JP6817561B2 - Manufacturing method of 3D shaped object - Google Patents

Manufacturing method of 3D shaped object Download PDF

Info

Publication number
JP6817561B2
JP6817561B2 JP2016130009A JP2016130009A JP6817561B2 JP 6817561 B2 JP6817561 B2 JP 6817561B2 JP 2016130009 A JP2016130009 A JP 2016130009A JP 2016130009 A JP2016130009 A JP 2016130009A JP 6817561 B2 JP6817561 B2 JP 6817561B2
Authority
JP
Japan
Prior art keywords
pores
solidified layer
layer
powder
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016130009A
Other languages
Japanese (ja)
Other versions
JP2018003082A (en
Inventor
吉田 徳雄
徳雄 吉田
暁史 中村
暁史 中村
阿部 諭
諭 阿部
雅憲 森本
雅憲 森本
内野々 良幸
良幸 内野々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016130009A priority Critical patent/JP6817561B2/en
Priority to PCT/JP2017/023580 priority patent/WO2018003798A1/en
Publication of JP2018003082A publication Critical patent/JP2018003082A/en
Application granted granted Critical
Publication of JP6817561B2 publication Critical patent/JP6817561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、三次元形状造形物の製造方法に関する。より詳細には、本発明は、粉末層への光ビーム照射によって固化層を形成する三次元形状造形物の製造方法に関する。 The present invention relates to a method for manufacturing a three-dimensional shaped object. More specifically, the present invention relates to a method for producing a three-dimensional shaped object that forms a solidified layer by irradiating a powder layer with a light beam.

光ビームを粉末材料に照射することを通じて三次元形状造形物を製造する方法(一般的には「粉末床溶融結合法」と称される)は、従来より知られている。かかる方法は、以下の工程(i)および(ii)に基づいて粉末層形成と固化層形成とを交互に繰り返し実施して三次元形状造形物を製造する。
(i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
(ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。
A method of producing a three-dimensional shaped object by irradiating a powder material with a light beam (generally referred to as a "powder bed fusion bonding method") has been conventionally known. In such a method, powder layer formation and solidification layer formation are alternately and repeatedly carried out based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
(I) A step of irradiating a predetermined portion of the powder layer with a light beam and sintering or melt-solidifying the powder at the predetermined portion to form a solidified layer.
(Ii) A step of forming a new powder layer on the obtained solidified layer and similarly irradiating with a light beam to form a further solidified layer.

このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として無機質の金属粉末を用いる場合、得られる三次元形状造形物を金型として使用することができる。一方、粉末材料として有機質の樹脂粉末を用いる場合、得られる三次元形状造形物を各種モデルとして使用することができる。 According to such a manufacturing technique, it is possible to manufacture a complicated three-dimensional shaped object in a short time. When an inorganic metal powder is used as the powder material, the obtained three-dimensional shaped object can be used as a mold. On the other hand, when an organic resin powder is used as the powder material, the obtained three-dimensional shaped model can be used as various models.

粉末材料として金属粉末を用い、それによって得られる三次元形状造形物を金型として使用する場合を例にとる。図10に示すように、まず、スキージング・ブレード23を動かして造形プレート21上に所定厚みの粉末層22を形成する(図10(a)参照)。次いで、粉末層22の所定箇所に光ビームLを照射して粉末層22から固化層24を形成する(図10(b)参照)。引き続いて、得られた固化層の上に新たな粉末層を形成して再度光ビームを照射して新たな固化層を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図10(c)参照)、最終的には積層化した固化層24から成る三次元形状造形物を得ることができる。最下層として形成される固化層24は造形プレート21と結合した状態になるので、三次元形状造形物と造形プレート21とは一体化物を成すことになり、その一体化物を金型として使用できる。 Take, for example, a case where a metal powder is used as a powder material and a three-dimensional shaped object obtained thereby is used as a mold. As shown in FIG. 10, first, the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 10A). Next, a predetermined portion of the powder layer 22 is irradiated with a light beam L to form a solidified layer 24 from the powder layer 22 (see FIG. 10B). Subsequently, a new powder layer is formed on the obtained solidified layer and irradiated with a light beam again to form a new solidified layer. When the powder layer formation and the solidification layer formation are alternately and repeatedly performed in this way, the solidification layer 24 is laminated (see FIG. 10C), and finally, the three-dimensional structure composed of the laminated solidification layer 24. A shaped object can be obtained. Since the solidified layer 24 formed as the lowermost layer is in a state of being bonded to the modeling plate 21, the three-dimensional shaped model and the modeling plate 21 form an integrated product, and the integrated product can be used as a mold.

特開2010−065259号公報JP-A-2010-065259

ここで、本願発明者らは、固化層形成段階において以下の事象を見出した。具体的には、本願発明者らは、金属粉末に光ビームを照射して固化層を形成する際において、当該固化層内に細孔が局所的に存在し得ることを見出した。細孔が固化層内に局所的に存在する場合、細孔が空隙を成していることに起因して、細孔が存在する領域の構造強度は相対的に弱くなっており、かかる領域を起点としてクラックが生じ得る虞があり得る。そのため、これに起因して最終的に得られる三次元形状造形物の構造強度が低下する虞があり得る。つまり、高精度な三次元形状造形物が得られない虞があり得る。 Here, the inventors of the present application have found the following events at the solidified layer formation stage. Specifically, the inventors of the present application have found that when a metal powder is irradiated with a light beam to form a solidified layer, pores may be locally present in the solidified layer. When the pores are locally present in the solidified layer, the structural strength of the region where the pores are present is relatively weak due to the pores forming voids, and such a region is formed. There is a possibility that a crack may occur as a starting point. Therefore, there is a possibility that the structural strength of the finally obtained three-dimensional shaped object may decrease due to this. That is, there is a possibility that a highly accurate three-dimensional shaped object cannot be obtained.

本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の目的は、高精度な三次元形状造形物を得ることが可能な三次元形状造形物の製造方法を提供することである。 The present invention has been made in view of such circumstances. That is, an object of the present invention is to provide a method for manufacturing a three-dimensional shaped object capable of obtaining a highly accurate three-dimensional shaped object.

上記目的を達成するために、本発明では、
光ビームの照射によって複数の固化層を逐次形成して三次元形状造形物を製造する方法であって、
固化層内の残存ガスに起因して生じる細孔を減じることを含んで成る、三次元形状造形物の製造方法が提供される。
In order to achieve the above object, in the present invention,
It is a method of sequentially forming a plurality of solidified layers by irradiation with a light beam to manufacture a three-dimensional shaped object.
A method for producing a three-dimensional shaped object is provided, which comprises reducing the pores generated due to the residual gas in the solidified layer.

本発明の製造方法では、高精度な三次元形状造形物を得ることができる。 In the manufacturing method of the present invention, a highly accurate three-dimensional shaped object can be obtained.

