JP2022096090A - Electrodeposition coating method and electrodeposition coating equipment - Google Patents

Electrodeposition coating method and electrodeposition coating equipment Download PDF

Info

Publication number
JP2022096090A
JP2022096090A JP2020208995A JP2020208995A JP2022096090A JP 2022096090 A JP2022096090 A JP 2022096090A JP 2020208995 A JP2020208995 A JP 2020208995A JP 2020208995 A JP2020208995 A JP 2020208995A JP 2022096090 A JP2022096090 A JP 2022096090A
Authority
JP
Japan
Prior art keywords
acid concentration
electrodeposition
current value
vehicle body
electrodeposition coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020208995A
Other languages
Japanese (ja)
Inventor
悠児 金子
Yuji Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Original Assignee
Trinity Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp filed Critical Trinity Industrial Corp
Priority to JP2020208995A priority Critical patent/JP2022096090A/en
Publication of JP2022096090A publication Critical patent/JP2022096090A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

To provide an electrodeposition coating method capable of suppressing variation in thickness of a coating film formed on the surface of a vehicle body by adjusting components of an electrodeposition coating material relating to the thickness of the coating film without delay.SOLUTION: In an acid concentration estimation step, a current value of a current applied to a vehicle body is measured, and an acid concentration of an electrodeposition coating material P1 is estimated based on the variation of the current value. In a current value comparison step, the current value is compared with a specific range of a current value specified corresponding to an allowable range of the acid concentration. In an acid concentration adjustment step, when the current value is lower than the lower limit value of the specified range, the acid concentration is estimated to be lower than the lower limit value of the allowable range, so that the acid concentration is adjusted so as to be higher, while the acid concentration is estimated to be higher than the upper limit value of the allowable range when the current value is higher than the upper limit value of the specified range, so that the acid concentration is adjusted so as to be lower.SELECTED DRAWING: Figure 2

Description

本発明は、電着塗料に浸された車体に対して電着塗装を行う電着塗装方法、電着塗装設備に関するものである。 The present invention relates to an electrodeposition coating method and an electrodeposition coating facility for performing electrodeposition coating on a vehicle body immersed in an electrodeposition paint.

従来より、電着槽内の電着塗料に浸された車体に対して、電着槽内に配置された複数の電極から電流を印加することにより、車体に対する電着塗装を行う電着塗装設備が知られている(例えば、特許文献1参照)。このような電着塗装設備による電着塗装は、防錆性能を付与することを目的として、車体の塗装の下地工程で広く採用されている。しかし、電着塗装では、車体の内板部の膜厚を確保するために過剰な電圧が印加されるため、エネルギーや塗料のロスが発生し、余剰な膜厚が生じてしまう。そこで、車体の表面に形成される塗膜を狙った厚さにする手法として、例えば、電着塗料の成分を一定範囲内に調整することが考えられる。具体的には、図6に示されるように、まず、電着槽101から電着塗料102のサンプルを採取する。次に、外部機関において、採取した電着塗料102(サンプル)の成分分析を行う。そして、電着塗料102の分析結果(調査結果)に基づいて、電着塗料102の成分を調整する。 Conventionally, electrodeposition coating equipment that performs electrodeposition coating on a vehicle body by applying current from a plurality of electrodes arranged in the electrodeposition tank to the vehicle body immersed in the electrodeposition paint in the electrodeposition tank. Is known (see, for example, Patent Document 1). Electrodeposition coating by such an electrodeposition coating equipment is widely used in the base process for coating a vehicle body for the purpose of imparting rust prevention performance. However, in electrodeposition coating, an excessive voltage is applied to secure the film thickness of the inner plate portion of the vehicle body, so that energy and paint loss occur, resulting in an excess film thickness. Therefore, as a method of adjusting the thickness of the coating film formed on the surface of the vehicle body to a target, for example, it is conceivable to adjust the components of the electrodeposition paint within a certain range. Specifically, as shown in FIG. 6, first, a sample of the electrodeposition paint 102 is taken from the electrodeposition tank 101. Next, a component analysis of the collected electrodeposition paint 102 (sample) is performed at an external organization. Then, the components of the electrodeposition paint 102 are adjusted based on the analysis result (survey result) of the electrodeposition paint 102.

特開2020-132903号公報(図1,図4等)Japanese Unexamined Patent Publication No. 2020-132903 (FIGS. 1, FIG. 4, etc.)

ところが、電着塗料102の成分分析を外部機関で行う場合、調査結果が出るまでに数日かかってしまう。このため、電着塗料102の成分を調整するタイミングは、電着塗料102のサンプルを採取してから数日が経過した後になる。その結果、数日のタイムラグの間に、電着塗料102の成分が狙いの範囲からずれてしまい、車体の表面に形成される塗膜の厚さが変動しやすくなるという問題がある。 However, when the component analysis of the electrodeposition paint 102 is performed by an external organization, it takes several days until the survey result is obtained. Therefore, the timing for adjusting the components of the electrodeposition paint 102 is after several days have passed since the sample of the electrodeposition paint 102 was taken. As a result, there is a problem that the components of the electrodeposition coating film 102 deviate from the target range within a time lag of several days, and the thickness of the coating film formed on the surface of the vehicle body tends to fluctuate.

本発明は上記の課題に鑑みてなされたものであり、その目的は、塗膜の厚さに関係する電着塗料の成分を遅滞なく調整することにより、車体の表面に形成される塗膜の厚さの変動を抑えることができる電着塗装方法及び電着塗装設備を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to adjust the components of the electrodeposition coating film, which are related to the thickness of the coating film, without delay to form a coating film on the surface of the vehicle body. It is an object of the present invention to provide an electrodeposition coating method and an electrodeposition coating facility capable of suppressing fluctuations in thickness.

上記課題に鑑みて本願発明者らが鋭意研究を行った結果、電着塗料の複数の成分のうち、特に、酸濃度が塗膜の厚さに対する相関が高いことが確認された。しかし、酸濃度はリアルタイムに測定できないため、本願発明者らが酸濃度に連動するパラメータであって、リアルタイムに測定可能なものを探したところ、車体に印加される電流の電流値が酸濃度に連動することを新たに確認した。このことから、電流値の変動を測定すれば、電着塗料の酸濃度、ひいては塗膜の厚さを推測できることを新規に知見し、下記の発明を想到した。 As a result of diligent research by the inventors of the present application in view of the above problems, it was confirmed that the acid concentration has a high correlation with the thickness of the coating film among the plurality of components of the electrodeposition coating material. However, since the acid concentration cannot be measured in real time, the inventors of the present application searched for a parameter linked to the acid concentration that could be measured in real time, and found that the current value of the current applied to the vehicle body became the acid concentration. It was newly confirmed that it works together. From this, it was newly discovered that the acid concentration of the electrodeposition paint and the thickness of the coating film can be estimated by measuring the fluctuation of the current value, and the following invention was conceived.

即ち、請求項1に記載の発明は、電着槽に貯留された電着塗料に浸された車体に対して、前記電着槽内に配置された複数の電極から電流を印加することにより、前記車体に対する電着塗装を行う方法であって、前記電極から前記車体に印加される電流の電流値を測定し、測定した前記電流値の変動に基づいて、前記電着塗料の酸濃度(MEQ)を推測する酸濃度推測ステップと、測定した前記電流値と、前記酸濃度の許容範囲に対応して規定された前記電流値の特定範囲とを比較する電流値比較ステップと、測定した前記電流値が前記特定範囲の下限値よりも低い場合には、前記酸濃度が前記許容範囲の下限値よりも低いと推測して、前記酸濃度が高くなるように調整する一方、測定した前記電流値が前記特定範囲の上限値よりも高い場合には、前記酸濃度が前記許容範囲の上限値よりも高いと推測して、前記酸濃度が低くなるように調整する酸濃度調整ステップとを行うことを特徴とする電着塗装方法をその要旨とする。 That is, the invention according to claim 1 is to apply an electric current from a plurality of electrodes arranged in the electrodeposition tank to the vehicle body immersed in the electrodeposition paint stored in the electrodeposition tank. This is a method of electrodeposition coating on a vehicle body, in which the current value of a current applied to the vehicle body from the electrode is measured, and the acid concentration (MEQ) of the electrodeposition coating material is based on the fluctuation of the measured current value. ), A current value comparison step for comparing the measured current value with a specific range of the current value defined corresponding to the allowable range of the acid concentration, and the measured current. When the value is lower than the lower limit of the specific range, it is estimated that the acid concentration is lower than the lower limit of the allowable range, and the current value is measured while adjusting the acid concentration to be higher. When is higher than the upper limit value of the specific range, it is assumed that the acid concentration is higher than the upper limit value of the allowable range, and an acid concentration adjusting step of adjusting the acid concentration so as to be low is performed. The gist is the electrodeposition coating method characterized by.

