JP2022081421A - Negative electrode body for zinc battery and zinc battery - Google Patents

Negative electrode body for zinc battery and zinc battery Download PDF

Info

Publication number
JP2022081421A
JP2022081421A JP2021178565A JP2021178565A JP2022081421A JP 2022081421 A JP2022081421 A JP 2022081421A JP 2021178565 A JP2021178565 A JP 2021178565A JP 2021178565 A JP2021178565 A JP 2021178565A JP 2022081421 A JP2022081421 A JP 2022081421A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
porous member
zinc battery
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021178565A
Other languages
Japanese (ja)
Inventor
有広 櫛部
Arihiro Kushibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Materials Co Ltd filed Critical Showa Denko Materials Co Ltd
Publication of JP2022081421A publication Critical patent/JP2022081421A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a negative electrode body for a zinc battery capable of obtaining excellent life performance in the zinc battery.SOLUTION: A negative electrode body 100 for a zinc battery includes a negative electrode 10 and a porous member 20, the negative electrode 10 includes a current collector 12 and a negative electrode material 14 supported by the current collector 12, and the thickness T of a portion where the porous member 20 faces the main surface 14a of the negative electrode material 14 and faces the main surface 14a of the negative electrode material 14 in the porous member 20 is greater than the difference D between the maximum thickness Tmax and the minimum thickness Tmin in the negative electrode material 14.SELECTED DRAWING: Figure 1

Description

本開示は、亜鉛電池用負極体、亜鉛電池等に関する。 The present disclosure relates to a negative electrode body for a zinc battery, a zinc battery, and the like.

ニッケル亜鉛電池は、水酸化カリウム水溶液等の水系電解液を用いる水系電池であることから、高い安全性を有すると共に、亜鉛電極とニッケル電極との組み合わせにより、水系電池としては高い起電力を有することが知られている。さらに、ニッケル亜鉛電池は、優れた入出力性能に加えて、低コストであることから、産業用途(例えば、バックアップ電源等の用途)及び自動車用途(例えば、ハイブリッド自動車等の用途)への適用可能性が検討されている。 Since the nickel-zinc battery is an aqueous battery that uses an aqueous electrolyte solution such as an aqueous potassium hydroxide solution, it has high safety and has a high electromotive force as an aqueous battery due to the combination of the zinc electrode and the nickel electrode. It has been known. Further, since the nickel-zinc battery has excellent input / output performance and low cost, it can be applied to industrial applications (for example, applications such as backup power supply) and automobile applications (for example, applications such as hybrid automobiles). Gender is being considered.

ニッケル亜鉛電池の充放電反応は、例えば、下記式に従って進行する(放電反応:右向き、充電反応:左向き)。
(正極)2NiOOH+2HO+2e → 2Ni(OH)+2OH
(負極)Zn+2OH → Zn(OH)+2e
The charge / discharge reaction of the nickel-zinc battery proceeds according to, for example, the following formula (discharge reaction: facing right, charging reaction: facing left).
(Positive electrode) 2NiOOH + 2H 2O + 2e → 2Ni (OH) 2 + 2OH
(Negative electrode) Zn + 2OH- → Zn (OH) 2 + 2e-

上記式に示されるように、ニッケル亜鉛電池では、放電反応により水酸化亜鉛(Zn(OH))が生成する。水酸化亜鉛は電解液に可溶であり、水酸化亜鉛が電解液に溶解すると、テトラヒドロキシド亜鉛酸イオン([Zn(OH)2-)が電解液中に拡散する。その結果、負極の形態変化(変形)が進行すると共に充電電流の分布が不均一となること等により、負極上の局所で亜鉛の析出が起こり、デンドライト(樹枝状結晶)が発生する。ニッケル亜鉛電池では、充放電の繰り返しによりデンドライトが成長した場合、デンドライトがセパレータを貫通して短絡が発生するため、上記デンドライトの発生は寿命性能の低下につながる。これに対し、例えば、特許文献1では、ニッケルめっきを施した不織布を正負極板間に介在させて亜鉛デンドライトによる正負極間の内部ショートを防止する技術が開示されている。 As shown in the above formula, in a nickel-zinc battery, zinc hydroxide (Zn (OH) 2 ) is produced by a discharge reaction. Zinc hydroxide is soluble in the electrolytic solution, and when zinc hydroxide is dissolved in the electrolytic solution, tetrahydroxydozincate ions ([Zn (OH) 4 ] 2- ) diffuse into the electrolytic solution. As a result, as the morphological change (deformation) of the negative electrode progresses and the distribution of the charging current becomes non-uniform, zinc precipitates locally on the negative electrode and dendrites (dendritic crystals) are generated. In a nickel-zinc battery, when dendrite grows due to repeated charging and discharging, the dendrite penetrates the separator and a short circuit occurs. Therefore, the generation of the dendrite leads to a decrease in life performance. On the other hand, for example, Patent Document 1 discloses a technique in which a nickel-plated nonwoven fabric is interposed between positive and negative electrode plates to prevent an internal short circuit between positive and negative electrodes due to zinc dendrite.

特開昭58-126665号公報Japanese Unexamined Patent Publication No. 58-126665

ニッケル亜鉛電池等の亜鉛電池に対しては、寿命性能の更なる向上が求められており、寿命性能を向上させるための新たな技術の開発が求められている。 For zinc batteries such as nickel-zinc batteries, further improvement in life performance is required, and development of new techniques for improving life performance is required.

本開示の一側面は、亜鉛電池において優れた寿命性能を得ることが可能な亜鉛電池用負極体を提供することを目的とする。本開示の他の一側面は、当該亜鉛電池用負極を備える亜鉛電池を提供することを目的とする。 One aspect of the present disclosure is to provide a negative electrode body for a zinc battery capable of obtaining excellent life performance in a zinc battery. Another aspect of the present disclosure is to provide a zinc battery comprising the negative electrode for the zinc battery.

本開示の一側面は、負極と、多孔部材と、を備え、前記負極が、集電体と、当該集電体に支持された負極材と、を有し、前記多孔部材が前記負極材の主面に対向し、前記多孔部材における前記主面に対向する部分の厚さが前記負極材における最大厚さと最小厚さとの差より大きい、亜鉛電池用負極体を提供する。 One aspect of the present disclosure comprises a negative electrode and a porous member, wherein the negative electrode has a current collector and a negative electrode material supported by the current collector, and the porous member is the negative electrode material. Provided is a negative electrode body for a zinc battery, wherein the thickness of the portion of the porous member facing the main surface facing the main surface is larger than the difference between the maximum thickness and the minimum thickness of the negative electrode material.

本開示の他の一側面は、上述の亜鉛電池用負極体と、正極と、を備える、亜鉛電池を提供する。 Another aspect of the present disclosure provides a zinc battery comprising the above-mentioned negative electrode body for a zinc battery and a positive electrode.

上述の亜鉛電池用負極体及び亜鉛電池によれば、充放電を繰り返した際に優れた寿命性能を得ることができる。 According to the above-mentioned negative electrode body for zinc battery and zinc battery, excellent life performance can be obtained when charging and discharging are repeated.

本開示の一側面によれば、亜鉛電池において優れた寿命性能を得ることが可能な亜鉛電池用負極体を提供することができる。本開示の他の一側面によれば、当該亜鉛電池用負極を備える亜鉛電池を提供することができる。 According to one aspect of the present disclosure, it is possible to provide a negative electrode body for a zinc battery capable of obtaining excellent life performance in a zinc battery. According to another aspect of the present disclosure, it is possible to provide a zinc battery including the negative electrode for the zinc battery.

亜鉛電池用負極体の例を示す模式断面図である。It is a schematic cross-sectional view which shows the example of the negative electrode body for a zinc battery.

本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。数値範囲の「A以上」とは、A、及び、Aを超える範囲を意味する。数値範囲の「A以下」とは、A、及び、A未満の範囲を意味する。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。本明細書において「膜」又は「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。 In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. "A or more" in the numerical range means A and a range exceeding A. "A or less" in the numerical range means A and a range less than A. Within the numerical range described stepwise herein, the upper or lower limit of the numerical range at one stage may be optionally combined with the upper or lower limit of the numerical range at another stage. In the numerical range described herein, the upper or lower limit of the numerical range may be replaced with the values shown in the examples. "A or B" may include either A or B, and may include both. Unless otherwise specified, the materials exemplified in the present specification may be used alone or in combination of two or more. In the present specification, the amount of each component in the composition is the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. means. In the present specification, the term "membrane" or "layer" includes not only a structure having a shape formed on the entire surface but also a structure having a shape partially formed when observed as a plan view. .. In the present specification, the term "process" is included in this term not only as an independent process but also as long as the intended action of the process is achieved even if it cannot be clearly distinguished from other processes. ..

以下、本開示の実施形態について詳細に説明する。但し、本開示は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.