固化層内の細孔を減じる態様を模式的に示した断面図(図1(a):細孔を減じる前、図1(b):細孔を減じた後)A cross-sectional view schematically showing an embodiment of reducing pores in the solidified layer (FIG. 1 (a): before reducing pores, FIG. 1 (b): after reducing pores). 細孔の発生現象を模式的に示した断面図Cross-sectional view schematically showing the phenomenon of pore formation 細孔の発生箇所を特定する態様を模式的に示した断面図A cross-sectional view schematically showing an embodiment for identifying a location where pores are generated. 細孔を含んで成る固化層の所定部分に光ビームを照射する態様を模式的に示した断面図(図4(a):細孔の発生箇所特定、図4(b):光ビーム照射開始、図4(c):光ビーム照射終了後)A cross-sectional view schematically showing an embodiment of irradiating a predetermined portion of a solidified layer including pores with a light beam (FIG. 4 (a): identification of a location where pores are generated, FIG. 4 (b): start of light beam irradiation. , FIG. 4 (c): After the end of light beam irradiation) 光ビームの照射条件を調整する態様を模式的に示した断面図(図5(a):光ビームの出力調整、図5(b):光ビームの走査速度調整、図5(c):光ビームのスポット径調整)A cross-sectional view schematically showing an embodiment of adjusting the irradiation conditions of the light beam (FIG. 5 (a): light beam output adjustment, FIG. 5 (b): light beam scanning speed adjustment, FIG. 5 (c): light. Beam spot diameter adjustment) 細孔を含んで成る固化層の所定部分を外部から押圧する態様を模式的に示した断面図A cross-sectional view schematically showing a mode in which a predetermined portion of a solidified layer including pores is pressed from the outside. 細孔を含んで成る固化層の所定部分を外部から押圧する別態様を模式的に示した断面図A cross-sectional view schematically showing another embodiment of pressing a predetermined portion of the solidified layer including pores from the outside. 細孔を含んで成る固化層の所定部分を切削加工に付す態様を模式的に示した断面図(図8(a):切削加工開始、図8(b):切削加工終了後、図8(c):粉末充填、図8(d):光ビーム照射)A cross-sectional view schematically showing a mode in which a predetermined portion of a solidified layer containing pores is subjected to cutting (FIG. 8 (a): start of cutting, FIG. 8 (b): after completion of cutting, FIG. c): Powder filling, FIG. 8 (d): Light beam irradiation) 粉末から成る層の厚さを調整する態様を模式的に示した断面図(図9(a):スキージング・ブレードによる厚さ調整、図9(b):粉末供給ノズルによる厚さ調整、図9(c):粉末吸引ノズルによる厚さ調整)A cross-sectional view schematically showing an embodiment of adjusting the thickness of a layer made of powder (FIG. 9 (a): thickness adjustment by a squeezing blade, FIG. 9 (b): thickness adjustment by a powder supply nozzle, FIG. 9 (c): Thickness adjustment by powder suction nozzle) 粉末床溶融結合法が実施される光造形複合加工のプロセス態様を模式的に示した断面図(図10(a):粉末層形成時、図10(b):固化層形成時、図10(c):積層途中)A cross-sectional view schematically showing a process mode of stereolithography composite processing in which the powder bed fusion bonding method is carried out (FIG. 10 (a): at the time of forming a powder layer, FIG. 10 (b): at the time of forming a solidified layer, FIG. c): During stacking) 光造形複合加工機の構成を模式的に示した斜視図Perspective view schematically showing the configuration of the stereolithography compound processing machine 光造形複合加工機の一般的な動作を示すフローチャートFlowchart showing general operation of stereolithography multi-tasking machine

以下では、図面を参照して本発明の一実施形態をより詳細に説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。 Hereinafter, one embodiment of the present invention will be described in more detail with reference to the drawings. The forms and dimensions of the various elements in the drawings are merely examples and do not reflect the actual forms and dimensions.

本明細書において「粉末層」とは、例えば「金属粉末から成る金属粉末層」または「樹脂粉末から成る樹脂粉末層」を意味している。また「粉末層の所定箇所」とは、製造される三次元形状造形物の領域を実質的に指している。従って、かかる所定箇所に存在する粉末に対して光ビームを照射することによって、その粉末が焼結又は溶融固化して三次元形状造形物を構成することになる。更に「固化層」とは、粉末層が金属粉末層である場合には「焼結層又は溶融固化層」を意味し、粉末層が樹脂粉末層である場合には「硬化層又は溶融結合層」を意味している。 As used herein, the term "powder layer" means, for example, a "metal powder layer made of metal powder" or a "resin powder layer made of resin powder". Further, the “predetermined location of the powder layer” substantially refers to the region of the three-dimensional shaped object to be manufactured. Therefore, by irradiating the powder existing at the predetermined location with a light beam, the powder is sintered or melt-solidified to form a three-dimensional shaped object. Further, the "solidified layer" means a "sintered layer or a melt-solidified layer" when the powder layer is a metal powder layer, and a "hardened layer or a melt-bonded layer" when the powder layer is a resin powder layer. Means.

また、本明細書で直接的または間接的に説明される“上下”の方向は、例えば造形プレートと三次元形状造形物との位置関係に基づく方向であって、造形プレートを基準にして三次元形状造形物が製造される側を「上方向」とし、その反対側を「下方向」とする。 Further, the "up and down" direction described directly or indirectly in the present specification is, for example, a direction based on the positional relationship between the modeling plate and the three-dimensional shaped object, and is three-dimensional with respect to the modeling plate. The side on which the shaped object is manufactured is referred to as "upward", and the opposite side is referred to as "downward".

[粉末床溶融結合法]
まず、本発明の製造方法の前提となる粉末床溶融結合法(いわゆるパウダーベッド方式)について説明する。特に粉末床溶融結合法において三次元形状造形物の切削処理を付加的に行う光造形複合加工を例として挙げる。図10は、光造形複合加工のプロセス態様を模式的に示しており、図11および図12は、粉末床溶融結合法と切削処理とを実施できる光造形複合加工機の主たる構成および動作のフローチャートをそれぞれ示している。
[Powder bed melt bonding method]
First, a powder bed melt-bonding method (so-called powder bed method), which is a premise of the production method of the present invention, will be described. In particular, the stereolithography composite processing in which the cutting process of the three-dimensional shaped object is additionally performed in the powder bed fusion bonding method is given as an example. FIG. 10 schematically shows a process mode of stereolithography composite processing, and FIGS. 11 and 12 are flowcharts of main configurations and operations of a stereolithography composite processing machine capable of performing a powder bed melt bonding method and a cutting process. Are shown respectively.

光造形複合加工機1は、図11に示すように、粉末層形成手段2、光ビーム照射手段3および切削手段4を備えている。 As shown in FIG. 11, the stereolithography composite processing machine 1 includes a powder layer forming means 2, a light beam irradiating means 3, and a cutting means 4.

粉末層形成手段2は、金属粉末または樹脂粉末などの粉末を所定厚みで敷くことによって粉末層を形成するための手段である。光ビーム照射手段3は、粉末層の所定箇所に光ビームLを照射するための手段である。切削手段4は、積層化した固化層の表面、すなわち、三次元形状造形物の表面を削るための手段である。 The powder layer forming means 2 is a means for forming a powder layer by laying a powder such as a metal powder or a resin powder with a predetermined thickness. The light beam irradiating means 3 is a means for irradiating a predetermined portion of the powder layer with the light beam L. The cutting means 4 is a means for cutting the surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object.

粉末層形成手段2は、図10に示すように、粉末テーブル25、スキージング・ブレード23、造形テーブル20および造形プレート21を主に有して成る。粉末テーブル25は、外周が壁26で囲まれた粉末材料タンク28内にて上下に昇降できるテーブルである。スキージング・ブレード23は、粉末テーブル25上の粉末19を造形テーブル20上へと供して粉末層22を得るべく水平方向に移動できるブレードである。造形テーブル20は、外周が壁27で囲まれた造形タンク29内にて上下に昇降できるテーブルである。そして、造形プレート21は、造形テーブル20上に配され、三次元形状造形物の土台となるプレートである。 As shown in FIG. 10, the powder layer forming means 2 mainly includes a powder table 25, a squeezing blade 23, a modeling table 20, and a modeling plate 21. The powder table 25 is a table that can be raised and lowered in a powder material tank 28 whose outer circumference is surrounded by a wall 26. The squeezing blade 23 is a blade capable of horizontally moving the powder 19 on the powder table 25 onto the modeling table 20 to obtain the powder layer 22. The modeling table 20 is a table that can be raised and lowered in a modeling tank 29 whose outer circumference is surrounded by a wall 27. The modeling plate 21 is a plate that is arranged on the modeling table 20 and serves as a base for a three-dimensionally shaped object.

光ビーム照射手段3は、図11に示すように、光ビーム発振器30およびガルバノミラー31を主に有して成る。光ビーム発振器30は、光ビームLを発する機器である。ガルバノミラー31は、発せられた光ビームLを粉末層22にスキャニングする手段、すなわち、光ビームLの走査手段である。 As shown in FIG. 11, the light beam irradiating means 3 mainly includes a light beam oscillator 30 and a galvanometer mirror 31. The optical beam oscillator 30 is a device that emits an optical beam L. The galvanometer mirror 31 is a means for scanning the emitted light beam L on the powder layer 22, that is, a means for scanning the light beam L.

切削手段4は、図11に示すように、エンドミル40および駆動機構41を主に有して成る。エンドミル40は、積層化した固化層の表面、すなわち、三次元形状造形物の表面を削るための切削工具である。駆動機構41は、エンドミル40を所望の切削すべき箇所へと移動させる手段である。 As shown in FIG. 11, the cutting means 4 mainly includes an end mill 40 and a drive mechanism 41. The end mill 40 is a cutting tool for scraping the surface of a laminated solidified layer, that is, the surface of a three-dimensional shaped object. The drive mechanism 41 is a means for moving the end mill 40 to a desired position to be cut.

