JP2022092076A - Method of manufacturing three-dimensional shape modeling objects - Google Patents

Method of manufacturing three-dimensional shape modeling objects Download PDF

Info

Publication number
JP2022092076A
JP2022092076A JP2019084400A JP2019084400A JP2022092076A JP 2022092076 A JP2022092076 A JP 2022092076A JP 2019084400 A JP2019084400 A JP 2019084400A JP 2019084400 A JP2019084400 A JP 2019084400A JP 2022092076 A JP2022092076 A JP 2022092076A
Authority
JP
Japan
Prior art keywords
cutting
cutting tool
model
manufacturing
solidified layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019084400A
Other languages
Japanese (ja)
Inventor
徳雄 吉田
Tokuo Yoshida
暁史 中村
Akifumi Nakamura
諭 阿部
Satoshi Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019084400A priority Critical patent/JP2022092076A/en
Priority to PCT/JP2020/017813 priority patent/WO2020218567A1/en
Publication of JP2022092076A publication Critical patent/JP2022092076A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a method for manufacturing three-dimensional shaped objects that includes an efficient cutting process.SOLUTION: One embodiment of the present invention provides a method for manufacturing a three-dimensional shaped modeling object, comprising repeating a stacking process of solidified layers formed by light beam irradiation and a cutting process of the surface of the stacked solidified layers, and including, prior to the implementation of the processes, individually determining, based on data of a model of the three-dimensional shaped modeling object, the number of stacked solidified layers in each of the stacking processes to be implemented before the cutting process according to the shape of the model.SELECTED DRAWING: Figure 1

Description

本発明は、三次元形状造形物の製造方法に関する。 The present invention relates to a method for manufacturing a three-dimensional shaped object.

光ビームを粉末材料に照射することを通じて三次元形状造形物を製造する方法(一般的には「粉末床溶融結合法」と称される)は、従来より知られている。かかる方法は、以下の工程(i)および(ii)に基づいて粉末層形成と固体層形成とを交互に繰り返し実施して三次元形状造形物を製造する。
(i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
(ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。
A method of manufacturing a three-dimensional shaped object by irradiating a powder material with a light beam (generally referred to as a "powder bed melt bonding method") has been conventionally known. In such a method, powder layer formation and solid layer formation are alternately and repeatedly carried out based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
(I) A step of irradiating a predetermined portion of the powder layer with a light beam and sintering or melt-solidifying the powder at the predetermined portion to form a solidified layer.
(Ii) A step of forming a new powder layer on the obtained solidified layer and similarly irradiating with a light beam to form a further solidified layer.

このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として無機質の金属粉末を用いる場合、得られる三次元形状造形物を金型として使用することができる。一方、粉末材料として有機質の樹脂粉末を用いる場合、得られる三次元形状造形物を各種モデルとして使用することができる。 According to such a manufacturing technique, it becomes possible to manufacture a complicated three-dimensional shaped object in a short time. When an inorganic metal powder is used as the powder material, the obtained three-dimensional shaped object can be used as a mold. On the other hand, when an organic resin powder is used as the powder material, the obtained three-dimensional shaped object can be used as various models.

粉末材料として金属粉末を用い、それによって得られる三次元形状造形物を金型として使用する場合を例にとる。図11に示すように、まず、スキージング・ブレード23を動かして造形プレート21上に所定厚みの粉末層22を形成する(図11(a)参照)。次いで、粉末層22の所定箇所に光ビームLを照射して粉末層22から固化層24を形成する(図11(b)参照)。引き続いて、得られた固化層24の上に新たな粉末層22を形成して再度光ビームを照射して新たな固化層24を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図11(c)参照)、最終的には積層化した固化層24から成る三次元形状造形物を得ることができる。最下層として形成される固化層24は造形プレート21と結合した状態になるので、三次元形状造形物と造形プレート21とは一体化物を成すことになり、その一体化物を金型として使用することができる。 Take, for example, a case where a metal powder is used as a powder material and a three-dimensional shaped object obtained by the metal powder is used as a mold. As shown in FIG. 11, first, the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 11A). Next, a predetermined portion of the powder layer 22 is irradiated with a light beam L to form a solidified layer 24 from the powder layer 22 (see FIG. 11B). Subsequently, a new powder layer 22 is formed on the obtained solidified layer 24 and irradiated with a light beam again to form a new solidified layer 24. When the powder layer formation and the solidified layer formation are alternately repeated in this way, the solidified layer 24 is laminated (see FIG. 11 (c)), and finally, the three-dimensional structure composed of the laminated solidified layer 24. A shaped object can be obtained. Since the solidified layer 24 formed as the bottom layer is in a state of being bonded to the modeling plate 21, the three-dimensional shaped model and the modeling plate 21 form an integrated product, and the integrated product is used as a mold. Can be done.

特開平8-115117号公報Japanese Unexamined Patent Publication No. 8-115117

ここで、所定形状を有する三次元形状造形物100’を製造する場合、固化層24’を積層する工程に加えて、積層した固化層24’の表面を切削する工程が実施される場合がある。具体的には、固化層24’の積層工程と積層した固化層24’の表面の切削工程とを繰り返して行う場合がある。この場合、これまでの当業者の技術常識によれば、予め決められた所定の層数(例えば10層~20層)の固化層24’の積層後毎に、切削工具40’を用いて当該所定層数分積層した固化層24’の表面領域を切削することが一般的となっている(図10参照)。 Here, in the case of manufacturing a three-dimensional shaped object 100'having a predetermined shape, a step of cutting the surface of the laminated solidified layer 24'may be carried out in addition to the step of laminating the solidified layer 24'. .. Specifically, the laminating step of the solidified layer 24'and the cutting step of the surface of the laminated solidified layer 24' may be repeated. In this case, according to the conventional general knowledge of those skilled in the art, the cutting tool 40'is used after each solidification layer 24'with a predetermined number of layers (for example, 10 to 20 layers) is laminated. It is common to cut the surface region of the solidified layer 24'laminated by a predetermined number of layers (see FIG. 10).

しかしながら、本願発明者らは、最終的に得られる三次元形状造形物100’の所定形状に依ることなく、所定の層数の固化層24’の積層後毎に切削工程を実施する場合、切削工程の回数が非効率的である場合があり、これに起因して全体として所望形状を有する三次元形状造形物100’の製造時間が相対的に長くなる問題が生じ得ることを新たに見出した。 However, when the inventors of the present application carry out a cutting step after laminating a predetermined number of solidified layers 24', regardless of the predetermined shape of the finally obtained three-dimensional shaped object 100', cutting is performed. It has been newly found that the number of steps may be inefficient, which may cause a problem that the manufacturing time of the three-dimensional shaped object 100'having a desired shape as a whole becomes relatively long. ..

本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の目的は、効率的な切削工程を含む三次元形状造形物の製造方法を提供することである。 The present invention has been made in view of such circumstances. That is, an object of the present invention is to provide a method for manufacturing a three-dimensional shaped object including an efficient cutting process.

上記目的を達成するために、本発明の一実施形態では、
三次元形状造形物を製造するための方法であって、
光ビーム照射により形成する固化層の積層工程と、積層した該固化層の表面の切削工程とを繰り返して行うことを含み、
前記工程の実施に先立ち、前記三次元形状造形物のモデルのデータに基づき、該モデルの形状に応じて、前記切削工程前に実施する各前記積層工程における前記固化層の積層数を個別に決定することを含む、製造方法が提供される。
In order to achieve the above object, in one embodiment of the present invention,
It is a method for manufacturing a three-dimensional shaped object,
It includes repeating the step of laminating the solidified layer formed by irradiation with a light beam and the step of cutting the surface of the laminated solidified layer.
Prior to the execution of the step, the number of layers of the solidified layer in each of the lamination steps to be carried out before the cutting step is individually determined according to the shape of the model based on the data of the model of the three-dimensional shaped object. Manufacturing methods are provided, including.

本発明の一実施形態に従えば、効率的な切削工程を含む三次元形状造形物の製造方法を提供することができる。 According to one embodiment of the present invention, it is possible to provide a method for manufacturing a three-dimensional shaped object including an efficient cutting step.

三次元形状造形物のモデルの形状に応じて、切削工程前に実施する各積層工程における固化層の積層数を個別に決定することを含む本発明の一実施形態に係る製造方法の模式図。A schematic diagram of a manufacturing method according to an embodiment of the present invention, which comprises individually determining the number of solidified layers to be laminated in each laminating step performed before a cutting step according to the shape of a model of a three-dimensional shaped object. 三次元形状造形物のモデル上にて、切削領域を決定するためのフローを示す模式図。A schematic diagram showing a flow for determining a cutting area on a model of a three-dimensional shaped object. 三次元形状造形物のモデル上にて、切削領域を決定するためのフローを示す模式図。A schematic diagram showing a flow for determining a cutting area on a model of a three-dimensional shaped object. 三次元形状造形物のモデル上にて、切削領域を決定するためのフローを示す模式図。A schematic diagram showing a flow for determining a cutting area on a model of a three-dimensional shaped object. 三次元形状造形物のモデル上にて、切削領域を決定するためのフローを示す模式図。A schematic diagram showing a flow for determining a cutting area on a model of a three-dimensional shaped object. 三次元形状造形物のモデル上にて、切削領域を決定するためのフローを示す模式図。A schematic diagram showing a flow for determining a cutting area on a model of a three-dimensional shaped object. 三次元形状造形物のモデル上にて、切削領域を決定するためのフローを示す模式図。A schematic diagram showing a flow for determining a cutting area on a model of a three-dimensional shaped object. 三次元形状造形物のモデル上にて、切削領域を決定するためのフローを示す模式図。A schematic diagram showing a flow for determining a cutting area on a model of a three-dimensional shaped object. 本発明の一実施形態にて用いられる有効刃長さ又は首下長さの異なる切削工具の一例を示す模式断面図。FIG. 6 is a schematic cross-sectional view showing an example of a cutting tool having a different effective blade length or under-neck length used in one embodiment of the present invention. 切削工具の非有効刃部分と造形物のモデルとの干渉状態を説明するための模式図(図9(a):正面図、図9(b):断面図)。A schematic diagram for explaining an interference state between an ineffective blade portion of a cutting tool and a model of a modeled object (FIG. 9 (a): front view, FIG. 9 (b): cross-sectional view). 本願発明者らが見出した技術的課題を説明するための従来図。The conventional figure for demonstrating the technical problem which the inventors of this application found. 粉末床溶融結合法が実施される光造形複合加工のプロセス態様を模式的に示した断面図(図11(a):粉末層形成時、図11(b):固化層形成時、図11(c):積層途中)A cross-sectional view schematically showing a process mode of stereolithography composite processing in which the powder bed melt bonding method is carried out (FIG. 11 (a): at the time of forming a powder layer, FIG. 11 (b): at the time of forming a solidified layer, FIG. c): During stacking) 光造形複合加工機の構成を模式的に示した斜視図Perspective view schematically showing the configuration of the stereolithography compound processing machine 光造形複合加工機の一般的な動作を示すフローチャートFlow chart showing the general operation of the stereolithography compound processing machine

以下では、図面を参照して本発明の一実施形態をより詳細に説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。 Hereinafter, an embodiment of the present invention will be described in more detail with reference to the drawings. The forms and dimensions of the various elements in the drawings are merely examples and do not reflect the actual forms and dimensions.

本明細書において「粉末層」とは、例えば「金属粉末から成る金属粉末層」または「樹脂粉末から成る樹脂粉末層」を意味している。また「粉末層の所定箇所」とは、製造される三次元形状造形物の領域を実質的に指している。従って、かかる所定箇所に存在する粉末に対して光ビームを照射することによって、その粉末が焼結又は溶融固化して三次元形状造形物を構成することになる。更に「固化層」とは、粉末層が金属粉末層である場合には「焼結層」を意味し、粉末層が樹脂粉末層である場合には「硬化層」を意味している。 As used herein, the term "powder layer" means, for example, a "metal powder layer made of metal powder" or a "resin powder layer made of resin powder". Further, the “predetermined location of the powder layer” substantially refers to the region of the three-dimensionally shaped object to be manufactured. Therefore, by irradiating the powder existing at the predetermined location with a light beam, the powder is sintered or melt-solidified to form a three-dimensional shaped object. Further, the "solidified layer" means a "sintered layer" when the powder layer is a metal powder layer, and means a "hardened layer" when the powder layer is a resin powder layer.