本実施形態に係る亜鉛電池用負極体は、負極と、多孔部材と、を備え、負極が、集電体と、当該集電体に支持された負極材と、を有し、多孔部材が負極材の主面に対向(負極材の主面を被覆)し、多孔部材における負極材の主面に対向する部分(負極材の主面を被覆する部分)の厚さTが負極材における最大厚さTmaxと最小厚さTminとの差Dより大きい(Tmax-Tmin=D<T)。本実施形態に係る亜鉛電池用負極体によれば、亜鉛電池において充放電を繰り返した際に優れた寿命性能(サイクル寿命性能)を得ることができる。 The negative electrode body for a zinc battery according to the present embodiment includes a negative electrode and a porous member, the negative electrode has a current collector and a negative electrode material supported by the current collector, and the porous member is a negative electrode. The thickness T of the portion of the porous member facing the main surface of the negative electrode material (the portion covering the main surface of the negative electrode material) facing the main surface of the material (covering the main surface of the negative electrode material) is the maximum thickness of the negative electrode material. The difference D between T max and the minimum thickness T min is larger than D (T max −T min = D <T). According to the negative electrode body for a zinc battery according to the present embodiment, excellent life performance (cycle life performance) can be obtained when charging and discharging are repeated in the zinc battery.

本発明者は、亜鉛電池において負極の負極材の厚さにムラが生じる傾向があること(後述の実施例における負極材の厚さの測定結果を参照)に着目した上で、負極材における最大厚さTmaxと最小厚さTminとの差Dと、多孔部材における負極材の主面に対向する部分(負極材の主面を被覆する部分)の厚さTとの関係を調整することが寿命性能の向上に寄与することを見出し、多孔部材における負極材の主面に対向する部分の厚さTが負極材における最大厚さTmaxと最小厚さTminとの差Dより大きいことにより優れた寿命性能を得ることができることを見出した。 The present inventor pays attention to the fact that the thickness of the negative electrode material of the negative electrode tends to be uneven in the zinc battery (see the measurement result of the thickness of the negative electrode material in the examples described later), and the maximum in the negative electrode material. Adjusting the relationship between the difference D between the thickness T max and the minimum thickness T min and the thickness T of the portion of the porous member facing the main surface of the negative electrode material (the portion covering the main surface of the negative electrode material). Is found to contribute to the improvement of life performance, and the thickness T of the portion of the porous member facing the main surface of the negative electrode material is larger than the difference D between the maximum thickness T max and the minimum thickness T min in the negative electrode material. It has been found that more excellent life performance can be obtained.

図1を用いて、優れた寿命性能が得られる要因の一例について説明する。図1(a)は、厚い多孔部材を備える負極体を示し、図1(b)は、薄い多孔部材を備える負極体を示す。図1(a)に示す負極体100は、負極10、及び、厚さTを有する多孔部材20を備え、負極10は、集電体12及び負極材14を有する。図1(b)に示す負極体100aは、負極体100と同一の負極10、及び、厚さTを有する多孔部材20aを備える。負極材14は、最小厚さTminを有する部分A、及び、最大厚さTmaxを有する部分Bを有し、最大厚さTmaxと最小厚さTminとの差Dが生じている。多孔部材20,20aは、負極材14の主面14aに対向している(負極材14の主面14aを被覆している)。 An example of a factor for obtaining excellent life performance will be described with reference to FIG. 1. FIG. 1A shows a negative electrode body having a thick porous member, and FIG. 1B shows a negative electrode body having a thin porous member. The negative electrode body 100 shown in FIG. 1A includes a negative electrode 10 and a porous member 20 having a thickness T, and the negative electrode 10 has a current collector 12 and a negative electrode material 14. The negative electrode body 100a shown in FIG. 1B includes a negative electrode body 10 which is the same as the negative electrode body 100, and a porous member 20a having a thickness Ta. The negative electrode material 14 has a portion A having a minimum thickness T min and a portion B having a maximum thickness T max , and a difference D between the maximum thickness T max and the minimum thickness T min is generated. The porous members 20 and 20a face the main surface 14a of the negative electrode material 14 (covering the main surface 14a of the negative electrode material 14).

負極の負極材の厚さにムラが生じていると、負極材における最大厚さを有する部分Bは多孔部材に接触しやすいのに対し、負極材における最小厚さを有する部分Aは部分Bと比較して多孔部材に接触しにくい。しかしながら、負極、正極、多孔部材等の各部材を電池の収容空間に収容する場合、各部材に圧力(群厚)が負荷され、当該圧力の大きさに応じて部分Aも多孔部材に接触し得る。電池の収容空間が同一体積である態様同士を比較すると、多孔部材が厚い場合には、充分な圧力が生じやすいことから、図1(a)に示すように、負極材14の部分Aが多孔部材20に接触しやすく、部分Aと多孔部材20との間に隙間が生じにくいため、充放電に伴い亜鉛が溶出すること等が抑制されることから充分な寿命性能が得られる。一方、多孔部材が薄い場合には、充分な圧力が生じにくいことから、図1(b)に示すように、負極材14の部分Aが多孔部材20aに接触しにくく、部分Aと多孔部材20との間に隙間が生じ、充放電に伴い亜鉛が溶出する等して充分な寿命性能が得られない。なお、電池の収容空間において、多孔部材が負極及び正極の間に配置された状態における多孔部材と正極との間等に弾性部材(例えば不織布)が配置されている場合であっても、多孔部材が、多孔部材に対する負極材14の部分Aの接触しやすさに支配的に作用し得ると推察され、例えば、電池の収容空間において、負極を収容する多孔部材と正極との間等に弾性部材(例えば不織布)が配置されている場合であっても、負極を収容し負極に近接する多孔部材が、多孔部材に対する負極材14の部分Aの接触しやすさに支配的に作用し得ると推察される。但し、優れた寿命性能が得られる要因はこれらの内容に限られない。 When the thickness of the negative electrode material of the negative electrode is uneven, the portion B having the maximum thickness in the negative electrode material tends to come into contact with the porous member, whereas the portion A having the minimum thickness in the negative electrode material is the portion B. In comparison, it is hard to come into contact with the porous member. However, when each member such as the negative electrode, the positive electrode, and the porous member is accommodated in the battery accommodation space, a pressure (group thickness) is applied to each member, and the portion A also comes into contact with the porous member according to the magnitude of the pressure. obtain. Comparing the modes in which the batteries have the same volume, when the porous member is thick, sufficient pressure is likely to be generated. Therefore, as shown in FIG. 1A, the portion A of the negative electrode material 14 is porous. Since it is easy to come into contact with the member 20 and a gap is unlikely to occur between the portion A and the porous member 20, zinc elution and the like are suppressed during charging and discharging, so that sufficient life performance can be obtained. On the other hand, when the porous member is thin, sufficient pressure is unlikely to be generated. Therefore, as shown in FIG. 1 (b), the portion A of the negative electrode material 14 does not easily come into contact with the porous member 20a, and the portion A and the porous member 20 are difficult to contact. A gap is formed between the and, and zinc elutes with charge and discharge, so that sufficient life performance cannot be obtained. Even when the elastic member (for example, non-woven fabric) is arranged between the porous member and the positive electrode in the state where the porous member is arranged between the negative electrode and the positive electrode in the battery accommodation space, the porous member Is presumed to have a dominant effect on the ease of contact of the portion A of the negative electrode material 14 with the porous member. For example, in the battery accommodation space, an elastic member is formed between the porous member accommodating the negative electrode and the positive electrode. Even when (for example, a non-woven electrode) is arranged, it is presumed that the porous member accommodating the negative electrode and close to the negative electrode may predominantly affect the ease of contact of the portion A of the negative electrode material 14 with the porous member. Will be done. However, the factors for obtaining excellent life performance are not limited to these contents.

本実施形態に係る亜鉛電池(例えば亜鉛二次電池)としては、ニッケル亜鉛電池(例えばニッケル亜鉛二次電池)、空気亜鉛電池、銀亜鉛電池等が挙げられる。本実施形態に係る亜鉛電池の基本構成としては、従来の亜鉛電池と同様の構成を用いることができる。本実施形態に係る亜鉛電池は、化成前及び化成後のいずれであってもよい。 Examples of the zinc battery (for example, a zinc secondary battery) according to the present embodiment include a nickel-zinc battery (for example, a nickel-zinc secondary battery), a zinc-air battery, and a silver-zinc battery. As the basic configuration of the zinc battery according to the present embodiment, the same configuration as that of the conventional zinc battery can be used. The zinc battery according to this embodiment may be either pre-chemical or post-chemical.

本実施形態に係る亜鉛電池は、負極体(亜鉛電池用負極体)と、正極(亜鉛電池用正極。例えば正極板)と、を備える。本実施形態に係る負極体(亜鉛電池用負極体)は、負極(亜鉛電池用負極。例えば負極板)と、多孔部材と、を備える。亜鉛電池において多孔部材は負極材に接触しており、負極材の少なくとも一部が多孔部材の内部に延在していてもよい。正極は、多孔部材を介して負極と対向してよい。本実施形態に係る亜鉛電池は、負極体、正極等を収容する電槽を備えてよい。 The zinc battery according to the present embodiment includes a negative electrode body (negative electrode body for zinc battery) and a positive electrode (positive electrode for zinc battery, for example, a positive electrode plate). The negative electrode body (negative electrode body for a zinc battery) according to the present embodiment includes a negative electrode (negative electrode for a zinc battery, for example, a negative electrode plate) and a porous member. In the zinc battery, the porous member is in contact with the negative electrode material, and at least a part of the negative electrode material may extend inside the porous member. The positive electrode may face the negative electrode via the porous member. The zinc battery according to the present embodiment may include an electric tank for accommodating a negative electrode body, a positive electrode, and the like.

