JP2022105794A - Method for preparing lithium ion battery thickener - Google Patents

Method for preparing lithium ion battery thickener Download PDF

Info

Publication number
JP2022105794A
JP2022105794A JP2021000338A JP2021000338A JP2022105794A JP 2022105794 A JP2022105794 A JP 2022105794A JP 2021000338 A JP2021000338 A JP 2021000338A JP 2021000338 A JP2021000338 A JP 2021000338A JP 2022105794 A JP2022105794 A JP 2022105794A
Authority
JP
Japan
Prior art keywords
solution
lithium ion
ion battery
minutes
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021000338A
Other languages
Japanese (ja)
Inventor
宋少華
Shaohua Song
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021000338A priority Critical patent/JP2022105794A/en
Publication of JP2022105794A publication Critical patent/JP2022105794A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a method for preparing a lithium ion battery thickener that improves compatibility with graphite.SOLUTION: A method for preparing a lithium ion battery thickener includes the following steps: a step 1 of adding carmellose sodium to distilled water, obtaining a carmellose sodium solution by agitating until completely dissolved, adding graphene oxide, dispersing with ultrasonic agitation for 2.5-6 hours, and then adding chitin and performing ultrasonic processing for 3-10 minutes; a step 2 of adding potassium persulfate and tetramethylethylene diamine by a mass to volume ratio of (0.022-0.036) g:(0.01-0.03) to a solution obtained in the step 1, leaving in a stationary state for 1-3 hours after agitating for 20-30 minutes, and performing freeze-drying to obtain a gel; and a step 3 of cutting the gel into small pieces, immersing for 12-20 hours into a solution prepared by a predetermined method, and then taking out the gel pieces from the solution, subjecting to vacuum-drying and polishing, and passing through a screed with 800 meshes to obtain a thickener.SELECTED DRAWING: None

Description

本発明はリチウムイオン電池増ちょう剤調製方法技術分野に属し、具体的にはリチウムイオン電池増ちょう剤の調製方法に関する。 The present invention belongs to the technical field of a method for preparing a lithium ion battery thickener, and specifically relates to a method for preparing a lithium ion battery thickener.

近年、リチウムイオン電池の工業化規模の継続的な拡大と関連技術の継続的な開発により、リチウムイオン電池は主流の電子製品のエネルギー貯蔵装置となり、リチウムイオン電池の用途は大幅に拡大した。リチウムイオン電池は高いエネルギー密度、長いサイクル寿命及び広い動作温度範囲を有し、且つグリーンで環境保護のメリットがあるため、携帯電子機器の主要なエネルギー源となっている。しかし、近年の携帯電子機器、特にスマートフォン(軽量・薄型)の急速な発展により、リチウムイオン電池のエネルギー密度に対する要求も高まっている。リチウムイオン電池のエネルギー密度とサイクル寿命などの性能に対する要求が高まっていくと同時に、携帯電子機器の軽量性に対する要求も高まっていく。
電池における電極の特性は、磁極片における活性物質と集電体の特性に関わるだけでなく、活性物質コーティングと集電体との間、および磁極片における活性物質コーティング内部の粒子の間に使用され、分散性と接着性を有する沈降防止用の高分子ポリマーバインダーにも関係する。
グラファイトと導電性カーボンブラックの分散に、一般的にカルメロースナトリウムやポリアクリレートなどの増ちょう剤が使用される。これらの増ちょう剤は、疎水性部分がグラファイトと導電性カーボンブラックに吸着され、親水性部分が水に溶解でき且つ負電荷を帯びる。同種の電荷の反発し合いにより分散と沈降防止の効果を果たす。しかし、これらの増ちょう剤は、グラファイトなどの活性物質との相溶性が悪く、配合が難しいという問題があり、塗布が異常になる上に、リチウム電池の性能に悪影響を及ぼす。
In recent years, due to the continuous expansion of the industrial scale of lithium-ion batteries and the continuous development of related technologies, lithium-ion batteries have become energy storage devices for mainstream electronic products, and the applications of lithium-ion batteries have expanded significantly. Lithium-ion batteries are a major energy source for portable electronic devices due to their high energy density, long cycle life, wide operating temperature range, green and environmental protection benefits. However, with the rapid development of portable electronic devices, especially smartphones (lightweight and thin) in recent years, the demand for energy density of lithium-ion batteries is increasing. At the same time as the demand for performance such as energy density and cycle life of lithium-ion batteries increases, the demand for light weight of portable electronic devices also increases.
The properties of the electrodes in the battery are not only related to the properties of the active material and the current collector in the magnetic pole piece, but also used between the active material coating and the current collector and between the particles inside the active material coating in the magnetic pole piece. It is also related to high molecular weight polymer binders for sedimentation prevention, which have dispersibility and adhesiveness.
A thickener such as sodium carmellose or polyacrylate is generally used to disperse graphite and conductive carbon black. In these thickeners, the hydrophobic portion is adsorbed on graphite and conductive carbon black, and the hydrophilic portion can be dissolved in water and becomes negatively charged. By repelling the same kind of electric charge, it has the effect of dispersion and prevention of sedimentation. However, these thickeners have a problem that they have poor compatibility with active substances such as graphite and are difficult to formulate, resulting in abnormal coating and adversely affecting the performance of lithium batteries.