また、本明細書で直接的または間接的に説明される“上下”の方向は、例えば造形プレートと三次元形状造形物との位置関係に基づく方向であって、造形プレートを基準にして三次元形状造形物が製造される側を「上方向」とし、その反対側を「下方向」とする。 Further, the "up and down" direction described directly or indirectly in the present specification is, for example, a direction based on the positional relationship between the modeling plate and the three-dimensional shaped object, and is three-dimensional with respect to the modeling plate. The side on which the shaped object is manufactured is referred to as "upward", and the opposite side is referred to as "downward".

[粉末床溶融結合法]
まず、本発明の一実施形態に係る製造方法にて用いられる1つである粉末床溶融結合法について説明する。特に粉末床溶融結合法において三次元形状造形物の切削処理を付加的に行う光造形複合加工を例として挙げる。図11は、光造形複合加工のプロセス態様を模式的に示しており、図12および図13は、粉末床溶融結合法と切削処理とを実施できる光造形複合加工機の主たる構成および動作のフローチャートをそれぞれ示している。
[Powder bed melt bonding method]
First, a powder bed melt-bonding method, which is one used in the production method according to the embodiment of the present invention, will be described. In particular, the stereolithography composite processing in which the cutting process of the three-dimensional shaped object is additionally performed in the powder bed fusion bonding method will be given as an example. FIG. 11 schematically shows a process mode of stereolithography composite processing, and FIGS. 12 and 13 are flowcharts of main configurations and operations of a stereolithography composite processing machine capable of performing a powder bed melt bonding method and a cutting process. Are shown respectively.

光造形複合加工機1は、図12に示すように、粉末層形成手段2、光ビーム照射手段3および切削手段4を備えている。 As shown in FIG. 12, the stereolithography composite processing machine 1 includes a powder layer forming means 2, a light beam irradiating means 3, and a cutting means 4.

粉末層形成手段2は、金属粉末または樹脂粉末などの粉末を所定厚みで敷くことによって粉末層を形成するための手段である。光ビーム照射手段3は、粉末層の所定箇所に光ビームLを照射するための手段である。切削手段4は、積層化した固化層の側面、すなわち、三次元形状造形物の表面を削るための手段である。 The powder layer forming means 2 is a means for forming a powder layer by laying a powder such as a metal powder or a resin powder with a predetermined thickness. The light beam irradiating means 3 is a means for irradiating a predetermined portion of the powder layer with the light beam L. The cutting means 4 is a means for cutting the side surface of the laminated solidified layer, that is, the surface of the three-dimensionally shaped object.

粉末層形成手段2は、図11に示すように、粉末テーブル25、スキージング・ブレード23、造形テーブル20および造形プレート21を主に有して成る。粉末テーブル25は、外周が壁26で囲まれた粉末材料タンク28内にて上下に昇降できるテーブルである。スキージング・ブレード23は、粉末テーブル25上の粉末19を造形テーブル20上へと供して粉末層22を得るべく水平方向に移動できるブレードである。造形テーブル20は、外周が壁27で囲まれた造形タンク29内にて上下に昇降できるテーブルである。そして、造形プレート21は、造形テーブル20上に配され、三次元形状造形物の土台となるプレートである。 As shown in FIG. 11, the powder layer forming means 2 mainly includes a powder table 25, a squeezing blade 23, a modeling table 20, and a modeling plate 21. The powder table 25 is a table that can be raised and lowered in a powder material tank 28 whose outer periphery is surrounded by a wall 26. The squeezing blade 23 is a blade capable of horizontally moving the powder 19 on the powder table 25 onto the modeling table 20 to obtain the powder layer 22. The modeling table 20 is a table that can be raised and lowered in a modeling tank 29 whose outer circumference is surrounded by a wall 27. The modeling plate 21 is arranged on the modeling table 20 and serves as a base for the three-dimensionally shaped object.

光ビーム照射手段3は、図12に示すように、光ビーム発振器30およびガルバノミラー31を主に有して成る。光ビーム発振器30は、光ビームLを発する機器である。ガルバノミラー31は、発せられた光ビームLを粉末層22にスキャニングする手段、すなわち、光ビームLの走査手段である。 As shown in FIG. 12, the light beam irradiating means 3 mainly includes a light beam oscillator 30 and a galvano mirror 31. The optical beam oscillator 30 is a device that emits an optical beam L. The galvanometer mirror 31 is a means for scanning the emitted light beam L on the powder layer 22, that is, a means for scanning the light beam L.

切削手段4は、図12に示すように、切削工具40(エンドミル)および駆動機構41を主に有して成る。エンドミルは、積層化した固化層の側面、すなわち、三次元形状造形物の表面を削るための切削工具である。駆動機構41は、切削工具40を所望の切削すべき箇所へと移動させる手段である。 As shown in FIG. 12, the cutting means 4 mainly includes a cutting tool 40 (end mill) and a drive mechanism 41. An end mill is a cutting tool for scraping the side surface of a laminated solidified layer, that is, the surface of a three-dimensional shaped object. The drive mechanism 41 is a means for moving the cutting tool 40 to a desired position to be cut.

光造形複合加工機1の動作について詳述する。光造形複合加工機1の動作は、図13のフローチャートに示すように、粉末層形成ステップ(S1)、固化層形成ステップ(S2)および切削ステップ(S3)から構成されている。粉末層形成ステップ(S1)は、粉末層22を形成するためのステップである。かかる粉末層形成ステップ(S1)では、まず造形テーブル20をΔt下げ(S11)、造形プレート21の上面と造形タンク29の上端面とのレベル差がΔtとなるようにする。次いで、粉末テーブル25をΔt上げた後、図11(a)に示すようにスキージング・ブレード23を粉末材料タンク28から造形タンク29に向かって水平方向に移動させる。これによって、粉末テーブル25に配されていた粉末19を造形プレート21上へと移送させることができ(S12)、粉末層22の形成が行われる(S13)。粉末層22を形成するための粉末材料としては、例えば「平均粒径5μm~100μm程度の金属粉末」および「平均粒径30μm~100μm程度のナイロン、ポリプロピレンまたはABS等の樹脂粉末」を挙げることができる。粉末層22が形成されたら、固化層形成ステップ(S2)へと移行する。固化層形成ステップ(S2)は、光ビーム照射によって固化層24を形成するステップである。かかる固化層形成ステップ(S2)においては、光ビーム発振器30から光ビームLを発し(S21)、ガルバノミラー31によって粉末層22上の所定箇所へと光ビームLをスキャニングする(S22)。これによって、粉末層22の所定箇所の粉末を焼結又は溶融固化させ、図11(b)に示すように固化層24を形成する(S23)。光ビームLとしては、炭酸ガスレーザ、Nd:YAGレーザ、ファイバレーザ、ダイレクトダイオードレーザ(DDL)、または紫外線などを用いてよい。 The operation of the stereolithography compound processing machine 1 will be described in detail. As shown in the flowchart of FIG. 13, the operation of the stereolithography composite processing machine 1 is composed of a powder layer forming step (S1), a solidified layer forming step (S2), and a cutting step (S3). The powder layer forming step (S1) is a step for forming the powder layer 22. In the powder layer forming step (S1), first, the modeling table 20 is lowered by Δt (S11) so that the level difference between the upper surface of the modeling plate 21 and the upper end surface of the modeling tank 29 is Δt. Next, after raising the powder table 25 by Δt, the squeezing blade 23 is moved horizontally from the powder material tank 28 toward the modeling tank 29 as shown in FIG. 11 (a). As a result, the powder 19 arranged on the powder table 25 can be transferred onto the modeling plate 21 (S12), and the powder layer 22 is formed (S13). Examples of the powder material for forming the powder layer 22 include "metal powder having an average particle size of about 5 μm to 100 μm" and "resin powder such as nylon, polypropylene, or ABS having an average particle size of about 30 μm to 100 μm". can. After the powder layer 22 is formed, the process proceeds to the solidified layer forming step (S2). The solidified layer forming step (S2) is a step of forming the solidified layer 24 by irradiation with a light beam. In the solidified layer forming step (S2), the light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to a predetermined position on the powder layer 22 by the galvano mirror 31 (S22). As a result, the powder at a predetermined position in the powder layer 22 is sintered or melt-solidified to form the solidified layer 24 as shown in FIG. 11 (b) (S23). As the light beam L, a carbon dioxide gas laser, an Nd: YAG laser, a fiber laser, a direct diode laser (DDL), ultraviolet rays, or the like may be used.

粉末層形成ステップ(S1)および固化層形成ステップ(S2)は、交互に繰り返して実施する。これにより、図11(c)に示すように複数の固化層24が積層化する。 The powder layer forming step (S1) and the solidified layer forming step (S2) are alternately and repeatedly carried out. As a result, as shown in FIG. 11 (c), a plurality of solidified layers 24 are laminated.

積層化した固化層24が所定厚みに達すると(S24)、切削ステップ(S3)へと移行する。切削ステップ(S3)は、積層化した固化層24の側面、すなわち、三次元形状造形物の表面を削るためのステップである。切削工具40(図11(c)および図12参照)を駆動させることによって切削ステップが開始される(S31)。具体的には駆動機構41によって切削工具40を移動させながら、積層化した固化層24の側面に対して切削処理を施すことになる(S32)。このような切削ステップ(S3)の最終では、所望の三次元形状造形物が得られているか否かを判断する(S33)。所望の三次元形状造形物が依然得られていない場合では、粉末層形成ステップ(S1)へと戻る。以降、粉末層形成ステップ(S1)~切削ステップ(S3)を繰り返し実施して更なる固化層の積層化および切削処理を実施することによって、最終的に所望の三次元形状造形物が得られる。 When the laminated solidified layer 24 reaches a predetermined thickness (S24), the process proceeds to the cutting step (S3). The cutting step (S3) is a step for cutting the side surface of the laminated solidified layer 24, that is, the surface of the three-dimensionally shaped object. The cutting step is started by driving the cutting tool 40 (see FIGS. 11 (c) and 12) (S31). Specifically, while the cutting tool 40 is moved by the drive mechanism 41, the side surface of the laminated solidified layer 24 is subjected to a cutting process (S32). At the final stage of such a cutting step (S3), it is determined whether or not a desired three-dimensional shaped object is obtained (S33). If the desired three-dimensional shape model is not yet obtained, the process returns to the powder layer forming step (S1). After that, by repeatedly performing the powder layer forming step (S1) to the cutting step (S3) to further stack the solidified layer and perform the cutting process, a desired three-dimensional shaped product is finally obtained.

又、本発明の一実施形態に係る製造方法では、粉末床溶融結合法に限定されることなく指向性エネルギー堆積法が用いられてよい。当該指向性エネルギー堆積法は、原料供給と光ビーム照射とを実質的に同時に行って固化層を形成する方式である。粉末床溶融結合法との対比でいうと、指向性エネルギー堆積法は、固化層を得るに際して粉末層形成を行わないといった特徴を有する。指向性エネルギー堆積法における原料としては、粉末または溶加材を用いてよい。つまり、指向性エネルギー堆積法では、原料供給箇所に光ビームが照射されると共に、その原料供給箇所に対して粉末または溶加材が直接的に供給されることを通じて、その供給される粉末または溶加材から固化層を形成する。 Further, in the production method according to the embodiment of the present invention, a directed energy deposition method may be used without being limited to the powder bed melt bonding method. The directed energy deposition method is a method of forming a solidified layer by substantially simultaneously supplying raw materials and irradiating with a light beam. In contrast to the powder bed melt bonding method, the directed energy deposition method has a feature that the powder layer is not formed when the solidified layer is obtained. As a raw material in the directed energy deposition method, powder or filler metal may be used. That is, in the directed energy deposition method, the light beam is irradiated to the raw material supply point, and the powder or filler metal is directly supplied to the raw material supply point, so that the powder or melt is supplied. A solidified layer is formed from the filler material.