本実施形態に係る亜鉛電池は、負極と、正極と、負極及び正極の間に配置されたセパレータと、を有してよく、セパレータが上述の多孔部材を有する。負極及び正極は、例えば、負極の主面と正極の主面とが対向した状態で、セパレータを介して交互に積層されている。本実施形態に係る亜鉛電池は、複数の負極及び複数の正極から構成される電極群を有してよい。複数の負極同士及び複数の正極同士は、例えば、ストラップで連結されていてよい。 The zinc battery according to the present embodiment may have a negative electrode, a positive electrode, and a separator arranged between the negative electrode and the positive electrode, and the separator has the above-mentioned porous member. The negative electrode and the positive electrode are alternately laminated via a separator, for example, with the main surface of the negative electrode and the main surface of the positive electrode facing each other. The zinc battery according to the present embodiment may have a plurality of negative electrodes and a group of electrodes composed of a plurality of positive electrodes. The plurality of negative electrodes and the plurality of positive electrodes may be connected to each other by, for example, a strap.

負極は、負極集電体(集電体)と、当該負極集電体に支持された負極材と、を有している。負極材は、負極集電体の少なくとも一方の主面に配置されてよく、負極集電体の両方の主面に配置されてよい。正極は、正極集電体と、当該正極集電体に支持された正極材と、を有している。負極及び正極のそれぞれは、化成前及び化成後のいずれであってもよい。 The negative electrode has a negative electrode current collector (current collector) and a negative electrode material supported by the negative electrode current collector. The negative electrode material may be arranged on at least one main surface of the negative electrode current collector, or may be arranged on both main surfaces of the negative electrode current collector. The positive electrode has a positive electrode current collector and a positive electrode material supported by the positive electrode current collector. Each of the negative electrode and the positive electrode may be either before or after chemical conversion.

集電体(負極集電体又は正極集電体)は、電極材(負極材又は正極材)からの電流の導電路を構成する。集電体は、例えば、平板状、シート状等の形状を有している。集電体は、発泡金属、エキスパンドメタル、パンチングメタル、金属繊維のフェルト状物等によって構成された3次元網目構造の集電体などであってよい。負極集電体は、開口(例えば貫通孔)を有する集電体であってよく、例えばパンチングメタルであってよい。開口を有する集電体を用いる場合、負極材の厚さにムラが生じやすいものの、本実施形態によれば、このような集電体を用いる場合であっても充分な寿命性能を得ることができる。 The current collector (negative electrode current collector or positive electrode current collector) constitutes a conductive path for current from the electrode material (negative electrode material or positive electrode material). The current collector has a shape such as a flat plate shape or a sheet shape. The current collector may be a current collector having a three-dimensional network structure composed of foamed metal, expanded metal, punching metal, felt-like material of metal fibers, or the like. The negative electrode current collector may be a current collector having an opening (for example, a through hole), and may be, for example, a punching metal. When a current collector having an opening is used, the thickness of the negative electrode material tends to be uneven, but according to the present embodiment, sufficient life performance can be obtained even when such a current collector is used. can.

集電体を構成する材料の具体例としては、白金;ニッケル(発泡ニッケル等);錫、ニッケル等の金属めっきを施した金属材料(銅、真鍮、鋼等)などが挙げられる。 Specific examples of the material constituting the current collector include platinum; nickel (foamed nickel, etc.); a metal material plated with metal such as tin, nickel, etc. (copper, brass, steel, etc.).

電極材(負極材又は正極材)は、層状の電極材層(負極材層又は正極材層)であってよい。例えば、集電体上に電極材層が形成されていてよく、集電体が3次元網目構造を有する場合には、集電体の網目の間に電極材が充填されて電極材層が形成されていてもよい。 The electrode material (negative electrode material or positive electrode material) may be a layered electrode material layer (negative electrode material layer or positive electrode material layer). For example, an electrode material layer may be formed on the current collector, and when the current collector has a three-dimensional network structure, the electrode material is filled between the meshes of the current collector to form the electrode material layer. It may have been done.

集電体の厚さは、0.01mm以上、0.05mm以上、0.08mm以上、又は、0.10mm以上であってよい。集電体の厚さは、1.0mm以下、0.80mm以下、0.50mm以下、0.30mm以下、0.20mm以下、又は、0.10mm以下であってよい。これらの観点から、集電体の厚さは、0.01~1.0mmであってよい。 The thickness of the current collector may be 0.01 mm or more, 0.05 mm or more, 0.08 mm or more, or 0.10 mm or more. The thickness of the current collector may be 1.0 mm or less, 0.80 mm or less, 0.50 mm or less, 0.30 mm or less, 0.20 mm or less, or 0.10 mm or less. From these viewpoints, the thickness of the current collector may be 0.01 to 1.0 mm.

負極材の平均厚さは、優れた寿命性能を得やすい観点から、0.01mm以上、0.05mm以上、0.10mm以上、又は、0.15mm以上であってよい。負極材の平均厚さは、優れた高率放電性能を得やすい観点から、1.0mm以下、0.80mm以下、0.50mm以下、0.30mm以下、又は、0.20mm以下であってよい。これらの観点から、負極材の平均厚さは、0.01~1.0mmであってよい。 The average thickness of the negative electrode material may be 0.01 mm or more, 0.05 mm or more, 0.10 mm or more, or 0.15 mm or more from the viewpoint of easily obtaining excellent life performance. The average thickness of the negative electrode material may be 1.0 mm or less, 0.80 mm or less, 0.50 mm or less, 0.30 mm or less, or 0.20 mm or less from the viewpoint of easily obtaining excellent high-rate discharge performance. .. From these viewpoints, the average thickness of the negative electrode material may be 0.01 to 1.0 mm.

負極材における最大厚さTmaxと最小厚さTminとの差Dは、下記の範囲であってよい。差Dは、10μm以上、30μm以上、50μm以上、80μm以上、又は、80μm超であってよい。差Dは、500μm以下、300μm以下、200μm以下、又は、100μm以下であってよい。これらの観点から、差Dは、10~500μmであってよい。負極材における最大厚さTmaxと最小厚さTminは、負極材を支持する負極集電体の主面からの負極材の厚さである。 The difference D between the maximum thickness T max and the minimum thickness T min in the negative electrode material may be in the following range. The difference D may be 10 μm or more, 30 μm or more, 50 μm or more, 80 μm or more, or more than 80 μm. The difference D may be 500 μm or less, 300 μm or less, 200 μm or less, or 100 μm or less. From these viewpoints, the difference D may be 10 to 500 μm. The maximum thickness T max and the minimum thickness T min in the negative electrode material are the thicknesses of the negative electrode material from the main surface of the negative electrode current collector that supports the negative electrode material.

負極材の平均厚さ及び差Dは、負極材の主面に直交する方向から負極材を見て、負極材の中央部と、負極材の外周部における略等間隔に離間した8箇所との合計9箇所の平均値であってよい。 The average thickness and difference D of the negative electrode material are the central portion of the negative electrode material and the outer peripheral portion of the negative electrode material at eight locations separated at approximately equal intervals when the negative electrode material is viewed from the direction orthogonal to the main surface of the negative electrode material. It may be an average value of a total of 9 locations.

負極材は、亜鉛を含む負極活物質を含有する。負極活物質としては、金属亜鉛、酸化亜鉛、水酸化亜鉛等が挙げられる。負極材は、例えば、満充電状態では金属亜鉛を含有し、放電末状態では酸化亜鉛及び水酸化亜鉛を含有する。負極活物質は、例えば粒子状であってよく、金属亜鉛粒子、酸化亜鉛粒子、水酸化亜鉛粒子等を含んでよい。 The negative electrode material contains a negative electrode active material containing zinc. Examples of the negative electrode active material include metallic zinc, zinc oxide, zinc hydroxide and the like. The negative electrode material contains, for example, metallic zinc in a fully charged state, and zinc oxide and zinc hydroxide in a discharge end state. The negative electrode active material may be, for example, in the form of particles, and may contain metallic zinc particles, zinc oxide particles, zinc hydroxide particles, and the like.

負極活物質の含有量は、負極材の全質量を基準として下記の範囲であってよい。負極活物質の含有量は、優れた寿命性能を得やすい観点から、50質量%以上、70質量%以上、75質量%以上、80質量%以上、85質量%以上、90質量%以上、又は、95質量%以上であってよい。負極活物質の含有量は、優れた寿命性能を得やすい観点から、99質量%以下、98質量%以下、又は、96質量%以下であってよい。これらの観点から、負極活物質の含有量は、50~99質量%であってよい。 The content of the negative electrode active material may be in the following range based on the total mass of the negative electrode material. The content of the negative electrode active material is 50% by mass or more, 70% by mass or more, 75% by mass or more, 80% by mass or more, 85% by mass or more, 90% by mass or more, or from the viewpoint of easily obtaining excellent life performance. It may be 95% by mass or more. The content of the negative electrode active material may be 99% by mass or less, 98% by mass or less, or 96% by mass or less from the viewpoint of easily obtaining excellent life performance. From these viewpoints, the content of the negative electrode active material may be 50 to 99% by mass.