中国特許出願公開第102558936号明細書Chinese Patent Application Publication No. 102558936

従来の増ちょう剤は、グラファイトなどの活性物質との相溶性が悪く、配合が難しいという問題があり、塗布が異常になる上に、リチウム電池の性能に悪影響を及ぼす。これに対して、リチウムイオン電池増ちょう剤の調製方法を提供する。 Conventional thickeners have a problem of poor compatibility with active substances such as graphite and difficult to formulate, resulting in abnormal coating and adversely affecting the performance of lithium batteries. On the other hand, a method for preparing a lithium ion battery thickener is provided.

リチウムイオン電池増ちょう剤の調製方法であって、具体的にはステップ1とステップ2とステップ3とを含み、
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、2.5~6時間超音波攪拌して分散させ、次にキチンを加え、3~10分間超音波処理し、
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを(0.022~0.036)g:(0.01~0.03)の質量体積比で前記ステップ1の溶液に加え、20~30分間攪拌した後、1~3時間静置し、凍結乾燥して、ゲルを得、
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、30~45分間超音波攪拌した後、グリコール溶液を加え、10~15分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に12~20時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して増ちょう剤を得る。
A method for preparing a lithium ion battery thickener, specifically including step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide and sonicate for 2.5-6 hours to disperse and then disperse. Add chitin to the water and sonicate for 3-10 minutes.
Step 2: Potassium persulfate and tetramethylethylenediamine are added to the solution of Step 1 at a mass volume ratio of (0.022 to 0.036) g: (0.01 to 0.03), and the mixture is stirred for 20 to 30 minutes. After that, let stand for 1 to 3 hours and freeze-dry to obtain a gel.
Step 3: Add NA hydroxypropyl starch phosphate to distilled water and stir until completely dissolved, then add ferric chloride, stir ultrasonically for 30-45 minutes, then add glycol solution and 10- After stirring for 15 minutes, the gel of step 2 is cut into small pieces, soaked in the solution of this step for 12 to 20 hours, taken out, vacuum dried, polished, and passed through an 800 mesh screen to obtain a thickener.

好ましくは、前記カルメロースナトリウムの構造式は

Figure 2022105794000001
である。R=H、R1=CH2COONa、55≦n≦100とする。 Preferably, the structural formula of the sodium carmellose is
Figure 2022105794000001
Is. R = H, R1 = CH2COONa, 55 ≦ n ≦ 100.

好ましくは、前記ステップ1において、前記カルメロースナトリウム、前記蒸留水、前記酸化グラフェンおよび前記キチンの質量比は、(0.69~1.14)g:(20~40)mL:(0.12~0.25)g:(0.46~0.66)gである。 Preferably, in step 1, the mass ratio of the sodium carmellose, the distilled water, the graphene oxide and the chitin is (0.69 to 1.14) g: (20 to 40) mL: (0.12). ~ 0.25) g: (0.46 to 0.66) g.