光造形複合加工機1の動作について詳述する。光造形複合加工機1の動作は、図12のフローチャートに示すように、粉末層形成ステップ(S1)、固化層形成ステップ(S2)および切削ステップ(S3)から構成されている。粉末層形成ステップ(S1)は、粉末層22を形成するためのステップである。かかる粉末層形成ステップ(S1)では、まず造形テーブル20をΔt下げ(S11)、造形プレート21の上面と造形タンク29の上端面とのレベル差がΔtとなるようにする。次いで、粉末テーブル25をΔt上げた後、図10(a)に示すようにスキージング・ブレード23を粉末材料タンク28から造形タンク29に向かって水平方向に移動させる。これによって、粉末テーブル25に配されていた粉末19を造形プレート21上へと移送させることができ(S12)、粉末層22の形成が行われる(S13)。粉末層22を形成するための粉末材料としては、例えば「平均粒径5μm〜100μm程度の金属粉末」および「平均粒径30μm〜100μm程度のナイロン、ポリプロピレンまたはABS等の樹脂粉末」を挙げることができる。粉末層22が形成されたら、固化層形成ステップ(S2)へと移行する。固化層形成ステップ(S2)は、光ビーム照射によって固化層24を形成するステップである。かかる固化層形成ステップ(S2)においては、光ビーム発振器30から光ビームLを発し(S21)、ガルバノミラー31によって粉末層22上の所定箇所へと光ビームLをスキャニングする(S22)。これによって、粉末層22の所定箇所の粉末を焼結又は溶融固化させ、図10(b)に示すように固化層24を形成する(S23)。光ビームLとしては、炭酸ガスレーザ、Nd:YAGレーザ、ファイバレーザまたは紫外線などを用いてよい。 The operation of the stereolithography compound processing machine 1 will be described in detail. As shown in the flowchart of FIG. 12, the operation of the stereolithography composite processing machine 1 is composed of a powder layer forming step (S1), a solidified layer forming step (S2), and a cutting step (S3). The powder layer forming step (S1) is a step for forming the powder layer 22. In the powder layer forming step (S1), first, the modeling table 20 is lowered by Δt (S11) so that the level difference between the upper surface of the modeling plate 21 and the upper end surface of the modeling tank 29 is Δt. Next, after raising the powder table 25 by Δt, the squeezing blade 23 is moved horizontally from the powder material tank 28 toward the modeling tank 29 as shown in FIG. 10 (a). As a result, the powder 19 arranged on the powder table 25 can be transferred onto the modeling plate 21 (S12), and the powder layer 22 is formed (S13). Examples of the powder material for forming the powder layer 22 include "metal powder having an average particle size of about 5 μm to 100 μm" and "resin powder such as nylon, polypropylene, or ABS having an average particle size of about 30 μm to 100 μm". it can. After the powder layer 22 is formed, the process proceeds to the solidified layer forming step (S2). The solidified layer forming step (S2) is a step of forming the solidified layer 24 by irradiation with a light beam. In the solidified layer forming step (S2), the light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to a predetermined position on the powder layer 22 by the galvanometer mirror 31 (S22). As a result, the powder at a predetermined position in the powder layer 22 is sintered or melt-solidified to form the solidified layer 24 as shown in FIG. 10 (b) (S23). As the light beam L, a carbon dioxide gas laser, an Nd: YAG laser, a fiber laser, ultraviolet rays, or the like may be used.

粉末層形成ステップ(S1)および固化層形成ステップ(S2)は、交互に繰り返して実施する。これにより、図10(c)に示すように複数の固化層24が積層化する。 The powder layer forming step (S1) and the solidified layer forming step (S2) are alternately repeated. As a result, as shown in FIG. 10C, a plurality of solidifying layers 24 are laminated.

積層化した固化層24が所定厚みに達すると(S24)、切削ステップ(S3)へと移行する。切削ステップ(S3)は、積層化した固化層24の表面、すなわち、三次元形状造形物の表面を削るためのステップである。エンドミル40(図10(c)および図11参照)を駆動させることによって切削ステップが開始される(S31)。例えば、エンドミル40が3mmの有効刃長さを有する場合、三次元形状造形物の高さ方向に沿って3mmの切削処理を行うことができるので、Δtが0.05mmであれば60層分の固化層24が積層した時点でエンドミル40を駆動させる。具体的には駆動機構41によってエンドミル40を移動させながら、積層化した固化層24の表面に対して切削処理を施すことになる(S32)。このような切削ステップ(S3)の最終では、所望の三次元形状造形物が得られているか否かを判断する(S33)。所望の三次元形状造形物が依然得られていない場合では、粉末層形成ステップ(S1)へと戻る。以降、粉末層形成ステップ(S1)〜切削ステップ(S3)を繰り返し実施して更なる固化層の積層化および切削処理を実施することによって、最終的に所望の三次元形状造形物が得られる。 When the laminated solidified layer 24 reaches a predetermined thickness (S24), the process proceeds to the cutting step (S3). The cutting step (S3) is a step for cutting the surface of the laminated solidified layer 24, that is, the surface of the three-dimensional shaped object. The cutting step is started by driving the end mill 40 (see FIGS. 10 (c) and 11) (S31). For example, when the end mill 40 has an effective blade length of 3 mm, a cutting process of 3 mm can be performed along the height direction of the three-dimensional shaped object. Therefore, if Δt is 0.05 mm, it is equivalent to 60 layers. The end mill 40 is driven when the solidified layers 24 are laminated. Specifically, while the end mill 40 is moved by the drive mechanism 41, the surface of the laminated solidified layer 24 is subjected to a cutting process (S32). At the final stage of such a cutting step (S3), it is determined whether or not a desired three-dimensional shaped object is obtained (S33). If the desired three-dimensional shaped object has not yet been obtained, the process returns to the powder layer forming step (S1). After that, the powder layer forming step (S1) to the cutting step (S3) are repeatedly carried out to further stack the solidified layer and perform the cutting process, whereby a desired three-dimensional shaped object is finally obtained.

[本発明の製造方法]
本発明は、固化層形成段階において特徴を有している。
[Manufacturing method of the present invention]
The present invention is characterized in the solidified layer formation stage.

具体的には、本発明の製造方法は、図1(a)および図1(b)に示すように固化層24の形成段階において、固化層24内に生じる細孔10を減じることを含んで成る。より具体的には、本発明の製造方法は、図1(a)および図1(b)に示すように固化層24の形成段階において、固化層24内の残存ガスに起因して生じる細孔10を減じることを含んで成る。 Specifically, the production method of the present invention includes reducing the pores 10 generated in the solidified layer 24 at the stage of forming the solidified layer 24 as shown in FIGS. 1 (a) and 1 (b). Become. More specifically, in the production method of the present invention, as shown in FIGS. 1 (a) and 1 (b), pores generated due to residual gas in the solidified layer 24 at the stage of forming the solidified layer 24. It consists of subtracting 10.

ここでいう「細孔10」とは、図1(a)の右上拡大図に示すように固化層24内に形成される空隙を指し、断面視において特に限定されるものではないが20〜100μmの寸法を有し得るものを指す。より具体的には、ここでいう「細孔10」とは、固化層24における固化密度が例えば80〜100%の高密度領域に生じる空隙を指す。換言すれば、ここでいう「細孔10」とは、固化層24における固化密度が例えば80%未満の低/中密度領域には生じないものを指す。なお、固化層における固化密度が相対的に低い密度領域では、固化密度が相対的に低いことに起因していわゆるポーラス領域が内部に形成され得る。一方、本発明では、上述のように固化密度が相対的に高い密度領域内に細孔10が存在し得る。以上の事からも、本発明における「細孔10」は、固化層における固化密度が相対的に低い密度領域内に形成される「ポーラス領域」とは本質的に異なるものであることを確認的に付言しておく。 The “pore 10” referred to here refers to a void formed in the solidified layer 24 as shown in the enlarged upper right view of FIG. 1 (a), and is not particularly limited in cross-sectional view, but is 20 to 100 μm. Refers to those that can have the dimensions of. More specifically, the “pore 10” here refers to a void generated in a high-density region where the solidification density in the solidification layer 24 is, for example, 80 to 100%. In other words, the “pores 10” as used herein refer to those that do not occur in the low / medium density region where the solidification density in the solidification layer 24 is, for example, less than 80%. In the density region where the solidification density is relatively low in the solidification layer, a so-called porous region may be formed inside due to the relatively low solidification density. On the other hand, in the present invention, the pores 10 may exist in the density region where the solidification density is relatively high as described above. From the above, it is confirmed that the "pores 10" in the present invention are essentially different from the "porous region" formed in the density region where the solidification density in the solidification layer is relatively low. I would like to add to.