例えば粉末が用いられる場合、供給された粉末を光ビーム照射によって焼結又は溶融固化させて粉末から固化層を直接的に形成する。好ましくは、光ビーム照射の光ビームLの集光部(すなわち、原料供給箇所となる光ビームの照射部分)に対して粉末を噴霧供給し、それによって、粉末を焼結又は溶融固化させて固化層を形成する。粉末の噴霧供給のために、粉末供給ノズルを用いてよい。指向性エネルギー堆積法で用いる粉末の種類は、層形成後照射方式で用いる粉末の種類と同じであってよい。すなわち、指向性エネルギー堆積法における粉末は、粉末床溶融結合法の粉末層を構成する粉末を用いてもよい。 For example, when a powder is used, the supplied powder is sintered or melt-solidified by irradiation with a light beam to directly form a solidified layer from the powder. Preferably, the powder is sprayed and supplied to the condensing portion of the light beam L of the light beam irradiation (that is, the irradiated portion of the light beam serving as the raw material supply point), whereby the powder is sintered or melt-solidified and solidified. Form a layer. A powder supply nozzle may be used for spray supply of powder. The type of powder used in the directed energy deposition method may be the same as the type of powder used in the post-layer formation irradiation method. That is, as the powder in the directed energy deposition method, the powder constituting the powder layer in the powder bed melt bonding method may be used.

[本発明の製造方法]
本発明の一実施形態に係る製造方法は、粉末床溶融結合法および指向性エネルギー堆積法の少なくとも一方を用いて形成した上記固化層の表面の切削工程を含むことを前提とする。具体的には、本発明の一実施形態に係る製造方法は、光ビーム照射による固化層の積層工程と、積層した固化層の表面の切削工程とを繰り返して実施することを前提とする。
[Manufacturing method of the present invention]
The production method according to one embodiment of the present invention is premised on including a step of cutting the surface of the solidified layer formed by using at least one of a powder bed melt bonding method and a directed energy deposition method. Specifically, the manufacturing method according to the embodiment of the present invention is premised on repeating the step of laminating the solidified layer by irradiation with a light beam and the step of cutting the surface of the laminated solidified layer.

本願発明者らは、効率的な切削工程を含む三次元形状造形物の製造方法を提供するために鋭意検討した結果、下記の技術的思想を有する本発明を案出するに至った。 As a result of diligent studies to provide a method for manufacturing a three-dimensional shaped object including an efficient cutting process, the inventors of the present application have come up with the present invention having the following technical idea.

具体的には、本発明は、「上記積層工程/切削工程の実施に先立ち、最終的に得られる三次元形状造形物のモデルのデータに基づき、当該モデルの形状に応じて、上記切削工程前に実施する各積層工程における固化層の積層数を個別に決定する」という技術的思想を有する。 Specifically, the present invention states that "prior to the implementation of the laminating process / cutting process, based on the data of the model of the three-dimensional shaped object finally obtained, according to the shape of the model, before the cutting process. It has a technical idea that "the number of solidified layers to be laminated is individually determined in each laminating process to be carried out."

かかる技術的思想に従えば、三次元形状造形物のモデル100のデータ(例えばCAMソフトに基づくデータ)上において、当該モデル100の形状に応じて各積層工程にて当該積層数を適宜個別に決定することが可能となる(図1参照)。具体的には、三次元形状造形物のモデル100のデータ上において、モデル100の形状に応じて、切削工程にて用いる切削工具40の非有効刃部分40αとモデル100とが干渉しない高さにまで、当該切削工程前における各積層工程における固化層24の積層数を変更することができるという判断が可能である。つまり、本発明では、「三次元形状造形物のモデル100の形状に応じて、各積層工程における固化層24の積層数を個別に決定する」ことが可能なCAMソフトウェアにも特徴を有する。当該CAMソフトウェアによれば、各積層工程における固化層24の積層数を個別に決定することができる点で有利である。 According to such a technical idea, on the data of the model 100 of the three-dimensional shape model (for example, the data based on the CAM software), the number of stacks is appropriately and individually determined in each stacking step according to the shape of the model 100. (See Fig. 1). Specifically, on the data of the model 100 of the three-dimensionally shaped object, the height is set so that the ineffective blade portion 40α of the cutting tool 40 used in the cutting process and the model 100 do not interfere with each other according to the shape of the model 100. Until then, it is possible to determine that the number of layers of the solidified layer 24 in each lamination process before the cutting process can be changed. That is, the present invention is also characterized by CAM software capable of "individually determining the number of laminated layers 24 in each laminating step according to the shape of the model 100 of the three-dimensional shaped object". According to the CAM software, it is advantageous in that the number of laminated layers 24 in each laminating step can be individually determined.

なお、本明細書でいう「非有効刃部分とモデルとの干渉」とは、切削工具40の構成要素である非有効刃部分40αが造形物のモデル100(具体的にはモデル100を分割したブロック50に対応)の上面よりも下側に位置することで、切削工具の有効刃部分40βがモデル100の側面に接触できない状態を指す。本明細書でいう「非有効刃部分」とは、広義には切削加工に有効に寄与する切削工具の有効刃部分40β以外の部分を指す。本明細書でいう「非有効刃部分」とは、狭義には切削工具40のホルダ部分と当該ホルダ部分から延在するようにホルダ部分に支持された軸部材のうち有効刃部分40β以外の部分を指す(図9(a)、図9(b)参照)。 The term "interference between the ineffective blade portion and the model" as used herein means that the ineffective blade portion 40α, which is a component of the cutting tool 40, divides the model 100 of the modeled object (specifically, the model 100). By being located below the upper surface of the block 50), it means that the effective blade portion 40β of the cutting tool cannot contact the side surface of the model 100. In the broad sense, the "ineffective blade portion" as used herein refers to a portion other than the effective blade portion 40β of a cutting tool that effectively contributes to cutting. The term "ineffective blade portion" as used herein means, in a narrow sense, the holder portion of the cutting tool 40 and the portion of the shaft member supported by the holder portion so as to extend from the holder portion, other than the effective blade portion 40β. (See FIGS. 9 (a) and 9 (b)).

これにより、当該各積層工程後に実施する切削工程にて固化層24を一度に切削可能な範囲を変えることができるという判断が可能である。特に、データ上において、上記非有効刃部分とモデル100との干渉判断により、所定の積層工程における固化層24の積層数を増やすことができると判断できる場合、これに対応して、当該所定の積層工程後に実施する切削工程にて、相対的に大きな切削領域を一度に切削可能であるという判断が可能である。 This makes it possible to determine that the range in which the solidified layer 24 can be cut at one time can be changed in the cutting step performed after each laminating step. In particular, if it can be determined on the data that the number of layers of the solidified layer 24 in the predetermined lamination process can be increased by the interference determination between the ineffective blade portion and the model 100, the predetermined number is correspondingly determined. In the cutting process performed after the laminating process, it is possible to judge that a relatively large cutting area can be cut at one time.

そして、当該データの内容に従い、三次元形状造形物の現実の切削工程時に、切削工具を用いて相対的に大きな切削領域を一度に切削すると、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、全体として切削回数を低減することができる。そのため、当該切削回数の低減に起因して、切削工程の総時間を短くすることが可能となる。又、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、切削工具を用いて相対的に大きな切削領域を一度に切削するため、切削領域同士の境界にて段差が生じることを好適に抑止することができる。つまり、全体として切削工程を効率的に実施することができる。これにより、光ビーム照射により形成する固化層の積層工程の総時間と当該切削工程の総時間を含む所定形状の三次元形状造形物の製造時間を短くすることができる。その結果、全体として、効率的な切削工程を含む三次元形状造形物の製造方法を供することができる。 Then, according to the contents of the data, when a relatively large cutting area is cut at once using a cutting tool during the actual cutting process of a three-dimensional shaped object, the number of solidified layers to be laminated in each laminating process is predetermined. Compared with the case where the number of layers is a predetermined number (see FIG. 10), the number of cuttings can be reduced as a whole. Therefore, it is possible to shorten the total time of the cutting process due to the reduction in the number of cuttings. Further, as compared with the case where the number of laminated layers in each laminating step is a predetermined number of layers (see FIG. 10), a relatively large cutting area is cut at one time using a cutting tool. It is possible to preferably suppress the occurrence of a step at the boundary between cutting regions. That is, the cutting process can be efficiently carried out as a whole. As a result, it is possible to shorten the manufacturing time of the three-dimensional shaped object having a predetermined shape including the total time of the laminating process of the solidified layer formed by the light beam irradiation and the total time of the cutting process. As a result, it is possible to provide a method for manufacturing a three-dimensional shaped object including an efficient cutting process as a whole.

以下、本発明の好ましい態様について説明する。 Hereinafter, preferred embodiments of the present invention will be described.

一態様では、切削工程にて用いる切削工具の非有効刃部分とモデルとが干渉しない高さの違いに基づき、有効刃長さ又は首下長さが異なる少なくとも2種類の切削工具から所定の切削工具を選択することが好ましい(図1参照)。 In one aspect, a predetermined cutting is performed from at least two types of cutting tools having different effective blade lengths or under-neck lengths based on the difference in height at which the ineffective blade portion of the cutting tool used in the cutting process and the model do not interfere with each other. It is preferable to select the tool (see FIG. 1).

上述のように、各積層工程における固化層24’の積層数が予め決められた所定の層数である従来の態様では、切削工具の有効刃長さ又は首下長さが相対的に短い切削工具40’(切削小工具ともいう)を用いる場合に非有効刃部分がモデルと干渉しない高さに合わせて、当該所定の層数は10~20層に設定され得る(図10参照)。これに対して、本発明の一実施形態では、三次元形状造形物のモデル100のデータ上において、モデル100の形状に応じて、切削工具の非有効刃部分とモデル100とが干渉しない高さにまで、切削工程前における各積層工程における固化層24の積層数を適宜変えることができる。 As described above, in the conventional embodiment in which the number of layers of the solidified layer 24'in each lamination step is a predetermined number of layers, the effective blade length or the length under the neck of the cutting tool is relatively short. When the tool 40'(also referred to as a cutting tool) is used, the predetermined number of layers can be set to 10 to 20 layers according to the height at which the ineffective blade portion does not interfere with the model (see FIG. 10). On the other hand, in one embodiment of the present invention, the height at which the ineffective blade portion of the cutting tool and the model 100 do not interfere with each other according to the shape of the model 100 on the data of the model 100 of the three-dimensional shaped object. Up to this point, the number of layers of the solidified layer 24 in each lamination process before the cutting process can be appropriately changed.

この場合、切削工程にて用いる切削工具40の非有効刃部分40αとモデル100とが干渉しない高さの違いに基づき、有効刃長さ又は首下長さが異なる少なくとも2種類の切削工具40A、40Bから所定の切削工具を選択することが好ましい。これにより、有効刃長さが相対的に短い切削工具を各積層工程のいずれにおいて必ずしも用いる必要がなく、切削工具40の非有効刃部分40αとモデル100とが干渉しない高さに対応する有効刃長さおよび首下長さを有する好適な切削工具を選択できる。つまり、各積層工程における固化層24の積層数を、非有効刃部分40α上に設けられる切削工具40の有効刃長さに基づき決定する。 In this case, at least two types of cutting tools 40A having different effective blade lengths or under-neck lengths based on the difference in height at which the ineffective blade portion 40α of the cutting tool 40 used in the cutting process and the model 100 do not interfere with each other. It is preferable to select a predetermined cutting tool from 40B. As a result, it is not always necessary to use a cutting tool with a relatively short effective blade length in any of the laminating processes, and the effective blade corresponding to the height at which the non-effective blade portion 40α of the cutting tool 40 and the model 100 do not interfere with each other. A suitable cutting tool with length and under-neck length can be selected. That is, the number of laminated layers 24 in each laminating step is determined based on the effective blade length of the cutting tool 40 provided on the non-effective blade portion 40α.