好ましくは、前記ステップ3において、前記ヒドロキシプロピルデンプンリン酸NA、前記蒸留水、前記塩化第二鉄および前記グリコールの質量体積比は、(0.54~0.96)g:(22~30)mL:(0.023~0.042)g:(5~8)mLである。 Preferably, in step 3, the mass-volume ratio of the hydroxypropylstar phosphate NA, the distilled water, the ferric chloride and the glycol is (0.54 to 0.96) g: (22 to 30). mL: (0.023 to 0.042) g: (5 to 8) mL.

本発明は、ゲルを増ちょう剤として使用することで、電池電極材料の高温作業環境における脱水および低温環境における凍結を効果的に防止し、また、グリコールを導入することでゲルを改質することは、水分子結晶領域の形成を抑えると同時に、カルメロースナトリウムおよびキチンの結晶化を誘発し、その結果、増粘剤の力学的性質が向上する。本発明は、塩化第二鉄に含まれる鉄イオンを介してゲルを改質することによってイオン漏れの問題を解決し、物理的錯体化ネットワークはより多くのエネルギーを消費することで、ゲルの力学的性質を向上させることができ、さらに、ヒドロキシプロピルデンプンリン酸NAは、増ちょう剤の、過度の水分損失による塗布困難の問題を効果的に改善するほか、カルメロースナトリウムに含まれるハイドロキシなどの原子団とともに、三次元ネットワークを形成し、保水性を効果的に向上させた。 The present invention effectively prevents dehydration of the battery electrode material in a high temperature working environment and freezing in a low temperature environment by using the gel as a thickener, and reforms the gel by introducing glycol. Suppresses the formation of water molecular crystal regions and at the same time induces crystallization of sodium carmellose and chitin, resulting in improved mechanical properties of thickeners. The present invention solves the problem of ion leakage by reforming the gel via iron ions contained in ferric chloride, and the physical complexation network consumes more energy, thereby dynamics the gel. In addition to being able to improve physical properties, NA hydroxypropyl starch phosphate effectively relieves the problem of thickeners that are difficult to apply due to excessive water loss, as well as hydroxys contained in carmellose sodium. Together with the atomic group, it formed a three-dimensional network and effectively improved water retention.

以下、本発明の実施例について具体的に説明するが、本実施例は、本発明の技術的解決手段を前提として実施されるものであり、詳細な実施形態や具体的な操作手順を示したものであり、当業者であれば、本発明の原理から逸脱しない限り、いくつかの改良や修飾をすることが可能であり、これらの改良や修飾も本発明の技術的範囲と見なされるべきである。 Hereinafter, examples of the present invention will be specifically described, but the present embodiment is carried out on the premise of the technical solution means of the present invention, and detailed embodiments and specific operating procedures are shown. It is possible for those skilled in the art to make some improvements and modifications as long as they do not deviate from the principles of the invention, and these improvements and modifications should also be considered as the technical scope of the invention. be.

実施例1
リチウムイオン電池増ちょう剤の調製方法であって、具体的にはステップ1とステップ2とステップ3とを含む。
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、2.5時間超音波攪拌して分散させ、次にキチンを加え、3分間超音波処理し、前記カルメロースナトリウム、前記蒸留水、前記酸化グラフェンおよび前記キチンの質量比は、0.69g:20mL:0.12g:0.46gである。
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを0.022g:0.01mLの質量体積比で前記ステップ1の溶液に加え、20分間攪拌した後、1時間静置し、凍結乾燥して、ゲルを得る。
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、30分間超音波攪拌した後、グリコール溶液を加え、前記ヒドロキシプロピルデンプンリン酸NAと前記蒸留水と前記塩化第二鉄と前記グリコールとの質量体積比は0.54g:22mL:0.023g:5mLであり、10分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に12時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して増ちょう剤を得る。
Example 1
It is a method for preparing a lithium ion battery thickener, and specifically includes step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide, sonicate for 2.5 hours to disperse, then chitin. And ultrasonically treated for 3 minutes, the mass ratio of the carmellose sodium, the distilled water, the graphene oxide and the chitin is 0.69 g: 20 mL: 0.12 g: 0.46 g.
Step 2: Potassium persulfate and tetramethylethylenediamine were added to the solution of Step 1 at a mass volume ratio of 0.022 g: 0.01 mL, stirred for 20 minutes, allowed to stand for 1 hour, freeze-dried, and gelled. To get.
Step 3: Hydroxypropyl starch NA hydroxypropyl starch is added to distilled water and stirred until completely dissolved, then ferric chloride is added, and after ultrasonic stirring for 30 minutes, a glycol solution is added and the hydroxypropyl starch is added. The mass-volume ratio of NA phosphate, the distilled water, the ferric chloride, and the glycol is 0.54 g: 22 mL: 0.023 g: 5 mL, and after stirring for 10 minutes, the gel in step 2 is finely divided. After cutting and soaking in the solution of this step for 12 hours, it is taken out, vacuum dried, polished and passed through an 800 mesh screen to obtain a thickener.

