸動作を行う(S17)。CPU31は第一位置指令に応じたX軸方向の移動に関し、X軸モータ53を駆動してS16で補正した位置x´に第一台13をX軸方向移動する。位置決め指令「G0X200.Y250;」は第三位置指令「Y250」を含むので、CPU31はY軸方向の移動に関し、第三位置指令に応じてY軸モータ54を駆動して第一台13をY軸方向に移動する。CPU31は処理をS11に戻す。 The CPU 31 performs an axis operation according to the block read in S11 (S17). Regarding movement in the X-axis direction according to the first position command, the CPU 31 drives the X-axis motor 53 to move the first stage 13 in the X-axis direction to the position x' corrected in S16. Since the positioning command "G0X200.Y250;" includes the third position command "Y250", the CPU 31 drives the Y-axis motor 54 in accordance with the third position command to move the first table 13 to the Y position. Move axially. The CPU 31 returns the process to S11.

読出したブロックが軸動作指令でない時(S13:NO)、CPU31はブロックが示す制御指令に応じたその他の処理を実行する(S20)。軸動作指令でない制御指令はクーラント吐出指令等である。CPU31は処理をS11に戻す。読出したブロックが終了指令時(S12:YES)、CPU31は以上で主処理を終了する。 When the read block is not an axis operation command (S13: NO), the CPU 31 executes other processing according to the control command indicated by the block (S20). A control command that is not a shaft operation command is a coolant discharge command or the like. The CPU 31 returns the process to S11. When the read block instructs to end (S12: YES), the CPU 31 ends the main processing.

図7は第一実施形態の評価結果を示す。積載物Wの質量Mが300kgである条件1での誤差測定値を白い四角で示し、積載物Wの質量Mが400kgである条件2での誤差測定値を黒丸で示す。図7(A)の点線で示す曲線81が条件1の推定誤差E(x)、実線で示す曲線82が条件2の推定誤差E(x)である。第一実施形態の評価では、CPU31はHに誤差測定時の第一台13の上面11から積載物Wの測定高さH2を設定し、定数Kに誤差測定値に最小二乗法を適用して求めた値を設定した。図7(A)の如く、主処理に依り第一位置指令の位置を補正しない時、基準Rからの距離の絶対値が大きくなる程、第一台13のX軸方向の位置の誤差の絶対値が大きくなる。以降、X軸方向の位置の誤差を単に誤差とする。条件2は条件1よりも第一台13の誤差の絶対値が大きい。図7(B)の如く、積載物Wの質量Mに基づく係数Cと第一位置指令の位置とを用い、第一位置指令の位置を式(9)により補正した時、補正前に比べ、第一台13の誤差の絶対値が小さくなる。第一台13のX軸方向の誤差の絶対値は基準Rからの距離によらず10μm以下に収まる。 FIG. 7 shows evaluation results of the first embodiment. White squares indicate error measurements under condition 1 where the mass M of the load W is 300 kg, and black circles show error measurements under condition 2 where the load W has a mass M of 400 kg. A curve 81 indicated by a dotted line in FIG. 7A is the estimated error E(x) under Condition 1, and a curve 82 indicated by a solid line is the estimated error E(x) under Condition 2. FIG. In the evaluation of the first embodiment, the CPU 31 sets H to the measurement height H2 of the load W from the upper surface 11 of the first platform 13 at the time of error measurement, and applies the least squares method to the constant K to the error measurement value. Set the desired value. As shown in FIG. 7A, when the position of the first position command is not corrected by the main process, the larger the absolute value of the distance from the reference R, the greater the absolute value of the positional error of the first stage 13 in the X-axis direction. value increases. Henceforth, the positional error in the X-axis direction will simply be referred to as an error. Under Condition 2, the absolute value of the error of the first stage 13 is larger than under Condition 1. As shown in FIG. 7(B), using the coefficient C based on the mass M of the load W and the position of the first position command, when the position of the first position command is corrected by the equation (9), compared to before correction, The absolute value of the error of the first stage 13 becomes smaller. The absolute value of the error in the X-axis direction of the first stage 13 is within 10 μm regardless of the distance from the reference R.

図8~図10を参照し、第二実施形態の主処理を説明する。CPU31はNCプログラム実行指示を取得時、ROM32に記憶したプログラムを読出して実行することで、主処理を開始する。図8において、図6に示す主処理と同様の処理には同じ符号を付与している。図8の主処理は、S14~S17の処理に替えてS21の処理を行い、S20の処理に替えて、S22~S24の処理を行う点が異なる。図6と同様の処理は説明を省略する。 The main processing of the second embodiment will be described with reference to FIGS. 8 to 10. FIG. When the CPU 31 acquires the NC program execution instruction, it reads out and executes the program stored in the ROM 32 to start the main process. In FIG. 8, the same reference numerals are given to the same processes as the main process shown in FIG. The main process of FIG. 8 is different in that the process of S21 is performed instead of the process of S14 to S17, and the process of S22 to S24 is performed instead of the process of S20. Description of the same processing as in FIG. 6 is omitted.

S21では、CPU31は図9の軸動作処理を行う。図9の如く、CPU31はS11で読出したブロックが位置決め指令か否かを判断する(S31)。S11で読出したブロックが位置決め指令時(S31:YES)、CPU31はS11で読出したブロックから第二位置指令を取得する(S32)。CPU31は主軸9が装着した工具4に応じた工具長補正量と第二位置指令に依り第一台13の上面11から工具4の先端までの高さH1を取得する(S33)。工具長補正量はCPU31が後述のS22で取得後、記憶装置34に記憶してある。CPU31は第二位置指令が示す主軸9の第一台13の上面11からの高さから工具長補正量を差引いて、工具4の先端迄の高さH1を求める。高さH1は積載物Wの第一台13の上面11からの高さH2に応じた値であり、積載物Wの第一台13の上面11からの高さH2よりも所定量上方となる位置である。CPU31はS33で取得した高さH1を式(8)の高さHに代入し、係数Cを更新する(S34)。CPU31は式(8)において、KとMは記憶装置34に記憶した値を用いて係数Cを更新する。S34の処理に依り、係数CはS33で取得した高さH1に基づく値となる。工具長補正量の指定がない時、CPU31は工具長補正量を0として係数Cを求める。 In S21, the CPU 31 performs the axis motion processing of FIG. As shown in FIG. 9, the CPU 31 determines whether the block read in S11 is a positioning command (S31). When the block read in S11 is a positioning command (S31: YES), the CPU 31 acquires the second position command from the block read in S11 (S32). The CPU 31 acquires the height H1 from the upper surface 11 of the first table 13 to the tip of the tool 4 according to the tool length correction amount corresponding to the tool 4 mounted on the spindle 9 and the second position command (S33). The tool length correction amount is stored in the storage device 34 after being acquired by the CPU 31 in S22, which will be described later. The CPU 31 subtracts the tool length correction amount from the height of the main spindle 9 from the upper surface 11 of the first table 13 indicated by the second position command to obtain the height H1 to the tip of the tool 4 . The height H1 is a value corresponding to the height H2 of the load W from the upper surface 11 of the first platform 13, and is a predetermined amount above the height H2 of the load W from the upper surface 11 of the first platform 13. position. The CPU 31 substitutes the height H1 acquired in S33 for the height H in the equation (8) and updates the coefficient C (S34). The CPU 31 updates the coefficient C using the values stored in the storage device 34 for K and M in equation (8). Due to the processing of S34, the coefficient C becomes a value based on the height H1 acquired in S33. When the tool length correction amount is not specified, the CPU 31 obtains the coefficient C by setting the tool length correction amount to 0.

CPU31はS11で読出したブロックから第一位置指令を取得する(S35)。CPU31はS1で取得した質量Mと高さHに応じた係数CとS31の第二位置指令に対応する第一位置指令の位置とを用いS16と同様に第一位置指令の位置を補正する(S36)。CPU31はS11で読出したブロックに応じて位置決め動作を行う(S37)。S17と同様に、CPU31は第一位置指令に応じたX軸方向の移動に関し、X軸モータ53を駆動してS36で補正した位置x´に第一台13を移動する。Y軸方向の移動に関しY軸モータ54を駆動し、Z軸方向の移動に関しZ軸モータ51を駆動して第一台13と工具4を相対移動する。CPU31はS34で更新した係数Cを記憶装置34に記憶する(S42)。 CPU 31 acquires the first position command from the block read in S11 (S35). The CPU 31 corrects the position of the first position command in the same manner as in S16 using the coefficient C corresponding to the mass M and height H obtained in S1 and the position of the first position command corresponding to the second position command of S31 ( S36). The CPU 31 performs a positioning operation according to the block read in S11 (S37). As in S17, the CPU 31 drives the X-axis motor 53 to move the first table 13 to the position x' corrected in S36 regarding movement in the X-axis direction according to the first position command. The Y-axis motor 54 is driven for movement in the Y-axis direction, and the Z-axis motor 51 is driven for movement in the Z-axis direction to move the first table 13 and the tool 4 relative to each other. The CPU 31 stores the coefficient C updated in S34 in the storage device 34 (S42).