一態様では、切削工具40として、有効刃長さが相対的に短い回転切削工具を用いることができる。固化層1層当たりの厚さが0.05mmである場合、有効刃長さLが相対的に短い切削工具40Cとしては、例えばフラットエンドミルを用いることができる(図8(a)参照)。特に限定されるものではないが、当該有効刃長さLは1mm~3mmであってよい。この場合、切削工程前に実施する積層工程にて固化層24の積層数は、約5層~約40層であってよい。同様に、有効刃長さLが相対的に短い切削工具40Aとしては、例えばボールエンドミルを用いることができる(図8(b)参照)。特に限定されるものではないが、当該有効刃長さLは1mm~3mmであってよい。この場合、切削工程前に実施する積層工程にて固化層24の積層数は、約5層~約40層であってよい。又、切削工具40として、有効刃長さが相対的に長い回転切削工具を用いることができる。有効刃長さLが相対的に短い切削工具40Bとしては、例えばフラットエンドミルを用いることができる(図8(c)参照)。特に限定されるものではないが、当該有効刃長さLは5mm~20mmであってよい。この場合、切削工程前に実施する積層工程にて固化層24の積層数は、約40層~約120層となり得る。 In one aspect, as the cutting tool 40, a rotary cutting tool having a relatively short effective blade length can be used. When the thickness per solidified layer is 0.05 mm, for example, a flat end mill can be used as the cutting tool 40C having a relatively short effective blade length L1 (see FIG. 8A). Although not particularly limited, the effective blade length L 1 may be 1 mm to 3 mm. In this case, the number of laminated solidified layers 24 in the laminating step performed before the cutting step may be about 5 to about 40 layers. Similarly, as the cutting tool 40A having a relatively short effective blade length L2, for example, a ball end mill can be used (see FIG . 8B). Although not particularly limited, the effective blade length L 2 may be 1 mm to 3 mm. In this case, the number of laminated solidified layers 24 in the laminating step performed before the cutting step may be about 5 to about 40 layers. Further, as the cutting tool 40, a rotary cutting tool having a relatively long effective blade length can be used. As the cutting tool 40B having a relatively short effective blade length L3 , for example, a flat end mill can be used (see FIG. 8C). Although not particularly limited, the effective blade length L 3 may be 5 mm to 20 mm. In this case, the number of laminated solidified layers 24 may be about 40 to about 120 in the laminating step performed before the cutting step.

上述のように、本発明の一実施形態では、切削工具40として“回転切削工具”を用いることができる。なお、「回転切削工具」とは、切削加工処理に際して回転駆動させて使用する工具のことを意味している。特に限定されるものではないが、回転切削工具の回転数は、例えば、3000~9000min-1であってよい。なお、回転切削工具の表面には、耐熱性を向上させるため合金コーティング(例えばAlTiNコーティング)が設けられたものであってもよい。 As described above, in one embodiment of the present invention, a "rotary cutting tool" can be used as the cutting tool 40. The "rotary cutting tool" means a tool that is driven to rotate during the cutting process. Although not particularly limited, the rotation speed of the rotary cutting tool may be, for example, 3000 to 9000 min -1 . The surface of the rotary cutting tool may be provided with an alloy coating (for example, AlTiN coating) in order to improve heat resistance.

特に、切削工具40の非有効刃部分40αとモデル100とが干渉しない高さが相対的に大きい場合、これに対応して有効刃長さが相対的に大きい切削工具40Bを選択することが好ましい。これにより、モデル100の高さ方向に沿って、所定の積層工程後に実施する切削工程にて、相対的に大きな切削領域を一度に切削可能であるという判断が可能である。そして、当該データの内容に従い、三次元形状造形物の現実の切削工程時に、上記の有効刃長さが相対的に大きい切削工具を駆動させると、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、全体として切削回数を低減することができる。 In particular, when the height at which the ineffective blade portion 40α of the cutting tool 40 and the model 100 do not interfere with each other is relatively large, it is preferable to select the cutting tool 40B having a relatively large effective blade length corresponding to this. .. This makes it possible to determine that a relatively large cutting region can be cut at one time in the cutting step performed after the predetermined laminating step along the height direction of the model 100. Then, according to the contents of the data, when the cutting tool having a relatively large effective blade length is driven during the actual cutting process of the three-dimensional shaped object, the number of solidified layers to be laminated in each laminating step is determined in advance. Compared with the case where the predetermined number of layers is obtained (see FIG. 10), the number of cuttings can be reduced as a whole.

以下、上記の各積層工程における固化層24の積層数に基づく当該固化層24の切削領域の決定方法について説明する。 Hereinafter, a method of determining the cutting region of the solidified layer 24 based on the number of laminated solidified layers 24 in each of the above laminating steps will be described.

一実施形態では、三次元形状造形物のモデル100を所定の間隔をおいて複数のブロック50に分割し、固化層24の積層方向に沿って下層から順に分割したブロック50αごとに非有効刃部分40αとモデル100との干渉有無を確認し、非有効刃部分40αとモデル100とが干渉するまでに切削可能な固化層24の切削領域を決定する(図2参照)。特に限定されるものではないが、当該所定の間隔については、非有効刃部分40αとモデル100との干渉有無の確認を細かく行う観点から、有効刃長さが最も小さい切削工具に基づき決定されてよい。 In one embodiment, the model 100 of the three-dimensionally shaped object is divided into a plurality of blocks 50 at predetermined intervals, and the ineffective blade portion is divided into blocks 50α in order from the lower layer along the stacking direction of the solidified layer 24. The presence or absence of interference between the 40α and the model 100 is confirmed, and the cutting region of the solidified layer 24 that can be cut before the ineffective blade portion 40α and the model 100 interfere with each other is determined (see FIG. 2). Although not particularly limited, the predetermined interval is determined based on the cutting tool having the smallest effective blade length from the viewpoint of finely confirming the presence or absence of interference between the non-effective blade portion 40α and the model 100. good.

例えば、図2に示すように、外表面の1つが斜面形態であるモデル100を例に採る。 For example, as shown in FIG. 2, a model 100 in which one of the outer surfaces has a slope shape is taken as an example.

まず、モデル100のデータ上において、切削工具40A(ボールエンドミル、首下長さが短い側の切削工具に相当)の首下長さに基づき、モデル100を複数のブロック50、具体的には3つのブロック50に分割する。 First, on the data of the model 100, based on the under-neck length of the cutting tool 40A (corresponding to the ball end mill, the cutting tool on the side where the under-neck length is short), the model 100 is divided into a plurality of blocks 50, specifically 3, 3. Divide into two blocks 50.

次いで、第1段目のブロック50Xにつき、切削工具40Aの非有効刃部分40Aαと当該第1段目のブロック50Xの構成要素である斜面との干渉有無を確認する。又、第1段目のブロック50Xにつき、切削工具40Aの非有効刃部分40Aα(又は切削工具40B(有効刃長さおよび首下長さが長い側の切削工具に相当)の非有効刃部分40Bα)と当該第1段目のブロック50Xの構成要素である垂直面との干渉有無を確認する。 Next, with respect to the block 50X of the first stage, it is confirmed whether or not the ineffective blade portion 40Aα of the cutting tool 40A interferes with the slope which is a component of the block 50X of the first stage. Further, for the block 50X of the first stage, the ineffective blade portion 40Aα of the cutting tool 40A (or the ineffective blade portion 40Bα of the cutting tool 40B (corresponding to the cutting tool on the side where the effective blade length and the length below the neck are long)). ) And the vertical surface, which is a component of the block 50X of the first stage, are confirmed to be present.

かかる干渉有無の確認により、第1段目のブロック50Xでは、その構成要素である斜面と切削工具40Aの非有効刃部分40Aαとの干渉がないと認定し得る。又、モデル100のデータ上において、切削工具40Aの有効刃長さの範囲内では、切削工具40Aの非有効刃部分40Aαと当該第1段目のブロック50Xの構成要素である垂直面との干渉がないと認定し得る。一方、モデル100のデータ上において、切削工具40Aの有効刃長さの範囲外では、切削工具40Aの非有効刃部分40Aαと当該第1段目のブロック50Xの構成要素である垂直面との干渉があると認定し得る。 By confirming the presence or absence of such interference, it can be determined that there is no interference between the slope which is a component thereof and the ineffective blade portion 40Aα of the cutting tool 40A in the first stage block 50X. Further, on the data of the model 100, within the range of the effective blade length of the cutting tool 40A, the ineffective blade portion 40Aα of the cutting tool 40A interferes with the vertical surface which is a component of the block 50X of the first stage. It can be certified that there is no such thing. On the other hand, on the data of the model 100, outside the range of the effective blade length of the cutting tool 40A, the ineffective blade portion 40Aα of the cutting tool 40A interferes with the vertical surface which is a component of the block 50X of the first stage. Can be found to be.

次いで、第2段目のブロック50Yにつき、切削工具40Aの非有効刃部分40Aαと当該第2段目のブロック50Yの構成要素である斜面との干渉有無を確認する。又、第2段目のブロック50Yにつき、切削工具40Aの非有効刃部分40Aα(又は切削工具40B(有効刃長さが長い側の切削工具に相当))と当該第2段目のブロック50Yの構成要素である垂直面との干渉有無を確認する。 Next, with respect to the block 50Y of the second stage, it is confirmed whether or not the ineffective blade portion 40Aα of the cutting tool 40A interferes with the slope which is a component of the block 50Y of the second stage. Further, for the second-stage block 50Y, the ineffective blade portion 40Aα (or cutting tool 40B (corresponding to the cutting tool on the long effective blade length side)) of the cutting tool 40A and the second-stage block 50Y. Check for interference with the vertical plane that is a component.

かかる干渉有無の確認により、第2段目のブロック50Yでは、その構成要素である斜面と切削工具40Aの非有効刃部分40Aαとの干渉がないと認定し得る。又、モデル100のデータ上において、切削工具40Aの有効刃長さの範囲内では、切削工具40Aの非有効刃部分40Aαと当該第2段目のブロック50Yの構成要素である垂直面との干渉がないと認定し得る。一方、モデル100のデータ上において、切削工具40Aの有効刃長さの範囲外では、切削工具40Aの非有効刃部分40Aαと当該第2段目のブロック50Yの構成要素である垂直面との干渉があると認定し得る。 By confirming the presence or absence of such interference, it can be determined that the block 50Y in the second stage does not interfere with the slope which is a component thereof and the ineffective blade portion 40Aα of the cutting tool 40A. Further, on the data of the model 100, within the range of the effective blade length of the cutting tool 40A, the ineffective blade portion 40Aα of the cutting tool 40A interferes with the vertical surface which is a component of the second stage block 50Y. It can be certified that there is no such thing. On the other hand, on the data of the model 100, outside the range of the effective blade length of the cutting tool 40A, the ineffective blade portion 40Aα of the cutting tool 40A interferes with the vertical surface which is a component of the second stage block 50Y. Can be found to be.

最後に、第3段目のブロック50Zにつき、切削工具40Aの非有効刃部分40Aαと当該第3段目のブロック50Zの構成要素である斜面との干渉有無を確認する。又、第3段目のブロック50Zにつき、切削工具40Aの非有効刃部分40Aα(又は切削工具40B(有効刃長さが長い側の切削工具に相当))と当該第3段目のブロック50Zの構成要素である垂直面との干渉有無を確認する。 Finally, with respect to the block 50Z of the third stage, it is confirmed whether or not the ineffective blade portion 40Aα of the cutting tool 40A interferes with the slope which is a component of the block 50Z of the third stage. Further, for the third-stage block 50Z, the ineffective blade portion 40Aα (or cutting tool 40B (corresponding to the cutting tool on the long effective blade length side)) of the cutting tool 40A and the third-stage block 50Z. Check for interference with the vertical plane that is a component.

かかる干渉有無の確認により、第3段目のブロック50Zでは、その構成要素である斜面と切削工具40Aの非有効刃部分40Aαとの干渉がないと認定し得る。又、モデル100のデータ上において、切削工具40Aの有効刃長さの範囲内では、切削工具40Aの非有効刃部分40Aαと当該第3段目のブロック50Zの構成要素である垂直面との干渉がないと認定し得る。一方、モデル100のデータ上において、切削工具40Aの有効刃長さの範囲外では、切削工具40Aの非有効刃部分40Aαと当該第3段目のブロック50Zの構成要素である垂直面との干渉があると認定し得る。 By confirming the presence or absence of such interference, it can be determined that there is no interference between the slope which is a component thereof and the ineffective blade portion 40Aα of the cutting tool 40A in the block 50Z of the third stage. Further, on the data of the model 100, within the range of the effective blade length of the cutting tool 40A, the ineffective blade portion 40Aα of the cutting tool 40A interferes with the vertical surface which is a component of the block 50Z of the third stage. It can be certified that there is no such thing. On the other hand, on the data of the model 100, outside the range of the effective blade length of the cutting tool 40A, the ineffective blade portion 40Aα of the cutting tool 40A interferes with the vertical surface which is a component of the block 50Z of the third stage. Can be found to be.