実施例2
リチウムイオン電池増ちょう剤の調製方法であって、具体的にはステップ1とステップ2とステップ3とを含む。
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、6時間超音波攪拌して分散させ、次にキチンを加え、10分間超音波処理し、前記カルメロースナトリウム、前記蒸留水、前記酸化グラフェンおよび前記キチンの質量比は、1.14g:40mL:0.25g:0.66gである。
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを0.036g:0.03mLの質量体積比で前記ステップ1の溶液に加え、30分間攪拌した後、3時間静置し、凍結乾燥して、ゲルを得る。
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、45分間超音波攪拌した後、グリコール溶液を加え、前記ヒドロキシプロピルデンプンリン酸NAと前記蒸留水と前記塩化第二鉄と前記グリコールとの質量体積比は0.96g:30mL:0.042g:8mLであり、15分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に20時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して増ちょう剤を得る。
Example 2
It is a method for preparing a lithium ion battery thickener, and specifically includes step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide, sonicate for 6 hours to disperse, then add chitin. After sonication for 10 minutes, the mass ratio of the sodium carmellose, the distilled water, the graphene oxide and the chitin is 1.14 g: 40 mL: 0.25 g: 0.66 g.
Step 2: Potassium persulfate and tetramethylethylenediamine were added to the solution of Step 1 at a mass volume ratio of 0.036 g: 0.03 mL, stirred for 30 minutes, allowed to stand for 3 hours, freeze-dried, and gelled. To get.
Step 3: Hydroxypropyl starch NA hydroxypropyl starch is added to distilled water and stirred until completely dissolved, then ferric chloride is added, and after ultrasonic stirring for 45 minutes, a glycol solution is added and the hydroxypropyl starch is added. The mass-volume ratio of NA phosphate, the distilled water, the ferric chloride, and the glycol is 0.96 g: 30 mL: 0.042 g: 8 mL, and after stirring for 15 minutes, the gel in step 2 is finely divided. After cutting and soaking in the solution of this step for 20 hours, it is taken out, vacuum dried, polished and passed through an 800 mesh screen to obtain a thickener.