特定の理論に拘束されるものではないが、本発明における「細孔10」は以下の現象により生じ得ると考えられる。具体的には、図2に示すように、光ビームLを照射して新たな固化層24Bを形成する際においては、光ビームLの照射熱が既に形成した下層に位置する固化層24Aに伝わり得る。光ビームLの照射熱が既に形成した下層に位置する固化層24Aに伝わると、当該固化層24A内に局所的に残存し得る残存ガス5が当該光ビームLの照射熱により膨張し得る。かかる残存ガス5の膨張により、既に形成した下層に位置する固化層24A内に局所的に細孔10が生じ得る。なお、ここでいう「残存ガス5」とは、特に限定されるものではないが、例えば、粉末層の所定箇所に光ビームを照射した際に生じるガスが固化層内に残存することに起因して生じるものであり得る。 Although not bound by a specific theory, it is considered that the "pore 10" in the present invention can be caused by the following phenomenon. Specifically, as shown in FIG. 2, when the light beam L is irradiated to form a new solidified layer 24B, the irradiation heat of the light beam L is transmitted to the solidified layer 24A located in the lower layer already formed. obtain. When the irradiation heat of the light beam L is transmitted to the solidified layer 24A located in the lower layer that has already been formed, the residual gas 5 that can locally remain in the solidified layer 24A can expand due to the irradiation heat of the light beam L. Due to the expansion of the residual gas 5, pores 10 may be locally formed in the solidified layer 24A located in the lower layer already formed. The term "residual gas 5" as used herein is not particularly limited, but is caused by, for example, the gas generated when a predetermined portion of the powder layer is irradiated with a light beam remaining in the solidified layer. Can occur.

図1(b)に示すように、固化層24内の残存ガスに起因して内部に局所的に生じ得る細孔10を減じると、固化層24の内部は空隙が減じられた状態となり得る。ここでいう「細孔を減じる」とは、細孔の数および/又は細孔の寸法を減じることを実質的に指す。また、ここでいう「減じる」とは、完全に除去したものも含む。空隙が減じられると、細孔10が空隙を成していることに起因して細孔10が存在する領域の構造強度が相対的に弱くなるといった問題を抑制することができ得る。これにより、固化層内の構造強度が相対的に弱い部分(すなわち、細孔10が存在する領域)を起点としたクラックの発生を抑制することができ得る。これにより、クラックの発生抑制に起因して、最終的に得られる三次元形状造形物100の構造強度を維持し得る。その結果として、本発明では、高精度な三次元形状造形物100を得ることができ得る。 As shown in FIG. 1B, when the pores 10 that can be locally generated inside due to the residual gas in the solidifying layer 24 are reduced, the inside of the solidifying layer 24 can be in a state where the voids are reduced. As used herein, "reducing pores" substantially means reducing the number of pores and / or the size of pores. In addition, the term "decrease" here includes those that have been completely removed. When the voids are reduced, it is possible to suppress the problem that the structural strength of the region where the pores 10 are present becomes relatively weak due to the pores forming the voids. As a result, it is possible to suppress the occurrence of cracks starting from a portion of the solidified layer where the structural strength is relatively weak (that is, a region where the pores 10 are present). As a result, the structural strength of the finally obtained three-dimensional shaped object 100 can be maintained due to the suppression of crack generation. As a result, in the present invention, it is possible to obtain a highly accurate three-dimensional shaped object 100.

なお、本発明は、下記態様を採ってよい。 The present invention may take the following aspects.

<細孔の特定態様>
一態様では、図3に示すように固化層24内の細孔10と当該細孔10の周縁部分の温度差に基づき、細孔10の発生箇所を予め特定してよい。
<Specific aspect of pores>
In one aspect, as shown in FIG. 3, the location where the pores 10 are generated may be specified in advance based on the temperature difference between the pores 10 in the solidified layer 24 and the peripheral portion of the pores 10.

具体的には、図3に示すように、固化層24の形成段階で固化層24の最上面24aに光ビームLを照射し、赤外線カメラ50、特に赤外線サーモグラフィを用いて、光ビームLを照射した最上面24aの所定部分の下方領域の温度分布を測定する。特定の理論に拘束されるものではないが、固化層24内に細孔10が生じている場合、細孔10が空隙を成すことに起因して固化層24の最上面24aに照射した光ビームLの照射熱が固化層24を介して細孔10内へ伝わり得る。この時、細孔10は空隙を成すため、これに起因して光ビームLの照射熱が当該空隙に留まる状態、すなわち“こもる”状態となり得る。そのため、赤外線カメラ50を用いて照射した最上面24aの所定部分の下方領域の温度分布を測定した場合、平面視において図3の右上図に示すように細孔10発生部分の温度域60と細孔10発生部分の周縁部分の温度域70との温度分布が異なり得る。具体的には、平面視において図3の右上図に示すように細孔10発生部分の温度域60が細孔10発生部分の周縁部分の温度域70よりも温度が相対的に高くなり得る(細孔部10の発生部分:図3右上図の黒色部分)。かかる温度分布の違いを利用することで、細孔10がいずれの箇所に生じているかを特定でき得る。 Specifically, as shown in FIG. 3, the uppermost surface 24a of the solidified layer 24 is irradiated with the light beam L at the stage of forming the solidified layer 24, and the light beam L is irradiated using the infrared camera 50, particularly the infrared thermography. The temperature distribution in the lower region of the predetermined portion of the uppermost surface 24a is measured. Although not bound by a specific theory, when pores 10 are formed in the solidified layer 24, a light beam irradiating the uppermost surface 24a of the solidified layer 24 due to the pores forming voids. The irradiation heat of L can be transmitted into the pores 10 through the solidified layer 24. At this time, since the pores 10 form voids, the irradiation heat of the light beam L may remain in the voids, that is, a “muffled” state due to this. Therefore, when the temperature distribution in the lower region of the predetermined portion of the uppermost surface 24a irradiated with the infrared camera 50 is measured, the temperature region is as small as the temperature region 60 of the pore 10 generation portion as shown in the upper right figure of FIG. 3 in a plan view. The temperature distribution of the peripheral portion of the hole 10 generation portion may differ from that of the temperature range 70. Specifically, in a plan view, as shown in the upper right figure of FIG. 3, the temperature of the temperature range 60 of the pore 10 generating portion can be relatively higher than the temperature range 70 of the peripheral portion of the pore 10 generating portion (). Occurrenced portion of pore portion 10: black portion in the upper right figure of FIG. 3). By utilizing such a difference in temperature distribution, it is possible to identify where the pores 10 are generated.

<既に形成した固化層内に生じた細孔を減じるための態様>
具体的には、本発明では下記態様により既に形成した固化層内の細孔を減じてよい。
<Aspect for reducing pores generated in the already formed solidified layer>
Specifically, in the present invention, the pores in the solidified layer already formed may be reduced according to the following aspects.

一態様では、図4に示すように細孔10の発生箇所を特定した上で、細孔10を含んで成る固化層24の所定部分24’に光ビームLを照射して当該部分24’を溶融させて、細孔10を減じてよい。 In one embodiment, after identifying the location where the pores 10 are generated as shown in FIG. 4, the predetermined portion 24'of the solidified layer 24 including the pores 10 is irradiated with the light beam L to form the portion 24'. It may be melted to reduce the pores 10.

具体的には、図4(a)に示すように、上述の赤外線カメラ50を用いて細孔10の発生箇所を予め特定する。細孔10の発生箇所を特定した後、図4(b)に示すように細孔10を含んで成る固化層24の所定部分24’に対して光ビームLを照射する。なお、ここでいう「光ビームL」とは、新たな固化層(図4(b)内の最上層の固化層に相当)の形成に用いる際のものであってよい。光ビームLを照射すると、細孔10を含んで成る固化層24の所定部分24’が溶融状態となり得る。その後、図4(c)に示すように溶融状態となった細孔10を含んで成る固化層24の所定部分24’は、かかる部分24’の温度が低下することで固化状態となり得る。以上により、固化層24内に存在し得る細孔10を減じることができ得る。 Specifically, as shown in FIG. 4A, the location where the pores 10 are generated is specified in advance using the infrared camera 50 described above. After identifying the location where the pores 10 are generated, the light beam L is irradiated to the predetermined portion 24'of the solidified layer 24 including the pores 10 as shown in FIG. 4 (b). The "light beam L" referred to here may be used for forming a new solidified layer (corresponding to the uppermost solidified layer in FIG. 4B). When the light beam L is irradiated, the predetermined portion 24'of the solidified layer 24 including the pores 10 can be in a molten state. After that, as shown in FIG. 4C, the predetermined portion 24'of the solidified layer 24 including the pores 10 in the molten state can be in the solidified state by lowering the temperature of the portion 24'. From the above, it is possible to reduce the pores 10 that may exist in the solidified layer 24.