S11で読出したブロックが切削指令時(S31:NO)、CPU31は記憶装置34から係数Cを取得する(S38)。CPU31はS11で読出したブロックに第一位置指令がある時、第一位置指令を取得する(S39)。CPU31はS38で記憶装置34から取得した係数CとS39で取得した第一位置指令の位置とを用い、S16と同様に第一位置指令の位置を補正する(S40)。CPU31はS11で読出したブロックに応じて切削動作を行う(S41)。S17と同様に、CPU31はX軸方向の移動に関し、X軸モータ53を駆動してS40で補正した位置x´に第一台13を移動する。CPU31はY軸方向の移動に関しY軸モータ54を駆動し、Z軸方向の移動に関しZ軸モータ51を駆動して第一台13、工具4を相対移動する。S41又はS42の次に、CPU31は処理を図8の主処理に戻す。CPU31はS21の後処理をS11に戻す。 When the block read in S11 is a cutting command (S31: NO), the CPU 31 acquires the coefficient C from the storage device 34 (S38). When the block read in S11 contains the first position command, the CPU 31 acquires the first position command (S39). The CPU 31 uses the coefficient C acquired from the storage device 34 in S38 and the position of the first position command acquired in S39 to correct the position of the first position command in the same manner as in S16 (S40). The CPU 31 performs a cutting operation according to the block read out in S11 (S41). As in S17, the CPU 31 drives the X-axis motor 53 to move the first table 13 to the position x' corrected in S40 regarding movement in the X-axis direction. The CPU 31 drives the Y-axis motor 54 for movement in the Y-axis direction, and drives the Z-axis motor 51 for movement in the Z-axis direction to move the first table 13 and the tool 4 relative to each other. After S41 or S42, the CPU 31 returns the process to the main process of FIG. The CPU 31 returns the post-processing of S21 to S11.

読出したブロックが軸動作指令ではない時(S13:NO)、CPU31は読出したブロックが工具長補正量を指定する指令であるか否かを判断する(S22)。読出したブロックが「G43 H01;」の時、CPU31は工具長補正量を指定する指令であると判断し(S22:YES)、ブロック「G43 H01;」が指定する工具長補正番号「01」に応じた工具長補正量を記憶装置34に記憶する(S23)。読出したブロックが工具長補正量を指定する指令でない時(S22:NO)、CPU31はS20と同様にブロックが示す制御指令に応じたその他の処理を実行する(S24)。S23又はS24の次に、CPU31は処理をS11に戻す。 When the read block is not an axis operation command (S13: NO), the CPU 31 determines whether or not the read block is a command for designating the tool length compensation amount (S22). When the read block is "G43 H01;", the CPU 31 determines that it is a command to specify the tool length compensation amount (S22: YES), and sets the tool length compensation number "01" specified by the block "G43 H01;". The corresponding tool length correction amount is stored in the storage device 34 (S23). When the read block is not a command specifying the tool length correction amount (S22: NO), the CPU 31 executes other processing according to the control command indicated by the block (S24) as in S20. After S23 or S24, the CPU 31 returns the process to S11.

図10は第二実施形態の評価結果を示す。高さHが400mmであり積載物Wの質量Mが300kgである条件3での誤差測定値は白丸で示し、高さHが450mmであり積載物Wの質量Mが300kgである条件4での誤差測定値は黒丸で示す。高さHが400mmであり積載物Wの質量Mが400kgである条件5での誤差測定値は白い四角で示し、高さHが450mmであり積載物Wの質量Mが400kgである条件6は黒い四角で示す。図10(A)の条件3の近似曲線は一点鎖線で示す曲線83であり、条件4の近似曲線は実線で示す曲線84である。条件5の近似曲線は点線で示す曲線85であり、条件6の近似曲線は曲線84よりも太い実線で示す曲線86である。図10(A)の如く、第二実施形態の主処理に依り第一位置指令の位置を補正しない時、基準からの距離の絶対値が大きくなる程、第一台13の誤差の絶対値が大きくなる。積載物Wの質量Mが同じ条件では、高さHが400mmよりも450mmの方が、第一台13の誤差の絶対値が大きい。図10(B)の如く、第二実施形態の主処理に依り、積載物Wの質量Mに基づく係数Cと、第一位置指令の位置とを用い、第一位置指令の位置を補正した時、補正前に比べ、第一台13の誤差の絶対値が小さくなる。第一台13の誤差の絶対値は基準Rからの距離及び高さHによらず30μm以下に収まる。 FIG. 10 shows evaluation results of the second embodiment. The error measurement values under Condition 3, where the height H is 400 mm and the mass M of the load W is 300 kg, are indicated by white circles, and the error measurement values under Condition 4, where the height H is 450 mm and the mass M of the load W is 300 kg. Error measurements are indicated by black circles. The measured error values under condition 5, where the height H is 400 mm and the mass M of the load W is 400 kg, are indicated by white squares, and the error measurements under condition 6, where the height H is 450 mm and the mass M of the load W is 400 kg, are indicated by white squares. Indicated by black squares. The approximate curve for Condition 3 in FIG. 10A is curve 83 indicated by a dashed line, and the approximate curve for Condition 4 is curve 84 indicated by a solid line. The approximate curve for condition 5 is curve 85 indicated by a dotted line, and the approximate curve for condition 6 is curve 86 indicated by a solid line thicker than curve 84 . As shown in FIG. 10A, when the position of the first position command is not corrected by the main processing of the second embodiment, the larger the absolute value of the distance from the reference, the larger the absolute value of the error of the first stage 13. growing. Under the condition that the mass M of the load W is the same, the absolute value of the error of the first stage 13 is larger when the height H is 450 mm than when the height H is 400 mm. As shown in FIG. 10B, when the position of the first position command is corrected using the coefficient C based on the mass M of the load W and the position of the first position command according to the main processing of the second embodiment. , the absolute value of the error of the first unit 13 becomes smaller than before the correction. The absolute value of the error of the first stage 13 is within 30 μm regardless of the distance from the reference R and the height H.

第一、第二実施形態の制御装置30において、第一台13、第二台12、X軸モータ53、基台2、Y軸モータ54、工作機械1、制御装置30は夫々本発明の第一台、第二台、第一駆動部、台支持部、第二駆動部、工作機械、制御装置の一例である。S1を行うCPU31は本発明の質量取得部、質量取得処理、質量取得工程の一例である。S15、S35、S39を行うCPU31は本発明の第一指令取得部、指令取得処理、指令取得工程の一例である。S16、S36、S40を行うCPU31は本発明の補正部、補正処理、補正工程の一例である。工具4、主軸9、主軸ヘッド7、コラム5、Z軸モータ51、記憶装置34は夫々本発明の工具、主軸、主軸ヘッド、ヘッド支持部、第三駆動部、記憶装置の一例である。S32を行うCPU31は本発明の第二指令取得部の一例である。S33を行うCPU31は本発明の高さ取得部の一例である。S31を行うCPU31は本発明の種別判断部の一例である。S42を行うCPU31は本発明の記憶制御部の一例である。X軸方向、Y軸方向は夫々本発明の第一方向、第二方向の一例である。 In the control device 30 of the first and second embodiments, the first table 13, the second table 12, the X-axis motor 53, the base 2, the Y-axis motor 54, the machine tool 1, and the control device 30 are the first and second units of the present invention, respectively. It is an example of the first machine, the second machine, the first drive part, the machine support part, the second drive part, the machine tool, and the control device. The CPU 31 that performs S1 is an example of the mass acquisition unit, mass acquisition process, and mass acquisition process of the present invention. The CPU 31 that performs S15, S35, and S39 is an example of the first command obtaining section, the command obtaining process, and the command obtaining step of the present invention. The CPU 31 that performs S16, S36, and S40 is an example of the correction section, correction processing, and correction process of the present invention. The tool 4, spindle 9, spindle head 7, column 5, Z-axis motor 51, and storage device 34 are examples of the tool, spindle, spindle head, head support section, third drive section, and storage device of the present invention, respectively. The CPU 31 that performs S32 is an example of the second command obtaining section of the present invention. CPU31 which performs S33 is an example of the height acquisition part of this invention. The CPU 31 that performs S31 is an example of the type determination unit of the present invention. The CPU 31 that performs S42 is an example of the storage control section of the present invention. The X-axis direction and the Y-axis direction are examples of the first direction and the second direction in the present invention, respectively.