実施例3
リチウムイオン電池増ちょう剤の調製方法であって、具体的にはステップ1とステップ2とステップ3とを含む。
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、4時間超音波攪拌して分散させ、次にキチンを加え、5分間超音波処理し、前記カルメロースナトリウム、前記蒸留水、前記酸化グラフェンおよび前記キチンの質量比は、0.96g:30mL:0.18g:0.54gである。
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを0.028g:0.02mLの質量体積比で前記ステップ1の溶液に加え、25分間攪拌した後、2時間静置し、凍結乾燥して、ゲルを得る。
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、35分間超音波攪拌した後、グリコール溶液を加え、前記ヒドロキシプロピルデンプンリン酸NAと前記蒸留水と前記塩化第二鉄と前記グリコールとの質量体積比は0.69g:25mL:0.029g:6mLであり、12分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に15時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して増ちょう剤を得る。
Example 3
It is a method for preparing a lithium ion battery thickener, and specifically includes step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide and sonicate for 4 hours to disperse, then add chitin. After sonication for 5 minutes, the mass ratio of the sodium carmellose, the distilled water, the graphene oxide and the chitin is 0.96 g: 30 mL: 0.18 g: 0.54 g.
Step 2: Potassium persulfate and tetramethylethylenediamine were added to the solution of Step 1 at a mass volume ratio of 0.028 g: 0.02 mL, stirred for 25 minutes, allowed to stand for 2 hours, freeze-dried, and gelled. To get.
Step 3: Hydroxypropyl starch NA hydroxypropyl starch is added to distilled water and stirred until completely dissolved, then ferric chloride is added, and after ultrasonic stirring for 35 minutes, a glycol solution is added and the hydroxypropyl starch is added. The mass-volume ratio of NA phosphate, the distilled water, the ferric chloride, and the glycol is 0.69 g: 25 mL: 0.029 g: 6 mL, and after stirring for 12 minutes, the gel in step 2 is finely divided. After cutting and soaking in the solution of this step for 15 hours, it is taken out, vacuum dried, polished and passed through an 800 mesh screen to obtain a thickener.

実施例4
リチウムイオン電池増ちょう剤の調製方法であって、具体的にはステップ1とステップ2とステップ3とを含む。
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、5時間超音波攪拌して分散させ、次にキチンを加え、8分間超音波処理し、前記カルメロースナトリウム、前記蒸留水、前記酸化グラフェンおよび前記キチンの質量比は、1.02g:35mL:0.22g:0.62である。
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを0.034g:0.02mLの質量体積比で前記ステップ1の溶液に加え、28分間攪拌した後、2時間静置し、凍結乾燥して、ゲルを得る。
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、40分間超音波攪拌した後、グリコール溶液を加え、前記ヒドロキシプロピルデンプンリン酸NAと前記蒸留水と前記塩化第二鉄と前記グリコールとの質量体積比は0.92g:28mL:0.039g:7mLであり、13分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に18時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して乾燥させて増ちょう剤を得る。
Example 4
It is a method for preparing a lithium ion battery thickener, and specifically includes step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide and sonicate for 5 hours to disperse, then add chitin. , The mass ratio of the sodium carmellose, the distilled water, the graphene oxide and the chitin is 1.02 g: 35 mL: 0.22 g: 0.62 after sonication for 8 minutes.
Step 2: Potassium persulfate and tetramethylethylenediamine were added to the solution of Step 1 at a mass volume ratio of 0.034 g: 0.02 mL, stirred for 28 minutes, allowed to stand for 2 hours, freeze-dried, and gelled. To get.
Step 3: Hydroxypropyl starch NA hydroxypropyl starch is added to distilled water and stirred until completely dissolved, then ferric chloride is added, and after ultrasonic stirring for 40 minutes, a glycol solution is added and the hydroxypropyl starch is added. The mass-volume ratio of NA phosphate, the distilled water, the ferric chloride and the glycol is 0.92 g: 28 mL: 0.039 g: 7 mL, and after stirring for 13 minutes, the gel of the step 2 is finely divided. After cutting and immersing in the solution of this step for 18 hours, it is taken out, vacuum dried, polished and dried through an 800 mesh screen to obtain a thickener.

比較例1
市販のカルメロースナトリウム。
Comparative Example 1
Commercially available carmelose sodium.

比較例2
市販のポリアクリレート。
Comparative Example 2
Commercially available polyacrylate.