なお、図5に示すように光ビームLの照射条件を調節して、既に形成した固化層24内の細孔10を減じてよい。 As shown in FIG. 5, the irradiation conditions of the light beam L may be adjusted to reduce the pores 10 in the already formed solidified layer 24.

一態様では、固化層形成段階において、上述の赤外線カメラを用いて特定する細孔10の発生箇所の数が所定基準を超えている場合には、例えば図5(a)に示すように光ビームLの出力を適宜変更してよい。具体的には、細孔10の発生箇所の数が所定基準を超えている場合には、固化層24内に細孔10を生じさせる原因となり得る残存ガスが多いと判断し、それに応じて光ビームLの出力を増大させてよい。光ビームLの出力を増大させると、それに起因して下層に位置する細孔10を含んで成る既に形成した固化層24の所定部分に対して相対的に大きな光ビームLの照射熱を供することができ得る。これにより、細孔10を含んで成る既に形成した固化層24の所定部分を好適に溶融状態にすることができ得る。その後、温度低下に伴い、好適な溶融状態である細孔10を含んで成る既に形成した固化層24の所定部分を好適に固化状態とすることができ得る。これにより、既に形成した固化層24内の細孔10を好適に減じることができ得る。なお、例えば、図5(a)に示すように、所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度に応じて、通常の固化層形成時と比べて光ビームLの出力をどの程度増大させるか決定してよい。一例を挙げると、所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度が相対的に小さい場合、通常の固化層形成時と比べて増大させる光ビームLの出力の程度は相対的に小さくてよい。所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度が相対的に大きい場合、通常の固化層形成時と比べて増大させる光ビームLの出力の程度は相対的に大きくてよい。 In one aspect, when the number of pores 10 generated by using the above-mentioned infrared camera exceeds a predetermined standard in the solidified layer forming stage, for example, as shown in FIG. 5A, a light beam The output of L may be changed as appropriate. Specifically, when the number of pores 10 generated exceeds a predetermined standard, it is determined that there is a large amount of residual gas that can cause pores 10 to be generated in the solidified layer 24, and light is applied accordingly. The output of the beam L may be increased. When the output of the light beam L is increased, a relatively large irradiation heat of the light beam L is applied to a predetermined portion of the already formed solidified layer 24 including the pores 10 located in the lower layer. Can be done. Thereby, a predetermined portion of the already formed solidified layer 24 including the pores 10 can be suitably melted. After that, as the temperature decreases, a predetermined portion of the already formed solidified layer 24 including the pores 10 in a suitable molten state can be brought into a suitable solidified state. As a result, the pores 10 in the solidified layer 24 that have already been formed can be suitably reduced. In addition, for example, as shown in FIG. 5A, the light beam L is higher than that at the time of normal solidification layer formation, depending on the degree of the number of occurrence points of the specified pores 10 which exceeds the predetermined reference. You may decide how much to increase the output of. As an example, when the degree of occurrence of the specified pores 10 exceeding a predetermined standard is relatively small, the degree of output of the light beam L to be increased as compared with the case of forming a normal solidified layer. May be relatively small. When the number of occurrence points of the specified pores 10 exceeding the predetermined reference is relatively large, the degree of output of the light beam L to be increased is relatively large as compared with the case of forming a normal solidified layer. You can.

一態様では、固化層形成段階において、上述の赤外線カメラを用いて特定する細孔10の発生箇所の数が所定基準を超えている場合には、例えば図5(b)に示すように光ビームLの走査速度を適宜変更してよい。具体的には、細孔10の発生箇所の数が所定基準を超えている場合には、固化層24内に細孔10を生じさせる原因となり得る残存ガスが多いと判断し、それに応じて光ビームLの走査速度を小さくしてよい。光ビームLの走査速度を小さくすると、それに起因して下層に位置する細孔10を含んで成る既に形成した固化層24の所定部分に対して相対的に十分に光ビームLの照射熱を供することができ得る。これにより、細孔10を含んで成る既に形成した固化層24の所定部分を好適に溶融状態にすることができ得る。その後、温度低下に伴い、好適な溶融状態である細孔10を含んで成る既に形成した固化層24の所定部分を好適に固化状態とすることができ得る。これにより、既に形成した固化層24内の細孔10を好適に減じることができ得る。なお、例えば、図5(b)に示すように、所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度に応じて、通常の固化層形成時と比べて光ビームLの走査速度をどの程度小さくするか決定してよい。一例を挙げると、所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度が相対的に小さい場合、通常の固化層形成時と比べて小さくする光ビームLの走査速度の程度は相対的に小さくてよい。所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度が相対的に大きい場合、通常の固化層形成時と比べて小さくする光ビームLの出力の程度は相対的に大きくてよい。 In one aspect, when the number of pores 10 generated by using the above-mentioned infrared camera exceeds a predetermined standard in the solidified layer forming stage, for example, as shown in FIG. 5 (b), a light beam. The scanning speed of L may be changed as appropriate. Specifically, when the number of pores 10 generated exceeds a predetermined standard, it is determined that there is a large amount of residual gas that can cause pores 10 to be generated in the solidified layer 24, and light is applied accordingly. The scanning speed of the beam L may be reduced. When the scanning speed of the light beam L is reduced, the irradiation heat of the light beam L is relatively sufficiently applied to a predetermined portion of the already formed solidified layer 24 including the pores 10 located in the lower layer. Can be Thereby, a predetermined portion of the already formed solidified layer 24 including the pores 10 can be suitably melted. After that, as the temperature decreases, a predetermined portion of the already formed solidified layer 24 including the pores 10 in a suitable molten state can be brought into a suitable solidified state. As a result, the pores 10 in the solidified layer 24 that have already been formed can be suitably reduced. In addition, for example, as shown in FIG. 5B, the light beam L is higher than that at the time of normal solidification layer formation, depending on the degree of the number of occurrence points of the specified pores 10 exceeding the predetermined reference. You may decide how much to reduce the scanning speed of. As an example, when the degree of the number of occurrence points of the specified pores 10 exceeding a predetermined standard is relatively small, the scanning speed of the light beam L is reduced as compared with the case of forming a normal solidified layer. The degree may be relatively small. When the degree of the number of occurrence points of the specified pores 10 exceeding the predetermined standard is relatively large, the degree of output of the light beam L to be reduced as compared with the case of forming a normal solidified layer is relatively large. You can.

一態様では、固化層形成段階において、上述の赤外線カメラを用いて特定する細孔10の発生箇所の数が所定基準を超えている場合には、例えば図5(c)に示すように光ビームLのスポット径を適宜変更してよい。具体的には、細孔10の発生箇所の数が所定基準を超えている場合には、固化層24内に細孔10を生じさせる原因となり得る残存ガスが多いと判断し、それに応じて光ビームLのスポット径を通常の固化層形成時よりも小さくしてよい。光ビームLのスポット径が小さくなると、それに起因して下層に位置する細孔10を含んで成る既に形成した固化層24の所定部分に対して相対的に大きな光ビームLの照射熱を供することができ得る。これにより、細孔10を含んで成る既に形成した固化層24の所定部分を好適に溶融状態にすることができ得る。その後、温度低下に伴い、好適な溶融状態である細孔10を含んで成る既に形成した固化層24の所定部分を好適に固化状態とすることができ得る。これにより、既に形成した固化層24内の細孔10を好適に減じることができ得る。なお、例えば、図5(c)に示すように、所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度に応じて、通常の固化層形成時と比べて光ビームLのスポット径をどの程度小さくさせるか決定してよい。一例を挙げると、所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度が相対的に小さい場合、通常の固化層形成時と比べて小さくする光ビームLのスポット径の程度は相対的に小さくてよい。所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度が相対的に大きい場合、通常の固化層形成時と比べて小さくする光ビームLのスポット径の程度は相対的に大きくてよい。 In one aspect, when the number of pores 10 generated by using the above-mentioned infrared camera exceeds a predetermined standard in the solidified layer forming stage, for example, as shown in FIG. 5C, a light beam The spot diameter of L may be changed as appropriate. Specifically, when the number of pores 10 generated exceeds a predetermined standard, it is determined that there is a large amount of residual gas that can cause pores 10 in the solidified layer 24, and light is applied accordingly. The spot diameter of the beam L may be made smaller than that at the time of forming a normal solidified layer. When the spot diameter of the light beam L becomes smaller, a relatively large irradiation heat of the light beam L is applied to a predetermined portion of the already formed solidified layer 24 including the pores 10 located in the lower layer. Can be done. Thereby, a predetermined portion of the already formed solidified layer 24 including the pores 10 can be suitably melted. After that, as the temperature decreases, a predetermined portion of the already formed solidified layer 24 including the pores 10 in a suitable molten state can be brought into a suitable solidified state. As a result, the pores 10 in the solidified layer 24 that have already been formed can be suitably reduced. In addition, for example, as shown in FIG. 5C, the light beam L is higher than that at the time of normal solidification layer formation, depending on the degree of the number of occurrence points of the specified pores 10 that exceeds the predetermined standard. You may decide how small the spot diameter is. As an example, when the degree of the number of occurrence points of the specified pores 10 exceeding a predetermined standard is relatively small, the spot diameter of the light beam L to be smaller than that at the time of forming a normal solidified layer The degree may be relatively small. When the number of occurrence points of the specified pores 10 exceeding the predetermined standard is relatively large, the degree of the spot diameter of the light beam L to be smaller than that at the time of normal solidification layer formation is relatively large. It can be big.