以上の事から、外表面の1つが斜面形態であるモデル100を例に採ると、モデル100の斜面は全体として切削工具40Aの非有効刃部分40Aαと干渉しないと認定し得る。又、切削工具40Aの有効刃長さの範囲内では、切削工具40Aの非有効刃部分40Aαと第1段目~第3段目の各ブロック50の構成要素である垂直面との干渉がないと認定し得る。又、切削工具40Bの有効刃長さは切削工具40Aの有効刃長さの約3倍となっている。そのため、切削工具40Bの非有効刃部分40Bαと第1段目~第3段目の各ブロック50の垂直面の合計高さは、切削工具40Bの有効刃長さの範囲内にある。そのため、切削工具40Bの有効刃長さの範囲内では、モデル100の垂直面の最高端との干渉がないと認定し得る。 From the above, if model 100 in which one of the outer surfaces is in the form of a slope is taken as an example, it can be determined that the slope of the model 100 does not interfere with the ineffective blade portion 40Aα of the cutting tool 40A as a whole. Further, within the range of the effective blade length of the cutting tool 40A, there is no interference between the ineffective blade portion 40Aα of the cutting tool 40A and the vertical surface which is a component of each block 50 of the first to third stages. Can be certified as. Further, the effective blade length of the cutting tool 40B is about three times the effective blade length of the cutting tool 40A. Therefore, the total height of the ineffective blade portion 40Bα of the cutting tool 40B and the vertical surface of each block 50 of the first to third stages is within the range of the effective blade length of the cutting tool 40B. Therefore, within the range of the effective blade length of the cutting tool 40B, it can be determined that there is no interference with the highest end of the vertical surface of the model 100.

かかる認定結果に基づき、切削工具40Aによる切削領域をモデル100の斜面の全体と決定し、切削工具40Bによる切削領域をモデル100の垂直面の上端から下端までと決定し得る。 Based on the certification result, the cutting area by the cutting tool 40A can be determined as the entire slope of the model 100, and the cutting area by the cutting tool 40B can be determined from the upper end to the lower end of the vertical surface of the model 100.

以上の事から、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、所定の積層工程後に実施する切削工程にて、切削工具40Aによりモデル100の斜面の全体を切削し、かつ切削工具40Bによりモデル100の垂直面の上端から下端まで一度に切削可能と判断できる。 From the above, compared with the case where the number of solidified layers to be laminated in each laminating step is a predetermined number of layers (see FIG. 10), the cutting tool 40A is performed in the cutting step performed after the predetermined laminating step. It can be determined that the entire slope of the model 100 can be cut by the cutting tool 40B, and the cutting tool 40B can cut from the upper end to the lower end of the vertical surface of the model 100 at one time.

そして、当該データの内容に従い、三次元形状造形物の現実の切削工程時に、切削工具40Aによりモデル100に対応する造形物の斜面の全体を切削し、かつ切削工具40Bによりモデル100に対応する造形物の垂直面の上端から下端まで一度に切削すると、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、全体として切削回数を低減することができる。 Then, according to the contents of the data, the entire slope of the modeled object corresponding to the model 100 is cut by the cutting tool 40A during the actual cutting process of the three-dimensional shaped object, and the modeling corresponding to the model 100 is performed by the cutting tool 40B. When cutting from the upper end to the lower end of the vertical surface of an object at once, the number of cuttings is reduced as a whole as compared with the case where the number of laminated layers in each laminating process is a predetermined number of layers (see FIG. 10). can do.

なお、ここでは、外表面の1つが斜面形態であるモデル100を例に採って説明した。しかしながら、当該例は一例にすぎない。例えば、モデル100の側面(4面)が全て斜面形態である場合においても、本発明の技術的思想を適用でき得ることを確認的に述べておく。この場合も、モデル100上において、上記の干渉有無確認を行う。例えば、上記
切削工具40Aを用いる場合にて、切削工具40Aの非有効刃部分40Aαと各段のブロック50の構成要素である斜面との干渉有無を確認する。当該干渉有無の確認により、各段のブロックにおいて、その構成要素である斜面と切削工具40Aの非有効刃部分40Aαとの干渉がないと認定し得る。
Here, the model 100 in which one of the outer surfaces has a slope shape has been taken as an example for explanation. However, this example is only one example. For example, it should be confirmed that the technical idea of the present invention can be applied even when all the sides (four sides) of the model 100 are in a slope shape. Also in this case, the presence or absence of the above interference is confirmed on the model 100. For example, when the cutting tool 40A is used, it is confirmed whether or not the ineffective blade portion 40Aα of the cutting tool 40A interferes with the slope which is a component of the block 50 of each stage. By confirming the presence or absence of the interference, it can be determined that there is no interference between the slope which is a component thereof and the ineffective blade portion 40Aα of the cutting tool 40A in each stage block.

かかる認定結果に基づき、切削工具40Aによる切削領域をモデル100の斜面の全体と決定し得る。以上の事から、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、所定の積層工程後に実施する切削工程にて、切削工具40Aによりモデル100の4つの斜面の全てをそれぞれ一度に切削可能と判断できる。そして、当該データの内容に従い、三次元形状造形物の現実の切削工程時に、切削工具40Aによりモデル100に対応する造形物の4つの斜面の全てをそれぞれ一度に切削する。そのため、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)および造形物の外表面の1つが斜面形態である場合と比べて、全体として切削回数をより低減することができる。これにより、切削工程の総時間をより短くすることが可能となる。 Based on the certification result, the cutting area by the cutting tool 40A can be determined as the entire slope of the model 100. From the above, compared with the case where the number of solidified layers to be laminated in each laminating step is a predetermined number of layers (see FIG. 10), the cutting tool 40A is performed in the cutting step performed after the predetermined laminating step. Therefore, it can be determined that all four slopes of the model 100 can be cut at one time. Then, according to the contents of the data, all four slopes of the modeled object corresponding to the model 100 are cut at once by the cutting tool 40A during the actual cutting process of the three-dimensional shaped object. Therefore, the number of cuttings as a whole is compared with the case where the number of layers of the solidified layer in each laminating step is a predetermined number of layers (see FIG. 10) and the case where one of the outer surfaces of the modeled object is in a sloped form. Can be further reduced. This makes it possible to shorten the total time of the cutting process.

なお、モデルに関するデータの内容に従い、三次元形状造形物を現実に切削工程する際には、コンピュータ上にて予め決定/制御した切削タイミング、切削領域(および切削加工パス)、および用いる切削工具の種類等の情報に基づき、固化層24の表面を切削する。具体的には、数値制御(NC:Numerical Control)工作機械またはそれに準ずるもの(以下、NC工作機械等という。)を用い、コンピュータ処理にて得た情報からプログラム変換した数値情報を、当該NC工作機械等に対して命令してよい。これにより、NC工作機械等として用いる切削工具(エンドミル等)の動作を好適に制御し得る。 According to the contents of the data related to the model, when actually cutting a three-dimensional shaped object, the cutting timing, cutting area (and cutting path) determined / controlled in advance on the computer, and the cutting tool to be used The surface of the solidified layer 24 is cut based on information such as the type. Specifically, using a numerical control (NC: Manual Control) machine tool or something equivalent to it (hereinafter referred to as NC machine tool, etc.), the numerical information obtained by program conversion from the information obtained by computer processing is converted into the NC machine tool. You may give an order to a machine or the like. Thereby, the operation of the cutting tool (end mill or the like) used as the NC machine tool or the like can be suitably controlled.

なお、上記では、切削工具40A(有効刃長さが短い側の切削工具に相当)と切削工具40B(有効刃長さが長い側の切削工具に相当)との組合せに基づく切削加工について説明した。しかしながら、造形物の現実の造形時に、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、全体として切削回数を低減することができるならば、これに限定されない。 In the above, the cutting work based on the combination of the cutting tool 40A (corresponding to the cutting tool on the side with the short effective blade length) and the cutting tool 40B (corresponding to the cutting tool on the side with the long effective blade length) has been described. .. However, at the time of actual modeling of the modeled object, the number of cuttings can be reduced as a whole as compared with the case where the number of layers of the solidified layer in each lamination process is a predetermined number of layers (see FIG. 10). If so, it is not limited to this.

例えば、図3Aに示す態様が挙げられる。当該態様では、図2に示す態様と同様に、干渉有無の確認の結果として、モデル100の斜面は全体として切削工具40Aの非有効刃部分40Aαと干渉しないと認定し得る(図3A参照)。 For example, the embodiment shown in FIG. 3A can be mentioned. In this aspect, as in the aspect shown in FIG. 2, as a result of checking the presence or absence of interference, it can be determined that the slope of the model 100 does not interfere with the ineffective blade portion 40Aα of the cutting tool 40A as a whole (see FIG. 3A).

一方、図3Aに示す態様では、第1段目~第3段目の各ブロック50の構成要素である垂直面を切削するに際して、切削工具40Aの有効刃長さと略同一である切削工具40Cを用いることを前提とする。この場合、切削工具40Cの有効刃長さの範囲内では、切削工具40Cの非有効刃部分40Cαと第1段目~第3段目の各ブロック50の構成要素である垂直面との干渉がないと認定し得る。 On the other hand, in the embodiment shown in FIG. 3A, when cutting the vertical surface which is a component of each block 50 of the first to third stages, the cutting tool 40C which is substantially the same as the effective blade length of the cutting tool 40A is used. It is assumed to be used. In this case, within the range of the effective blade length of the cutting tool 40C, the interference between the ineffective blade portion 40Cα of the cutting tool 40C and the vertical surface which is a component of each block 50 of the first to third stages occurs. Can be certified as not.

かかる認定結果に基づき、図3Aに示す態様では、切削工具40Aによる切削領域をモデル100の斜面の全体と決定し、切削工具40Cによる切削領域を第1段目~第3段目の各ブロック50の構成要素である垂直面と決定し得る。 Based on the certification result, in the embodiment shown in FIG. 3A, the cutting area by the cutting tool 40A is determined as the entire slope of the model 100, and the cutting area by the cutting tool 40C is defined as each block 50 in the first to third stages. It can be determined to be a vertical plane that is a component of.

以上の事から、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、所定の積層工程後に実施する切削工程にて、切削工具40Aによりモデル100の斜面の全体を切削し、かつ切削工具40Cにより第1段目~第3段目の各ブロック50の構成要素である垂直面を一度に切削可能と判断できる。 From the above, compared with the case where the number of solidified layers to be laminated in each laminating step is a predetermined number of layers (see FIG. 10), the cutting tool 40A is performed in the cutting step performed after the predetermined laminating step. It can be determined that the entire slope of the model 100 can be cut and the vertical surface which is a component of each block 50 of the first to third stages can be cut at once by the cutting tool 40C.

そして、当該データの内容に従い、三次元形状造形物の現実の切削工程時に、切削工具40Aによりモデル100に対応する造形物の斜面の全体を切削し、かつ切削工具40Cにより各ブロック50の垂直面に対応する造形物の所定部分の垂直面を一度に切削すると、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、全体として切削回数を低減することができる。 Then, according to the contents of the data, the entire slope of the modeled object corresponding to the model 100 is cut by the cutting tool 40A during the actual cutting process of the three-dimensional shaped object, and the vertical surface of each block 50 is cut by the cutting tool 40C. When the vertical surface of the predetermined portion of the modeled object corresponding to the above is cut at one time, the number of layers of the solidified layer in each laminating step is a predetermined predetermined number of layers (see FIG. 10), and the cutting is performed as a whole. The number of times can be reduced.