請求項1に記載の発明では、酸濃度推測ステップにおいて、電極から車体に印加される電流の電流値を測定し、酸濃度調整ステップにおいて、測定した電流値に基づいて電着塗料(浴液)の酸濃度を調整している。この場合、電流値を測定してからの時間的な遅れが殆どない状態で酸濃度を調整できるため、酸濃度の調整前に酸濃度が許容範囲から大きく外れることが防止される。その結果、酸濃度の高さに応じて厚さが変動する塗膜を、狙った厚さにすることができるため、車体の塗装品質が向上する。なお、電着塗料としては、カチオン電着塗料やアニオン電着塗料が挙げられるが、防錆の観点から言えば、カチオン電着塗料を用いることが好ましい。 In the invention according to claim 1, in the acid concentration estimation step, the current value of the current applied from the electrode to the vehicle body is measured, and in the acid concentration adjusting step, the electrodeposition coating material (bath liquid) is measured based on the measured current value. The acid concentration of is adjusted. In this case, since the acid concentration can be adjusted with almost no time delay after the current value is measured, it is possible to prevent the acid concentration from being significantly out of the permissible range before adjusting the acid concentration. As a result, the coating film whose thickness varies depending on the high acid concentration can be made to the target thickness, so that the coating quality of the vehicle body is improved. Examples of the electrodeposition paint include cationic electrodeposition paints and anionic electrodeposition paints, but from the viewpoint of rust prevention, it is preferable to use cationic electrodeposition paints.

請求項2に記載の発明は、請求項1において、前記酸濃度調整ステップでは、前記電着塗料に対して酸性添加剤を添加することにより前記酸濃度が高くなるように調整する一方、前記電着塗料の液体成分を減少させることにより前記酸濃度が低くなるように調整することをその要旨とする。 The invention according to claim 2 is the invention according to claim 1, wherein in the acid concentration adjusting step, the acid concentration is adjusted to be high by adding an acidic additive to the electrodeposited coating material, while the electric power is adjusted. The gist is to adjust the acid concentration so that it is lowered by reducing the liquid component of the coating material.

請求項2に記載の発明によると、電着塗料の酸濃度を、酸性添加剤を添加したり、電着塗料の液体成分を減少させたりすることにより調整している。即ち、酸濃度の調整に大掛かりな装置が不要であるため、酸濃度の調整を容易にかつ低コストで行うことができる。 According to the second aspect of the present invention, the acid concentration of the electrodeposition coating material is adjusted by adding an acidic additive or reducing the liquid component of the electrodeposition coating material. That is, since a large-scale device for adjusting the acid concentration is not required, the acid concentration can be adjusted easily and at low cost.

請求項3に記載の発明は、電着塗料を貯留するとともに前記電着塗料に車体が浸された状態で搬送される電着槽と、前記電着槽内に配置される複数の電極と、前記車体を搬送する搬送手段とを備える電着塗装設備であって、前記電極から前記車体に印加される電流の電流値を測定し、測定した前記電流値の変動に基づいて、前記電着塗料の酸濃度を推測する酸濃度推測手段と、測定した前記電流値と、前記酸濃度の許容範囲に対応して規定された前記電流値の特定範囲とを比較する電流値比較手段と、測定した前記電流値が前記特定範囲の下限値よりも低い場合には、前記酸濃度が前記許容範囲の下限値よりも低いと推測して、前記酸濃度を高くする調整作業の必要性を報知する一方、測定した前記電流値が前記特定範囲の上限値よりも高い場合には、前記酸濃度が前記許容範囲の上限値よりも高いと推測して、前記酸濃度を低くする調整作業の必要性を報知する酸濃度調整報知手段とを備えることを特徴とする電着塗装設備をその要旨とする。 The invention according to claim 3 comprises an electrodeposition tank in which an electrodeposition paint is stored and the vehicle body is conveyed in a state of being immersed in the electrodeposition paint, and a plurality of electrodes arranged in the electrodeposition tank. An electrodeposition coating facility including a transport means for transporting the vehicle body, the electrodeposition coating material is measured by measuring the current value of a current applied to the vehicle body from the electrode, and based on the fluctuation of the measured current value. It was measured by an acid concentration estimating means for estimating the acid concentration of the above, and a current value comparing means for comparing the measured current value with a specific range of the current value defined corresponding to the allowable range of the acid concentration. When the current value is lower than the lower limit value of the specific range, it is estimated that the acid concentration is lower than the lower limit value of the allowable range, and the necessity of the adjustment work for increasing the acid concentration is notified. When the measured current value is higher than the upper limit value of the specific range, it is presumed that the acid concentration is higher than the upper limit value of the allowable range, and the necessity of the adjustment work to lower the acid concentration is established. The gist thereof is an electrodeposition coating facility characterized by being provided with an acid concentration adjusting and notifying means for notifying.

請求項3に記載の発明では、酸濃度推測手段が、電極から車体に印加される電流の電流値を測定し、酸濃度調整報知手段が、測定した電流値に基づいて、電着塗料(浴液)の酸濃度の調整作業の必要性を報知している。この場合、酸濃度調整報知手段による報知内容に基づいて、電流値を測定してからの時間的な遅れが殆どない状態で酸濃度を調整できるため、酸濃度の調整前に酸濃度が許容範囲から大きく外れることが防止される。その結果、酸濃度の高さに応じて厚さが変動する塗膜を、狙った厚さにすることができるため、車体の塗装品質が向上する。 In the invention according to claim 3, the acid concentration estimation means measures the current value of the current applied to the vehicle body from the electrode, and the acid concentration adjusting notification means measures the electrodeposition coating material (bath) based on the measured current value. It informs the necessity of the work of adjusting the acid concentration of the liquid). In this case, since the acid concentration can be adjusted with almost no time delay after the current value is measured based on the content of the notification by the acid concentration adjustment notification means, the acid concentration is within the allowable range before the acid concentration is adjusted. It is prevented from deviating greatly from. As a result, the coating film whose thickness varies depending on the high acid concentration can be made to the target thickness, so that the coating quality of the vehicle body is improved.

請求項4に記載の発明は、請求項3において、前記酸濃度を高くする調整作業は、前記電着塗料に対して酸性添加剤を添加する作業であり、前記酸濃度を低くする調整作業は、前記電着塗料の液体成分を減少させる作業であることをその要旨とする。 According to the fourth aspect of the present invention, in claim 3, the adjustment work for increasing the acid concentration is the operation for adding an acidic additive to the electrodeposition paint, and the adjustment work for lowering the acid concentration is the operation. The gist is that the work is to reduce the liquid component of the electrodeposition paint.

請求項4に記載の発明によると、電着塗料の酸濃度を、酸性添加剤を添加する作業や電着塗料の液体成分を減少させる作業を行うことにより調整している。即ち、酸濃度の調整作業に大掛かりな装置が不要であるため、酸濃度の調整を容易にかつ低コストで行うことができる。 According to the fourth aspect of the present invention, the acid concentration of the electrodeposition paint is adjusted by adding an acidic additive or reducing the liquid component of the electrodeposition paint. That is, since a large-scale device is not required for the acid concentration adjusting work, the acid concentration can be adjusted easily and at low cost.

請求項5に記載の発明は、請求項4において、前記電着塗料に対して酸性添加剤を添加する酸性添加剤添加手段と、前記電着塗料の液体成分を減少させる液体成分減少手段と、前記酸濃度が前記許容範囲内にないときに前記酸性添加剤添加手段または前記液体成分減少手段を作動させて前記酸濃度を調整する酸濃度調整制御手段とをさらに備えたことをその要旨とする。 The invention according to claim 5 comprises, in claim 4, an acid additive adding means for adding an acidic additive to the electrodeposition paint, a liquid component reducing means for reducing the liquid component of the electrodeposition paint, and a liquid component reducing means for reducing the liquid component of the electrodeposition paint. The gist is that the acid concentration adjusting means for adjusting the acid concentration by operating the acidic additive adding means or the liquid component reducing means when the acid concentration is not within the permissible range is further provided. ..