第一、第二実施形態において、制御装置30は、積載物Wを載せる第一台13と、第一台13を水平方向と平行なX軸方向に移動可能に支持する第二台12と、第一台13をX軸方向に移動するX軸モータ53と、第二台12をX軸方向と交差する第二方向に移動可能に支持する基台2と、第二台12を第二方向に移動するY軸モータ54とを備える工作機械1を制御する。CPU31は、第一台13に載せた積載物Wの質量Mを取得する(S1)。CPU31は第一台13のX軸方向の位置を指令する第一位置指令を取得する(S15;S35、S39)。CPU31はS15で第一位置指令を取得したことに応じ、S1で取得した質量Mに基づく係数Cと、第一位置指令の位置とを用い、第一台13に載せた積載物Wによる第二台12の撓みに応じた量、第一位置指令の位置を補正する(S16;S36、S40)。故に制御装置30は、積載物Wの質量Mに基づく係数Cと、第一位置指令の位置とを用い、第一位置指令が示す第一台13のX軸方向の位置を補正するので、第一台13に載せる積載物Wの質量Mに応じた第一台13のX軸方向の位置決め誤差を従来よりも低減できる。 In the first and second embodiments, the control device 30 includes a first platform 13 on which a load W is placed, a second platform 12 that supports the first platform 13 so as to be movable in the X-axis direction parallel to the horizontal direction, An X-axis motor 53 for moving the first stage 13 in the X-axis direction, a base 2 for supporting the second stage 12 so as to be movable in a second direction intersecting the X-axis direction, and a second stage 12 in the second direction. and a Y-axis motor 54 that moves to the machine tool 1 . The CPU 31 acquires the mass M of the load W placed on the first platform 13 (S1). The CPU 31 acquires a first position command for commanding the position of the first table 13 in the X-axis direction (S15; S35, S39). In response to acquiring the first position command in S15, the CPU 31 uses the coefficient C based on the mass M acquired in S1 and the position of the first position command to move the load W placed on the first platform 13 to the second position. The position of the first position command is corrected by an amount corresponding to the deflection of the table 12 (S16; S36, S40). Therefore, the control device 30 uses the coefficient C based on the mass M of the load W and the position of the first position command to correct the position of the first platform 13 in the X-axis direction indicated by the first position command. The positioning error in the X-axis direction of the first platform 13 according to the mass M of the load W placed on one platform 13 can be reduced compared to the conventional art.

制御装置30の第一位置指令の位置は、第一台13に載せた積載物Wによる第二台12の撓み角度θが最小になる位置である基準Rからの距離で表す。制御装置30の第一位置指令の位置は、撓み角度θが最小ではない位置を基準とする時の第一位置指令の位置よりも、第一台13に載せる積載物Wによる第二台12の撓みに応じた値を表しやすい。故に制御装置30は、撓み角度θが最小ではない位置を基準とする時よりも、第二台12の撓みに応じた量の計算を簡単にできる。 The position of the first position command of the control device 30 is represented by the distance from the reference R, which is the position at which the deflection angle θ of the second platform 12 due to the load W placed on the first platform 13 is minimized. The position of the first position command of the control device 30 is the position of the second platform 12 by the load W to be placed on the first platform 13 than the position of the first position command when the position of the first position command is based on the position where the deflection angle θ is not the minimum. It is easy to express the value corresponding to the deflection. Therefore, the control device 30 can more easily calculate the amount corresponding to the bending of the second table 12 than when the position where the bending angle θ is not the minimum is used as the reference.

制御装置30の係数Cは、工作機械1に固有の定数に応じた値である。制御装置30は、補正に用いる係数Cを工作機械1に固有の定数に応じた値とすることで、工作機械1の全個体を測定することなく第一位置指令の位置を補正できる。 Coefficient C of control device 30 is a value corresponding to a constant unique to machine tool 1 . The control device 30 can correct the position of the first position command without measuring the entire machine tool 1 by setting the coefficient C used for correction to a value corresponding to a constant specific to the machine tool 1 .

制御装置30の基準Rは第一台13の移動可能範囲の中心である。制御装置30は、基準Rが第一台13の移動可能範囲の端部にある時よりも、第二台12の撓み角度θの最大値を小さくできる。 The reference R of the controller 30 is the center of the movable range of the first platform 13 . The control device 30 can make the maximum value of the bending angle θ of the second table 12 smaller than when the reference R is at the end of the movable range of the first table 13 .

制御装置30の係数Cは、第一台13の上面11から積載物Wの高さに応じた値に基づく値である。制御装置30は、補正に用いる係数Cを積載物Wの高さに応じた値に基づく値とすることで、積載物Wの高さを考慮して第一位置指令の位置を補正できる。 The coefficient C of the control device 30 is a value based on the height of the load W from the upper surface 11 of the first platform 13 . The control device 30 can correct the position of the first position command in consideration of the height of the load W by setting the coefficient C used for correction to a value based on the height of the load W.

第二実施形態の制御装置30が制御する工作機械1は工具4を装着する主軸9と、主軸9を支持し、上下動可能な主軸ヘッド7と、主軸ヘッド7を上下方向に移動可能に支持するコラム5と、主軸ヘッド7を上下方向に移動するZ軸モータ51とを備える。CPU31は主軸ヘッド7の上下方向の位置を指令する第二位置指令を取得する(S35)。CPU31は主軸9が装着した工具4に応じた工具長補正量と第二位置指令に依り工具4の先端の第一台13の上面11からの高さH1を取得する(S33)。積載物Wの高さに応じた値Hは、第一台13の上面11からS33で取得した工具4の先端迄の高さH1である。制御装置30は、補正に用いる係数Cを工具4の先端迄の高さHに応じた値とすることで、第二位置指令が示す主軸ヘッド7の上下位置を考慮して第一位置指令の位置を補正できる。 A machine tool 1 controlled by a control device 30 of the second embodiment supports a spindle 9 on which a tool 4 is mounted, a spindle head 7 capable of vertical movement, and supports the spindle head 7 so as to be vertically movable. and a Z-axis motor 51 for moving the spindle head 7 in the vertical direction. The CPU 31 acquires a second position command for commanding the vertical position of the spindle head 7 (S35). The CPU 31 acquires the height H1 of the tip of the tool 4 from the upper surface 11 of the first table 13 according to the tool length correction amount corresponding to the tool 4 mounted on the spindle 9 and the second position command (S33). The value H corresponding to the height of the load W is the height H1 from the upper surface 11 of the first table 13 to the tip of the tool 4 acquired in S33. By setting the coefficient C used for correction to a value corresponding to the height H up to the tip of the tool 4, the control device 30 adjusts the first position command in consideration of the vertical position of the spindle head 7 indicated by the second position command. position can be corrected.

第二実施形態の制御装置30のCPU31は、第二位置指令が位置決め指令か切削指令かを判断する(S31)。CPU31は第二位置指令が位置決め指令であると判断時(S31:YES)、第一台13の上面11から工具4の先端迄の高さH1を取得する(S33)。CPU31は、S31で第二位置指令が位置決め指令であると判断時(S31:YES)、S33で取得した高さH1を用いて係数Cを更新し(S34)、更新した係数Cと第二位置指令に対応する第一位置指令の位置とを用い、第一位置指令の位置を補正する(S36)。制御装置30は第一位置指令が位置決め指令である時の第二位置指令が示す主軸ヘッド7の上下位置を考慮して第一位置指令の位置を補正できる。故に制御装置30は、第一台13に載せる積載物Wの第一台13の上面11からの高さH2が比較的大きい時でも、第一位置指令が示す第一台13のX軸方向の位置を適切に補正できる。 The CPU 31 of the control device 30 of the second embodiment determines whether the second position command is a positioning command or a cutting command (S31). When the CPU 31 determines that the second position command is a positioning command (S31: YES), it acquires the height H1 from the upper surface 11 of the first table 13 to the tip of the tool 4 (S33). When the CPU 31 determines in S31 that the second position command is a positioning command (S31: YES), the CPU 31 updates the coefficient C using the height H1 acquired in S33 (S34). Using the position of the first position command corresponding to the command, the position of the first position command is corrected (S36). The controller 30 can correct the position of the first position command in consideration of the vertical position of the spindle head 7 indicated by the second position command when the first position command is a positioning command. Therefore, even when the height H2 of the load W to be placed on the first platform 13 from the upper surface 11 of the first platform 13 is relatively large, the control device 30 can move the first platform 13 in the X-axis direction indicated by the first position command. Position can be corrected appropriately.