又、例えば、図3Bに示す態様が挙げられる。図3Bに示す態様は、切削工具40Cのみ、即ち1種類の切削工具のみを用いる点で図3Aに示す態様と異なる。なお、本発明の一実施形態にて、1種類の切削工具のみを用いる態様を説明するために、一例として図3Bに示す態様を示しているにすぎない。そのため、1種類の切削工具のみを用いる態様については、任意の形状を有する造形物のモデルにおいて適宜採り入れることができる旨確認的に述べておく。 Further, for example, the embodiment shown in FIG. 3B can be mentioned. The embodiment shown in FIG. 3B differs from the embodiment shown in FIG. 3A in that only the cutting tool 40C, that is, only one type of cutting tool is used. It should be noted that, in order to explain the embodiment in which only one type of cutting tool is used in one embodiment of the present invention, the embodiment shown in FIG. 3B is merely shown as an example. Therefore, it should be confirmed that the mode in which only one type of cutting tool is used can be appropriately adopted in a model of a modeled object having an arbitrary shape.

当該態様では、図3Aに示す態様と同様に、干渉有無の確認の結果として、モデル100の斜面は全体として切削工具40Cの非有効刃部分40Cαと干渉しないと認定し得る(図3B参照)。又、第1段目~第3段目の各ブロック50の構成要素である垂直面を切削するに際して、切削工具40Cの有効刃長さの範囲内では、切削工具40Cの非有効刃部分40Cαと第1段目~第3段目の各ブロック50の構成要素である垂直面との干渉がないと認定し得る。 In this aspect, as in the embodiment shown in FIG. 3A, as a result of checking for the presence or absence of interference, it can be determined that the slope of the model 100 as a whole does not interfere with the ineffective blade portion 40Cα of the cutting tool 40C (see FIG. 3B). Further, when cutting a vertical surface which is a component of each block 50 of the first to third stages, the ineffective blade portion 40Cα of the cutting tool 40C is used within the range of the effective blade length of the cutting tool 40C. It can be determined that there is no interference with the vertical plane that is a component of each block 50 in the first to third stages.

かかる認定結果に基づき、図3Bに示す態様では、モデル100の斜面の全体と、第1段目~第3段目の各ブロック50の構成要素である垂直面とを、切削工具40Cによる切削可能な領域と決定し得る。 Based on the certification result, in the embodiment shown in FIG. 3B, the entire slope of the model 100 and the vertical surface which is a component of each block 50 of the first to third stages can be cut by the cutting tool 40C. Area can be determined.

以上の事から、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、所定の積層工程後に実施する切削工程にて、切削工具40Cによりモデル100の斜面の全体を切削し、かつ第1段目~第3段目の各ブロック50の構成要素である垂直面を一度に切削可能と判断できる。 From the above, compared with the case where the number of solidified layers to be laminated in each laminating step is a predetermined number of layers (see FIG. 10), the cutting tool 40C is carried out in the cutting step performed after the predetermined laminating step. It can be determined that the entire slope of the model 100 can be cut and the vertical surface which is a component of each block 50 in the first to third stages can be cut at once.

そして、当該データの内容に従い、三次元形状造形物の現実の切削工程時に、切削工具40Cによりモデル100に対応する造形物の斜面の全体を切削し、かつ各ブロック50の垂直面に対応する造形物の所定部分の垂直面を一度に切削すると、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、全体として切削回数を低減することができる。 Then, according to the contents of the data, the entire slope of the modeled object corresponding to the model 100 is cut by the cutting tool 40C during the actual cutting process of the three-dimensional shaped object, and the modeling corresponding to the vertical surface of each block 50 is performed. When the vertical surface of a predetermined portion of an object is cut at one time, the number of cuttings is reduced as a whole as compared with the case where the number of laminated layers in each laminating step is a predetermined predetermined number of layers (see FIG. 10). be able to.

なお、造形物のモデルにおける切削領域については、下記の2つのアプローチのいずれかを経て決定し得る。一例として、図3Aに示す態様とこれに対応する図5に示す態様とを対比しながら、造形物のモデルにおける切削領域の決定法について説明する。 The cutting area in the model of the modeled object can be determined by either of the following two approaches. As an example, a method of determining a cutting region in a model of a modeled object will be described while comparing the embodiment shown in FIG. 3A with the corresponding embodiment shown in FIG.

第1のアプローチは、非有効刃部分と造形物のモデルとの干渉有無を確認する毎に固化層の切削領域の決定を順次行うというものである。図3Aに示す態様でいうと、切削工具の非有効刃部分と各ブロック50との干渉有無を確認する毎に切削領域を決定する。具体的には、切削工具の非有効刃部分40αと各ブロック50との干渉有無を確認して、各ブロック50の斜面の全体を切削することと、各ブロック50の垂直面の上端から下端までを切削することとを決定する。そして、最終的に、モデル100の斜面では切削工具の非有効刃部分40αとの干渉がないことに起因して、切削工具40Aによる切削領域をモデル100の斜面の全体と決定し、切削工具40Cによる切削領域を第1段目~第3段目の各ブロック50の構成要素である垂直面と決定し得る。 The first approach is to sequentially determine the cutting region of the solidified layer each time it is confirmed whether or not there is interference between the ineffective blade portion and the model of the modeled object. In the embodiment shown in FIG. 3A, the cutting region is determined each time the presence or absence of interference between the ineffective blade portion of the cutting tool and each block 50 is confirmed. Specifically, the presence or absence of interference between the ineffective blade portion 40α of the cutting tool and each block 50 is confirmed, and the entire slope of each block 50 is cut, and from the upper end to the lower end of the vertical surface of each block 50. Decide to cut. Finally, due to the fact that there is no interference with the ineffective blade portion 40α of the cutting tool on the slope of the model 100, the cutting area by the cutting tool 40A is determined to be the entire slope of the model 100, and the cutting tool 40C is finally determined. The cutting area by the above can be determined as a vertical plane which is a component of each block 50 of the first stage to the third stage.

第2のアプローチは、非有効刃部分と造形物のモデルとの干渉有無を確認するに先立ち、造形物のモデルの全切削領域を予め決定し、当該全切削領域を、非有効刃部分と造形物のモデルとの干渉までに切削可能な固化層の切削領域に分割するというものである(図3Aに対応する図5参照)。図5に示す態様でいうと、まず、造形物のモデル100の全切削領域を予め決定する。次いで、モデル100のデータ上において、切削工具40A(有効刃長さが短い側の切削工具に相当)の有効刃長さに基づき、モデル100を複数のブロック50、具体的には3つのブロック50に分割する。次いで、非有効刃部分40αと各ブロック50(50α、50β、50γ)との干渉有無を確認する。次いで、上記全切削領域を、非有効刃部分40αと造形物のモデル100とが干渉するまでに切削可能な領域にそれぞれ分割する(図3Aに対応する図5参照)。 In the second approach, prior to confirming the presence or absence of interference between the ineffective blade portion and the model of the modeled object, the entire cutting area of the model of the modeled object is determined in advance, and the entire cutting area is divided into the ineffective blade portion and the modeling. It is divided into cutting regions of the solidified layer that can be cut before it interferes with the model of the object (see FIG. 5 corresponding to FIG. 3A). In the embodiment shown in FIG. 5, first, the entire cutting area of the model 100 of the modeled object is determined in advance. Next, on the data of the model 100, based on the effective blade length of the cutting tool 40A (corresponding to the cutting tool on the side with the shorter effective blade length), the model 100 is divided into a plurality of blocks 50, specifically, three blocks 50. Divide into. Next, the presence or absence of interference between the ineffective blade portion 40α and each block 50 (50α, 50β, 50γ) is confirmed. Next, the entire cutting region is divided into regions that can be cut until the ineffective blade portion 40α and the model 100 of the modeled object interfere with each other (see FIG. 5 corresponding to FIG. 3A).

これにより、図5に示す態様では、最終的に切削工具40Aによる切削領域をモデル100の斜面の全体と決定し、切削工具40Cによる切削領域を第1段目~第3段目の各ブロック50の構成要素である垂直面と決定し得る。 As a result, in the embodiment shown in FIG. 5, the cutting area by the cutting tool 40A is finally determined as the entire slope of the model 100, and the cutting area by the cutting tool 40C is defined as each block 50 in the first to third stages. It can be determined to be a vertical plane that is a component of.

なお、上記の2つのアプローチのいずれかを経て、造形物のモデルにおける切削領域を決定する方法については、図3Aに示す態様および図5に示す態様(即ち、有効刃長さが相対的に短い切削工具40A、切削工具40Cを用い、かつ外表面の1つが斜面形態である造形物のモデル100を前提とする態様)に限定されるものではない。 Regarding the method of determining the cutting area in the model of the modeled object through either of the above two approaches, the embodiment shown in FIG. 3A and the embodiment shown in FIG. 5 (that is, the effective blade length is relatively short). The mode is not limited to the mode in which the cutting tool 40A and the cutting tool 40C are used and one of the outer surfaces is a sloped model 100.

上記の本発明の技術的思想に従うならば、上記の2つのアプローチのいずれかを経た切削領域の決定方法は、切削加工時における種々の態様に採り入れることができる。即ち、上記の2つのアプローチのいずれかを経た切削領域の決定方法は、任意形状のモデルにおいて採り入れることができる。例えば、上記図3Bに示す態様(1種類の切削工具のみを用いる態様)、下記図4に示す態様、有効刃長さが相対的に短い切削工具と有効刃長さが相対的に長い切削工具の任意の組合せを前提とする態様(例えば図1および図2に示す態様等)において採り入れることができる。 According to the above technical idea of the present invention, the method of determining the cutting region through either of the above two approaches can be adopted in various aspects during cutting. That is, the method of determining the cutting region via either of the above two approaches can be adopted in a model having an arbitrary shape. For example, the embodiment shown in FIG. 3B (a mode in which only one type of cutting tool is used), the embodiment shown in FIG. 4 below, a cutting tool having a relatively short effective blade length and a cutting tool having a relatively long effective blade length. It can be adopted in an embodiment premised on any combination of the above (for example, the embodiment shown in FIGS. 1 and 2).

これまで、外表面の1つが斜面形態であるモデル100を例に採り、本発明の一実施形態について説明してきた。以下では、図4に示すように、モデル100Aの上面から下面まで貫通するように延在する溝部を備えるモデル100Aを例に採り、本発明の一実施形態について説明する。 So far, one embodiment of the present invention has been described by taking the model 100 in which one of the outer surfaces is a slope form as an example. Hereinafter, as shown in FIG. 4, an embodiment of the present invention will be described by taking as an example a model 100A having a groove extending so as to penetrate from the upper surface to the lower surface of the model 100A.

まず、モデル100Aのデータ上において、切削工具40C(有効刃長さが短い側の切削工具に相当)の有効刃長さに基づき、モデル100Aを複数のブロック50、具体的には3つのブロック50に分割する。 First, on the data of the model 100A, based on the effective blade length of the cutting tool 40C (corresponding to the cutting tool on the side with the shorter effective blade length), the model 100A is divided into a plurality of blocks 50, specifically, three blocks 50. Divide into.

次いで、第1段目のブロック50Xにつき、切削工具40Cの非有効刃部分40Cαと当該第1段目のブロック50Xの構成要素である溝部を形作る垂直面との干渉有無を確認する。又、第1段目のブロック50Xにつき、切削工具40Bの非有効刃部分40Bαと当該第1段目のブロック50Xの構成要素である外面側垂直面との干渉有無を確認する。 Next, with respect to the block 50X of the first stage, it is confirmed whether or not there is interference between the ineffective blade portion 40Cα of the cutting tool 40C and the vertical surface forming the groove portion which is a component of the block 50X of the first stage. Further, for the first-stage block 50X, it is confirmed whether or not the ineffective blade portion 40Bα of the cutting tool 40B interferes with the outer surface side vertical surface which is a component of the first-stage block 50X.