請求項5に記載の発明によると、酸濃度調整制御手段が、酸濃度が許容範囲内にないときに、酸性添加剤添加手段や液体成分減少手段を作動させ、電着塗料に対して酸性添加剤を添加する作業や電着塗料の液体成分を減少させる作業を自動的に行う。このため、作業者自身が酸性添加剤を添加する作業や液体成分を減少させる作業を行わなくても済む。よって、作業者の作業負荷が軽減される。 According to the invention according to claim 5, when the acid concentration adjustment control means is not within the permissible range, the acid additive adding means or the liquid component reducing means is activated to add acid to the electrodeposition paint. The work of adding the agent and the work of reducing the liquid component of the electrodeposition paint are automatically performed. Therefore, it is not necessary for the operator himself to perform the work of adding the acidic additive or the work of reducing the liquid component. Therefore, the workload of the worker is reduced.

以上詳述したように、請求項1~5に記載の発明によると、塗膜の厚さに関係する電着塗料の成分を遅滞なく調整することにより、車体の表面に形成される塗膜の厚さの変動を抑えることができる。 As described in detail above, according to the inventions of claims 1 to 5, the coating film formed on the surface of the vehicle body by adjusting the components of the electrodeposition coating material related to the thickness of the coating film without delay. Fluctuations in thickness can be suppressed.

本実施形態における電着塗装設備を示す概略断面図。The schematic sectional drawing which shows the electrodeposition coating equipment in this embodiment. 酸濃度(MEQ)の調整方法を示す説明図。Explanatory drawing which shows the adjustment method of an acid concentration (MEQ). 特定の電極における電流値の推移を示すグラフ。The graph which shows the transition of the current value in a specific electrode. 酸濃度(MEQ)及び電流値の推移を示すグラフ。The graph which shows the transition of the acid concentration (MEQ) and the current value. 酸濃度(MEQ)と時間との関係を示すグラフ。A graph showing the relationship between acid concentration (MEM) and time. 従来技術における酸濃度(MEQ)の調整方法を示す説明図。Explanatory drawing which shows the adjustment method of the acid concentration (MEQ) in the prior art.

以下、本発明を具体化した一実施形態を図面に基づき詳細に説明する。 Hereinafter, an embodiment embodying the present invention will be described in detail with reference to the drawings.

図1に示されるように、電着塗装設備10は、電着塗料P1を貯留する電着槽11を備えている。電着槽11では、車体W1が電着塗料P1に浸された状態で搬送されるようになっている。電着槽11は、同電着槽11の天井部を構成する槽上部12と、電着槽11の床部を構成する槽底部13と、2つの側壁14とによって構成されている。また、電着槽11には、同電着槽11内に車体W1を搬入するための搬入口15と、電着槽11外に車体W1を搬出するための搬出口16とが開口されている。なお、本実施形態の電着塗料P1は、例えば、陽イオン電解性樹脂をビヒクルの主体として用いた塗料である。 As shown in FIG. 1, the electrodeposition coating equipment 10 includes an electrodeposition tank 11 for storing the electrodeposition paint P1. In the electrodeposition tank 11, the vehicle body W1 is conveyed in a state of being immersed in the electrodeposition paint P1. The electrodeposition tank 11 is composed of a tank upper portion 12 constituting the ceiling portion of the electrodeposition tank 11, a tank bottom portion 13 constituting the floor portion of the electrodeposition tank 11, and two side walls 14. Further, the electrodeposition tank 11 is opened with a carry-in inlet 15 for carrying the vehicle body W1 into the electrodeposition tank 11 and a carry-out port 16 for carrying out the vehicle body W1 outside the electrodeposition tank 11. .. The electrodeposition paint P1 of the present embodiment is, for example, a paint using a cationic electrolytic resin as the main body of the vehicle.

また、電着塗装設備10は、搬送方向(図1では右方向)に車体W1を搬送するコンベア21(搬送手段)を備えている。コンベア21は、車体W1を下降させながら搬入口15を介して電着槽11内に搬入するとともに、車体W1を上昇させながら搬出口16を介して電着槽11外に搬出するようになっている。なお、コンベア21は、搬送方向に延びるレール22と、レール22に設けられ車体W1を懸架して搬送する複数のハンガーレール23とを備えている。さらに、各ハンガーレール23には、周期的にパルス信号を発信するパルス発信機24が設けられている。 Further, the electrodeposition coating equipment 10 includes a conveyor 21 (conveying means) for transporting the vehicle body W1 in the transport direction (right direction in FIG. 1). The conveyor 21 is carried into the electrodeposition tank 11 through the carry-in inlet 15 while lowering the vehicle body W1, and is carried out of the electrodeposition tank 11 through the carry-out port 16 while raising the vehicle body W1. There is. The conveyor 21 includes a rail 22 extending in the transport direction and a plurality of hanger rails 23 provided on the rail 22 for suspending and transporting the vehicle body W1. Further, each hanger rail 23 is provided with a pulse transmitter 24 that periodically transmits a pulse signal.

図1に示されるように、電着槽11内には複数の電極31が配置されている。各電極31は、電着槽11の側壁14に設置される側部電極32,33と、電着槽11の槽底部13に設置される底部電極34とからなる。側部電極32は、上下方向に延びる帯板状をなしており、車体W1の搬送方向に沿って間隔を空けて配置されている。また、側部電極33及び底部電極34は、搬送方向に延びる帯板状をなしており、搬送方向に沿って間隔を空けて配置されている。そして、各電極31にはケーブル(図示略)が接続されている。そして、各ケーブルは、電着槽11外に引き出される。 As shown in FIG. 1, a plurality of electrodes 31 are arranged in the electrodeposition tank 11. Each electrode 31 includes side electrodes 32 and 33 installed on the side wall 14 of the electrodeposition tank 11, and a bottom electrode 34 installed on the bottom 13 of the electrodeposition tank 11. The side electrodes 32 have a strip-like shape extending in the vertical direction, and are arranged at intervals along the transport direction of the vehicle body W1. Further, the side electrode 33 and the bottom electrode 34 have a strip-like shape extending in the transport direction, and are arranged at intervals along the transport direction. A cable (not shown) is connected to each electrode 31. Then, each cable is pulled out of the electrodeposition tank 11.

図2に示されるように、電着塗装設備10は、酸性添加剤添加手段41及び液体成分減少手段44をさらに備えている。酸性添加剤添加手段41は、電着塗料P1に対して酸性添加剤42を添加するためのものである。なお、本実施形態の酸性添加剤42は、クエン酸、アスコルビン酸、酒石酸等の有機酸である。また、酸性添加剤添加手段41は、電着槽11内に連通する酸性添加剤供給管(図示略)上に、タンク(図示略)、酸性添加剤供給バルブ(図示略)及び酸性添加剤供給ノズル43を設置してなる。タンクは、酸性添加剤42を送り出すようになっている。酸性添加剤供給バルブは、タンクの下流側に配置されており、酸性添加剤供給管を開状態または閉状態に切り替えるようになっている。酸性添加剤供給バルブは、開状態に切り替えられた際に、タンクから送り出された酸性添加剤42を電着槽11内に供給可能とするようになっている。また、酸性添加剤供給ノズル43は、電着槽11の上方に配置されており、酸性添加剤42を電着槽11内に供給するようになっている。 As shown in FIG. 2, the electrodeposition coating equipment 10 further includes an acidic additive adding means 41 and a liquid component reducing means 44. The acidic additive adding means 41 is for adding the acidic additive 42 to the electrodeposition coating material P1. The acidic additive 42 of the present embodiment is an organic acid such as citric acid, ascorbic acid, and tartaric acid. Further, the acidic additive adding means 41 supplies a tank (not shown), an acidic additive supply valve (not shown), and an acidic additive onto an acidic additive supply pipe (not shown) communicating with the electrodeposition tank 11. The nozzle 43 is installed. The tank is designed to deliver the acidic additive 42. The acid additive supply valve is located on the downstream side of the tank so as to switch the acid additive supply pipe between the open state and the closed state. The acid additive supply valve is adapted to be able to supply the acid additive 42 sent out from the tank into the electrodeposition tank 11 when the valve is switched to the open state. Further, the acidic additive supply nozzle 43 is arranged above the electrodeposition tank 11 so as to supply the acidic additive 42 into the electrodeposition tank 11.