負極材は、負極活物質以外の添加剤を含有することができる。添加剤としては、結着剤(バインダー)、界面活性剤、導電剤等が挙げられる。結着剤としては、ポリテトラフルオロエチレン、ヒドロキシエチルセルロース(HEC)、カルボキシメチルセルロース、ポリエチレンオキシド、ポリエチレン、ポリプロピレン等が挙げられる。結着剤の含有量は、例えば、負極活物質100質量部に対して0.5~10質量部であってよい。界面活性剤としては、BASF社製、商品名:Dispex AA 4140等が挙げられる。導電剤としては、インジウム化合物(酸化インジウム等)などが挙げられる。導電剤の含有量は、例えば、負極活物質100質量部に対して1~20質量部であってよい。 The negative electrode material can contain additives other than the negative electrode active material. Examples of the additive include a binder, a surfactant, a conductive agent and the like. Examples of the binder include polytetrafluoroethylene, hydroxyethyl cellulose (HEC), carboxymethyl cellulose, polyethylene oxide, polyethylene, polypropylene and the like. The content of the binder may be, for example, 0.5 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material. Examples of the surfactant include BASF, trade name: Dispex AA 4140 and the like. Examples of the conductive agent include indium compounds (indium oxide and the like). The content of the conductive agent may be, for example, 1 to 20 parts by mass with respect to 100 parts by mass of the negative electrode active material.

正極材は、正極活物質を含有する。亜鉛電池がニッケル亜鉛電池である場合、正極活物質は、ニッケルを含むことができる。正極活物質としては、オキシ水酸化ニッケル(NiOOH)、水酸化ニッケル等が挙げられる。正極材は、例えば、満充電状態ではオキシ水酸化ニッケルを含有し、放電末状態では水酸化ニッケルを含有する。正極活物質の含有量は、例えば、正極材の全質量を基準として50~99質量%であってよい。 The positive electrode material contains a positive electrode active material. When the zinc battery is a nickel-zinc battery, the positive electrode active material can contain nickel. Examples of the positive electrode active material include nickel oxyhydroxide (NiOOH) and nickel hydroxide. The positive electrode material contains, for example, nickel oxyhydroxide in a fully charged state and nickel hydroxide in a discharge end state. The content of the positive electrode active material may be, for example, 50 to 99% by mass based on the total mass of the positive electrode material.

正極材は、正極活物質以外の添加剤を含有することができる。添加剤としては、結着剤(バインダー)、導電剤、膨張抑制剤、希土類金属化合物(例えば酸化イットリウム)等が挙げられる。結着剤としては、親水性又は疎水性のポリマー等が挙げられ、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルメチルセルロース(HPMC)、カルボキシメチルセルロース(CMC)、ポリアクリル酸ナトリウム(SPA)、フッ素系ポリマー(ポリテトラフルオロエチレン(PTFE)等)などが挙げられる。結着剤の含有量は、例えば、正極活物質100質量部に対して0.01~5質量部であってよい。導電剤としては、コバルト化合物(金属コバルト、酸化コバルト、水酸化コバルト等)などが挙げられる。導電剤の含有量は、例えば、正極活物質100質量部に対して1~20質量部であってよい。膨張抑制剤としては、酸化亜鉛等が挙げられる。膨張抑制剤の含有量は、例えば、正極活物質100質量部に対して0.01~5質量部であってよい。 The positive electrode material can contain additives other than the positive electrode active material. Examples of the additive include a binder, a conductive agent, an expansion inhibitor, a rare earth metal compound (for example, yttrium oxide), and the like. Examples of the binder include hydrophilic or hydrophobic polymers, and examples thereof include hydroxyethyl cellulose (HEC), hydroxypropylmethyl cellulose (HPMC), carboxymethyl cellulose (CMC), sodium polyacrylate (SPA), and fluoropolymers (poly). (Tetrafluoroethylene (PTFE), etc.) and the like. The content of the binder may be, for example, 0.01 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material. Examples of the conductive agent include cobalt compounds (metal cobalt, cobalt oxide, cobalt hydroxide, etc.) and the like. The content of the conductive agent may be, for example, 1 to 20 parts by mass with respect to 100 parts by mass of the positive electrode active material. Examples of the swelling inhibitor include zinc oxide and the like. The content of the expansion inhibitor may be, for example, 0.01 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.

多孔部材は、負極材の主面に対向している(負極材の主面を被覆している)。この場合、多孔部材が負極材の主面の少なくとも一部に対向していればよく、多孔部材が負極材の主面の全体に対向していてもよい。多孔部材は、負極を収容してよく、例えば、負極の一方面側の負極材の主面と、負極の他方面側(負極の他方面側の負極材;負極集電体等)の一部又は全部と、負極の外周部(負極材の主面の面方向に位置する側部)の少なくとも一部と、を被覆することにより負極を収容してよい。多孔部材が負極の外周部の少なくとも一部を被覆する被覆部を有する場合、亜鉛電池において当該被覆部を鉛直方向の下側(底部側)に位置させることにより、負極材から脱落した負極活物質が電解液に広く拡散することに起因する不具合を抑制しやすい。 The porous member faces the main surface of the negative electrode material (covers the main surface of the negative electrode material). In this case, the porous member may face at least a part of the main surface of the negative electrode material, and the porous member may face the entire main surface of the negative electrode material. The porous member may accommodate the negative electrode, for example, a part of the main surface of the negative electrode material on one side of the negative electrode and the other side of the negative electrode (negative electrode material on the other side of the negative electrode; negative electrode current collector, etc.). Alternatively, the negative electrode may be accommodated by covering the entire surface and at least a part of the outer peripheral portion (side portion of the negative electrode material located in the surface direction of the main surface) of the negative electrode. When the porous member has a coating portion that covers at least a part of the outer peripheral portion of the negative electrode, the negative electrode active material that has fallen off from the negative electrode material by locating the coating portion on the lower side (bottom side) in the vertical direction in the zinc battery. Is easy to suppress the trouble caused by the wide diffusion of zinc in the electrolytic solution.

多孔部材は、負極を挿入するための開口部等として、開口部を有する袋状であってよい。亜鉛電池において、例えば、当該開口部は鉛直方向上方に開口する。袋状の多孔部材において当該開口部の開口方向に直交する方向の側部(例えば、負極体が亜鉛電池に収容された場合に水平方向に位置する側部)は、遮蔽されていてよく、開口していてよい。熱溶着等により多孔部材に遮蔽部を形成できる。多孔部材は、単層の多孔膜であってよく、複数の多孔膜の積層体であってよい。 The porous member may have a bag shape having an opening as an opening or the like for inserting the negative electrode. In a zinc battery, for example, the opening opens upward in the vertical direction. In the bag-shaped porous member, the side portion in the direction orthogonal to the opening direction of the opening (for example, the side portion located horizontally when the negative electrode body is housed in the zinc battery) may be shielded and may be open. You can do it. A shielding portion can be formed on the porous member by heat welding or the like. The porous member may be a single-layer porous membrane or a laminate of a plurality of porous membranes.

多孔部材における負極材の主面に対向する部分(負極材の主面を被覆する部分)の厚さT(総厚)は、負極材における最大厚さTmaxと最小厚さTminとの差Dより大きい。厚さT及び差Dは、電池の作製前後で大きく相違しない傾向がある。 The thickness T (total thickness) of the portion of the porous member facing the main surface of the negative electrode material (the portion covering the main surface of the negative electrode material) is the difference between the maximum thickness T max and the minimum thickness T min of the negative electrode material. Greater than D. The thickness T and the difference D tend not to differ significantly before and after the battery is manufactured.

厚さTは、多孔部材における負極材の主面に対向する部分の厚さの平均値であってよく、上述の負極材の厚さと同様の方法により測定してよい。厚さTは、負極材と多孔部材との間に隙間が生じることを抑制しやすいことから優れた寿命性能を得やすい観点から、10μm以上、30μm以上、50μm以上、70μm以上、90μm以上、100μm以上、110μm以上、115μm以上、120μm以上、又は、125μm以上であってよい。厚さTは、優れたエネルギー密度を得やすい観点から、500μm以下、400μm以下、300μm以下、200μm以下、180μm以下、150μm以下、140μm以下、130μm以下、125μm以下、又は、120μm以下であってよい。これらの観点から、厚さTは、10~500μmであってよい。多孔部材の全体における平均厚さは、多孔部材における負極材の主面に対向する部分(負極材の主面を被覆する部分)の厚さと同等であってよい。 The thickness T may be an average value of the thicknesses of the portions of the porous member facing the main surface of the negative electrode material, and may be measured by the same method as the thickness of the negative electrode material described above. The thickness T is 10 μm or more, 30 μm or more, 50 μm or more, 70 μm or more, 90 μm or more, 100 μm from the viewpoint of easily obtaining excellent life performance because it is easy to suppress the formation of a gap between the negative electrode material and the porous member. As mentioned above, it may be 110 μm or more, 115 μm or more, 120 μm or more, or 125 μm or more. The thickness T may be 500 μm or less, 400 μm or less, 300 μm or less, 200 μm or less, 180 μm or less, 150 μm or less, 140 μm or less, 130 μm or less, 125 μm or less, or 120 μm or less from the viewpoint of easily obtaining an excellent energy density. .. From these viewpoints, the thickness T may be 10 to 500 μm. The average thickness of the entire porous member may be equal to the thickness of the portion of the porous member facing the main surface of the negative electrode material (the portion covering the main surface of the negative electrode material).