かかる干渉有無の確認により、第1段目のブロック50Xでは、モデル100Aのデータ上において、切削工具40Cの有効刃長さの範囲内では、切削工具40Cの非有効刃部分40Cαと当該第1段目のブロック50Xの構成要素である溝部を形作る垂直面との干渉がないと認定し得る。一方、モデル100Aのデータ上において、切削工具40Cの有効刃長さの範囲外では、切削工具40Cの非有効刃部分40Cαと当該第1段目のブロック50Xの構成要素である溝部を形作る垂直面との干渉があると認定し得る。又、第1段目のブロック50Xにつき、切削工具40Bの非有効刃部分40Bαと当該第1段目のブロック50Xの構成要素である外面側垂直面との干渉がないと認定し得る。 By confirming the presence or absence of such interference, in the block 50X of the first stage, the ineffective blade portion 40Cα of the cutting tool 40C and the first stage are within the range of the effective blade length of the cutting tool 40C on the data of the model 100A. It can be determined that there is no interference with the vertical plane forming the groove that is a component of the eye block 50X. On the other hand, on the data of the model 100A, outside the range of the effective blade length of the cutting tool 40C, the vertical surface forming the ineffective blade portion 40Cα of the cutting tool 40C and the groove portion which is a component of the block 50X of the first stage. Can be found to have interference with. Further, it can be determined that the block 50X of the first stage does not interfere with the ineffective blade portion 40Bα of the cutting tool 40B and the vertical surface on the outer surface side which is a component of the block 50X of the first stage.

次いで、第2段目のブロック50Yにつき、切削工具40Cの非有効刃部分40Cαと当該第2段目のブロック50Yの構成要素である溝部を形作る垂直面との干渉有無を確認する。又、第2段目のブロック50Yにつき、切削工具40Bの非有効刃部分40Bαと当該第2段目のブロック50Yの構成要素である外面側垂直面との干渉有無を確認する。 Next, for the second-stage block 50Y, it is confirmed whether or not there is interference between the ineffective blade portion 40Cα of the cutting tool 40C and the vertical surface forming the groove portion which is a component of the second-stage block 50Y. Further, for the second-stage block 50Y, it is confirmed whether or not the ineffective blade portion 40Bα of the cutting tool 40B interferes with the outer surface side vertical surface which is a component of the second-stage block 50Y.

かかる干渉有無の確認により、第2段目のブロック50Yでは、モデル100Aのデータ上において、切削工具40Cの有効刃長さの範囲内では、切削工具40Cの非有効刃部分40Cαと当該第2段目のブロック50Yの構成要素である溝部を形作る垂直面との干渉がないと認定し得る。一方、モデル100Aのデータ上において、切削工具40Cの有効刃長さの範囲外では、切削工具40Cの非有効刃部分40Cαと当該第2段目のブロック50Yの構成要素である溝部を形作る垂直面との干渉があると認定し得る。又、第2段目のブロック50Yにつき、切削工具40Bの非有効刃部分40Bαと当該第2段目のブロック50Yの構成要素である外面側垂直面との干渉がないと認定し得る。 By confirming the presence or absence of such interference, in the block 50Y of the second stage, the ineffective blade portion 40Cα of the cutting tool 40C and the second stage are within the range of the effective blade length of the cutting tool 40C on the data of the model 100A. It can be determined that there is no interference with the vertical plane forming the groove, which is a component of the eye block 50Y. On the other hand, on the data of the model 100A, outside the range of the effective blade length of the cutting tool 40C, the vertical surface forming the ineffective blade portion 40Cα of the cutting tool 40C and the groove portion which is a component of the second stage block 50Y. Can be found to have interference with. Further, it can be determined that the block 50Y of the second stage does not interfere with the ineffective blade portion 40Bα of the cutting tool 40B and the vertical surface on the outer surface side which is a component of the block 50Y of the second stage.

最後に、第3段目のブロック50Zにつき、切削工具40Cの非有効刃部分40Cαと当該第3段目のブロック50Zの構成要素である溝部を形作る垂直面との干渉有無を確認する。又、第3段目のブロック50Zにつき、切削工具40Bの非有効刃部分40Bαと当該第3段目のブロック50Zの構成要素である外面側垂直面との干渉有無を確認する。 Finally, for the block 50Z of the third stage, it is confirmed whether or not there is interference between the ineffective blade portion 40Cα of the cutting tool 40C and the vertical surface forming the groove portion which is a component of the block 50Z of the third stage. Further, with respect to the block 50Z of the third stage, it is confirmed whether or not the ineffective blade portion 40Bα of the cutting tool 40B interferes with the outer surface side vertical surface which is a component of the block 50Z of the third stage.

かかる干渉有無の確認により、第3段目のブロック50Zでは、モデル100Aのデータ上において、切削工具40Cの有効刃長さの範囲内では、切削工具40Cの非有効刃部分40Cαと当該第3段目のブロック50Zの構成要素である溝部を形作る垂直面との干渉がないと認定し得る。一方、モデル100Aのデータ上において、切削工具40Cの有効刃長さの範囲外では、切削工具40Cの非有効刃部分40Cαと当該第3段目のブロック50Zの構成要素である溝部を形作る垂直面との干渉があると認定し得る。又、第3段目のブロック50Zにつき、切削工具40Bの非有効刃部分40Bαと当該第3段目のブロック50Zの構成要素である外面側垂直面との干渉がないと認定し得る。 By confirming the presence or absence of such interference, in the block 50Z of the third stage, the ineffective blade portion 40Cα of the cutting tool 40C and the third stage are within the range of the effective blade length of the cutting tool 40C on the data of the model 100A. It can be determined that there is no interference with the vertical plane forming the groove, which is a component of the eye block 50Z. On the other hand, on the data of the model 100A, outside the range of the effective blade length of the cutting tool 40C, the vertical surface forming the ineffective blade portion 40Cα of the cutting tool 40C and the groove portion which is a component of the block 50Z of the third stage. Can be found to have interference with. Further, it can be determined that the block 50Z of the third stage does not interfere with the ineffective blade portion 40Bα of the cutting tool 40B and the vertical surface on the outer surface side which is a component of the block 50Z of the third stage.

以上の事から、モデル100Aの上面から下面まで貫通するように延在する溝部を備えるモデル100Aを例に採ると、モデル100Aの外面側垂直面は全体として切削工具40Bの非有効刃部分40Bαと干渉しないと認定し得る。又、切削工具40Bの有効刃長さは切削工具40Cの有効刃長さの約3倍となっている。そのため、切削工具40Bの非有効刃部分40Bαと第1段目~第3段目の各ブロック50の垂直面の合計高さは、切削工具40Bの有効刃長さの範囲内にある。そのため、切削工具40Bの有効刃長さの範囲内では、モデル100の外面側垂直面の最高端との干渉がないと認定し得る。又、切削工具40Cの有効刃長さの範囲内では、切削工具40Cの非有効刃部分40Cαと第1段目~第3段目の各ブロック50の構成要素である溝部を形作る垂直面との干渉がないと認定し得る。 From the above, taking the model 100A having a groove extending from the upper surface to the lower surface of the model 100A as an example, the vertical surface on the outer surface side of the model 100A as a whole is the ineffective blade portion 40Bα of the cutting tool 40B. Can be certified as not interfering. Further, the effective blade length of the cutting tool 40B is about three times the effective blade length of the cutting tool 40C. Therefore, the total height of the ineffective blade portion 40Bα of the cutting tool 40B and the vertical surface of each block 50 of the first to third stages is within the range of the effective blade length of the cutting tool 40B. Therefore, within the range of the effective blade length of the cutting tool 40B, it can be determined that there is no interference with the highest end of the outer surface side vertical surface of the model 100. Further, within the range of the effective blade length of the cutting tool 40C, the ineffective blade portion 40Cα of the cutting tool 40C and the vertical surface forming the groove portion which is a component of each block 50 of the first to third stages. It can be confirmed that there is no interference.

かかる認定結果に基づき、切削工具40Cによる切削領域を各ブロック50の構成要素である溝部を形作る垂直面と決定し、切削工具40Bによる切削領域をモデル100Aの外面側垂直面の上端から下端までと決定し得る。 Based on the certification result, the cutting area by the cutting tool 40C is determined to be the vertical surface forming the groove which is a component of each block 50, and the cutting area by the cutting tool 40B is set from the upper end to the lower end of the outer surface side vertical surface of the model 100A. Can be decided.

以上の事から、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、所定の積層工程後に実施する切削工程にて、切削工具40Cにより各ブロック50の構成要素である溝部を形作る垂直面を切削し、かつ切削工具40Bによりモデル100Aの外面側垂直面の上端から下端まで一度に切削可能と判断できる。 From the above, compared with the case where the number of solidified layers to be laminated in each laminating step is a predetermined number of layers (see FIG. 10), the cutting tool 40C is carried out in the cutting step performed after the predetermined laminating step. Therefore, it can be determined that the vertical surface forming the groove portion which is a component of each block 50 can be cut, and the cutting tool 40B can cut from the upper end to the lower end of the outer surface side vertical surface of the model 100A at once.

そして、当該データの内容に従い、三次元形状造形物の現実の切削工程時に、切削工具40Cにより各ブロック50の溝部を形作る垂直面に対応する造形物の所定箇所を切削し、かつ切削工具40Bによりモデル100Aに対応する造形物の外面側垂直面の上端から下端まで一度に切削すると、各積層工程における固化層の積層数が予め決められた所定の層数である場合(図10参照)と比べて、全体として切削回数を低減することができる。 Then, according to the contents of the data, during the actual cutting process of the three-dimensionally shaped object, the cutting tool 40C cuts a predetermined portion of the object corresponding to the vertical surface forming the groove of each block 50, and the cutting tool 40B is used. When cutting from the upper end to the lower end of the outer surface side vertical surface of the model corresponding to the model 100A at once, the number of solidified layers in each laminating step is a predetermined number of layers (see FIG. 10). Therefore, the number of cuttings can be reduced as a whole.

一態様では、造形物のデータ100に基づき、切削工具40が所定箇所の切削領域を切削する際に、所定箇所の切削領域に連続する他の切削領域の一部を切削するように、切削工具の移動経路を決定する(図6および図7参照)。 In one aspect, the cutting tool is such that when the cutting tool 40 cuts a cutting region at a predetermined location, it cuts a part of another cutting region continuous with the cutting region at the predetermined location based on the data 100 of the modeled object. (See FIGS. 6 and 7).

造形物のモデル100のデータ上において、切削工具40、例えば造形物のモデル垂直面を切削するための切削工具40Cを用いてブロック50の表面を切削する場合にて、固化領域と未固化領域の境界の未固化領域側に生じる相対的に密度の小さい余剰焼結部に起因して、造形物の所定表面を好適に切削できない可能性がある。 When cutting the surface of the block 50 using a cutting tool 40, for example, a cutting tool 40C for cutting the model vertical surface of the model on the data of the model 100 of the model, the solidified region and the uncured region Due to the relatively low density surplus sintered portion generated on the unsolidified region side of the boundary, there is a possibility that the predetermined surface of the modeled object cannot be appropriately cut.

そこで、モデル100のデータに基づき、切削工具40が所定箇所の切削領域を切削する際に、所定箇所の切削領域に連続する部分の一部を切削するように、切削工具の移動経路を決定することが好ましい(図6および図7参照)。 Therefore, based on the data of the model 100, when the cutting tool 40 cuts a cutting region at a predetermined location, the movement path of the cutting tool is determined so as to cut a part of a portion continuous with the cutting region at the predetermined location. It is preferable (see FIGS. 6 and 7).

図6に示す態様でいうと、モデル100のデータ上において、切削工具40が第2段目のブロック50Yの垂直面を切削する際に、当該第2段目のブロック50Yに垂直面に連続しかつ第2段目の直下に位置する第1段目のブロック50Xの垂直面の一部に重なるように、切削工具の移動経路を決定する。これにより、上記余剰焼結部に起因して、造形物の所定表面を好適に切削できない可能性があるとしても、決定した移動経路に基づく切削加工により、第1段目のブロック50Xの切削領域と第2段目のブロック50Yの切削領域との境界にて段差が生じることを好適に抑止することができる。 In the aspect shown in FIG. 6, on the data of the model 100, when the cutting tool 40 cuts the vertical surface of the second stage block 50Y, it is continuous with the vertical surface of the second stage block 50Y. The movement path of the cutting tool is determined so as to overlap a part of the vertical surface of the block 50X of the first stage located immediately below the second stage. As a result, even if there is a possibility that the predetermined surface of the modeled object cannot be cut appropriately due to the excess sintered portion, the cutting region of the block 50X of the first stage is cut by the cutting process based on the determined movement path. It is possible to suitably suppress the occurrence of a step at the boundary between the block 50Y and the cutting region of the second stage block 50Y.