図2に示されるように、液体成分減少手段44は、電着塗料P1の液体成分を減少させるためのものである。液体成分減少手段44は、両端が電着槽11内に連通する循環用配管45上に、電着塗料排出口46、電着塗料排出バルブ47、濾過装置48及び電着塗料供給口49を設置してなる。電着塗料排出口46は、電着槽11の槽底部13に配置されており、電着塗料P1を電着槽11外に排出するようになっている。電着塗料排出バルブ47は、電着塗料排出口46の下流側に配置されており、循環用配管45を開状態または閉状態に切り替えるようになっている。電着塗料排出バルブ47は、開状態に切り替えられた際に、電着槽11外に電着塗料P1を排出可能とするようになっている。濾過装置48は、電着塗料排出バルブ47の下流側に配置されており、電着塗料P1から濾液を分離するフィルターを備えている。なお、本実施形態のフィルターは、UF(ultrafiltration membrane)膜である。また、濾液の分離により、電着塗料P1の液体成分が減少し、電着塗料P1から分離された濾液は廃棄される。そして、電着塗料供給口49は、濾過装置48の下流側に配置されており、濾液が分離された電着塗料P1を電着槽11内に供給するようになっている。 As shown in FIG. 2, the liquid component reducing means 44 is for reducing the liquid component of the electrodeposition coating material P1. The liquid component reducing means 44 has an electrodeposition paint discharge port 46, an electrodeposition paint discharge valve 47, a filtration device 48, and an electrodeposition paint supply port 49 installed on a circulation pipe 45 having both ends communicating with each other in the electrodeposition tank 11. It will be done. The electrodeposition paint discharge port 46 is arranged at the bottom 13 of the electrodeposition tank 11, so that the electrodeposition paint P1 is discharged to the outside of the electrodeposition tank 11. The electrodeposition paint discharge valve 47 is arranged on the downstream side of the electrodeposition paint discharge port 46, and switches the circulation pipe 45 to an open state or a closed state. The electrodeposition paint discharge valve 47 is designed to be able to discharge the electrodeposition paint P1 to the outside of the electrodeposition tank 11 when it is switched to the open state. The filtration device 48 is arranged on the downstream side of the electrodeposition paint discharge valve 47, and includes a filter that separates the filtrate from the electrodeposition paint P1. The filter of this embodiment is a UF (ultrafiltration membrane) membrane. Further, the separation of the filtrate reduces the liquid component of the electrodeposition coating material P1, and the filtrate separated from the electrodeposition coating material P1 is discarded. The electrodeposition paint supply port 49 is arranged on the downstream side of the filtration device 48, and supplies the electrodeposition paint P1 from which the filtrate is separated into the electrodeposition tank 11.

次に、電着塗装設備10の電気的構成について説明する。 Next, the electrical configuration of the electrodeposition coating equipment 10 will be described.

図1に示されるように、電着塗装設備10はパソコン50を備えており、パソコン50は、設備全体を統括的に制御するための制御装置51を備えている。制御装置51は、CPU52、ROM53、RAM54、入出力回路等により構成されている。なお、CPU52は、学習部55としての機能を有している。また、CPU52には、パソコン50のキーボード56、パソコン50のディスプレイ57及びアラーム58が電気的に接続されている。さらに、CPU52は、コンベア21、各パルス発信機24、酸性添加剤供給バルブ及び電着塗料排出バルブ47に電気的に接続されており、各種の駆動信号によってそれらを制御する。なお、本実施形態では、制御装置51に各電極31をケーブルを介して接続することにより、CPU52に各電極31が電気的に接続される。また、CPU52には、各パルス発信機24から出力されたパルス信号が周期的に入力されるようになっている。さらに、ROM53には、各車体W1の電着塗装の作業時間を示す生産タクトタイム情報が予め設定(記憶)されている。また、ROM53には、基準位置S1から側部電極32までの距離を示す距離情報が、複数の側部電極32ごとに記憶されている。 As shown in FIG. 1, the electrodeposition coating equipment 10 includes a personal computer 50, and the personal computer 50 includes a control device 51 for comprehensively controlling the entire equipment. The control device 51 includes a CPU 52, a ROM 53, a RAM 54, an input / output circuit, and the like. The CPU 52 has a function as a learning unit 55. Further, the keyboard 56 of the personal computer 50, the display 57 of the personal computer 50, and the alarm 58 are electrically connected to the CPU 52. Further, the CPU 52 is electrically connected to the conveyor 21, each pulse transmitter 24, the acidic additive supply valve and the electrodeposition paint discharge valve 47, and controls them by various drive signals. In this embodiment, each electrode 31 is electrically connected to the CPU 52 by connecting each electrode 31 to the control device 51 via a cable. Further, the pulse signal output from each pulse transmitter 24 is periodically input to the CPU 52. Further, the ROM 53 is preset (stored) with production tact time information indicating the working time of electrodeposition coating of each vehicle body W1. Further, the ROM 53 stores distance information indicating the distance from the reference position S1 to the side electrode 32 for each of the plurality of side electrodes 32.

次に、電着塗装設備10による電着塗装方法を説明する。 Next, an electrodeposition coating method using the electrodeposition coating equipment 10 will be described.

まず、CPU52は、コンベア21に駆動信号を出力し、搬入口15を介して電着槽11内に車体W1(ハンガーレール23)を連続的に搬入させるとともに、搬出口16を介して電着槽11外に車体W1を連続的に搬出させる。そして、電着槽11内に搬入された車体W1が電着塗料P1に浸されると、電着槽11内に配置された各電極31から車体W1に電流が印加され、車体W1に対する電着塗装が行われる。その結果、車体W1の表面に塗膜が形成される。 First, the CPU 52 outputs a drive signal to the conveyor 21, causes the vehicle body W1 (hanger rail 23) to be continuously carried into the electrodeposition tank 11 via the carry-in inlet 15, and the electrodeposition tank via the carry-out port 16. 11 The vehicle body W1 is continuously carried out of the outside. Then, when the vehicle body W1 carried into the electrodeposition tank 11 is immersed in the electrodeposition paint P1, a current is applied to the vehicle body W1 from each electrode 31 arranged in the electrodeposition tank 11 and electrodeposition is applied to the vehicle body W1. Painting is done. As a result, a coating film is formed on the surface of the vehicle body W1.

なお、塗膜の厚さが狙った範囲内にあれば、電着塗料P1の成分を調整することなく、電着塗装を行う。しかし、塗膜の厚さが変動して狙った範囲からずれてくると、CPU52は、電着塗料P1の成分である酸濃度の調整を行う。なお、酸濃度の調整は、定期的(例えば数日おき)に行われる。具体的に言うと、CPU52は、酸濃度推測ステップを行い、まず、電着塗料P1に浸されている複数(ここでは6つ)の車体W1の現在位置を算出する。詳述すると、CPU52は、ROM53に記憶されている生産タクトタイム情報を取得する。また、CPU52は、車体W1(ハンガーレール23)が基準位置S1(図1参照)から現在位置に移動するまでの間に、対応するパルス発信機24から出力されたパルス信号の数(パルス数)をカウントする。なお、パルス数のカウントは、電着塗料P1に浸されている全ての車体W1において行われる。そして、CPU52は、カウントしたパルス数に基づいて、基準位置S1からの各車体W1の移動距離、即ち、各車体W1の現在位置をそれぞれ算出する。さらに、CPU52は、各車体W1の現在位置に基づいて、電着槽11内での各車体W1の滞留時間(電着塗料P1に浸されている時間)をそれぞれ算出する。 If the thickness of the coating film is within the target range, the electrodeposition coating is performed without adjusting the components of the electrodeposition coating film P1. However, when the thickness of the coating film fluctuates and deviates from the target range, the CPU 52 adjusts the acid concentration which is a component of the electrodeposition coating material P1. The acid concentration is adjusted regularly (for example, every few days). Specifically, the CPU 52 performs an acid concentration estimation step, and first calculates the current positions of a plurality of (here, six) vehicle bodies W1 immersed in the electrodeposition paint P1. More specifically, the CPU 52 acquires the production takt time information stored in the ROM 53. Further, the CPU 52 is the number of pulse signals (number of pulses) output from the corresponding pulse transmitter 24 until the vehicle body W1 (hanger rail 23) moves from the reference position S1 (see FIG. 1) to the current position. To count. The number of pulses is counted in all the vehicle bodies W1 immersed in the electrodeposition paint P1. Then, the CPU 52 calculates the moving distance of each vehicle body W1 from the reference position S1, that is, the current position of each vehicle body W1, based on the counted number of pulses. Further, the CPU 52 calculates the residence time (time of being immersed in the electrodeposition paint P1) of each vehicle body W1 in the electrodeposition tank 11 based on the current position of each vehicle body W1.