実験例:実施例1~4および比較例1~2の増ちょう剤に対して次の性能試験を実施する。
性能試験:実施例1~4および比較例1~2の増ちょう剤をそれぞれ、グラファイト材料、バインダーPVDF、および水と混合し、上海尼潤智能科技有限公司の型番NDJ‐5Sの回転式粘度計を採用して粘度試験を行い、結果を表1に示す。

Figure 2022105794000002
表1からわかるように、本発明の実施例1~4で調製された増ちょう剤は、良好な粘度を有し、それらの粘度はいずれも約3510mPa.sであり、塗布速度が25m/sの時にいずれも異常現象がなく、対して比較例1~2の増ちょう剤はテーリング現象がある。
前記実施例1~4および比較例1~2の増ちょう剤、グラファイト、バインダーPVDF、および水を混合攪拌して集電体に塗布し、リチウムイオン電池の負極を得、そしてリン酸鉄リチウムを正極として使用し、1mol/LのLiPF6/EMC+DMC+EC(体積比1:1:1)を電解液とし、Celgard2400をセパレータとし、CR2025ボタン型電池に組み立て、電圧を0.01~1.5Vに設定し、25℃で充放電容量とサイクル安定性を検査し、電池に対して定電流充放電試験を行い、結果を表2に示す。
Figure 2022105794000003
表2からわかるように、実施例1~4の増粘剤によって製造されたグラファイト電極は、0.1℃の電流密度で277mAh/gの放電比容量を有し、100サイクル後に放電比容量は約258mAh/gに達し、また、1C電流密度での放電比容量は336mAh/gであり、100サイクル後に放電比容量は約308mAh/gに達する。比較例1~2の増粘剤で作製したリチウム電極に比べ、より優れた性能を有する。 Experimental Examples: The following performance tests are carried out on the thickeners of Examples 1 to 4 and Comparative Examples 1 and 2.
Performance test: The thickeners of Examples 1 to 4 and Comparative Examples 1 and 2 are mixed with a graphite material, a binder PVDF, and water, respectively, and a rotary viscometer of model number NDJ-5S of Shanghai Nunjun Intelligence Technology Co., Ltd. The viscosity test was performed by adopting the above, and the results are shown in Table 1.
Figure 2022105794000002
As can be seen from Table 1, the thickeners prepared in Examples 1 to 4 of the present invention have good viscosities, and all of them have a viscosity of about 3510 mPa. When the coating speed is 25 m / s, there is no abnormal phenomenon, whereas the thickeners of Comparative Examples 1 and 2 have a tailing phenomenon.
The thickeners, graphite, binder PVDF, and water of Examples 1 to 4 and Comparative Examples 1 and 2 are mixed and stirred and applied to a current collector to obtain a negative electrode of a lithium ion battery, and lithium iron phosphate is applied. Used as a positive electrode, 1 mol / L LiPF6 / EMC + DMC + EC (volume ratio 1: 1: 1) as an electrolytic solution, Celgard 2400 as a separator, assembled into a CR2025 button type battery, and the voltage is set to 0.01 to 1.5 V. , The charge / discharge capacity and cycle stability were inspected at 25 ° C., a constant current charge / discharge test was performed on the battery, and the results are shown in Table 2.
Figure 2022105794000003
As can be seen from Table 2, the graphite electrodes produced by the thickeners of Examples 1 to 4 have a discharge specific capacity of 277 mAh / g at a current density of 0.1 ° C., and after 100 cycles, the discharge specific capacity is It reaches about 258 mAh / g, and the discharge specific capacity at 1 C current density is 336 mAh / g, and after 100 cycles the discharge specific capacity reaches about 308 mAh / g. It has better performance than the lithium electrodes prepared with the thickeners of Comparative Examples 1 and 2.

Claims (4)