第二実施形態の制御装置30は記憶装置34を備え、S34で更新した係数Cを記憶装置34に記憶する(S42)。CPU31は第二位置指令が切削指令であると判断時(S31:NO)、記憶装置34に記憶した係数Cと第一位置指令の位置とを用い、第一位置指令の位置を補正する。制御装置30は切削加工時に第一位置指令の位置を補正できる。 The control device 30 of the second embodiment includes a storage device 34, and stores the coefficient C updated in S34 in the storage device 34 (S42). When the CPU 31 determines that the second position command is the cutting command (S31: NO), it uses the coefficient C stored in the storage device 34 and the position of the first position command to correct the position of the first position command. The control device 30 can correct the position of the first position command during cutting.

第一、第二実施形態の制御装置30の第一台13に載せた積載物Wによる第二台12の撓みに応じた量は、係数Cと、距離xの三乗との積である。制御装置30は、第二台12の撓みに応じた量を比較的に簡単に計算できる。 The amount corresponding to the deflection of the second platform 12 due to the load W placed on the first platform 13 of the control device 30 of the first and second embodiments is the product of the coefficient C and the cube of the distance x. The control device 30 can relatively easily calculate the amount corresponding to the deflection of the second platform 12 .

本発明の制御装置、制御方法、制御プログラム、及び記憶媒体は上記実施形態の他に種々変更できる。制御装置30は工作機械1とは別の装置でもよい。工具4、主軸9、主軸ヘッド7、コラム5、Z軸モータ51、記憶装置34は適宜省略してよいし、構成を変更してよい。工作機械1は一種類の工具4のみを装着可能でもよく、工具4の先端高さH1は、工具4の種類に依らず同じでもよい。第一方向、第二方向は適宜変更してよく、前後方向(Y軸方向)、左右方向(X軸方向)を第一方向、第二方向としてもよい。第一方向、第二方向は水平方向に平行で交差する方向であればよく、直交しなくてもよい。 The control device, control method, control program, and storage medium of the present invention can be variously modified in addition to the above embodiments. The control device 30 may be a device separate from the machine tool 1 . The tool 4, the spindle 9, the spindle head 7, the column 5, the Z-axis motor 51, and the storage device 34 may be omitted as appropriate, or their configurations may be changed. The machine tool 1 may be able to mount only one type of tool 4 , and the tip height H1 of the tool 4 may be the same regardless of the type of the tool 4 . The first direction and the second direction may be changed as appropriate, and the front-rear direction (Y-axis direction) and the left-right direction (X-axis direction) may be the first direction and the second direction. The first direction and the second direction may be directions parallel to and crossing the horizontal direction, and do not have to be orthogonal.

制御装置30が制御処理を行う為のプログラムはCPU31が該プログラムを行う迄に、制御装置30の記憶装置34に記憶されればよい。従って、プログラムの取得方法、取得経路及びプログラムを記憶する機器の夫々は適宜変更してもよい。CPU31が行うプログラムはケーブル又は無線通信を介して、他の装置から受信し、フラッシュメモリ等の記憶装置に記憶してもよい。他の装置は例えば、PC、及びネットワーク網を介して接続されるサーバを含む。 A program for the control device 30 to perform control processing may be stored in the storage device 34 of the control device 30 until the CPU 31 executes the program. Therefore, the program acquisition method, acquisition route, and device for storing the program may be changed as appropriate. A program executed by the CPU 31 may be received from another device via a cable or wireless communication and stored in a storage device such as a flash memory. Other devices include, for example, PCs and servers connected via a network.

制御装置30が行う処理の一部又は全部はCPU31とは別の電子機器(例えば、ASIC)が行ってもよい。制御装置30が行う処理は複数の電子機器(例えば、複数のCPU)が分散処理してもよい。制御装置30が行う処理の各ステップは必要に応じて順序の変更、ステップの省略、及び追加ができる。本発明の範囲は制御装置30上で稼動しているオペレーティングシステム(OS)等が、CPU31の指令で各処理の一部又は全部を行う態様も含む。例えば、上記実施形態に以下の変更を適宜加えてもよい。 Some or all of the processing performed by the control device 30 may be performed by an electronic device (for example, an ASIC) other than the CPU 31 . The processing performed by the control device 30 may be distributed by a plurality of electronic devices (for example, a plurality of CPUs). Each step of the process performed by the control device 30 can be changed in order, omitted, or added as necessary. The scope of the present invention also includes a mode in which an operating system (OS) or the like running on the control device 30 performs a part or all of each process according to instructions from the CPU 31 . For example, the following modifications may be added to the above embodiments as appropriate.

基準Rは適宜変更してよい。係数Cの設定方法は適宜変更してよく、係数Cは工作機械1に固有の定数に応じた値でなくてもよいし、第一台13の上面11からの積載物Wの高さH2に応じた値に基づく値でなくてもよい。積載物Wの高さH2に応じた値は第一台13から工具4の先端迄の高さH1でなくてもよい。軸動作指令は早送り指令等の他の制御指令を含んでもよい。この時CPU31はS31とは別途、軸動作指令が切削指令であるか否かを判断してもよい。CPU31は軸動作指令が切削指令である時に、第一台13から工具4の先端迄の高さH2を取得して、高さH2に応じて更新した係数Cを用いて第一位置指令の位置を補正してもよい。 The reference R may be changed as appropriate. The method of setting the coefficient C may be changed as appropriate. It does not have to be a value based on the corresponding value. The value corresponding to the height H2 of the load W does not have to be the height H1 from the first table 13 to the tip of the tool 4 . Axis motion commands may also include other control commands, such as rapid traverse commands. At this time, the CPU 31 may determine whether or not the axis operation command is a cutting command, separately from S31. When the axis operation command is a cutting command, the CPU 31 obtains the height H2 from the first table 13 to the tip of the tool 4, and uses the coefficient C updated according to the height H2 to determine the position of the first position command. may be corrected.

第一変形例の制御装置30は係数Cと、質量Mに基づく係数Uと、第一位置指令の位置とを用い、第一台13に載せた積載物Wによる第二台12の撓みに応じた量に加え、第一台13に載せた積載物Wによる基台2の撓みに応じた量、第一位置指令の位置を補正してもよい。第一台13に載せた積載物Wによる基台2の撓みに応じた量は、係数Uと距離xの積であってもよい。即ち、第一変形例の制御装置30は、式(2)に替えて式(10)で算出した推定誤差E(x)を用い、第一実施形態の主処理のS16を行ってもよい。
E(x)=C×x+U×x
=K×M×H×x+B×M×h×x ・・・式(10)
ここで、Bは機械固有の定数である。BはKと同じもよいし、異なってもよい。hは第一台13の上面11から積載物Wの高さH2に応じた値である。Hはhと同じでもよいし、異なってもよい。式(10)の第一項は第一台13に載せた積載物Wによる第二台12の撓みに応じた量を表し、第二項は第一台13に載せた積載物Wによる基台2の撓みに応じた量を表す。該制御装置30は、第一台13に載せる積載物Wによる基台2の撓みを考慮して、第一台13の第一方向の位置決め誤差を従来よりも低減できる。制御装置30は、基台2の撓みに応じた量を比較的に簡単に計算できる。係数C、係数Uは本発明の第一係数、第二係数の一例である。
The control device 30 of the first modified example uses the coefficient C, the coefficient U based on the mass M, and the position of the first position command to control the deflection of the second platform 12 by the load W placed on the first platform 13. In addition to the above amount, the amount according to the deflection of the base 2 due to the load W placed on the first table 13 and the position of the first position command may be corrected. The amount corresponding to the deflection of the base 2 due to the load W placed on the first platform 13 may be the product of the coefficient U and the distance x. That is, the control device 30 of the first modification may use the estimated error E(x) calculated by the formula (10) instead of the formula (2) to perform S16 of the main process of the first embodiment.
E(x)=C×x 3 +U×x
=K×M×H×x 3 +B×M×h×x Expression (10)
where B is a machine specific constant. B may be the same as or different from K. h is a value corresponding to the height H2 of the load W from the upper surface 11 of the first platform 13 . H may be the same as or different from h. The first term of the formula (10) represents the amount corresponding to the deflection of the second platform 12 due to the load W placed on the first platform 13, and the second term represents the base due to the load W placed on the first platform 13. 2 represents the amount corresponding to the deflection of . The control device 30 can reduce the positioning error of the first table 13 in the first direction compared to the conventional art by considering the deflection of the base table 2 due to the load W placed on the first table 13 . The controller 30 can relatively easily calculate the amount corresponding to the deflection of the base 2 . Coefficient C and coefficient U are examples of the first and second coefficients of the present invention.