次に、CPU52は、電極31(側部電極32)から各車体W1に印加される電流の電流値をそれぞれ測定する(図2参照)。具体的に言うと、CPU52は、電着塗料P1に浸されている複数の車体W1の中から1つの車体W1を選択する。次に、CPU52は、ROM53に記憶されている複数の距離情報のうち、基準位置S1から側部電極32までの距離が、選択した車体W1の移動距離に最も近い距離となる距離情報を選択する。そして、CPU52は、電流計(図示略)に駆動信号を出力し、選択した距離情報に対応する側部電極32から車体W1に印加される電流の電流値を測定する。その後、電流値の測定は、電着塗料P1に浸されている他の車体W1においても同様に行われる。 Next, the CPU 52 measures the current value of the current applied to each vehicle body W1 from the electrode 31 (side electrode 32) (see FIG. 2). Specifically, the CPU 52 selects one vehicle body W1 from the plurality of vehicle bodies W1 immersed in the electrodeposition paint P1. Next, the CPU 52 selects the distance information in which the distance from the reference position S1 to the side electrode 32 is the closest to the moving distance of the selected vehicle body W1 among the plurality of distance information stored in the ROM 53. .. Then, the CPU 52 outputs a drive signal to an ammeter (not shown) and measures the current value of the current applied to the vehicle body W1 from the side electrode 32 corresponding to the selected distance information. After that, the measurement of the current value is also performed in the other vehicle body W1 immersed in the electrodeposition paint P1 in the same manner.

なお、図3は、各電極31の中から選択した特定の電極31(側部電極32)における電流値の推移を示している。本実施形態では、側部電極32に車体W1が近付くに従って電流値が上昇し、側部電極32から車体W1が離れるに従って電流値が低下する。そして、車体W1が側部電極32を通過する度に、電流値の上昇及び低下を繰り返すようになっている。また、横軸と電流値のグラフとに囲まれた領域R1の1つ分の面積は、1つの車体W1に対して印加された電流の量(仕事量)を示している。 Note that FIG. 3 shows the transition of the current value in the specific electrode 31 (side electrode 32) selected from each electrode 31. In the present embodiment, the current value increases as the vehicle body W1 approaches the side electrode 32, and decreases as the vehicle body W1 moves away from the side electrode 32. Then, every time the vehicle body W1 passes through the side electrode 32, the current value rises and falls repeatedly. Further, the area of one region R1 surrounded by the horizontal axis and the graph of the current value indicates the amount of current (work amount) applied to one vehicle body W1.

そして、CPU52は、測定した電流値の変動に基づいて、電着塗料P1の酸濃度(MEQ)を推測する(図2参照)。即ち、CPU52は、『酸濃度推測手段』としての機能を有している。なお、本願発明者らは、電流値の変動と酸濃度の変動とが同期することを新たに確認した(図4参照)。このため、CPU52は、電流値の変動が分かれば、電着塗料P1の酸濃度を推測することができる。 Then, the CPU 52 estimates the acid concentration (MEQ) of the electrodeposition coating material P1 based on the fluctuation of the measured current value (see FIG. 2). That is, the CPU 52 has a function as an "acid concentration estimation means". The inventors of the present application have newly confirmed that the fluctuation of the current value and the fluctuation of the acid concentration are synchronized (see FIG. 4). Therefore, the CPU 52 can estimate the acid concentration of the electrodeposition coating material P1 if the fluctuation of the current value is known.

なお、電流値、酸濃度、車体W1の種類、車体W1の各部位における電着塗料P1の膜厚等のデータは、随時RAM54に記憶される。また、データに含まれる電流値に一定範囲外となるもの(例えば、図4のE1を参照)があれば、CPU52は、その電流値を異常値として除去する。本実施形態では、コンベア21の停止により、車体W1に通常よりも長く電流が印加された場合や、ハンガーレール23が、車体W1が懸架されていない空ハンガーである場合や、車体W1に印加される電流値の積算量が、電着塗装設備10の不調により平均の40%以下である場合に、データに含まれる電流値を異常値として除去する。即ち、CPU52は、電流異常値判定除去手段としても機能する。 Data such as the current value, the acid concentration, the type of the vehicle body W1, and the film thickness of the electrodeposition coating material P1 at each portion of the vehicle body W1 are stored in the RAM 54 at any time. Further, if the current value included in the data is out of a certain range (see, for example, E1 in FIG. 4), the CPU 52 removes the current value as an abnormal value. In the present embodiment, when the current is applied to the vehicle body W1 longer than usual due to the stop of the conveyor 21, the hanger rail 23 is an empty hanger on which the vehicle body W1 is not suspended, or the current is applied to the vehicle body W1. When the integrated amount of the current values is 40% or less of the average due to the malfunction of the electrodeposition coating equipment 10, the current values included in the data are removed as abnormal values. That is, the CPU 52 also functions as a current abnormal value determination / removing means.

続く電流値比較ステップにおいて、CPU52は、測定した各電流値と、酸濃度の許容範囲A0(図5参照)に対応して規定された電流値の特定範囲(図示略)とを比較する。即ち、CPU52は、『電流値比較手段』としての機能を有している。 In the subsequent current value comparison step, the CPU 52 compares each measured current value with a specific range (not shown) of the current value defined corresponding to the allowable range A0 of the acid concentration (see FIG. 5). That is, the CPU 52 has a function as a "current value comparing means".

続く酸濃度調整ステップにおいて、CPU52は、測定した各電流値の中に特定範囲の下限値よりも低いものがある場合に、酸濃度が許容範囲A0の下限値A1(図5参照)よりも低いと推測する。酸濃度が低くなって酸が減少すると、電着塗料P1に含まれる塗料粒子同士の反発が弱まり、凝集しやすくなる。その結果、酸濃度が高い場合と比べると、クーロン効率(1クーロン当りの析出量)が高くなるため、少ない電気で車体W1の表面に電着塗料P1を析出させやすくなる。よって、同じ通電条件であれば、余剰な膜厚が生じてしまう。 In the subsequent acid concentration adjusting step, the CPU 52 determines that the acid concentration is lower than the lower limit value A1 (see FIG. 5) of the allowable range A0 when some of the measured current values are lower than the lower limit value of the specific range. I guess. When the acid concentration becomes low and the acid decreases, the repulsion between the paint particles contained in the electrodeposition paint P1 weakens, and the paint particles tend to aggregate. As a result, the Coulomb efficiency (precipitation amount per Coulomb) is higher than when the acid concentration is high, so that the electrodeposition coating material P1 can be easily deposited on the surface of the vehicle body W1 with less electricity. Therefore, under the same energization conditions, an excess film thickness will occur.

従って、酸濃度が下限値A1よりも低いと推測された場合には、CPU52は、アラーム58に駆動信号を出力し、酸濃度を高くする調整作業の必要性をアラーム58に報知させる制御を行う。即ち、CPU52は、『酸濃度調整報知手段』としての機能を有している。さらに、酸濃度が下限値A1よりも低いと推測された場合、CPU52は、酸濃度が高くなるように調整する。具体的に言うと、CPU52は、酸濃度が許容範囲A0内にないときに酸性添加剤添加手段41を作動させて酸濃度を調整する。即ち、CPU52は、『酸濃度調整制御手段』としての機能を有している。詳述すると、まず、CPU52は、酸性添加剤供給バルブに駆動信号を出力する。これにより、酸性添加剤供給バルブが開状態に切り替わり、タンク内の酸性添加剤42が、酸性添加剤供給管を通過し、酸性添加剤供給ノズル43から電着槽11内に充填される。即ち、酸濃度を高くする調整作業は、電着槽11内の電着塗料P1に対して酸性添加剤42を自動的に添加(投入)する作業である。 Therefore, when it is estimated that the acid concentration is lower than the lower limit value A1, the CPU 52 outputs a drive signal to the alarm 58 and controls the alarm 58 to notify the necessity of the adjustment work for increasing the acid concentration. .. That is, the CPU 52 has a function as an "acid concentration adjustment notification means". Further, when it is estimated that the acid concentration is lower than the lower limit value A1, the CPU 52 adjusts so that the acid concentration becomes higher. Specifically, the CPU 52 operates the acidic additive adding means 41 to adjust the acid concentration when the acid concentration is not within the allowable range A0. That is, the CPU 52 has a function as an "acid concentration adjusting control means". More specifically, first, the CPU 52 outputs a drive signal to the acidic additive supply valve. As a result, the acidic additive supply valve is switched to the open state, and the acidic additive 42 in the tank passes through the acidic additive supply pipe and is filled into the electrodeposition tank 11 from the acidic additive supply nozzle 43. That is, the adjusting work for increasing the acid concentration is the work of automatically adding (adding) the acidic additive 42 to the electrodeposited paint P1 in the electrodeposition tank 11.