多孔部材の材料としては、有機材料(樹脂材料等)、無機材料などが挙げられる。樹脂材料としては、ポリアミド系ポリマー(例えばポリアミド)、オレフィン系ポリマー(例えば、ポリエチレン、ポリプロピレン等のポリオレフィン)、ナイロン系ポリマー(例えばナイロン)等が挙げられる。無機材料としては、アルミナ、チタニア、二酸化珪素等の酸化物;窒化アルミニウム、窒化珪素等の窒化物;硫酸バリウム、硫酸カルシウム等の硫酸塩などが挙げられる。多孔部材は、イオン交換樹脂膜、セロハン系再生樹脂膜、無機-有機セパレータ、ポリオレフィン系不織布等であってよい。多孔部材の製造方法としては、湿式法(相分離法)、乾式法(延伸開孔法)、メルトブロー、エレクトロスピニング等が挙げられる。多孔部材は、優れた寿命性能を得やすい観点から、ポリオレフィンを含んでよく、ポリエチレン及びポリプロピレンからなる群より選ばれる少なくとも一種を含んでよく、ポリエチレンを含んでよい。 Examples of the material of the porous member include an organic material (resin material and the like), an inorganic material and the like. Examples of the resin material include a polyamide polymer (for example, polyamide), an olefin polymer (for example, a polyolefin such as polyethylene and polypropylene), a nylon polymer (for example, nylon) and the like. Examples of the inorganic material include oxides such as alumina, titania and silicon dioxide; nitrides such as aluminum nitride and silicon nitride; and sulfates such as barium sulfate and calcium sulfate. The porous member may be an ion exchange resin film, a cellophane-based recycled resin film, an inorganic-organic separator, a polyolefin-based non-woven fabric, or the like. Examples of the method for manufacturing the porous member include a wet method (phase separation method), a dry method (stretched pore opening method), melt blowing, and electrospinning. The porous member may contain polyolefin from the viewpoint of easily obtaining excellent life performance, may contain at least one selected from the group consisting of polyethylene and polypropylene, and may contain polyethylene.

多孔部材は、親水化する観点から、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤等を含有してよく、界面活性剤処理、スルホン化処理、フッ素ガス処理、アクリル酸グラフト重合処理、コロナ放電処理、プラズマ処理等により表面処理が施されていてよい。親水化することにより、電解液と馴染みやすく、充分な電流密度を得やすい。 From the viewpoint of making the porous member hydrophilic, the porous member may contain an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, etc., and may contain a surfactant treatment, a sulfonate treatment, and fluorine. Surface treatment may be performed by gas treatment, acrylic acid graft polymerization treatment, corona discharge treatment, plasma treatment, or the like. By making it hydrophilic, it is easy to be compatible with the electrolytic solution and it is easy to obtain a sufficient current density.

本実施形態に係る亜鉛電池は、多孔部材が負極及び正極の間に配置された状態において多孔部材と正極との間に弾性部材を備えてよく、負極を収容する多孔部材と正極との間に弾性部材を備えてよい。弾性部材としては、負極を収容しない多孔部材等が挙げられ、不織布等が挙げられる。 The zinc battery according to the present embodiment may be provided with an elastic member between the porous member and the positive electrode in a state where the porous member is arranged between the negative electrode and the positive electrode, and is between the porous member accommodating the negative electrode and the positive electrode. An elastic member may be provided. Examples of the elastic member include a porous member that does not accommodate a negative electrode, and a non-woven fabric and the like.

本実施形態に係る亜鉛電池は、電解液を備えてよい。電解液は、例えば、溶媒及び電解質を含有している。溶媒としては、水(例えばイオン交換水)等が挙げられる。電解質としては、塩基性化合物等が挙げられ、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化リチウム(LiOH)等のアルカリ金属水酸化物などが挙げられる。本実施形態に係る亜鉛電池は、アルカリ電解液を用いたアルカリ亜鉛電池として用いることができる。電解液は、溶媒及び電解質以外の成分を含有してよく、例えば、リン酸カリウム、フッ化カリウム、炭酸カリウム、リン酸ナトリウム、フッ化ナトリウム、水酸化ナトリウム、水酸化リチウム、酸化亜鉛、酸化アンチモン、二酸化チタン、非イオン性界面活性剤、アニオン性界面活性剤等を含有してよい。 The zinc battery according to this embodiment may include an electrolytic solution. The electrolytic solution contains, for example, a solvent and an electrolyte. Examples of the solvent include water (for example, ion-exchanged water) and the like. Examples of the electrolyte include basic compounds and the like, and examples thereof include alkali metal hydroxides such as potassium hydroxide (KOH), sodium hydroxide (NaOH) and lithium hydroxide (LiOH). The zinc battery according to this embodiment can be used as an alkaline zinc battery using an alkaline electrolytic solution. The electrolyte may contain components other than the solvent and electrolyte, such as potassium phosphate, potassium fluoride, potassium carbonate, sodium phosphate, sodium fluoride, sodium hydroxide, lithium hydroxide, zinc oxide, antimony oxide. , Titanium dioxide, nonionic surfactant, anionic surfactant and the like may be contained.

本実施形態に係る亜鉛電池(例えばニッケル亜鉛電池)の製造方法は、例えば、電極(負極及び正極)を得る電極製造工程と、負極体を含む構成部材を組み立てて亜鉛電池を得る組立工程と、を備える。 The method for manufacturing a zinc battery (for example, nickel-zinc battery) according to the present embodiment includes, for example, an electrode manufacturing step for obtaining electrodes (negative electrode and positive electrode), and an assembly step for assembling components including a negative electrode body to obtain a zinc battery. To prepare for.

電極製造工程では、電極(負極及び正極)を製造する。例えば、電極材(負極材及び正極材)の原料に対して溶媒(例えば水)を加えて混練することにより電極材ペースト(ペースト状の電極材)を得た後、電極材ペーストを用いて電極材層を形成する。 In the electrode manufacturing process, electrodes (negative electrode and positive electrode) are manufactured. For example, a solvent (for example, water) is added to the raw materials of the electrode material (negative electrode material and positive electrode material) and kneaded to obtain an electrode material paste (paste-like electrode material), and then the electrode material paste is used for the electrode. Form a material layer.

負極材の原料としては、負極活物質の原料(例えば金属亜鉛、酸化亜鉛及び水酸化亜鉛)、添加剤(例えば結着剤)等が挙げられる。正極材の原料としては、正極活物質の原料(例えば水酸化ニッケル)、添加剤(例えば結着剤)等が挙げられる。 Examples of the raw material of the negative electrode material include raw materials of the negative electrode active material (for example, metallic zinc, zinc oxide and zinc hydroxide), additives (for example, a binder) and the like. Examples of the raw material of the positive electrode material include a raw material of a positive electrode active material (for example, nickel hydroxide), an additive (for example, a binder) and the like.

電極材層を形成する方法としては、例えば、電極材ペーストを集電体に塗布又は充填した後に乾燥することで電極材層を得る方法が挙げられる。電極材層は、必要に応じて、プレス等によって密度を高めてよい。 Examples of the method for forming the electrode material layer include a method for obtaining the electrode material layer by applying or filling the current collector with the electrode material paste and then drying the electrode material layer. The density of the electrode material layer may be increased by pressing or the like, if necessary.

組立工程では、まず、電極と多孔部材とを備える電極体(例えば負極体)を得た後、セパレータを介して負極体及び正極体を交互に積層し、正極同士及び負極同士をストラップで連結させて電極群を作製してよく、例えば、電極製造工程で得られた電極を多孔部材に収容することにより、電極と、電極を収容する多孔部材と、を備える電極体(例えば負極体)を得た後、セパレータを介して負極体及び正極体を交互に積層し、正極同士及び負極同士をストラップで連結させて電極群を作製してよい。負極体及び正極体の間に不織布等の弾性部材を配置してもよい。次いで、この電極群を電槽内に配置した後、電槽の上面に蓋体を接着して未化成の亜鉛電池を得る。 In the assembly process, first, an electrode body (for example, a negative electrode body) including an electrode and a porous member is obtained, then the negative electrode body and the positive electrode body are alternately laminated via a separator, and the positive electrodes and the negative electrodes are connected by a strap. For example, by accommodating the electrode obtained in the electrode manufacturing process in the porous member, an electrode body (for example, a negative electrode body) including the electrode and the porous member accommodating the electrode can be obtained. After that, the negative electrode body and the positive electrode body may be alternately laminated via the separator, and the positive electrodes and the negative electrodes may be connected by a strap to prepare an electrode group. An elastic member such as a non-woven fabric may be arranged between the negative electrode body and the positive electrode body. Next, after arranging this electrode group in the electric tank, a lid is adhered to the upper surface of the electric tank to obtain a non-chemical zinc battery.