リチウムイオン電池増ちょう剤の調製方法であって、具体的にはステップ1とステップ2とステップ3とを含み、
前記ステップ1:カルメロースナトリウムを蒸留水に加え、完全に溶解するまで攪拌することでカルメロースナトリウム溶液を得、そして酸化グラフェンを加え、2.5~6時間超音波攪拌して分散させ、次にキチンを加え、3~10分間超音波処理し、
前記ステップ2:過硫酸カリウムとテトラメチルエチレンジアミンを(0.022~0.036)g:(0.01~0.03)の質量体積比で前記ステップ1の溶液に加え、20~30分間攪拌した後、1~3時間静置し、凍結乾燥して、ゲルを得、
前記ステップ3:ヒドロキシプロピルデンプンリン酸NAを蒸留水に加え、完全に溶解するまで攪拌し、次に塩化第二鉄を加え、30~45分間超音波攪拌した後、グリコール溶液を加え、10~15分間攪拌した後、前記ステップ2の前記ゲルを細かく切り、本ステップの溶液に12~20時間浸した後、取り出して真空乾燥し、研磨し、800メッシュスクリーンに通して増ちょう剤を得る、
ことを特徴とするリチウムイオン電池増ちょう剤の調製方法。
A method for preparing a lithium ion battery thickener, specifically including step 1, step 2, and step 3.
Step 1: Add sodium carmellose to distilled water and stir until completely dissolved to obtain a sodium carmellose solution, then add graphene oxide and sonicate for 2.5-6 hours to disperse and then disperse. Add chitin to the water and sonicate for 3-10 minutes.
Step 2: Potassium persulfate and tetramethylethylenediamine are added to the solution of Step 1 at a mass volume ratio of (0.022 to 0.036) g: (0.01 to 0.03), and the mixture is stirred for 20 to 30 minutes. After that, let stand for 1 to 3 hours and freeze-dry to obtain a gel.
Step 3: Add NA hydroxypropyl starch phosphate to distilled water and stir until completely dissolved, then add ferric chloride, stir ultrasonically for 30-45 minutes, then add glycol solution and 10- After stirring for 15 minutes, the gel of step 2 is cut into small pieces, soaked in the solution of this step for 12 to 20 hours, then taken out, vacuum dried, polished, and passed through an 800 mesh screen to obtain a thickener.
A method for preparing a lithium ion battery thickener, which is characterized by the above.
前記カルメロースナトリウムの構造式は
Figure 2022105794000004
であり、R=H、R1=CH2COONa、55≦n≦100とする、
ことを特徴とする請求項1に記載のリチウムイオン電池増ちょう剤の調製方法。
The structural formula of the carmellose sodium is
Figure 2022105794000004
R = H, R1 = CH2COONa, 55 ≦ n ≦ 100.
The method for preparing a lithium ion battery thickener according to claim 1.
前記ステップ1において、前記カルメロースナトリウム、前記蒸留水、前記酸化グラフェンおよび前記キチンの質量比は、(0.69~1.14)g:(20~40)mL:(0.12~0.25)g:(0.46~0.66)gである、
ことを特徴とする請求項1に記載のリチウムイオン電池増ちょう剤の調製方法。
In step 1, the mass ratios of the carmellose sodium, the distilled water, the graphene oxide and the chitin were (0.69 to 1.14) g: (20 to 40) mL: (0.12 to 0. 25) g: (0.46 to 0.66) g,
The method for preparing a lithium ion battery thickener according to claim 1.
前記ステップ3において、前記ヒドロキシプロピルデンプンリン酸NA、前記蒸留水、前記塩化第二鉄および前記グリコールの質量体積比は、(0.54~0.96)g:(22~30)mL:(0.023~0.042)g:(5~8)mLである、
ことを特徴とする請求項1に記載のリチウムイオン電池増ちょう剤の調製方法。
In step 3, the mass-volume ratio of the hydroxypropylstar phosphate NA, the distilled water, the ferric chloride and the glycol was (0.54 to 0.96) g: (22 to 30) mL :( 0.023 to 0.042) g: (5 to 8) mL,
The method for preparing a lithium ion battery thickener according to claim 1.
JP2021000338A 2021-01-05 2021-01-05 Method for preparing lithium ion battery thickener Pending JP2022105794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000338A JP2022105794A (en) 2021-01-05 2021-01-05 Method for preparing lithium ion battery thickener

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000338A JP2022105794A (en) 2021-01-05 2021-01-05 Method for preparing lithium ion battery thickener

Publications (1)

Publication Number Publication Date
JP2022105794A true JP2022105794A (en) 2022-07-15

Family

ID=82365520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000338A Pending JP2022105794A (en) 2021-01-05 2021-01-05 Method for preparing lithium ion battery thickener

Country Status (1)