なお、酸性添加剤42の添加量は、学習部55によって、RAM54に記憶されている過去データ(電流値、酸濃度、車体W1の種類、車体W1の各部位の膜厚等のデータ)から推測される。学習部55は、酸性添加剤42の添加量をどの程度にすれば、電着塗料P1の酸濃度が許容範囲A0の下限値A1よりも高く、かつ許容範囲A0の上限値A2(図5参照)よりも低くなるかを学習する。具体的に言うと、酸濃度調整ステップにおいて酸濃度が高くなるように調整する度に、酸性添加剤42の添加量を測定する。そして、学習部55は、酸濃度推測ステップ及び電流値比較ステップを順番に実行させる。その結果、学習部55は、「酸性添加剤42の添加量をどの程度にすれば、酸濃度を下限値A1よりも高く、かつ上限値A2よりも低くなるか」についてのデータを新たに得ることができる。そして、学習部55は、得られたデータを学習済データ(過去データ)としてRAM54に記憶する。その後、CPU52は、RAM54に記憶されている学習済データに基づいて、酸性添加剤42の添加量を決定し、決定した添加量に基づいて、酸性添加剤添加手段41による酸濃度を高くする調整作業を行わせる。 The amount of the acidic additive 42 added is estimated by the learning unit 55 from the past data (current value, acid concentration, type of vehicle body W1, film thickness of each part of vehicle body W1, etc.) stored in RAM 54. Will be done. In the learning unit 55, the acid concentration of the electrodeposition coating material P1 is higher than the lower limit value A1 of the allowable range A0 and the upper limit value A2 of the allowable range A0 (see FIG. 5). ) To learn if it is lower than. Specifically, the amount of the acidic additive 42 added is measured each time the acid concentration is adjusted to be high in the acid concentration adjusting step. Then, the learning unit 55 causes the acid concentration estimation step and the current value comparison step to be executed in order. As a result, the learning unit 55 newly obtains data on "how much the acid additive 42 should be added to make the acid concentration higher than the lower limit value A1 and lower than the upper limit value A2". be able to. Then, the learning unit 55 stores the obtained data in the RAM 54 as learned data (past data). After that, the CPU 52 determines the addition amount of the acidic additive 42 based on the learned data stored in the RAM 54, and adjusts to increase the acid concentration by the acidic additive addition means 41 based on the determined addition amount. Let them do the work.

一方、測定した各電流値の中に特定範囲の上限値よりも高いものがある場合、CPU52は、酸濃度が許容範囲A0の上限値A2(図5参照)よりも高いと推測する。酸濃度が高くなって酸が増加すると、析出に多くの電流量が必要となる。その結果、電気分解が増加し、ガスが多く発生する。また、電着塗料P1の析出に多くの電流量が必要になるため、クーロン効率が低下する。この場合、析出に時間がかかるため、膜厚を確保しにくくなる。 On the other hand, when some of the measured current values is higher than the upper limit value in the specific range, the CPU 52 estimates that the acid concentration is higher than the upper limit value A2 (see FIG. 5) in the allowable range A0. As the acid concentration increases and the acid increases, a large amount of current is required for precipitation. As a result, electrolysis increases and more gas is generated. Further, since a large amount of current is required for the precipitation of the electrodeposition coating material P1, the Coulomb efficiency is lowered. In this case, it takes time to precipitate, so it is difficult to secure the film thickness.

従って、酸濃度が上限値A2よりも高いと推測された場合には、CPU52は、アラーム58に駆動信号を出力し、酸濃度を低くする調整作業の必要性をアラーム58に報知させる制御を行う。さらに、酸濃度が上限値A2よりも高いと推測された場合、CPU52は、酸濃度が低くなるように調整する。具体的に言うと、CPU52は、酸濃度が許容範囲A0内にないときに、液体成分減少手段44を作動させて電着塗料P1の液体成分を減少させることにより、酸濃度を低くする。詳述すると、まず、CPU52は、電着塗料排出バルブ47に駆動信号を出力する。これにより、電着塗料排出バルブ47が開状態に切り替わり、電着塗料P1が、電着塗料排出口46から電着槽11外に排出され、循環用配管45を通過して濾過装置48に導かれる。そして、濾過装置48は、電着塗料P1から濾液を分離する。なお、濾液の分離により、電着塗料P1の液体成分が減少し、電着塗料P1から分離された濾液は廃棄される。その後、濾液が分離された電着塗料P1は、電着塗料供給口49から電着槽11内に供給される。即ち、酸濃度を低くする調整作業は、電着塗料P1の液体成分を自動的に減少させる作業である。 Therefore, when it is estimated that the acid concentration is higher than the upper limit value A2, the CPU 52 outputs a drive signal to the alarm 58 and controls the alarm 58 to notify the necessity of the adjustment work for lowering the acid concentration. .. Further, when it is estimated that the acid concentration is higher than the upper limit value A2, the CPU 52 adjusts the acid concentration so as to be lower. Specifically, when the acid concentration is not within the permissible range A0, the CPU 52 operates the liquid component reducing means 44 to reduce the liquid component of the electrodeposition coating material P1 to lower the acid concentration. More specifically, first, the CPU 52 outputs a drive signal to the electrodeposition paint discharge valve 47. As a result, the electrodeposition paint discharge valve 47 is switched to the open state, and the electrodeposition paint P1 is discharged from the electrodeposition paint discharge port 46 to the outside of the electrodeposition tank 11 and is guided to the filtration device 48 through the circulation pipe 45. Be taken. Then, the filtration device 48 separates the filtrate from the electrodeposition paint P1. The separation of the filtrate reduces the liquid component of the electrodeposition coating material P1, and the filtrate separated from the electrodeposition coating material P1 is discarded. After that, the electrodeposition paint P1 from which the filtrate is separated is supplied into the electrodeposition tank 11 from the electrodeposition paint supply port 49. That is, the adjustment work for lowering the acid concentration is the work for automatically reducing the liquid component of the electrodeposition paint P1.

従って、本実施形態によれば以下のような効果を得ることができる。 Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施形態の電着塗装方法によれば、酸濃度推測ステップにおいて、側部電極32から車体W1に印加される電流の電流値を測定し、酸濃度調整ステップにおいて、測定した電流値に基づいて電着塗料P1の酸濃度を調整している。この場合、電流値を測定してからの時間的な遅れが殆どない状態で酸濃度を調整できるため、酸濃度の調整前に酸濃度が許容範囲A0から大きく外れることが防止される。その結果、酸濃度の高さに応じて厚さが変動する塗膜を、狙った厚さにすることができるため、車体W1の塗装品質が向上する。 (1) According to the electrodeposition coating method of the present embodiment, the current value of the current applied from the side electrode 32 to the vehicle body W1 is measured in the acid concentration estimation step, and the measured current value is measured in the acid concentration adjusting step. The acid concentration of the electrodeposition coating material P1 is adjusted based on the above. In this case, since the acid concentration can be adjusted with almost no time delay after the current value is measured, it is possible to prevent the acid concentration from greatly deviating from the allowable range A0 before adjusting the acid concentration. As a result, the coating film whose thickness varies depending on the high acid concentration can be made to a target thickness, so that the coating quality of the vehicle body W1 is improved.

(2)本実施形態では、電流計(図示略)が測定した電流値に一定範囲外となるもの(図4のE1参照)がある場合に、CPU52が、その電流値を、本来あり得ないかけ離れた異常値であるとして除去したうえで、残りの電流値をRAM54に記憶している。その結果、学習部55は、酸濃度が許容範囲A0よりも低い場合に電着塗料P1に添加される酸性添加剤42の添加量を、RAM54に記憶されている電流値等に基づいて正確に推測することができる。 (2) In the present embodiment, when the current value measured by the ammeter (not shown) is out of a certain range (see E1 in FIG. 4), the CPU 52 cannot originally set the current value. After removing it as an abnormal value that is far away, the remaining current value is stored in the RAM 54. As a result, the learning unit 55 accurately determines the amount of the acidic additive 42 added to the electrodeposition coating material P1 when the acid concentration is lower than the allowable range A0, based on the current value stored in the RAM 54 and the like. You can guess.