次いで、電解液を未化成の亜鉛電池の電槽内に注入した後、一定時間放置する。次いで、所定の条件にて充電を行うことで化成することにより亜鉛電池を得る。化成条件は、電極活物質(負極活物質及び正極活物質)の性状に応じて調整することができる。 Then, after injecting the electrolytic solution into the electric tank of the unchemical zinc battery, it is left for a certain period of time. Next, a zinc battery is obtained by chemical conversion by charging under predetermined conditions. The chemical formation conditions can be adjusted according to the properties of the electrode active material (negative electrode active material and positive electrode active material).

以上、本開示の実施形態について説明したが、本開示は、上述の実施形態に限定されるものではない。例えば、上述の実施形態では、正極がニッケル電極であるニッケル亜鉛電池の例を説明したが、亜鉛電池は、正極が空気極である空気亜鉛電池(例えば空気亜鉛二次電池)であってもよく、正極が酸化銀極である銀亜鉛電池(例えば銀亜鉛二次電池)であってもよい。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments. For example, in the above-described embodiment, an example of a zinc-air battery having a positive electrode as a nickel electrode has been described, but the zinc battery may be an air zinc battery having an air electrode as a positive electrode (for example, an air zinc secondary battery). , A silver-zinc battery (for example, a silver-zinc secondary battery) in which the positive electrode is a silver oxide electrode may be used.

空気亜鉛電池の空気極としては、空気亜鉛電池に使用される公知の空気極を用いることができる。空気極は、例えば、空気極触媒、電子伝導性材料等を含む。空気極触媒としては、電子伝導性材料としても機能する空気極触媒を用いることができる。 As the air electrode of the zinc-air battery, a known air electrode used in the zinc-air battery can be used. The air electrode includes, for example, an air electrode catalyst, an electron conductive material, and the like. As the air electrode catalyst, an air electrode catalyst that also functions as an electron conductive material can be used.

空気極触媒としては、空気亜鉛電池における正極として機能するものを用いることが可能であり、酸素を正極活物質として利用可能な種々の空気極触媒が使用できる。空気極触媒としては、酸化還元触媒機能を有するカーボン系材料(黒鉛等)、酸化還元触媒機能を有する金属材料(白金、ニッケル等)、酸化還元触媒機能を有する無機酸化物材料(ペロブスカイト型酸化物、二酸化マンガン、酸化ニッケル、酸化コバルト、スピネル酸化物等)などが挙げられる。空気極触媒の形状は、特に限定されないが、例えば粒子状であってよい。空気極における空気極触媒の含有量は、空気極の合計量に対して5~70体積%であってよい。 As the air electrode catalyst, one that functions as a positive electrode in an air zinc battery can be used, and various air electrode catalysts that can use oxygen as a positive electrode active material can be used. As the air electrode catalyst, a carbon-based material having a redox catalyst function (graphite, etc.), a metal material having a redox catalyst function (platinum, nickel, etc.), and an inorganic oxide material having a redox catalyst function (perovskite type oxide) , Manganese dioxide, nickel oxide, cobalt oxide, spinel oxide, etc.). The shape of the air electrode catalyst is not particularly limited, but may be, for example, in the form of particles. The content of the air electrode catalyst in the air electrode may be 5 to 70% by volume with respect to the total amount of the air electrode.

電子伝導性材料としては、導電性を有し、かつ、空気極触媒とセパレータとの間の電子伝導を可能とするものを用いることができる。電子伝導性材料としては、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類;鱗片状黒鉛のような天然黒鉛、人造黒鉛、膨張黒鉛等のグラファイト類;炭素繊維、金属繊維等の導電性繊維類;銅、銀、ニッケル、アルミニウム等の金属粉末類;ポリフェニレン誘導体等の有機電子伝導性材料;これらの任意の混合物などが挙げられる。電子伝導性材料の形状は、粒子状であってよく、その他の形状であってもよい。電子伝導性材料は、空気極において厚さ方向に連続した相をもたらす形態で用いられてよい。例えば、電子伝導性材料は、多孔質材料であってよい。また、電子伝導性材料は、空気極触媒との混合物又は複合体の形態であってよく、前述したように、電子伝導性材料としても機能する空気極触媒であってもよい。空気極における電子伝導性材料の含有量は、空気極の合計量に対して10~80体積%であってよい。 As the electron conductive material, a material having conductivity and enabling electron conduction between the air electrode catalyst and the separator can be used. Examples of the electronically conductive material include carbon blacks such as Ketjen black, acetylene black, channel black, furnace black, lamp black, and thermal black; natural graphite such as scaly graphite, artificial graphite, and graphite such as expanded graphite; Conductive fibers such as carbon fibers and metal fibers; metal powders such as copper, silver, nickel and aluminum; organic electron conductive materials such as polyphenylene derivatives; any mixture thereof and the like can be mentioned. The shape of the electronically conductive material may be particulate or may be any other shape. The electronically conductive material may be used in a form that results in a continuous phase in the thickness direction at the air electrode. For example, the electron conductive material may be a porous material. Further, the electron conductive material may be in the form of a mixture or a composite with an air electrode catalyst, and as described above, it may be an air electrode catalyst that also functions as an electron conductive material. The content of the electron conductive material in the air electrode may be 10 to 80% by volume with respect to the total amount of the air electrode.

銀亜鉛電池の酸化銀極としては、銀亜鉛電池に使用される公知の酸化銀極を用いることができる。酸化銀極は、例えば酸化銀(I)を含む。 As the silver oxide pole of the silver-zinc battery, a known silver oxide pole used in the silver-zinc battery can be used. The silver oxide electrode contains, for example, silver (I) oxide.

以下、実施例により本開示を具体的に説明する。但し、本開示は下記の実施例に限定されるものではない。 Hereinafter, the present disclosure will be specifically described with reference to Examples. However, the present disclosure is not limited to the following examples.

<負極の作製>
負極集電体として、錫メッキを施した銅パンチングメタル(開孔率:50%、厚さ:0.10mm)を用意した。次いで、酸化亜鉛、金属亜鉛、HEC、界面活性剤(BASF社製、商品名:Dispex AA 4140)及びイオン交換水を所定量秤量した後に混合することによって得られた混合液を攪拌することにより負極材ペーストを作製した。この際、固形分の質量比を「酸化亜鉛:金属亜鉛:HEC:界面活性剤=84.5:11.5:3.5:0.5」に調整した。負極材ペーストの水分量は、負極材ペーストの全質量基準で32.5質量%に調整した。次いで、負極材ペーストを負極集電体の両面に塗布した後、80℃で30分乾燥した。その後、ロールプレスにて加圧成形し、負極材(負極材層)を両面に有する未化成の負極(平均厚さ(総厚):0.41mm)を得た。
<Manufacturing of negative electrode>
As a negative electrode current collector, a tin-plated copper punching metal (opening rate: 50%, thickness: 0.10 mm) was prepared. Next, a predetermined amount of zinc oxide, metallic zinc, HEC, a surfactant (manufactured by BASF, trade name: Discex AA 4140) and ion-exchanged water are weighed and then mixed to obtain a mixed solution. A material paste was prepared. At this time, the mass ratio of the solid content was adjusted to "zinc oxide: metallic zinc: HEC: surfactant = 84.5: 11.5: 3.5: 0.5". The water content of the negative electrode material paste was adjusted to 32.5% by mass based on the total mass of the negative electrode material paste. Next, the negative electrode material paste was applied to both sides of the negative electrode current collector, and then dried at 80 ° C. for 30 minutes. Then, it was pressure-molded by a roll press to obtain an unchemical negative electrode (average thickness (total thickness): 0.41 mm) having a negative electrode material (negative electrode material layer) on both sides.

上述の未化成の負極を10枚準備した後、一方面側の負極材の厚さを測定することにより最大厚さTmaxと最小厚さTminとの差Dを算出した。負極材の主面に直交する方向から負極材を見て、左上隅部、***部、右上隅部、左中央部、中央部、右中央部、左下隅部、下中央部、及び、右下中央部の9箇所について、マイクロメーター(PMU150-25MX、株式会社ミツトヨ製)を用いて厚さを測定した。10枚の負極の負極材層における最大厚さTmaxと最小厚さTminとの差Dは、93μm、86μm、92μm、87μm、91μm、96μm、100μm、98μm、95μm、及び、91μmであり、10枚の全ての負極において差Dは80μmを超えていた(Tmax-Tmin=D>80μm」であった)。 After preparing 10 of the above-mentioned unchemical negative electrodes, the difference D between the maximum thickness T max and the minimum thickness T min was calculated by measuring the thickness of the negative electrode material on one side. Looking at the negative electrode material from the direction orthogonal to the main surface of the negative electrode material, the upper left corner, the upper center, the upper right corner, the left center, the center, the right center, the lower left corner, the lower center, and the right. The thickness of 9 points in the lower center was measured using a micrometer (PMU150-25MX, manufactured by Mitutoyo Co., Ltd.). The difference D between the maximum thickness T max and the minimum thickness T min in the negative electrode material layer of 10 negative electrodes is 93 μm, 86 μm, 92 μm, 87 μm, 91 μm, 96 μm, 100 μm, 98 μm, 95 μm, and 91 μm. The difference D was more than 80 μm in all 10 negative electrodes (T max −T min = D> 80 μm ”).