Country Link
JP (1) JP2022105794A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029949A1 (en) * 2013-08-27 2015-03-05 日産化学工業株式会社 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
JP2015220046A (en) * 2014-05-16 2015-12-07 横浜ゴム株式会社 Electrode for lead acid battery and lead acid battery using the same
WO2016010056A1 (en) * 2014-07-15 2016-01-21 川上総一郎 Negative electrode material for power storage device, electrode structure, power storage device, and production method for each
WO2016080145A1 (en) * 2014-11-21 2016-05-26 日本ゼオン株式会社 Composite particles for electrochemical element electrodes
US20160181618A1 (en) * 2014-12-22 2016-06-23 Samsung Sdi Co., Ltd. Electrode winding element for non-aqueous electrolyte rechareable battery, non-aqueous electrolyte rechargeable lithium battery including same, method of preparing same
CN109997264A (en) * 2016-12-02 2019-07-09 日产化学株式会社 Film containing carbon nanotube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029949A1 (en) * 2013-08-27 2015-03-05 日産化学工業株式会社 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
JP2015220046A (en) * 2014-05-16 2015-12-07 横浜ゴム株式会社 Electrode for lead acid battery and lead acid battery using the same
WO2016010056A1 (en) * 2014-07-15 2016-01-21 川上総一郎 Negative electrode material for power storage device, electrode structure, power storage device, and production method for each
WO2016080145A1 (en) * 2014-11-21 2016-05-26 日本ゼオン株式会社 Composite particles for electrochemical element electrodes
US20160181618A1 (en) * 2014-12-22 2016-06-23 Samsung Sdi Co., Ltd. Electrode winding element for non-aqueous electrolyte rechareable battery, non-aqueous electrolyte rechargeable lithium battery including same, method of preparing same
CN109997264A (en) * 2016-12-02 2019-07-09 日产化学株式会社 Film containing carbon nanotube

Similar Documents

Publication Publication Date Title
JP7030119B2 (en) Microcapsule type silicon-carbon composite negative electrode material, its manufacturing method and its use
CN108520978B (en) Lithium ion battery lithium supplementing process
CN109119592B (en) Lithium titanate negative electrode piece, preparation method and lithium titanate battery
CN103700820B (en) A kind of lithium ion selenium battery with long service life
CN107634208A (en) A kind of preparation method of lithium ion battery silicon-carbon cathode material
CN110556530B (en) Preparation method of molybdenum sulfide/three-dimensional macroporous graphene and lithium ion battery cathode material
CN105552359B (en) The preparation method of lithium battery anode slurry
WO2017032166A1 (en) Preparation method for lithium battery negative-electrode slurry doped with tin powder
JP2018526801A (en) Lithium ion battery negative electrode material, method for producing the same, and lithium ion battery
CN112349909B (en) Zinc-ion battery positive electrode composite material and preparation method and application thereof
CN110190284B (en) Water-based binder for lithium-sulfur battery positive electrode and preparation method and application thereof
CN108682862A (en) A kind of preparation method of lithium ion battery silicon substrate negative plate
CN112110448A (en) Nitrogen-doped carbon and nano-silicon composite anode material and preparation method thereof
CN112670509A (en) Thickener special for lithium ion battery
CN113903981A (en) Lithium ion battery and preparation method and application thereof
CN111777065A (en) Graphite modified material for lithium ion battery and preparation method thereof
CN104183836B (en) A kind of lithium-sulfur cell anode composite material
CN1815779A (en) Method for making lithium ion cell positive electrode sheet, positive-electrode sheet and lithium ion cell
CN106602050A (en) Preparation method of slurry for lithium titanate battery
CN108336330B (en) Willow leaf-shaped ferroferric oxide-loaded expanded graphite negative electrode material and preparation method thereof
CN112447971A (en) Positive electrode material additive, active material, positive electrode material, preparation of positive electrode material and application of positive electrode material in lithium ion battery
CN110459738A (en) Lithium ion battery anode glue size and preparation method thereof, positive plate, lithium ion battery
JP2022105794A (en) Method for preparing lithium ion battery thickener
CN114843473A (en) Composite slurry applied to lithium iron battery and preparation method thereof
CN113980290B (en) Preparation method of thickener for battery electrode material field

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210222

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210222

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220830