一態様では、図6に示すように細孔10を含んで成る固化層24の所定部分を外部から押圧して、既に形成した固化層24内の細孔10を減じてよい。 In one aspect, as shown in FIG. 6, a predetermined portion of the solidified layer 24 including the pores 10 may be pressed from the outside to reduce the pores 10 in the already formed solidified layer 24.

具体的には、図6に示すように細孔10の発生箇所を特定した上で細孔10を含んで成る固化層24の所定部分24’を例えば切削手段4(但し、切削刃が設置されていないもの)で外部から押圧してよい。押圧方向としては、図6に示すように積層方向に対向する方向であってよい。細孔10を含んで成る固化層24の所定部分24’を外部から押圧することで、細孔10を押しつぶすことができ得る。これにより、固化層24内の細孔10を減じることができ得る。なお、細孔10を含んで成る固化層24の所定部分24’の押圧前後の固化層の最上面24aの高さを比べると、その差は約10μmであり得る(図6内の拡大図参照)。そのため、固化層24の最上面24aの平坦性は確保されていると言える。 Specifically, as shown in FIG. 6, after specifying the location where the pores 10 are generated, a predetermined portion 24'of the solidified layer 24 including the pores 10 is, for example, a cutting means 4 (however, a cutting blade is installed). You may press it from the outside with something that is not. The pressing direction may be a direction facing the stacking direction as shown in FIG. By pressing the predetermined portion 24'of the solidified layer 24 including the pores 10 from the outside, the pores 10 can be crushed. Thereby, the pores 10 in the solidified layer 24 can be reduced. Comparing the heights of the uppermost surfaces 24a of the solidified layer before and after pressing the predetermined portion 24'of the solidified layer 24 including the pores 10, the difference may be about 10 μm (see the enlarged view in FIG. 6). ). Therefore, it can be said that the flatness of the uppermost surface 24a of the solidified layer 24 is ensured.

なお、細孔10の大きさおよび形状によっては、細孔10を含んで成る固化層24の所定部分24’を外部から押圧するのみでは好適に細孔10を押しつぶすことができない場合があり得る。そこで、図7に示すように切削手段4を用いて細孔10を含んで成る固化層24の所定部分24’に外部から押圧力を加えつつ、切削手段4を回転させて細孔10を含んで成る固化層24の所定部分24’に回転力を更に加えてよい。これにより、細孔10をより好適に押しつぶすことができ得る。その結果、既に形成した固化層24内の細孔10をより好適に減じることができ得る。 Depending on the size and shape of the pores 10, it may not be possible to crush the pores 10 by simply pressing the predetermined portion 24'of the solidified layer 24 including the pores 10 from the outside. Therefore, as shown in FIG. 7, the cutting means 4 is used to rotate the cutting means 4 to include the pores 10 while applying a pressing force from the outside to the predetermined portion 24'of the solidified layer 24 including the pores 10. A rotational force may be further applied to the predetermined portion 24'of the solidified layer 24 made of. Thereby, the pore 10 can be crushed more preferably. As a result, the pores 10 in the already formed solidified layer 24 can be reduced more preferably.

一態様では、図8に示すように細孔10を含む固化層24の所定部分24’を切削加工に付して、細孔10を減じてよい。 In one aspect, the pores 10 may be reduced by subjecting the predetermined portion 24'of the solidified layer 24 containing the pores 10 to cutting as shown in FIG.

具体的には、赤外線カメラを用いて細孔10の発生箇所を特定した上で、図8(a)に示すように細孔10を含んで成る固化層24の所定部分24’を、切削手段4を用いて切削加工に付す。切削加工に付すと、図8(b)に示すように固化層24内に細孔10を含んで成る固化層24の所定部分24’が存在し得ない状態になる。固化層24内に細孔10を含んで成る固化層24の所定部分24’が存在しない状態にした後、図8(c)に示すように当該所定部分24’が存在しない箇所に粉末19を充填する。粉末19を充填した後、図8(d)に示すように、当該粉末19を充填した部分に光ビームLを照射して、充填した粉末19を溶融固化させる。以上により、既に形成した固化層24内から細孔10を減じることができ得る。 Specifically, after identifying the location where the pores 10 are generated using an infrared camera, a predetermined portion 24'of the solidified layer 24 including the pores 10 is cut by cutting means as shown in FIG. 8A. It is subjected to cutting using No. 4. When subjected to cutting, as shown in FIG. 8B, a predetermined portion 24'of the solidifying layer 24 including the pores 10 cannot exist in the solidifying layer 24. After the predetermined portion 24'of the solidified layer 24 including the pores 10 does not exist in the solidified layer 24, the powder 19 is placed in a place where the predetermined portion 24'does not exist as shown in FIG. 8 (c). Fill. After the powder 19 is filled, as shown in FIG. 8D, the portion filled with the powder 19 is irradiated with a light beam L to melt and solidify the filled powder 19. From the above, it is possible to reduce the pores 10 from the already formed solidified layer 24.

一態様では、図9に示すように固化層の形成に用いる粉末の供給条件を調節して、既に形成した固化層内の細孔を減じてよい。 In one aspect, as shown in FIG. 9, the supply conditions of the powder used for forming the solidified layer may be adjusted to reduce the pores in the already formed solidified layer.

一態様では、上述の赤外線カメラを用いて特定する細孔10の発生箇所の数が所定基準を超えている場合には、以下の態様をとってよい。具体的には、固化層24内に細孔10を生じさせる原因となり得る残存ガスが多いと判断し、それに応じて例えば図9(a)に示すようにスキージング・ブレード23を用いて形成される粉末層22の厚さを適宜調整してよい。例えば、図9(a)に示すように、所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度に応じて、かかる層の厚さをL、L(>L)、又はL(>L)としてよい。なお、粉末層22の厚さが相対的に小さくなると、粉末層22の所定箇所に光ビームを照射して新たな固化層を形成する際に、下層に位置する細孔10を含んで成る既に形成した固化層24内の所定部分に対して光ビームの照射熱を好適に供することができ得る。これにより、下層に位置する細孔10を含んで成る既に形成した固化層24内の所定部分を好適に溶融状態にすることができ得る。その後、温度低下に伴い、好適な溶融状態である下層に位置する細孔10を含んで成る既に形成した固化層24内の所定部分を好適に固化状態とすることができ得る。これにより、既に形成した固化層24内の細孔10を好適に減じることができ得る。 In one aspect, when the number of occurrence locations of the pores 10 specified by using the above-mentioned infrared camera exceeds a predetermined standard, the following aspect may be taken. Specifically, it is determined that there is a large amount of residual gas that can cause the pores 10 to be formed in the solidified layer 24, and the squeezing blade 23 is formed accordingly, for example, as shown in FIG. 9A. The thickness of the powder layer 22 may be adjusted as appropriate. For example, as shown in FIG. 9 (a), the thickness of the layer is L 1 , L 2 (> L, depending on the degree of the number of occurrence points of the specified pore 10 that exceeds the predetermined standard. It may be 1 ) or L 3 (> L 2 ). When the thickness of the powder layer 22 becomes relatively small, when a predetermined portion of the powder layer 22 is irradiated with a light beam to form a new solidified layer, the pores 10 located in the lower layer are already included. Irradiation heat of the light beam can be suitably applied to a predetermined portion in the formed solidified layer 24. As a result, a predetermined portion in the already formed solidified layer 24 including the pores 10 located in the lower layer can be suitably melted. After that, as the temperature decreases, a predetermined portion in the already formed solidified layer 24 including the pores 10 located in the lower layer, which is in a suitable molten state, can be brought into a suitable solidified state. As a result, the pores 10 in the solidified layer 24 that have already been formed can be suitably reduced.