<正極の作製>
空隙率95%の発泡ニッケルからなる格子体を用意し、格子体を加圧成形することで正極集電体を得た。次いで、コバルトコート水酸化ニッケル粉末、金属コバルト、水酸化コバルト、酸化イットリウム、カルボキシメチルセルロース、ポリテトラフルオロエチレン及びイオン交換水を所定量秤量した後に混合することによって得られた混合液を攪拌することにより正極材ペーストを作製した。この際、固形分の質量比を、「水酸化ニッケル:金属コバルト:酸化イットリウム:水酸化コバルト:カルボキシメチルセルロース:ポリテトラフルオロエチレン=88:10.3:1:0.3:0.3:0.1」に調整した。正極材ペーストの水分量は、正極材ペーストの全質量基準で27.5質量%に調整した。次いで、正極材ペーストを正極集電体の両面に塗布した後、80℃で30分乾燥した。その後、ロールプレスにて加圧成形し、正極材(正極材層)を両面に有する未化成の正極を得た。
<Manufacturing of positive electrode>
A lattice body made of foamed nickel having a porosity of 95% was prepared, and the lattice body was pressure-molded to obtain a positive electrode current collector. Then, the mixed solution obtained by weighing a predetermined amount of cobalt-coated nickel hydroxide powder, metallic cobalt, cobalt hydroxide, yttrium oxide, carboxymethyl cellulose, polytetrafluoroethylene and ion-exchanged water and then mixing them is stirred. A positive material paste was prepared. At this time, the mass ratio of the solid content was set to "nickel hydroxide: metallic cobalt: yttrium oxide: cobalt hydroxide: carboxymethyl cellulose: polytetrafluoroethylene = 88: 10.3: 1: 0.3: 0.3: 0. It was adjusted to "1.1". The water content of the positive electrode material paste was adjusted to 27.5% by mass based on the total mass of the positive electrode material paste. Then, the positive electrode material paste was applied to both sides of the positive electrode current collector, and then dried at 80 ° C. for 30 minutes. Then, it was pressure-molded by a roll press to obtain an unchemical positive electrode having a positive electrode material (positive electrode material layer) on both sides.

<ニッケル亜鉛電池の作製>
(実施例1)
Xinxiang Zhongke Science & Technology Co., Ltd.製の多孔膜(材料:ポリプロピレン、厚さ:40μm、商品名:40micron)を準備した。電池組立て前に、界面活性剤(ダウケミカル株式会社製、商品名:Triton(登録商標)-X100)で多孔膜を親水化処理した。親水化処理は、Triton-X100が1質量%含まれる水溶液に多孔膜を24時間浸漬した後、室温で1時間乾燥することにより行った。多孔膜を3.0cm×10.0cmに裁断した後に半分に折ることにより多孔膜A(3.0cm×5.0cm)を得た。この多孔膜Aの一対の両側面(長辺)を熱溶着することで袋状の多孔部材を得た後、未化成の正極1枚をこの袋状の多孔部材に収容することにより正極体を得た。また、3枚の多孔膜Aを3重に重ねることにより積層体を得た後、積層体の一対の両側面(長辺)を熱溶着することで袋状の多孔部材を得た。そして、未化成の負極1枚をこの袋状の多孔部材に収容することにより負極体を得た。
<Making nickel-zinc batteries>
(Example 1)
Xinxiang Zhongke Science & Technology Co., Ltd. , Ltd. A porous membrane (material: polypropylene, thickness: 40 μm, trade name: 40 micron) was prepared. Prior to battery assembly, the porous membrane was hydrophilized with a surfactant (manufactured by Dow Chemical Co., Ltd., trade name: Triton®-X100). The hydrophilization treatment was carried out by immersing the porous membrane in an aqueous solution containing 1% by mass of Triton-X100 for 24 hours and then drying at room temperature for 1 hour. The porous membrane was cut into 3.0 cm × 10.0 cm and then folded in half to obtain a porous membrane A (3.0 cm × 5.0 cm). A bag-shaped porous member is obtained by heat-welding a pair of both side surfaces (long sides) of the porous film A, and then one unchemical positive electrode is housed in the bag-shaped porous member to form a positive electrode body. Obtained. Further, a laminated body was obtained by stacking three porous films A in a triple layer, and then a pair of both side surfaces (long sides) of the laminated body were heat-welded to obtain a bag-shaped porous member. Then, a negative electrode body was obtained by accommodating one unchemical negative electrode in this bag-shaped porous member.

ニッポン高度紙工業製のVL100(材料:セルロース、厚さ:100μm)を3.0cm×10.0cmに裁断した後に半分に折ることにより得られた不織布(3.0cm×5.0cm)を正極体と負極体との間に挟みつつ2枚の正極体と3枚の負極体とを交互に積層した後に同極性の極板同士をストラップで連結させることにより電極群(極板群)を作製した。この電極群を電槽内に配置した後、電槽の上面に蓋体を接着することにより未化成のニッケル亜鉛電池を得た。スペーサーを用いて、電槽厚みに対する電極群の厚みを95.0%に調整した。次いで、電解液を未化成のニッケル亜鉛電池の電槽内に注入した後、24時間放置した。その後、24mA、15時間の条件で充電を行うことにより、化成後のニッケル亜鉛電池(公称容量:320mAh)を作製した。化成後のニッケル亜鉛電池において、負極体の多孔部材における負極材の主面に対向する部分(負極材の主面を被覆する部分)の厚さは120μmであった。 A non-woven fabric (3.0 cm x 5.0 cm) obtained by cutting VL100 (material: cellulose, thickness: 100 μm) manufactured by Nippon Advanced Paper Industry into 3.0 cm × 10.0 cm and then folding it in half is used as a positive electrode body. An electrode group (electrode plate group) was produced by alternately laminating two positive electrode bodies and three negative electrode bodies while sandwiching them between the electrode body and the negative electrode body, and then connecting the electrode plates of the same polarity with a strap. .. After arranging this electrode group in the electric tank, a lid was adhered to the upper surface of the electric tank to obtain an unchemical nickel-zinc battery. Using a spacer, the thickness of the electrode group with respect to the thickness of the battery case was adjusted to 95.0%. Then, after injecting the electrolytic solution into the electric tank of the unchemical nickel-zinc battery, it was left for 24 hours. Then, by charging under the conditions of 24 mA and 15 hours, a nickel-zinc battery (nominal capacity: 320 mAh) after chemical conversion was produced. In the nickel-zinc battery after chemical conversion, the thickness of the portion of the porous member of the negative electrode body facing the main surface of the negative electrode material (the portion covering the main surface of the negative electrode material) was 120 μm.

(実施例2)
親水化処理される多孔膜として、宇部興産株式会社製の多孔膜(二枚のポリプロピレンフィルムに挟まれたポリエチレンフィルムを有する三層構造、総厚:20μm、商品名:UP3364)を用いたこと、及び、袋状の多孔部材を得るための積層体として、6枚の多孔膜Aを6重に重ねることにより得られた積層体を用いたことを除き実施例1と同様に行うことにより化成後のニッケル亜鉛電池(公称容量:320mAh)を作製した。化成後のニッケル亜鉛電池において、負極体の多孔部材における負極材の主面に対向する部分(負極材の主面を被覆する部分)の厚さは120μmであった。
(Example 2)
As the porous membrane to be hydrophilized, a porous membrane manufactured by Ube Kosan Co., Ltd. (three-layer structure having a polyethylene film sandwiched between two polypropylene films, total thickness: 20 μm, trade name: UP3364) was used. After the chemical formation, the process was carried out in the same manner as in Example 1 except that the laminate obtained by stacking six porous films A in six layers was used as the laminate for obtaining the bag-shaped porous member. Nickel-zinc battery (nominal capacity: 320 mAh) was manufactured. In the nickel-zinc battery after chemical conversion, the thickness of the portion of the porous member of the negative electrode body facing the main surface of the negative electrode material (the portion covering the main surface of the negative electrode material) was 120 μm.

(実施例3)
親水化処理される多孔膜として、宇部興産株式会社製の多孔膜(二枚のポリプロピレンフィルムに挟まれたポリエチレンフィルムを有する三層構造、総厚:25μm、商品名:UP3355)を用いたこと、及び、袋状の多孔部材を得るための積層体として、5枚の多孔膜Aを5重に重ねることにより得られた積層体を用いたことを除き実施例1と同様に行うことにより化成後のニッケル亜鉛電池(公称容量:320mAh)を作製した。化成後のニッケル亜鉛電池において、負極体の多孔部材における負極材の主面に対向する部分(負極材の主面を被覆する部分)の厚さは125μmであった。
(Example 3)
As the porous membrane to be hydrophilized, a porous membrane manufactured by Ube Kosan Co., Ltd. (three-layer structure having a polyethylene film sandwiched between two polypropylene films, total thickness: 25 μm, trade name: UP3355) was used. After the chemical formation, the process was carried out in the same manner as in Example 1 except that the laminate obtained by stacking five porous films A in five layers was used as the laminate for obtaining the bag-shaped porous member. Nickel-zinc battery (nominal capacity: 320 mAh) was manufactured. In the nickel-zinc battery after chemical conversion, the thickness of the portion of the porous member of the negative electrode body facing the main surface of the negative electrode material (the portion covering the main surface of the negative electrode material) was 125 μm.