(3)本実施形態では、学習部55が得た学習済データに基づいて、酸性添加剤42の添加量が推測されるため、酸性添加剤42の添加によって電着塗料P1の酸濃度を容易に許容範囲A0内に保つことができ、塗装品質が安定する。しかも、学習部55による学習機会を多くすれば、酸性添加剤42の添加量が最適化されていくため、塗装品質がいっそう安定する。 (3) In the present embodiment, since the amount of the acidic additive 42 added is estimated based on the learned data obtained by the learning unit 55, the acid concentration of the electrodeposition coating material P1 can be easily increased by adding the acidic additive 42. It can be kept within the allowable range A0, and the coating quality is stable. Moreover, if the learning opportunities by the learning unit 55 are increased, the amount of the acidic additive 42 added is optimized, so that the coating quality is further stabilized.

なお、上記実施形態を以下のように変更してもよい。 The above embodiment may be changed as follows.

・上記実施形態では、CPU52が、酸性添加剤添加手段41や液体成分減少手段44を作動させ、電着塗料P1に対して酸性添加剤42を添加する作業や電着塗料P1の液体成分を減少させる作業を自動的に行っていた。しかし、酸濃度が許容範囲A0内にないときに、作業者のスイッチ操作によって酸性添加剤添加手段41や液体成分減少手段44を作動させ、酸性添加剤42を添加する作業や液体成分を減少させる作業を行うようにしてもよい。また、酸性添加剤添加手段41や液体成分減少手段44を用いずに、作業者が、電着塗料P1に対して酸性添加剤42を添加する作業や、フィルターを用いて電着塗料P1から濾液を分離し、電着塗料P1の液体成分を減少させる作業を行ってもよい。 In the above embodiment, the CPU 52 operates the acidic additive adding means 41 and the liquid component reducing means 44 to add the acidic additive 42 to the electrodeposition paint P1 and reduce the liquid component of the electrodeposition paint P1. The work to make it was done automatically. However, when the acid concentration is not within the permissible range A0, the acidic additive adding means 41 and the liquid component reducing means 44 are operated by the switch operation of the operator to reduce the work of adding the acidic additive 42 and the liquid component. You may try to do the work. Further, the operator can add the acidic additive 42 to the electrodeposition paint P1 without using the acid additive adding means 41 or the liquid component reducing means 44, or the filtrate from the electrodeposition paint P1 using a filter. May be separated and the liquid component of the electrodeposition coating material P1 may be reduced.

・上記実施形態では、酸濃度が許容範囲A0外にあると推測された場合に、CPU52が、酸濃度の調整作業の必要性を、音声出力手段であるアラーム58に報知させる制御を行っていた。しかし、CPU52は、酸濃度の調整作業の必要性を、ディスプレイ57等の表示手段やランプ等の発光手段に報知させる制御を行ってもよい。 -In the above embodiment, when the acid concentration is presumed to be outside the permissible range A0, the CPU 52 controls the alarm 58, which is a voice output means, to notify the necessity of the acid concentration adjustment work. .. However, the CPU 52 may control the display means such as the display 57 and the light emitting means such as the lamp to notify the necessity of the acid concentration adjustment work.

・上記実施形態では、濾過装置48を用いて電着塗料P1から濾液を分離することにより、電着塗料P1の液体成分を減少させていたが、他の手法によって液体成分を減少させてもよい。例えば、電着塗料P1の液体成分を蒸発させることによって、液体成分を減少させてもよいし、遠心分離機を用いて電着塗料P1から濾液を分離することにより、液体成分を減少させてもよい。また、上記実施形態では、電着塗料P1の液体成分を減少させることにより、酸濃度が低くなるように調整していたが、電着塗料P1に対してアルカリ分を添加することにより、酸濃度が低くなるように調整してもよい。 -In the above embodiment, the liquid component of the electrodeposition paint P1 is reduced by separating the filtrate from the electrodeposition paint P1 using the filtration device 48, but the liquid component may be reduced by another method. .. For example, the liquid component may be reduced by evaporating the liquid component of the electrodeposition paint P1, or the liquid component may be reduced by separating the filtrate from the electrodeposition paint P1 using a centrifuge. good. Further, in the above embodiment, the acid concentration is adjusted to be low by reducing the liquid component of the electrodeposition coating material P1, but the acid concentration is adjusted by adding an alkaline component to the electrodeposition coating material P1. May be adjusted to be low.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想を以下に列挙する。 Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the above-described embodiments are listed below.

(1)請求項1または2において、前記酸濃度調整ステップでは、測定した前記電流値に一定範囲外となるものがある場合に、前記一定範囲外にある電流値を異常値であるとして除去したうえで、残りの電流値を記憶手段に記憶することを特徴とする電着塗装方法。 (1) In claim 1 or 2, when the measured current value is out of a certain range in the acid concentration adjusting step, the current value outside the certain range is removed as an abnormal value. In addition, an electrodeposition coating method characterized in that the remaining current value is stored in a storage means.

(2)請求項3乃至5のいずれか1項において、前記搬送手段は、搬送方向に延びるレールと、前記レールに設けられ前記車体を懸架して搬送する複数のハンガーレールとを備え、前記複数のハンガーレールには、周期的にパルス信号を発信するパルス発信機が設けられ、前記酸濃度推測手段は、前記車体が懸架された前記ハンガーレールが基準位置から現在位置に移動するまでの間に前記パルス発信機から出力された前記パルス信号の数をカウントし、カウントした前記パルス信号の数に基づいて、前記車体の前記基準位置からの移動距離を算出することを特徴とする電着塗装設備。 (2) In any one of claims 3 to 5, the transport means includes a rail extending in the transport direction and a plurality of hanger rails provided on the rail for suspending and transporting the vehicle body. The hanger rail is provided with a pulse transmitter that periodically emits a pulse signal, and the acid concentration estimation means is used until the hanger rail on which the vehicle body is suspended moves from the reference position to the current position. Electrodeposition coating equipment characterized by counting the number of the pulse signals output from the pulse transmitter and calculating the moving distance of the vehicle body from the reference position based on the counted number of the pulse signals. ..

(3)請求項5において、前記電着塗料の前記酸濃度を前記許容範囲の下限値よりも高く、かつ前記許容範囲の上限値よりも低くするための前記酸性添加剤の添加量を学習する学習部と、前記学習部が学習した前記酸性添加剤の添加量に関するデータを学習済データとして記憶する記憶手段とを備え、前記酸濃度調整制御手段は、前記記憶手段に記憶されている前記学習済データに基づいて、前記酸性添加剤の添加量を決定し、決定した前記添加量に沿って前記酸性添加剤添加手段による調整作業を行わせることを特徴とする電着塗装設備。 (3) In claim 5, the amount of the acidic additive added to make the acid concentration of the electrodeposition coating material higher than the lower limit of the allowable range and lower than the upper limit of the allowable range is learned. The learning unit is provided with a storage unit for storing data related to the amount of the acidic additive added learned by the learning unit as learned data, and the acid concentration adjusting control means is stored in the storage unit. An electrodeposition coating facility characterized in that an addition amount of the acidic additive is determined based on the completed data, and adjustment work is performed by the acidic additive addition means according to the determined addition amount.

10…電着塗装設備
11…電着槽
21…搬送手段としてのコンベア
31…電極
41…酸性添加剤添加手段
42…酸性添加剤
44…液体成分減少手段
52…酸濃度推測手段、電流値比較手段、酸濃度調整報知手段及び酸濃度調整制御手段としてのCPU
A0…許容範囲
A1…許容範囲の下限値
A2…許容範囲の上限値
P1…電着塗料
W1…車体
10 ... Electrodeposition coating equipment 11 ... Electrodeposition tank 21 ... Conveyor as a transport means 31 ... Electrode 41 ... Acidic additive addition means 42 ... Acidic additive 44 ... Liquid component reducing means 52 ... Acid concentration estimation means, current value comparison means , CPU as acid concentration adjustment notification means and acid concentration adjustment control means
A0 ... Allowable range A1 ... Lower limit value of allowable range A2 ... Upper limit value of allowable range P1 ... Electroplated paint W1 ... Vehicle body

Claims (5)