なお、これまで主として粉末床溶融結合法(いわゆるパウダーベッド方式)で固化層を形成する態様に基づき説明してきたが、これに限定されることなく、例えば図8(b)に示すようにパウダースプレー方式で固化層を形成してよい。ここでいう「パウダースプレー方式」とは、粉末供給と光ビーム照射とを実質的に同時に行って固化層を形成する方式である。粉末床溶融結合法(いわゆるパウダーベッド方式)との対比でいうと、パウダースプレー方式は、固化層を得るに際して粉末層形成を行わないといった特徴を有する。つまり、パウダースプレー方式では、粉末供給箇所に光ビームが照射されると共に、その粉末供給箇所に対して粉末等が直接的に供給されることを通じて、その供給される粉末から固化層を形成する。 Although the description has been mainly based on the mode of forming the solidified layer by the powder bed melt bonding method (so-called powder bed method), the description is not limited to this, and for example, as shown in FIG. 8B, the powder spray is used. A solidified layer may be formed by a method. The "powder spray method" referred to here is a method in which powder supply and light beam irradiation are substantially simultaneously performed to form a solidified layer. In contrast to the powder bed melt bonding method (so-called powder bed method), the powder spray method has a feature that the powder layer is not formed when the solidified layer is obtained. That is, in the powder spray method, a solidified layer is formed from the supplied powder by irradiating the powder supply location with a light beam and directly supplying the powder or the like to the powder supply location.

一態様では、上述の赤外線カメラを用いて特定する細孔10の発生箇所の数が所定基準を超えている場合には、以下の態様をとってよい。具体的には、固化層24内に細孔10を生じさせる原因となり得る残存ガスが多いと判断し、それに応じて例えば図9(b)に示すように粉末供給ノズル80から粉末19を供給して形成される粉末19から成る層の厚さを適宜調整してよい。例えば、図9(b)に示すように、所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度に応じて、かかる層の厚さをL、L(>L)、又はL(>L)としてよい。なお、粉末19から成る層の厚さが相対的に小さくなると、新たに供給した粉末19に光ビームを照射して新たな固化層を形成する際に、下層に位置する細孔10を含んで成る既に形成した固化層24内の所定部分に対して光ビームの照射熱を好適に供することができ得る。これにより、下層に位置する細孔10を含んで成る既に形成した固化層24内の所定部分を好適に溶融状態にすることができ得る。その後、温度低下に伴い、好適な溶融状態である下層に位置する細孔10を含んで成る既に形成した固化層24内の所定部分を好適に固化状態とすることができ得る。これにより、既に形成した固化層24内の細孔10を好適に減じることができ得る。 In one aspect, when the number of occurrence locations of the pores 10 specified by using the above-mentioned infrared camera exceeds a predetermined standard, the following aspect may be taken. Specifically, it is determined that there is a large amount of residual gas that can cause the pores 10 to be generated in the solidified layer 24, and the powder 19 is supplied from the powder supply nozzle 80, for example, as shown in FIG. 9B. The thickness of the layer composed of the powder 19 formed in the above may be appropriately adjusted. For example, as shown in FIG. 9 (b), the thickness of such a layer is L 1 , L 2 (> L, depending on the degree of the number of occurrence points of the specified pore 10 that exceeds a predetermined standard. It may be 1 ) or L 3 (> L 2 ). When the thickness of the layer made of the powder 19 becomes relatively small, when the newly supplied powder 19 is irradiated with a light beam to form a new solidified layer, the pores 10 located in the lower layer are included. It is possible that the irradiation heat of the light beam can be suitably applied to a predetermined portion in the already formed solidified layer 24. As a result, a predetermined portion in the already formed solidified layer 24 including the pores 10 located in the lower layer can be suitably melted. After that, as the temperature decreases, a predetermined portion in the already formed solidified layer 24 including the pores 10 located in the lower layer, which is in a suitable molten state, can be brought into a suitable solidified state. As a result, the pores 10 in the solidified layer 24 that have already been formed can be suitably reduced.

一態様では、上述の赤外線カメラを用いて特定する細孔10の発生箇所の数が所定基準を超えている場合には、以下の態様をとってよい。具体的には、固化層24内に細孔10を生じさせる原因となり得る残存ガスが多いと判断し、それに応じて例えば図9(c)に示すように粉末吸引ノズル90から粉末19を吸引して形成される粉末19から成る層の厚さを適宜調整してよい。例えば、図9(c)に示すように、所定基準と比べて超過する当該特定した細孔10の発生箇所の数の程度に応じて、かかる層の厚さをL、L(>L)、又はL(>L)としてよい。なお、粉末19から成る層の厚さが相対的に小さくなると、粉末19に光ビームを照射して新たな固化層を形成する際に、下層に位置する細孔10を含んで成る既に形成した固化層24内の所定部分に対して光ビームの照射熱を好適に供することができ得る。これにより、下層に位置する細孔10を含んで成る既に形成した固化層24内の所定部分を好適に溶融状態にすることができ得る。その後、温度低下に伴い、好適な溶融状態である下層に位置する細孔10を含んで成る既に形成した固化層24内の所定部分を好適に固化状態とすることができ得る。これにより、既に形成した固化層24内の細孔10を好適に減じることができ得る。 In one aspect, when the number of occurrence locations of the pores 10 specified by using the above-mentioned infrared camera exceeds a predetermined standard, the following aspect may be taken. Specifically, it is determined that there is a large amount of residual gas that can cause the pores 10 to be generated in the solidified layer 24, and the powder 19 is sucked from the powder suction nozzle 90, for example, as shown in FIG. 9C. The thickness of the layer composed of the powder 19 formed in the above may be appropriately adjusted. For example, as shown in FIG. 9 (c), the thickness of such a layer is L 1 , L 2 (> L, depending on the degree of the number of occurrence points of the specified pore 10 that exceeds a predetermined standard. It may be 1 ) or L 3 (> L 2 ). When the thickness of the layer made of the powder 19 becomes relatively small, when the powder 19 is irradiated with a light beam to form a new solidified layer, the powder 19 is already formed including the pores 10 located in the lower layer. Irradiation heat of the light beam can be suitably applied to a predetermined portion in the solidified layer 24. As a result, a predetermined portion in the already formed solidified layer 24 including the pores 10 located in the lower layer can be suitably melted. After that, as the temperature decreases, a predetermined portion in the already formed solidified layer 24 including the pores 10 located in the lower layer, which is in a suitable molten state, can be brought into a suitable solidified state. As a result, the pores 10 in the solidified layer 24 that have already been formed can be suitably reduced.

<新たに形成する固化層内に生じ得る細孔を減じるための態様>
上記では、既に形成した固化層内に生じた細孔を減じるための態様について主として説明してきたが、新たに形成する固化層内に生じ得る細孔を減じるためには下記の態様をとってよい。
<Aspect for reducing pores that may occur in the newly formed solidified layer>
In the above, the mode for reducing the pores generated in the already formed solidified layer has been mainly described, but the following mode may be taken in order to reduce the pores that may be generated in the newly formed solidified layer. ..

具体的には、下記態様により新たに形成する固化層内に生じ得る細孔を減じてよい。 Specifically, the pores that may be formed in the newly formed solidified layer may be reduced according to the following aspects.