図11は第一変形例の評価結果を示す。図11では、積載物Wの質量Mが200kgである条件11での誤差測定値を白い四角で示し、積載物Wの質量Mが300kgである条件12での誤差測定値を白丸で示し、積載物Wの質量Mが400kgである条件13での誤差測定値を黒丸で示す。図11(A)の実線で示す曲線91が条件11での推定誤差E(x)、点線で示す曲線92が条件12での推定誤差E(x)、太線で示す曲線93が条件13での推定誤差E(x)である。第一変形例の評価では、CPU31はH、hに誤差測定時の第一台13の上面11から工具4の先端迄の高さH1を設定し、定数K、Bに誤差測定値に最小二乗法を適用して求めた値を設定した。図11(A)の如く、第一位置指令の位置を補正しない時、基準Rからの距離の絶対値が大きくなる程、基準Rからの距離の絶対値が小さい場合よりも、第一台13の誤差の絶対値が大きい。図11(B)の如く、第一変形例の主処理に依り、積載物Wの質量Mに基づく係数C、係数U、第一位置指令の位置を用い、第一位置指令の指令位置を補正した時、補正前に比べ、第一台13の誤差の絶対値が小さくなる。第一変形例の主処理に依り、第一台13の誤差の絶対値は基準Rからの距離によらず10μm以下に収まる。故に第一変形例の制御装置30は、第一台13に載せる積載物Wによる第二台12の撓みに応じた量と第一台13に載せる積載物Wによる基台2の撓みに応じた量を考慮して、第一台13の第一方向の位置決め誤差を低減できる。 FIG. 11 shows the evaluation results of the first modified example. In FIG. 11, white squares indicate the error measurement values under Condition 11 where the mass M of the load W is 200 kg, and white circles show the error measurement values under Condition 12 where the mass M of the load W is 300 kg. Black circles indicate error measurement values under Condition 13 where the mass M of the object W is 400 kg. A curve 91 indicated by a solid line in FIG. 11A is an estimated error E(x) under condition 11, a curve 92 indicated by a dotted line is an estimated error E(x) under condition 12, and a curve 93 indicated by a thick line is under condition 13. Estimated error E(x). In the evaluation of the first modification, the CPU 31 sets H and h to the height H1 from the upper surface 11 of the first table 13 to the tip of the tool 4 at the time of error measurement, and sets constants K and B to the error measurement value at least two times. The values obtained by applying multiplication were set. As shown in FIG. 11A, when the position of the first position command is not corrected, the larger the absolute value of the distance from the reference R, the smaller the absolute value of the distance from the reference R. The absolute value of the error is large. As shown in FIG. 11B, according to the main process of the first modification, the commanded position of the first position command is corrected using the coefficient C and the coefficient U based on the mass M of the load W and the position of the first position command. Then, the absolute value of the error of the first stage 13 becomes smaller than before the correction. Depending on the main processing of the first modified example, the absolute value of the error of the first stage 13 falls within 10 μm or less regardless of the distance from the reference R. Therefore, the control device 30 of the first modified example responds to the deflection of the second platform 12 by the load W placed on the first platform 13 and the deflection of the base 2 by the load W placed on the first platform 13. Considering the amount, the positioning error of the first platform 13 in the first direction can be reduced.

図12の如く、係数Cは、第一台13の上面11からの積載物Wの高さH2に応じた値と、基台2の上端と、第一台13の上面11との間の第一所定位置から第一台13の上面11の高さとに基づいてもよい。第一所定位置は基台2の上端と第一台13の上面11との間の位置の内、第一台13に載せた積載物Wによる第二台12の撓みによる第一台13の第一方向の位置の誤差が最小になる位置であってもよい。係数Cは、高さH1と高さH3との和で表す第一所定位置から工具4の先端迄の高さに基づく値であってもよい。 As shown in FIG. 12, the coefficient C is a value corresponding to the height H2 of the load W from the upper surface 11 of the first platform 13, and a value corresponding to the height H2 between the upper end of the base 2 and the upper surface 11 of the first platform 13. It may be based on the height of the upper surface 11 of the first platform 13 from a predetermined position. The first predetermined position is a position between the upper end of the base table 2 and the upper surface 11 of the first table 13 , and the position of the first table 13 due to the bending of the second table 12 due to the load W placed on the first table 13 . It may be a position that minimizes the positional error in one direction. The coefficient C may be a value based on the height from the first predetermined position to the tip of the tool 4 represented by the sum of the height H1 and the height H3.

係数Uは、第一台13の上面11からの積載物Wの高さH2に応じた値と、基台2の下端と第一台13の上面11との間の第二所定位置から第一台13の上面11の高さとに基づいてもよい。第二所定位置は基台2の下端と第一台13の上面11との間の位置の内、第一台13に載せた積載物Wによる基台2の撓みによる第一台13の第一方向の位置の誤差が最小になる位置であってもよい。係数Uは、高さH1と高さH4との和で表す第二所定位置から工具4の先端迄の高さに基づく値であってもよい。 The coefficient U is a value corresponding to the height H2 of the load W from the top surface 11 of the first table 13 and a second predetermined position between the lower end of the base table 2 and the top surface 11 of the first table 13 to the first It may be based on the height of the upper surface 11 of the platform 13 . The second predetermined position is a position between the lower end of the base table 2 and the upper surface 11 of the first table 13 , and the first position of the first table 13 due to the deflection of the base table 2 due to the load W placed on the first table 13 . It may be the position where the error of the position of the direction is minimized. The coefficient U may be a value based on the height from the second predetermined position to the tip of the tool 4 represented by the sum of the height H1 and the height H4.

第二変形例の制御装置30は、式(2)に替えて式(11)で算出した推定誤差E(x)を用い、第二実施形態の主処理のS36、S40を行ってもよい。
E(x)=C×x+U×x
=K×M×(H1+H3)×x+B×M×(H1+H4)×x ・・・式(11)
ここで、H3は第一台13に載せた積載物Wによる第二台12の撓みによる第一台13の第一方向の位置の誤差が最小になる位置から第一台13の上面11の高さである。H4は第一台13に載せた積載物Wによる基台2の撓みによる第一台13の第一方向の位置の誤差が最小になる位置から第一台13の上面11の高さである。該制御装置30は、第一所定位置からの第一台13の上面11の高さに応じた、第一台13に載せた積載物Wによる第二台12の撓みに応じた誤差が最小になるように第一位置指令の位置を補正できる。制御装置30は、第二所定位置からの第一台13の上面11の高さに応じた、第一台13に載せた積載物Wによる基台2の撓みに応じた誤差が最小になるように第一位置指令の位置を補正できる。
The control device 30 of the second modified example may perform S36 and S40 of the main processing of the second embodiment using the estimated error E(x) calculated by the formula (11) instead of the formula (2).
E(x)=C×x 3 +U×x
=K×M×(H1+H3)×x 3 +B×M×(H1+H4)×x Expression (11)
Here, H3 is the height of the upper surface 11 of the first platform 13 from the position where the error of the position of the first platform 13 in the first direction due to the deflection of the second platform 12 due to the load W placed on the first platform 13 is minimized. It is. H4 is the height of the upper surface 11 of the first table 13 from the position at which the positional error of the first table 13 in the first direction due to the bending of the base 2 due to the load W placed on the first table 13 is minimized. The control device 30 minimizes the error according to the deflection of the second platform 12 caused by the load W placed on the first platform 13 according to the height of the upper surface 11 of the first platform 13 from the first predetermined position. The position of the first position command can be corrected so that The control device 30 controls the height of the upper surface 11 of the first table 13 from the second predetermined position so that the error corresponding to the deflection of the base 2 due to the load W placed on the first table 13 is minimized. can correct the position of the first position command.