電着槽に貯留された電着塗料に浸された車体に対して、前記電着槽内に配置された複数の電極から電流を印加することにより、前記車体に対する電着塗装を行う方法であって、
前記電極から前記車体に印加される電流の電流値を測定し、測定した前記電流値の変動に基づいて、前記電着塗料の酸濃度(MEQ)を推測する酸濃度推測ステップと、
測定した前記電流値と、前記酸濃度の許容範囲に対応して規定された前記電流値の特定範囲とを比較する電流値比較ステップと、
測定した前記電流値が前記特定範囲の下限値よりも低い場合には、前記酸濃度が前記許容範囲の下限値よりも低いと推測して、前記酸濃度が高くなるように調整する一方、測定した前記電流値が前記特定範囲の上限値よりも高い場合には、前記酸濃度が前記許容範囲の上限値よりも高いと推測して、前記酸濃度が低くなるように調整する酸濃度調整ステップと
を行うことを特徴とする電着塗装方法。
This is a method of applying electrodeposition coating to the vehicle body by applying a current from a plurality of electrodes arranged in the electrodeposition tank to the vehicle body immersed in the electrodeposition paint stored in the electrodeposition tank. hand,
An acid concentration estimation step of measuring the current value of the current applied to the vehicle body from the electrode and estimating the acid concentration (MET) of the electrodeposition paint based on the measured fluctuation of the current value.
A current value comparison step for comparing the measured current value with a specific range of the current value defined corresponding to the allowable range of the acid concentration.
When the measured current value is lower than the lower limit of the specific range, it is estimated that the acid concentration is lower than the lower limit of the allowable range, and the acid concentration is adjusted to be higher, while the measurement is performed. When the current value is higher than the upper limit of the specific range, it is estimated that the acid concentration is higher than the upper limit of the allowable range, and the acid concentration adjustment step is adjusted so that the acid concentration is low. An electrodeposition coating method characterized by performing and.
前記酸濃度調整ステップでは、前記電着塗料に対して酸性添加剤を添加することにより前記酸濃度が高くなるように調整する一方、前記電着塗料の液体成分を減少させることにより前記酸濃度が低くなるように調整することを特徴とする請求項1に記載の電着塗装方法。 In the acid concentration adjusting step, the acid concentration is adjusted to be high by adding an acidic additive to the electrodeposition paint, while the acid concentration is increased by reducing the liquid component of the electrodeposition paint. The electrodeposition coating method according to claim 1, wherein the electrodeposition coating method is adjusted so as to be low. 電着塗料を貯留するとともに前記電着塗料に車体が浸された状態で搬送される電着槽と、前記電着槽内に配置される複数の電極と、前記車体を搬送する搬送手段とを備える電着塗装設備であって、
前記電極から前記車体に印加される電流の電流値を測定し、測定した前記電流値の変動に基づいて、前記電着塗料の酸濃度を推測する酸濃度推測手段と、
測定した前記電流値と、前記酸濃度の許容範囲に対応して規定された前記電流値の特定範囲とを比較する電流値比較手段と、
測定した前記電流値が前記特定範囲の下限値よりも低い場合には、前記酸濃度が前記許容範囲の下限値よりも低いと推測して、前記酸濃度を高くする調整作業の必要性を報知する一方、測定した前記電流値が前記特定範囲の上限値よりも高い場合には、前記酸濃度が前記許容範囲の上限値よりも高いと推測して、前記酸濃度を低くする調整作業の必要性を報知する酸濃度調整報知手段と
を備えることを特徴とする電着塗装設備。
An electrodeposition tank that stores the electrodeposition paint and is conveyed while the vehicle body is immersed in the electrodeposition paint, a plurality of electrodes arranged in the electrodeposition tank, and a conveying means that conveys the vehicle body. It is an electrodeposition coating equipment that is equipped.
An acid concentration estimation means that measures the current value of the current applied to the vehicle body from the electrode and estimates the acid concentration of the electrodeposition paint based on the fluctuation of the measured current value.
A current value comparing means for comparing the measured current value with a specific range of the current value defined corresponding to the allowable range of the acid concentration.
When the measured current value is lower than the lower limit of the specific range, it is estimated that the acid concentration is lower than the lower limit of the allowable range, and the necessity of the adjustment work to increase the acid concentration is notified. On the other hand, when the measured current value is higher than the upper limit value of the specific range, it is presumed that the acid concentration is higher than the upper limit value of the allowable range, and adjustment work for lowering the acid concentration is necessary. Electrodeposition coating equipment characterized by being provided with an acid concentration adjusting notification means for notifying the sex.
前記酸濃度を高くする調整作業は、前記電着塗料に対して酸性添加剤を添加する作業であり、前記酸濃度を低くする調整作業は、前記電着塗料の液体成分を減少させる作業であることを特徴とする請求項3に記載の電着塗装設備。 The adjustment work for increasing the acid concentration is the work of adding an acidic additive to the electrodeposition paint, and the adjustment work for lowering the acid concentration is the work of reducing the liquid component of the electrodeposition paint. The electrodeposition coating equipment according to claim 3, characterized in that. 前記電着塗料に対して酸性添加剤を添加する酸性添加剤添加手段と、
前記電着塗料の液体成分を減少させる液体成分減少手段と、
前記酸濃度が前記許容範囲内にないときに前記酸性添加剤添加手段または前記液体成分減少手段を作動させて前記酸濃度を調整する酸濃度調整制御手段と
をさらに備えたことを特徴とする請求項4に記載の電着塗装設備。
An acid additive addition means for adding an acid additive to the electrodeposition paint, and an acid additive addition means.
A liquid component reducing means for reducing the liquid component of the electrodeposition paint,
The claim is further provided with an acid concentration adjusting control means for operating the acidic additive adding means or the liquid component reducing means to adjust the acid concentration when the acid concentration is not within the permissible range. Item 4 is the electrodeposition coating equipment.
JP2020208995A 2020-12-17 2020-12-17 Electrodeposition coating method and electrodeposition coating equipment Pending JP2022096090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020208995A JP2022096090A (en) 2020-12-17 2020-12-17 Electrodeposition coating method and electrodeposition coating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020208995A JP2022096090A (en) 2020-12-17 2020-12-17 Electrodeposition coating method and electrodeposition coating equipment

Publications (1)

Publication Number Publication Date
JP2022096090A true JP2022096090A (en) 2022-06-29

Family

ID=82163790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020208995A Pending JP2022096090A (en) 2020-12-17 2020-12-17 Electrodeposition coating method and electrodeposition coating equipment

Country Status (1)

Country Link
JP (1) JP2022096090A (en)

Similar Documents

Publication Publication Date Title
CN102084036B (en) Stripping apparatus and method for removing electrodeposited metal layer from cathode plate
KR101541295B1 (en) System for Automation Anodizing Treatment of Metal
CN100582317C (en) Device and method for electrolytically treating an at least superficially electrically conducting work piece
JP6169719B2 (en) Device and method for electrolytic coating of objects
KR101423024B1 (en) Anodizing Treatment System of Metal through Automatic Analysis of An Electrolyte
KR20150046013A (en) Aluminum plating apparatus and method for producing aluminum film using same
JP2022096090A (en) Electrodeposition coating method and electrodeposition coating equipment
KR101635786B1 (en) System for Preventing Spark of Electrode Rail for Anodizing Treatment of Metal
CN114207191A (en) Method and device for electrolytically coating steel strip by means of pulse technique
KR102012616B1 (en) Electrolyte Replacement And Automatic Sulfuric Acid Supply System for Metal Anodizing Treatment Apparatus
CN1174249A (en) Jet electroplating method
CN1974871B (en) Double titanium-base anode voltage controlling system for continuous strip steel galvanizing electrobath
US20090188797A1 (en) Drag Through Electro-Deposition System
JP2006206961A (en) Apparatus and method for continuous copper plating to film-like object
US20180230621A1 (en) Apparatus for recovery of material generated during electrochemical material removal in acidic electrolytes
US20120247951A1 (en) Barrel apparatus for barrel plating
JP2022107869A (en) Film thickness estimation system for electrodeposition facility
KR101517772B1 (en) Method for controlling dip coating weight in hot dip coating process
JP2003155598A (en) Electrodeposition coating equipment and energizing method
CN219315120U (en) Treatment equipment for carrying out electrophoretic dip coating on metal workpiece
JP2022099380A (en) Energization condition data acquisition method in electrodeposition-coating facility, and electrodeposition-coating facility
US20070144433A1 (en) Electrophoretic dip coating plant
EP3914757B1 (en) Method for electrolytic zinc-nickel alloy deposition using a membrane anode system
US20160115616A1 (en) Electroplating system and method of using electroplating system for controlling concentration of organic additives in electroplating solution
JPS63293200A (en) Electroplating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231205