上述のとおり、光ビームLの照射熱が既に形成した下層に位置する固化層24Aに伝わると、当該固化層24A内に局所的に残存し得る残存ガス5が当該光ビームLの照射熱により膨張し、かかる残存ガス5の膨張により、固化層24A内に局所的に細孔10が生じ得る(図2参照)。特定の理論に拘束されるものではないが、特に、かかる残存ガス5は、形成時の固化層の温度が高い程発生し易いと考えられ得る。そこで、この点を鑑み、新たな固化層を形成する際には、細孔10が生じる原因となり得る残存ガス5の発生を事前抑制するために、通常の固化層形成時と比べて光ビームLの照射エネルギーを相対的に小さくする、光ビームLの走査速度を相対的に大きくする、および/または光ビームLのスポット径を相対的に大きくするといった光ビームLの照射条件の調節を行うことがよい。また、これに限定されず、新たな固化層を形成する際には、細孔10が生じる原因となり得る残存ガス5の発生を事前抑制するために、母材となる既に形成した固化層(造形物)および/または造形プレートの温度を低くして新たな粉末層表面の温度を低くするといった温度調節を行うことがよい。 As described above, when the irradiation heat of the light beam L is transmitted to the solidified layer 24A located in the lower layer already formed, the residual gas 5 that can locally remain in the solidified layer 24A expands due to the irradiation heat of the light beam L. However, due to the expansion of the residual gas 5, pores 10 may be locally formed in the solidified layer 24A (see FIG. 2). Although not bound by a specific theory, it can be considered that the residual gas 5 is more likely to be generated as the temperature of the solidified layer at the time of formation is higher. Therefore, in view of this point, when the new solidified layer is formed, in order to suppress the generation of the residual gas 5 which may cause the pores 10 to be generated in advance, the light beam L is compared with that at the time of forming the normal solidified layer. The irradiation conditions of the light beam L are adjusted such that the irradiation energy of the light beam L is relatively small, the scanning speed of the light beam L is relatively large, and / or the spot diameter of the light beam L is relatively large. Is good. Further, the present invention is not limited to this, and when a new solidified layer is formed, the already formed solidified layer (modeling) which is a base material is used in order to suppress the generation of the residual gas 5 which may cause the pores 10 to be generated in advance. It is preferable to adjust the temperature by lowering the temperature of the object) and / or the modeling plate to lower the temperature of the surface of the new powder layer.

以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。 Although one embodiment of the present invention has been described above, it merely illustrates a typical example of the scope of application of the present invention. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various modifications can be made.

5 残存ガス
10 細孔
19 粉末
24 固化層
24’ 固化層の所定部分
60 細孔発生部分の温度域
70 細孔発生部分の周縁部分の温度域
100 三次元形状造形物
L 光ビーム
5 Residual gas 10 Pore 19 Powder 24 Solidification layer 24'Predetermined part of solidification layer 60 Temperature range of pore generation part 70 Temperature range of peripheral part of pore generation part 100 Three-dimensional shape model L Light beam

Claims (6)

光ビームの照射によって複数の固化層を逐次形成して三次元形状造形物を製造する方法であって、
前記光ビームを用いて粉末を溶融固化することで前記固化層を形成し、
前記固化層内の残存ガスに起因して生じる細孔を減じることを含んで成り、
前記細孔は前記固化層における固化密度が80〜100%の高密度領域に生じる、三次元形状造形物の製造方法。
It is a method of sequentially forming a plurality of solidified layers by irradiation with a light beam to manufacture a three-dimensional shaped object.
The solidified layer is formed by melting and solidifying the powder using the light beam.
It comprises reducing the pores generated by the residual gas in the solidified layer.
A method for producing a three-dimensional shaped object, in which the pores are formed in a high-density region where the solidification density in the solidification layer is 80 to 100% .
前記細孔と該細孔の周縁部分との温度差に基づき、該細孔の発生箇所を特定する、請求項に記載の三次元形状造形物の製造方法。 Method for producing the basis of the temperature difference between the peripheral portion of the pores and the pore, to identify the occurrence location of the pores, three-dimensionally shaped object according to claim 1. 前記細孔を含んで成る前記固化層の所定部分に前記光ビームを照射して該部分を溶融固化させ、前記細孔を減じる、請求項1又は2に記載の三次元形状造形物の製造方法。 The method for producing a three-dimensional shaped object according to claim 1 or 2 , wherein a predetermined portion of the solidified layer including the pores is irradiated with the light beam to melt and solidify the portion to reduce the pores. .. 前記細孔を含んで成る前記固化層の前記所定部分を外部から押圧して、前記細孔を減じる、請求項1〜3のいずれかに記載の三次元形状造形物の製造方法。 The method for producing a three-dimensional shaped object according to any one of claims 1 to 3, wherein the predetermined portion of the solidified layer including the pores is pressed from the outside to reduce the pores. 前記細孔を含んで成る前記固化層の前記所定部分を切削加工に付して、前記細孔を減じる、請求項1〜4のいずれかに記載の三次元形状造形物の製造方法。 The method for producing a three-dimensional shaped object according to any one of claims 1 to 4 , wherein the predetermined portion of the solidified layer including the pores is subjected to a cutting process to reduce the pores. 前記固化層を粉末床溶融結合法で形成する、請求項1〜のいずれかに記載の三次元形状造形物の製造方法。
The method for producing a three-dimensional shaped object according to any one of claims 1 to 5 , wherein the solidified layer is formed by a powder bed fusion bonding method.
JP2016130009A 2016-06-30 2016-06-30 Manufacturing method of 3D shaped object Active JP6817561B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016130009A JP6817561B2 (en) 2016-06-30 2016-06-30 Manufacturing method of 3D shaped object
PCT/JP2017/023580 WO2018003798A1 (en) 2016-06-30 2017-06-27 Method for manufacturing three-dimensionally shaped molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016130009A JP6817561B2 (en) 2016-06-30 2016-06-30 Manufacturing method of 3D shaped object

Publications (2)

Publication Number Publication Date
JP2018003082A JP2018003082A (en) 2018-01-11
JP6817561B2 true JP6817561B2 (en) 2021-01-20

Family

ID=60787160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016130009A Active JP6817561B2 (en) 2016-06-30 2016-06-30 Manufacturing method of 3D shaped object

Country Status (2)

Country Link
JP (1) JP6817561B2 (en)
WO (1) WO2018003798A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216228A1 (en) * 2018-05-09 2019-11-14 株式会社ニコン Molding system, and, molding method
JP7030635B2 (en) * 2018-07-06 2022-03-07 株式会社東芝 Addition manufacturing method and addition manufacturing system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088201A (en) * 1996-09-10 1998-04-07 Hiroshi Nakazawa Method for compacting powder applying laser beam
JP5186316B2 (en) * 2008-09-09 2013-04-17 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
JP5454076B2 (en) * 2009-10-20 2014-03-26 パナソニック株式会社 Manufacturing method of shaped objects
JP5905060B1 (en) * 2014-09-16 2016-04-20 株式会社東芝 Additive manufacturing apparatus and additive manufacturing method

Also Published As

Publication number Publication date
JP2018003082A (en) 2018-01-11
WO2018003798A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
JP5189953B2 (en) Manufacturing method of three-dimensional shaped object
JP5599957B2 (en) Manufacturing method of three-dimensional shaped object
JP5119123B2 (en) Manufacturing method of three-dimensional shaped object
JP5764753B2 (en) Manufacturing method of three-dimensional shaped object
JP5519766B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5776004B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5653657B2 (en) Method for producing three-dimensional shaped object, three-dimensional shaped object to be obtained, and method for producing molded product
CN107848212B (en) Method for manufacturing three-dimensional shaped object
JPWO2012160811A1 (en) Manufacturing method of three-dimensional shaped object
JP6643631B2 (en) Manufacturing method of three-dimensional shaped object
JP6854465B2 (en) Manufacturing method of three-dimensional shaped object
JP6628024B2 (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP6817561B2 (en) Manufacturing method of 3D shaped object
JP5588925B2 (en) Manufacturing method of three-dimensional shaped object
JP2012224907A (en) Method for manufacturing three-dimensionally shaped article
JP6857861B2 (en) Manufacturing method of three-dimensional shaped object
JP6643643B2 (en) Manufacturing method of three-dimensional shaped object
JP6731642B2 (en) Method for manufacturing three-dimensional shaped object
JP6726858B2 (en) Method for manufacturing three-dimensional shaped object
JP6688997B2 (en) Method for manufacturing three-dimensional shaped object
JP2020169372A (en) Method of laminate-molding three-dimensionally-shaped formed object
JP6643644B2 (en) Manufacturing method of three-dimensional shaped object
JP2022096005A (en) Method of producing three-dimensionally shaped molded article, and apparatus for producing three-dimensionally shaped molded article
JP2021138976A (en) Method for manufacturing three-dimensionally shaped molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201210

R151 Written notification of patent or utility model registration

Ref document number: 6817561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151