図13は第二変形例の評価結果を示す。図13では、高さHが200mmである条件14での誤差測定値を白い四角で示し、高さHが300mmである条件15での誤差測定値を白丸で示す。高さHが400mmである条件16での誤差測定値を黒丸で示す。条件14~16での積載物Wの質量Mは全て300kgである。図13(A)の実線で示す曲線94が条件14での推定誤差E(x)、点線で示す曲線95が条件15での推定誤差E(x)、太線で示す曲線96が条件16での推定誤差E(x)である。第二変形例の評価では、CPU31はH、hに誤差測定時の第一台13の上面11から工具4の先端までの高さH1を設定し、第一所定位置、第二所定位置、定数K、Bに誤差測定値に最小二乗法を適用して求めた値を設定した。図13(A)の如く、主処理に依り第一位置指令の位置を補正しない時、基準Rからの距離の絶対値が大きくなる程、第一台13の誤差の絶対値が大きくなる。図13(B)の如く、第二変形例の主処理に依り、積載物Wの質量Mに基づく係数Cと、積載物Wの質量Mに基づく係数Uと、第一位置指令の位置とを用い、第一位置指令の位置を補正した時、補正前に比べ、第一台13の誤差の絶対値が小さくなる。第二変形例の主処理に依り、第一台13の誤差の絶対値は基準Rからの距離及び高さHによらず10μm以下に収まる。 FIG. 13 shows the evaluation results of the second modified example. In FIG. 13, the error measurement values under condition 14 where the height H is 200 mm are indicated by white squares, and the error measurement values under condition 15 where the height H is 300 mm are indicated by white circles. Black circles indicate error measurements under Condition 16 where the height H is 400 mm. The mass M of the load W under conditions 14 to 16 is all 300 kg. A curve 94 indicated by a solid line in FIG. 13A is an estimated error E(x) under condition 14, a curve 95 indicated by a dotted line is an estimated error E(x) under condition 15, and a curve 96 indicated by a thick line is under condition 16. Estimated error E(x). In the evaluation of the second modification, the CPU 31 sets H and h to the height H1 from the upper surface 11 of the first table 13 to the tip of the tool 4 at the time of error measurement. Values obtained by applying the method of least squares to the measured error values were set for K and B. As shown in FIG. 13A, when the position of the first position command is not corrected by the main process, the larger the absolute value of the distance from the reference R, the larger the absolute value of the error of the first stage 13 . As shown in FIG. 13(B), the main processing of the second modified example converts the coefficient C based on the mass M of the load W, the coefficient U based on the mass M of the load W, and the position of the first position command. is used, and when the position of the first position command is corrected, the absolute value of the error of the first stage 13 becomes smaller than before the correction. Due to the main processing of the second modification, the absolute value of the error of the first stage 13 is within 10 μm regardless of the distance from the reference R and the height H.

図14の如く、積載物Wの重心が第一台13の第一方向の中心から離れた位置にある時、第三変形例の制御装置30は、係数Cと、積載物Wと第一台13の重心を用いて補正した第一位置指令の位置とを用い、第一台13に載せた積載物Wによる第二台12の撓みに応じた量、第一位置指令の位置を補正してもよい。制御装置30は係数Uと、積載物Wと第一台13の重心を用いて補正した第一位置指令の位置とを用い、第一台13に載せた積載物Wによる基台2の撓みに応じた量、第一位置指令の位置を補正してよい。第三変形例の制御装置30は、式(2)に替えて式(12)で算出した推定誤差E(x)を用い、第二実施形態の主処理のS36、S40を行ってもよい。
E(x)=C×(x-xc)+U×(x-xc)
=K×M×(H1+H3)×(x-xc)+B×M×(H1+H4)×(x-xc) ・・・式(12)
xcは式(13)で表す。
xc=M×xw/(Mt+M) ・・・式(13)
Mtは無積載時の第一台13の質量であり、xwは積載物Wの重心の、第一台13の第一方向の中心からの距離である。xwの取得方法は適宜設定してよい。CPU31は作業者が入力部16を操作してxwを入力時、入力値をxwとして取得してもよい。制御装置30は第一台13に載せた積載物Wを撮影した画像に基づき、xwを推定してもよい。該制御装置30は、第一台13上の積載物Wの重心の偏りを考慮して第一位置指令位置を補正できる。第一所定位置、第二所定位置は適宜変更してよく、第一所定位置は第二所定位置と同じ位置であってもよい。
As shown in FIG. 14, when the center of gravity of the load W is located away from the center of the first platform 13 in the first direction, the control device 30 of the third modification controls the coefficient C, the load W and the first platform. Using the position of the first position command corrected using the center of gravity of 13, the amount corresponding to the deflection of the second platform 12 due to the load W placed on the first platform 13, and the position of the first position command are corrected. good too. The control device 30 uses the coefficient U and the position of the first position command corrected using the load W and the center of gravity of the first table 13 to adjust the deflection of the base table 2 due to the load W placed on the first table 13. The position of the first position command may be corrected by a corresponding amount. The control device 30 of the third modification may perform S36 and S40 of the main processing of the second embodiment using the estimated error E(x) calculated by Equation (12) instead of Equation (2).
E(x)=C×(x−xc) 3 +U×(x−xc)
=K×M×(H1+H3)×(x−xc) 3 +B×M×(H1+H4)×(x−xc) Equation (12)
xc is represented by Formula (13).
xc=M×xw/(Mt+M) Expression (13)
Mt is the mass of the first platform 13 when it is not loaded, and xw is the distance from the center of the first platform 13 in the first direction to the center of gravity of the load W. The acquisition method of xw may be set appropriately. When the operator operates the input unit 16 to input xw, the CPU 31 may acquire the input value as xw. The control device 30 may estimate xw based on a photographed image of the load W placed on the first platform 13 . The control device 30 can correct the first position command position in consideration of the deviation of the center of gravity of the load W on the first platform 13 . The first predetermined position and the second predetermined position may be changed as appropriate, and the first predetermined position may be the same position as the second predetermined position.

図15は第三変形例の評価結果を示す。図15(A)では、積載物Wの質量Mが200kgであり、積載物Wの重心が第一台13の第一方向の中心から250mm右方に離れた位置にある条件17での誤差測定値を黒丸で示す。図15(A)では、式(11)を用いた条件17の近似曲線は点線で示す曲線97であり、式(12)を用いた条件17の近似曲線は実線で示す曲線98である。図15(A)の如く、曲線97よりも曲線98の方が黒丸で示す誤差測定値に近い。図15(B)では、式(11)を用いた第二実施形態の主処理で補正した条件18を黒丸で示し、式(12)を用いた第二実施形態の主処理で補正した条件19を白丸で示す。図15(B)の如く、条件18よりも条件19の方が第一台13の誤差の絶対値が小さい。第三変形例の主処理に依り第一台13の誤差の絶対値は基準Rからの距離及び高さHによらず10μm以下に収まる。 FIG. 15 shows the evaluation results of the third modified example. In FIG. 15(A), the mass M of the load W is 200 kg and the center of gravity of the load W is located 250 mm to the right of the center of the first platform 13 in the first direction. Values are indicated by black circles. In FIG. 15A, the approximation curve for Condition 17 using Equation (11) is curve 97 indicated by a dotted line, and the approximation curve for Condition 17 using Equation (12) is curve 98 indicated by a solid line. As shown in FIG. 15A, curve 98 is closer to the error measurements indicated by the black circles than curve 97 is. In FIG. 15B, condition 18 corrected by the main processing of the second embodiment using equation (11) is indicated by a black circle, and condition 19 corrected by the main processing of the second embodiment using equation (12) are indicated by white circles. As shown in FIG. 15B, the absolute value of the error of the first stage 13 is smaller under the condition 19 than under the condition 18. Due to the main processing of the third modification, the absolute value of the error of the first stage 13 falls within 10 μm or less regardless of the distance from the reference R and the height H.

上記変形例は矛盾のない範囲で組合わせてもよい。制御装置30は式(2)又は式(10)のxを、x-xcに置き換えて、推定誤差E(x)を計算してもよい。制御装置30は、式(10)において第一項と第二項の一方のxを、x-xcに置き換えて、推定誤差E(x)を計算してもよい。 The above modifications may be combined in a consistent range. Controller 30 may replace x in equation (2) or equation (10) with x−xc to calculate estimated error E(x). Controller 30 may replace x in one of the first and second terms in equation (10) with x−xc to calculate estimated error E(x).