同様に、切削工具40が第3段目のブロック50Zの垂直面を切削する際に、当該第3段目のブロック50Zに垂直面に連続しかつ第3段目の直下に位置する第2段目のブロック50Yの垂直面の一部に重なるように、切削工具の移動経路を決定する。これにより、上記余剰焼結部に起因して、造形物の所定表面を好適に切削できない可能性があるとしても、決定した移動経路に基づく切削加工により、第2段目のブロック50Yの切削領域と第3段目のブロック50Zの切削領域との境界にて段差が生じることを好適に抑止することができる。 Similarly, when the cutting tool 40 cuts the vertical surface of the third stage block 50Z, the second stage is continuous with the surface perpendicular to the third stage block 50Z and is located directly under the third stage. The movement path of the cutting tool is determined so as to overlap a part of the vertical surface of the eye block 50Y. As a result, even if there is a possibility that the predetermined surface of the modeled object cannot be cut appropriately due to the excess sintered portion, the cutting region of the block 50Y of the second stage is cut by the cutting process based on the determined movement path. It is possible to suitably suppress the occurrence of a step at the boundary between the block 50Z and the cutting region of the third stage block 50Z.

図7に示す態様でいうと、切削工具が造形物のモデル100の表面に沿って周回するように移動し、切削工具の移動開始ポイントおよび移動終了ポイントがモデル100の切削領域の端部よりも外側に位置するように切削工具の移動経路を決定する。これにより、切削工具の移動開始ポイントおよび移動終了ポイントの位置のずれ等が生じるとしても、モデル100の切削領域の端部を好適に切削できる。 In the embodiment shown in FIG. 7, the cutting tool moves so as to orbit along the surface of the model 100 of the model, and the movement start point and the movement end point of the cutting tool are closer to the end of the cutting region of the model 100. Determine the path of movement of the cutting tool so that it is located on the outside. As a result, even if the positions of the movement start point and the movement end point of the cutting tool are displaced, the end portion of the cutting region of the model 100 can be suitably cut.

以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。 Although one embodiment of the present invention has been described above, it merely exemplifies a typical example of the scope of application of the present invention. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various modifications can be made.

100 データ上での三次元形状造形物のモデル(斜面を有して成る形態)
100A データ上での三次元形状造形物のモデル(溝部を有して成る形態)
50、50X、50Y、50Z、50α、50β、50γ データ上での三次元形状造形物の構成要素であるブロック
40、40A、40B、40C データ上での切削工具
40α、40Aα、40Bα、40Cα データ上での切削工具の非有効刃部分
40β データ上での切削工具の有効刃部分
24 データ上での固化層三次元形状造形物モデル(三次元形状造形物のモデル)
Model of 3D shaped object on 100 data (form with slope)
Model of 3D shaped object on 100A data (form with groove)
Cutting tools on blocks 40, 40A, 40B, 40C data, which are components of three-dimensional shaped objects on 50, 50X, 50Y, 50Z, 50α, 50β, 50γ data On data 40α, 40Aα, 40Bα, 40Cα Ineffective blade part of cutting tool in 40β Effective blade part of cutting tool on data 24 Solidified layer on data Three-dimensional shape model (model of three-dimensional shape model)

Claims (13)

三次元形状造形物を製造するための方法であって、
光ビーム照射により形成する固化層の積層工程と、積層した該固化層の表面の切削工程とを繰り返して実施することを含み、
前記工程の実施に先立ち、前記三次元形状造形物のモデルのデータに基づき、該モデルの形状に応じて、前記切削工程前に実施する各前記積層工程における前記固化層の積層数を個別に決定することを含む、製造方法。
It is a method for manufacturing a three-dimensional shaped object,
It includes repeating the step of laminating the solidified layer formed by irradiation with a light beam and the step of cutting the surface of the laminated solidified layer.
Prior to the execution of the step, the number of layers of the solidified layer in each of the lamination steps to be carried out before the cutting step is individually determined according to the shape of the model based on the data of the model of the three-dimensional shaped object. Manufacturing method, including doing.
前記三次元形状造形物の前記モデルの形状に応じて、各前記積層工程における前記固化層の前記積層数を変えることが可能となっている、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the number of laminated layers of the solidified layer in each laminating step can be changed according to the shape of the model of the three-dimensionally shaped object. 各前記積層工程における前記固化層の前記積層数を、前記切削工程にて用いる切削工具の非有効刃部分と前記モデルとが干渉しない高さに基づき決定する、請求項1又は2に記載の製造方法。 The production according to claim 1 or 2, wherein the number of laminated layers of the solidified layer in each of the lamination steps is determined based on a height at which the ineffective blade portion of the cutting tool used in the cutting step and the model do not interfere with each other. Method. 前記高さの違いに基づき、有効刃長さ又は首下長さが異なる少なくとも2種類の前記切削工具から所定の該切削工具を選択する、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein a predetermined cutting tool is selected from at least two types of cutting tools having different effective blade lengths or under-neck lengths based on the difference in height. 前記モデルを所定の間隔をおいて複数のブロックに分割し、前記固化層の積層方向に沿って下層から順に分割したブロックごとに前記非有効刃部分と前記モデルとの干渉有無を確認し、該非有効刃部分と該モデルとが干渉するまでに切削可能な前記固化層の切削領域を決定する、請求項3又は4に記載の製造方法。 The model is divided into a plurality of blocks at predetermined intervals, and the presence or absence of interference between the ineffective blade portion and the model is confirmed for each block divided in order from the lower layer along the stacking direction of the solidified layer, and the non-effective blade portion is confirmed. The manufacturing method according to claim 3 or 4, wherein the cutting region of the solidified layer that can be cut before the effective blade portion and the model interfere with each other is determined. 前記非有効刃部分と前記モデルとの干渉有無を確認する毎に前記固化層の前記切削領域の決定を順次行う、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the cutting region of the solidified layer is sequentially determined each time the presence or absence of interference between the ineffective blade portion and the model is confirmed. 前記非有効刃部分と前記モデルとの干渉有無を確認するに先立ち、該モデルの全切削領域を予め決定し、該全切削領域を、該非有効刃部分と該モデルとの干渉までに切削可能な前記固化層の切削領域に分割する、請求項5に記載の製造方法。 Prior to confirming the presence or absence of interference between the ineffective blade portion and the model, the entire cutting area of the model is determined in advance, and the total cutting area can be cut by the interference between the ineffective blade portion and the model. The manufacturing method according to claim 5, wherein the solidified layer is divided into cutting regions. 有効刃長さが最も小さい前記切削工具に基づき、前記所定の間隔を決定する、請求項5~7のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 5 to 7, wherein the predetermined interval is determined based on the cutting tool having the smallest effective blade length. 前記データに基づき、前記切削工具が所定箇所の前記切削領域を切削する際に、該切削領域に連続する部分の一部を切削するように、該切削工具の移動経路を決定する、請求項3~8のいずれかに記載の製造方法。 3. Claim 3 based on the data, when the cutting tool cuts the cutting area at a predetermined location, the moving path of the cutting tool is determined so as to cut a part of a portion continuous with the cutting area. The manufacturing method according to any one of 8 to 8. 前記連続する部分が、前記切削工具の延在方向に沿って前記所定箇所の前記切削領域の直下に位置する部分であり、該連続する部分の一部に重なるように該切削工具の移動経路を決定する、請求項9に記載の製造方法。 The continuous portion is a portion located directly below the cutting region at the predetermined location along the extending direction of the cutting tool, and the movement path of the cutting tool is set so as to overlap a part of the continuous portion. The manufacturing method according to claim 9, which is determined. 前記切削工具が前記モデルの表面に沿って周回するように移動し、前記連続する部分が該切削工具の移動開始ポイントおよび移動終了ポイントであり、該切削工具の該移動開始ポイントおよび該移動終了ポイントが前記切削領域の端部よりも外側に位置するように、該切削工具の移動経路を決定する、請求項9又は10に記載の製造方法。 The cutting tool moves so as to orbit along the surface of the model, and the continuous portion is a movement start point and a movement end point of the cutting tool, and the movement start point and the movement end point of the cutting tool. The manufacturing method according to claim 9 or 10, wherein the moving path of the cutting tool is determined so that the cutting tool is located outside the end of the cutting region. 前記光ビーム照射による前記固化層の前記積層工程を、粉末床溶融結合法および指向性エネルギー堆積法の少なくとも一方を用いて実施する、請求項1~11のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 11, wherein the laminating step of the solidified layer by irradiation with a light beam is carried out by using at least one of a powder bed melt-bonding method and a directed energy deposition method. 前記三次元形状造形物のモデルの形状に応じて、請求項1に記載の製造方法において前記切削工程前に実施する各前記積層工程における前記固化層の積層数を個別に決定する、CAMソフトウェア。 CAM software that individually determines the number of layers of the solidified layer in each of the laminating steps performed before the cutting step in the manufacturing method according to claim 1, according to the shape of the model of the three-dimensionally shaped object.
JP2019084400A 2019-04-25 2019-04-25 Method of manufacturing three-dimensional shape modeling objects Pending JP2022092076A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019084400A JP2022092076A (en) 2019-04-25 2019-04-25 Method of manufacturing three-dimensional shape modeling objects
PCT/JP2020/017813 WO2020218567A1 (en) 2019-04-25 2020-04-24 Method for manufacturing three-dimensional object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019084400A JP2022092076A (en) 2019-04-25 2019-04-25 Method of manufacturing three-dimensional shape modeling objects

Publications (1)

Publication Number Publication Date
JP2022092076A true JP2022092076A (en) 2022-06-22

Family

ID=72942807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019084400A Pending JP2022092076A (en) 2019-04-25 2019-04-25 Method of manufacturing three-dimensional shape modeling objects

Country Status (2)

Country Link
JP (1) JP2022092076A (en)
WO (1) WO2020218567A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6203704B2 (en) * 2014-12-18 2017-09-27 株式会社ソディック Control system for additive manufacturing equipment
JP6778883B2 (en) * 2016-01-29 2020-11-04 パナソニックIpマネジメント株式会社 Manufacturing method of 3D shaped object
JP6026688B1 (en) * 2016-03-24 2016-11-16 株式会社松浦機械製作所 3D modeling method

Also Published As

Publication number Publication date
WO2020218567A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP5599957B2 (en) Manufacturing method of three-dimensional shaped object
EP2902137B1 (en) Method for manufacturing a three-dimensional object
JP5877471B2 (en) Manufacturing method of three-dimensional shaped object
JP5764753B2 (en) Manufacturing method of three-dimensional shaped object
EP2910323B1 (en) Production method and production device for three-dimensionally shaped molded object
JP5777187B1 (en) Additive manufacturing equipment
WO2015133138A1 (en) Method for producing three-dimensionally shaped object
CN108602261B (en) Method for manufacturing three-dimensional shaped object
CN107848212B (en) Method for manufacturing three-dimensional shaped object
KR20020027259A (en) Method of and apparatus for making a three-dimensional object
JP2012246541A (en) Method and apparatus for manufacturing three-dimensional object
JP2010132961A (en) Lamination forming device and lamination forming method
WO2017208504A1 (en) Method for producing three-dimensional shaped article
JP5588925B2 (en) Manufacturing method of three-dimensional shaped object
JP6192677B2 (en) Additive manufacturing method and additive manufacturing apparatus
JP2022092076A (en) Method of manufacturing three-dimensional shape modeling objects
JP6817561B2 (en) Manufacturing method of 3D shaped object
JP2019019364A (en) Lamination molding device
JP6731642B2 (en) Method for manufacturing three-dimensional shaped object
WO2017130834A1 (en) Method for manufacturing three-dimensionally shaped object
JP6704640B2 (en) Additive manufacturing equipment
JP2003313604A (en) Process for manufacturing metal powder-sintered part