(比較例1)
2枚の多孔膜Aを2重に重ねることにより積層体を得た後、積層体の一対の両側面を熱溶着することで袋状の多孔部材を得たこと、及び、スペーサーの厚さを調整することにより電槽厚みに対する電極群の厚みを95.0%に調整したことを除き実施例1と同様に行うことにより化成後のニッケル亜鉛電池(公称容量:320mAh)を作製した。化成後のニッケル亜鉛電池において、負極体の多孔部材における負極材の主面に対向する部分(負極材の主面を被覆する部分)の厚さは80μmであった。
(Comparative Example 1)
After obtaining a laminated body by double stacking two porous films A, a bag-shaped porous member was obtained by heat welding a pair of both side surfaces of the laminated body, and the thickness of the spacer was determined. A nickel-zinc battery (nominal capacity: 320 mAh) after chemical welding was produced by performing the same procedure as in Example 1 except that the thickness of the electrode group with respect to the thickness of the battery case was adjusted to 95.0%. In the nickel-zinc battery after chemical conversion, the thickness of the portion of the porous member of the negative electrode body facing the main surface of the negative electrode material (the portion covering the main surface of the negative electrode material) was 80 μm.

(比較例2)
1枚の多孔膜Aの一対の両側面を熱溶着することで袋状の多孔部材を得たこと、及び、スペーサーの厚さを調整することにより電槽厚みに対する電極群の厚みを95.0%に調整したことを除き実施例1と同様に行うことにより化成後のニッケル亜鉛電池(公称容量:320mAh)を作製した。化成後のニッケル亜鉛電池において、負極体の多孔部材における負極材の主面に対向する部分(負極材の主面を被覆する部分)の厚さは40μmであった。
(Comparative Example 2)
A bag-shaped porous member was obtained by heat-welding a pair of both side surfaces of one porous membrane A, and the thickness of the electrode group with respect to the battery thickness was 95.0 by adjusting the thickness of the spacer. A nickel-zinc battery after chemical welding (nominal capacity: 320 mAh) was produced by carrying out the same procedure as in Example 1 except that the temperature was adjusted to%. In the nickel-zinc battery after chemical conversion, the thickness of the portion of the porous member of the negative electrode body facing the main surface of the negative electrode material (the portion covering the main surface of the negative electrode material) was 40 μm.

<寿命性能の評価>
40℃において、電流値が16mA(0.05C)に減衰するまで105.7mA(0.33C)、1.88Vの定電圧でニッケル亜鉛電池の充電を行った後、電池電圧が1.1Vに到達するまで105.7mA(0.33C)の定電流でニッケル亜鉛電池の放電を行うことを1サイクルとする試験を行った。1サイクル目の放電容量に対して放電容量が60%を下回った場合に試験を終了し、試験終了までに行ったサイクル数によって寿命性能(サイクル寿命性能)を評価した。実施例1は143サイクルであり、実施例2は146サイクルであり、実施例3は147サイクルであり、比較例1は43サイクルであり、比較例2は41サイクルであった。
<Evaluation of life performance>
At 40 ° C., the nickel-zinc battery is charged at a constant voltage of 105.7 mA (0.33C) and 1.88 V until the current value decays to 16 mA (0.05 C), and then the battery voltage becomes 1.1 V. A test was conducted in which one cycle was to discharge the nickel-zinc battery at a constant current of 105.7 mA (0.33 C) until it reached the point. The test was terminated when the discharge capacity was less than 60% of the discharge capacity of the first cycle, and the life performance (cycle life performance) was evaluated by the number of cycles performed until the end of the test. Example 1 had 143 cycles, Example 2 had 146 cycles, Example 3 had 147 cycles, Comparative Example 1 had 43 cycles, and Comparative Example 2 had 41 cycles.

10…負極、12…集電体、14…負極材、14a…主面、20,20a…多孔部材、100,100a…負極体、A…負極材における最小厚さを有する部分、B…負極材における最大厚さを有する部分、D…負極材における最大厚さと最小厚さとの差、T,T…多孔部材の厚さ、Tmax…負極材における最大厚さ、Tmin…負極材における最小厚さ。

10 ... Negative electrode, 12 ... Current collector, 14 ... Negative electrode material, 14a ... Main surface, 20, 20a ... Porous member, 100, 100a ... Negative electrode body, A ... Negative electrode material with minimum thickness, B ... Negative electrode material , D ... the difference between the maximum thickness and the minimum thickness in the negative electrode material, T, Ta ... the thickness of the porous member, T max ... the maximum thickness in the negative electrode material, T min ... the minimum in the negative electrode material. thickness.

Claims (5)

負極と、多孔部材と、を備え、
前記負極が、集電体と、当該集電体に支持された負極材と、を有し、
前記多孔部材が前記負極材の主面に対向し、
前記多孔部材における前記主面に対向する部分の厚さが前記負極材における最大厚さと最小厚さとの差より大きい、亜鉛電池用負極体。
With a negative electrode and a porous member,
The negative electrode has a current collector and a negative electrode material supported by the current collector.
The porous member faces the main surface of the negative electrode material, and the porous member faces the main surface of the negative electrode material.
A negative electrode body for a zinc battery, wherein the thickness of the portion of the porous member facing the main surface is larger than the difference between the maximum thickness and the minimum thickness of the negative electrode material.
前記多孔部材が複数の多孔膜の積層体である、請求項1に記載の亜鉛電池用負極体。 The negative electrode body for a zinc battery according to claim 1, wherein the porous member is a laminated body of a plurality of porous films. 前記多孔部材における前記主面に対向する部分の厚さが100μm以上である、請求項1又は2に記載の亜鉛電池用負極体。 The negative electrode body for a zinc battery according to claim 1 or 2, wherein the thickness of the portion of the porous member facing the main surface is 100 μm or more. 前記集電体がパンチングメタルである、請求項1~3のいずれか一項に記載の亜鉛電池用負極体。 The negative electrode body for a zinc battery according to any one of claims 1 to 3, wherein the current collector is a punching metal. 請求項1~4のいずれか一項に記載の亜鉛電池用負極体と、正極と、を備える、亜鉛電池。

A zinc battery comprising the negative electrode body for a zinc battery according to any one of claims 1 to 4 and a positive electrode.

JP2021178565A 2020-11-19 2021-11-01 Negative electrode body for zinc battery and zinc battery Pending JP2022081421A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020192415 2020-11-19
JP2020192415 2020-11-19

Publications (1)

Publication Number Publication Date
JP2022081421A true JP2022081421A (en) 2022-05-31

Family

ID=81796512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021178565A Pending JP2022081421A (en) 2020-11-19 2021-11-01 Negative electrode body for zinc battery and zinc battery

Country Status (1)

Country Link
JP (1) JP2022081421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023075353A (en) * 2018-07-04 2023-05-30 マクセル株式会社 Virtual object operation method and head-mounted display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023075353A (en) * 2018-07-04 2023-05-30 マクセル株式会社 Virtual object operation method and head-mounted display

Similar Documents

Publication Publication Date Title
EP1329973B1 (en) Method of manufacturing an electrode
KR20150083898A (en) Secondary zinc-manganese dioxide batteries for high power applications
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP7260349B2 (en) Electrolyte for zinc battery and zinc battery
JP2019216057A (en) Porous membrane, battery member, and zinc battery
JP2019185863A (en) Zinc battery, electrode and manufacturing method therefor, and laminated film
JP2022081421A (en) Negative electrode body for zinc battery and zinc battery
JP2021077473A (en) Multilayer film and zinc battery
JP7105525B2 (en) zinc battery
JP2020087516A (en) Method for manufacturing zinc battery negative electrode and method for manufacturing zinc battery
CN111755757B (en) Method for manufacturing nickel-zinc battery
JP2019216059A (en) Porous membrane, battery member, and zinc battery
JP2021180119A (en) Negative electrode for zinc battery and zinc battery
JP2019139986A (en) Negative electrode for zinc battery and zinc battery
JP2021174612A (en) Negative electrode for zinc battery and zinc battery
JP2021185560A (en) Negative electrode for zinc battery and zinc battery
JP7083561B2 (en) Electrode group and zinc battery
JP2019106284A (en) Zinc battery negative electrode and zinc battery
JP2020061222A (en) Negative electrode for nickel zinc battery and nickel zinc battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP2021185559A (en) Negative electrode for zinc battery and zinc battery
JP7412143B2 (en) Negative electrode for zinc batteries
JP2021174609A (en) Zinc battery
CA2173330C (en) Bipolar electrochemical battery of stacked wafer cells
JP7166705B2 (en) Method for manufacturing negative electrode for zinc battery and method for manufacturing zinc battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20221227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230207