1 :工作機械
2 :基台
4 :工具
5 :コラム
7 :主軸ヘッド
9 :主軸
12 :第二台
13 :第一台
30 :制御装置
31 :CPU
34 :記憶装置
51 :Z軸モータ
53 :X軸モータ
54 :Y軸モータ
1 : Machine tool 2 : Base 4 : Tool 5 : Column 7 : Spindle head 9 : Spindle 12 : Second table 13 : First table 30 : Controller 31 : CPU
34: storage device 51: Z-axis motor 53: X-axis motor 54: Y-axis motor

Claims (20)

積載物を載せる第一台と、前記第一台を水平方向と平行な第一方向に移動可能に支持する第二台と、前記第一台を前記第一方向に移動する第一駆動部と、前記第二台を前記第一方向と交差する第二方向に移動可能に支持する台支持部と、前記第二台を前記第二方向に移動する第二駆動部とを備える工作機械を制御する制御装置において、
前記第一台に載せた前記積載物の質量を取得する質量取得部と、
前記第一台の前記第一方向の位置を指令する第一位置指令を取得する第一指令取得部と、
前記質量取得部が取得した前記質量に基づく第一係数と、前記第一位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の撓みに応じた量、前記第一位置指令の前記位置を補正する補正部と
を備えることを特徴とする制御装置。
a first platform on which a load is placed; a second platform that supports the first platform so as to be movable in a first direction parallel to a horizontal direction; and a first driving section that moves the first platform in the first direction. , a machine tool comprising a table supporting section that supports the second table so as to be movable in a second direction intersecting the first direction, and a second driving section that moves the second table in the second direction. In a control device that
a mass acquisition unit that acquires the mass of the load placed on the first platform;
a first command acquisition unit that acquires a first position command that commands the position of the first unit in the first direction;
an amount according to the deflection of the second platform caused by the load placed on the first platform, using the first coefficient based on the mass acquired by the mass acquisition unit and the position of the first position command; and a correction unit that corrects the position of the first position command.
前記第一位置指令の前記位置は、前記第一台に載せた前記積載物による前記第二台の撓み角度が最小になる位置である基準からの距離で表すことを特徴とする請求項1に記載の制御装置。 2. The position of the first position command is expressed by a distance from a reference, which is a position at which the load placed on the first platform causes the second platform to bend at a minimum angle. Control device as described. 前記第一係数は、前記工作機械に固有の定数に基づく値であることを特徴とする請求項2に記載の制御装置。 3. The control device according to claim 2, wherein said first coefficient is a value based on a constant unique to said machine tool. 前記基準は前記第一台の移動可能範囲の中心であることを特徴とする請求項2又は3に記載の制御装置。 4. The control device according to claim 2, wherein the reference is the center of the movable range of the first unit. 前記第一係数は、前記第一台の上面からの前記積載物の高さに応じた値に基づくことを特徴とする請求項2~4の何れかに記載の制御装置。 5. The control device according to claim 2, wherein the first coefficient is based on a value corresponding to the height of the load from the upper surface of the first platform. 前記工作機械は工具を装着する主軸と、前記主軸を支持し、上下動可能な主軸ヘッドと、前記主軸ヘッドを上下方向に移動可能に支持するヘッド支持部と、前記主軸ヘッドを前記上下方向に移動する第三駆動部とを備え、
前記主軸ヘッドの前記上下方向の位置を指令する第二位置指令を取得する第二指令取得部と、
前記主軸が装着した前記工具に応じた工具長補正量と前記第二位置指令に依り、前記工具の先端の前記第一台からの高さを取得する高さ取得部を有し、
前記積載物の高さに応じた値は、前記高さ取得部が取得した前記工具の前記先端の前記第一台の前記上面からの高さであることを特徴とする請求項5に記載の制御装置。
The machine tool includes a spindle on which a tool is mounted, a spindle head that supports the spindle and can move vertically, a head support part that supports the spindle head so that it can move in the vertical direction, and the spindle head that moves in the vertical direction. a moving third drive,
a second command acquisition unit that acquires a second position command that commands the vertical position of the spindle head;
a height acquisition unit that acquires the height of the tip of the tool from the first table according to the tool length correction amount corresponding to the tool mounted on the spindle and the second position command;
6. The method according to claim 5, wherein the value corresponding to the height of the load is the height of the tip of the tool acquired by the height acquisition unit from the upper surface of the first base. Control device.
前記第二位置指令が位置決め指令か切削指令かを判断する種別判断部を更に備え、
前記高さ取得部は、前記第二位置指令が前記位置決め指令であると前記種別判断部が判断したことに応じ前記工具の前記先端の前記第一台からの高さを取得し、
前記補正部は、
前記高さ取得部が取得した前記工具の前記先端の前記第一台からの高さを用い前記第一係数を更新し、
更新した前記第一係数と前記第二位置指令に対応する前記第一位置指令の前記位置とを用い、前記第一位置指令の前記位置を補正する、
ことを特徴とする請求項6に記載の制御装置。
further comprising a type determination unit that determines whether the second position command is a positioning command or a cutting command;
the height acquisition unit acquires the height of the tip of the tool from the first base in response to the type determination unit determining that the second position command is the positioning command;
The correction unit is
updating the first coefficient using the height of the tip of the tool from the first base acquired by the height acquiring unit;
correcting the position of the first position command using the updated first coefficient and the position of the first position command corresponding to the second position command;
7. The control device according to claim 6, characterized in that:
記憶装置と、
前記補正部が更新した前記第一係数を前記記憶装置に記憶する記憶制御部とを更に備え、
前記補正部は、前記種別判断部が前記第二位置指令が前記切削指令であると判断したことに応じ、前記記憶装置に記憶した前記第一係数と前記第一位置指令の前記位置とを用い、前記第一位置指令の前記位置を補正することを特徴とする請求項7に記載の制御装置。
a storage device;
a storage control unit that stores the first coefficient updated by the correction unit in the storage device;
The correction unit uses the first coefficient stored in the storage device and the position of the first position command in response to the type determination unit determining that the second position command is the cutting command. 8. The control device according to claim 7, wherein the position of the first position command is corrected.
前記第一係数は、
前記第一台の前記上面からの前記積載物の前記高さに応じた前記値と、
前記台支持部の上端と、前記第一台の前記上面との間の第一所定位置からの、前記第一台の前記上面の高さと
に基づくことを特徴とする請求項5~8の何れかに記載の制御装置。
The first coefficient is
the value according to the height of the load from the top surface of the first platform;
and the height of the upper surface of the first platform from a first predetermined position between the upper end of the platform support portion and the upper surface of the first platform. 1. The control device according to 1.
前記第一所定位置は、前記第一台に載せた前記積載物による前記第二台の撓みによる前記第一台の前記第一方向の位置の誤差が最小になる位置であることを特徴とする請求項9に記載の制御装置。 The first predetermined position is a position where an error in the position of the first platform in the first direction due to deflection of the second platform caused by the load placed on the first platform is minimized. A control device according to claim 9 . 前記第一台に載せた前記積載物による前記第二台の撓みに応じた前記量は、前記第一係数と、前記距離の三乗との積であることを特徴とする請求項5~10の何れかに記載の制御装置。 Claims 5 to 10, wherein the amount corresponding to the deflection of the second platform caused by the load placed on the first platform is the product of the first coefficient and the cube of the distance. The control device according to any one of 前記補正部は、前記第一係数と、前記積載物と前記第一台の重心を用いて補正した前記第一位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の前記撓みに応じた量、前記第一位置指令の前記位置を補正することを特徴とする請求項5~11の何れかに記載の制御装置。 The correction unit uses the first coefficient and the position of the first position command corrected using the center of gravity of the load and the first platform, and uses the load placed on the first platform to perform the 12. The control device according to any one of claims 5 to 11, wherein the position of the first position command is corrected by an amount corresponding to the deflection of the second stage. 前記補正部は、前記第一係数と、前記質量取得部が取得した前記質量に基づく第二係数と、前記第一位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の撓みに応じた前記量と、前記第一台に載せた前記積載物による前記台支持部の撓みに応じた量、前記第一位置指令の前記位置を補正することを特徴とする請求項5~12の何れかに記載の制御装置。 The correction unit uses the first coefficient, the second coefficient based on the mass acquired by the mass acquisition unit, and the position of the first position command to determine the weight of the load placed on the first platform. The amount according to the deflection of the second stage, the amount according to the deflection of the stage support portion due to the load placed on the first stage, and the position of the first position command are corrected. The control device according to any one of claims 5 to 12. 前記第一台に載せた前記積載物による前記台支持部の撓みに応じた前記量は、前記第二係数と、前記距離の積であることを特徴とする請求項13に記載の制御装置。 14. The control device of claim 13, wherein the amount of deflection of the platform support by the load placed on the first platform is the product of the second coefficient and the distance. 前記第二係数は、
前記第一台の前記上面からの前記積載物の前記高さに応じた前記値と、
前記台支持部の下端と前記第一台の前記上面との間の第二所定位置から、前記第一台の前記上面の高さと
に基づくことであることを特徴とする請求項14に記載の制御装置。
The second coefficient is
the value according to the height of the load from the top surface of the first platform;
15. The height of the upper surface of the first platform from a second predetermined position between the lower end of the platform support and the upper surface of the first platform. Control device.
前記第二所定位置は、前記第一台に載せた前記積載物による前記台支持部の撓みによる前記第一台の前記第一方向の位置の誤差が最小になる位置であることを特徴とする請求項15に記載の制御装置。 The second predetermined position is a position at which an error in the position of the first platform in the first direction due to deflection of the platform support portion due to the load placed on the first platform is minimized. 16. Control device according to claim 15. 前記補正部は、前記第二係数と、前記積載物と前記第一台の重心を用いて補正した前記第一位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記台支持部の撓みに応じた前記量、前記第一位置指令の前記位置を補正することを特徴とする請求項13~16の何れかに記載の制御装置。 The correction unit uses the second coefficient and the position of the first position command corrected using the center of gravity of the load and the first platform, and uses the load placed on the first platform to determine the 17. The control device according to any one of claims 13 to 16, wherein the amount corresponding to the deflection of the table support portion and the position of the first position command are corrected. 積載物を載せる第一台と、前記第一台を水平方向と平行な第一方向に移動可能に支持する第二台と、前記第一台を前記第一方向に移動する第一駆動部と、前記第二台を前記第一方向と交差する第二方向に移動可能に支持する台支持部と、前記第二台を前記第二方向に移動する第二駆動部とを備える工作機械の制御方法において、
前記第一台に載せた前記積載物の質量を取得する質量取得工程と、
前記第一台の前記第一方向の位置を指令する位置指令を取得する指令取得工程と、
前記質量取得工程で取得した前記質量に基づく係数と、前記位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の撓みに応じた量、前記位置指令の前記位置を補正する補正工程と
を備えることを特徴とする制御方法。
a first platform on which a load is placed; a second platform that supports the first platform so as to be movable in a first direction parallel to a horizontal direction; and a first driving section that moves the first platform in the first direction. , the control of a machine tool comprising a table supporting section that supports the second table so as to be movable in a second direction intersecting the first direction, and a second driving section that moves the second table in the second direction. in the method
a mass acquisition step of acquiring the mass of the load placed on the first platform;
a command acquisition step of acquiring a position command for commanding the position of the first unit in the first direction;
Using the coefficient based on the mass acquired in the mass acquisition step and the position of the position command, the amount corresponding to the deflection of the second platform due to the load placed on the first platform, the position command and a correction step of correcting the position.
積載物を載せる第一台と、前記第一台を水平方向と平行な第一方向に移動可能に支持する第二台と、前記第一台を前記第一方向に移動する第一駆動部と、前記第二台を前記第一方向と交差する第二方向に移動可能に支持する台支持部と、前記第二台を前記第二方向に移動する第二駆動部とを備える工作機械を制御する制御装置の制御部が実行可能な制御プログラムにおいて、
前記第一台に載せた前記積載物の質量を取得する質量取得処理と、
前記第一台の前記第一方向の位置を指令する位置指令を取得する指令取得処理と、
前記質量取得処理で取得した前記質量に基づく係数と、前記位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の撓みに応じた量、前記位置指令の前記位置を補正する補正処理と
を前記制御装置の前記制御部に実行させる指示を含むことを特徴とする制御プログラム。
a first platform on which a load is placed; a second platform that supports the first platform so as to be movable in a first direction parallel to a horizontal direction; and a first driving section that moves the first platform in the first direction. , a machine tool comprising a table supporting section that supports the second table so as to be movable in a second direction intersecting the first direction, and a second driving section that moves the second table in the second direction. In a control program that can be executed by the control unit of the control device that
a mass acquisition process for acquiring the mass of the load placed on the first platform;
a command acquisition process for acquiring a position command for commanding the position of the first machine in the first direction;
Using the coefficient based on the mass acquired in the mass acquisition process and the position of the position command, the amount corresponding to the deflection of the second platform due to the load placed on the first platform, the position command and a correction process for correcting the position.
積載物を載せる第一台と、前記第一台を水平方向と平行な第一方向に移動可能に支持する第二台と、前記第一台を前記第一方向に移動する第一駆動部と、前記第二台を前記第一方向と交差する第二方向に移動可能に支持する台支持部と、前記第二台を前記第二方向に移動する第二駆動部とを備える工作機械を制御する制御装置の制御部が実行可能な制御プログラムを記憶する記憶媒体において、
前記第一台に載せた前記積載物の質量を取得する質量取得処理と、
前記第一台の前記第一方向の位置を指令する位置指令を取得する指令取得処理と、
前記質量取得処理で取得した前記質量に基づく係数と、前記位置指令の前記位置とを用い、前記第一台に載せた前記積載物による前記第二台の撓みに応じた量、前記位置指令の前記位置を補正する補正処理と
を前記制御装置の前記制御部に実行させる指示を含む前記制御プログラムを記憶したことを特徴とする記憶媒体。
a first platform on which a load is placed; a second platform that supports the first platform so as to be movable in a first direction parallel to a horizontal direction; and a first driving section that moves the first platform in the first direction. , a machine tool comprising a table supporting section that supports the second table so as to be movable in a second direction intersecting the first direction, and a second driving section that moves the second table in the second direction. In a storage medium storing a control program executable by the control unit of the control device,
a mass acquisition process for acquiring the mass of the load placed on the first platform;
a command acquisition process for acquiring a position command for commanding the position of the first machine in the first direction;
Using the coefficient based on the mass acquired in the mass acquisition process and the position of the position command, the amount corresponding to the deflection of the second platform due to the load placed on the first platform, the position command and a correction process for correcting the position.
JP2021117903A 2021-01-29 2021-07-16 Control device, control method, control program, and recording medium Pending JP2022117393A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021013927 2021-01-29
JP2021013927 2021-01-29

Publications (1)

Publication Number Publication Date
JP2022117393A true JP2022117393A (en) 2022-08-10

Family

ID=82749733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021117903A Pending JP2022117393A (en) 2021-01-29 2021-07-16 Control device, control method, control program, and recording medium

Country Status (1)

Country Link
JP (1) JP2022117393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10915615B2 (en) 2017-02-13 2021-02-09 Shenzhen GOODIX Technology Co., Ltd. Sensing device and terminal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10915615B2 (en) 2017-02-13 2021-02-09 Shenzhen GOODIX Technology Co., Ltd. Sensing device and terminal device

Similar Documents

Publication Publication Date Title
US4815006A (en) Method and device for calibrating a sensor on an industrial robot
JP5404823B2 (en) 5-axis control processing machine, 5-axis control processing machine numerical control device, numerical control method, program, workpiece manufacturing method, mold and molded product
US11466974B2 (en) Image capturing apparatus and machine tool
WO2011077791A1 (en) Control parameter adjustment method and adjustment device
WO2012057235A1 (en) Numerical control method
US10994422B2 (en) Robot system for adjusting operation parameters
JP2014191631A (en) Numerical controller and drive control method
JP2022117393A (en) Control device, control method, control program, and recording medium
CN111452047A (en) Robot tool deviation correction method, robot control device and system
US6821064B2 (en) Apparatus for compensating position errors of spindle head and machine tool provided with same
US20190217466A1 (en) Robot system, method of controlling robot arm, recording medium, and method of manufacturing an article
WO2017043127A1 (en) Numerical control device
JP2023013593A (en) Control device, control method, control program, and storage medium
JP6582814B2 (en) Numerical controller and lost motion compensation method for numerical controller
JP2008246620A (en) Machine tool, control program for correcting thermal expansion, and storage medium
US20210062890A1 (en) Parameter setting method and control apparatus
JP5687845B2 (en) Drilling control method, program, and drilling machine
JPH054150A (en) Method and device for work position/attitude correction with table deflection taken into account
JP2010099753A (en) Pitch error correction method and pitch error correction device of machine tool
JP2023034508A (en) Machine tool, control method, control program, and storage medium
JP2003271214A (en) Numerical control device and pitch error correction method therefor
JPH02256481A (en) Relative distance control method between robot and work and correction data preparing device thereof
JP6845209B2 (en) Parameter setting device, system and parameter setting method
JP2023051255A (en) Controller and speed control method
JP5169946B2 (en) Numerically controlled machine tool and thermal displacement correction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240315