JP2022065253A - 樹脂多孔質体の製造方法 - Google Patents

樹脂多孔質体の製造方法 Download PDF

Info

Publication number
JP2022065253A
JP2022065253A JP2020173668A JP2020173668A JP2022065253A JP 2022065253 A JP2022065253 A JP 2022065253A JP 2020173668 A JP2020173668 A JP 2020173668A JP 2020173668 A JP2020173668 A JP 2020173668A JP 2022065253 A JP2022065253 A JP 2022065253A
Authority
JP
Japan
Prior art keywords
water
insoluble polymer
solvent
solution
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020173668A
Other languages
English (en)
Other versions
JP7258000B2 (ja
Inventor
広平 松延
Kohei Matsunobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2020173668A priority Critical patent/JP7258000B2/ja
Priority to US17/502,002 priority patent/US11926723B2/en
Priority to CN202111200853.6A priority patent/CN114369283B/zh
Publication of JP2022065253A publication Critical patent/JP2022065253A/ja
Application granted granted Critical
Publication of JP7258000B2 publication Critical patent/JP7258000B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/10Esters of organic acids
    • C09D101/12Cellulose acetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】非水溶性高分子を用いて、少ない工程数で、スキン層の形成が抑制された樹脂多孔質体を製造可能な方法を提供する。【解決手段】ここに開示される樹脂多孔質体の製造方法は、非水溶性高分子の良溶媒および前記非水溶性高分子の貧溶媒を含有する混合溶媒に、前記非水溶性高分子が溶解した溶液を調製する工程と、前記溶液を乾燥して前記混合溶媒を除去する工程と、を包含する。前記貧溶媒の沸点は、前記良溶媒の沸点よりも高い。前記溶液の乾燥を、過熱水蒸気を用いて行う。【選択図】図1

Description

本発明は、樹脂多孔質体の製造方法に関する。
非水溶性高分子を用いた樹脂多孔質体は、軽量性、緩衝性、断熱性、吸音性、分離性、吸着性等の様々な特性を示し得る。そのため、非水溶性高分子を用いた樹脂多孔質体は、梱包材料、建築資材、吸音材料、掃除用品、化粧用品、分離膜、吸着材、精製用担体、触媒担体、培養担体等の多岐に渡る用途に使用されている。
製造コスト等の観点から、非水溶性高分子を用いた樹脂多孔質体の製造方法は簡便であることが望まれている。そこで、非水溶性高分子であるポリフッ化ビニリデンの多孔質体を簡便に製造できる方法として、特許文献1には、ポリフッ化ビニリデンを、その良溶媒とその貧溶媒との混合溶媒に加熱下で溶解させて溶液を調製すること、当該溶液を冷却して成形体を得ること、当該成形体を別の溶媒に浸漬させて上記混合溶媒を別の溶媒と置換すること、および当該別の溶媒を乾燥して除去することを含む、ポリフッ化ビニリデンの多孔質体の製造方法が開示されている。
特開2011-236292号公報
しかしながら、上記従来技術の製造方法では、非水溶性高分子の溶液の調製、成形体の析出、溶媒の置換、および乾燥という多くの工程を経る必要がある。また、本発明者らの検討により、樹脂多孔質体の製造においては、樹脂多孔質体の表面に、空孔を有しないスキン層(皮張り層)が形成され易いことが見出された。樹脂多孔質体がスキン層を有する場合には、流体を透過することができず、樹脂多孔質体の用途が限定されるという不利益がある。
そこで本発明の目的は、非水溶性高分子を用いて、少ない工程数で、スキン層の形成が抑制された樹脂多孔質体を製造可能な方法を提供することにある。
ここに開示される樹脂多孔質体の製造方法は、非水溶性高分子の良溶媒および前記非水溶性高分子の貧溶媒を含有する混合溶媒に、前記非水溶性高分子が溶解した溶液を調製する工程と、前記溶液を乾燥して前記混合溶媒を除去する工程と、を包含する。前記貧溶媒の沸点は、前記良溶媒の沸点よりも高い。前記溶液の乾燥を、過熱水蒸気を用いて行う。このような構成によれば、非水溶性高分子を用いて、少ない工程数で、スキン層の形成が抑制された樹脂多孔質体を製造可能な方法が提供される。
ここに開示される製造方法の好ましい一態様では、前記溶液を調製する工程の後であって前記溶液を乾燥する工程の前に、基材の表面上に前記調製した非水溶性高分子の溶液を薄膜状に塗工する工程をさらに包含する。このような構成によれば、非水溶性高分子を用いて、少ない工程数で、スキン層の形成が抑制された樹脂多孔質膜を製造可能な方法が提供される。ここで、前記基材が、二次電池の電極である場合には、二次電池の電極一体型セパレータを製造することができる。
得られる樹脂多孔質体の用途および樹脂多孔質体の製造方法の有用性の観点から、ここに開示される製造方法の好ましい一態様では、前記非水溶性高分子が、エチレン-ビニルアルコール共重合体、またはフッ化ビニリデン-ヘキサフルオロプロピレン共重合体である。
過熱水蒸気のエンタルピーと熱風のエンタルピーとを比較するためのグラフである。 本発明に係る製造方法における乾燥工程の実施方法の一例の説明図である。 比較例1で得られた多孔質膜の表面のSEM写真である。 実施例1で得られた多孔質膜の表面のSEM写真である。 実施例3で得られた多孔質膜の表面のSEM写真である。
本発明の樹脂多孔質体の製造方法は、非水溶性高分子の良溶媒および当該非水溶性高分子の貧溶媒を含有する混合溶媒に、当該非水溶性高分子が溶解した溶液を調製する工程(以下、「溶液調製工程」ともいう)と、当該溶液を乾燥して当該混合溶媒を除去する工程(以下、「乾燥工程」ともいう)と、を包含する。ここで、当該貧溶媒の沸点は、当該良溶媒の沸点よりも高い。当該溶液の乾燥を、過熱水蒸気を用いて行う。
まず、溶液調製工程について説明する。本発明において「非水溶性高分子の良溶媒」とは、非水溶性高分子に対し、25℃において1質量%以上の溶解性を示す溶媒のことをいう。良溶媒は、非水溶性高分子に対し、25℃において、2.5質量%以上の溶解性を示すことが好ましく、5質量%以上の溶解性を示すことがより好ましく、7.5質量%以上の溶解性を示すことがさらに好ましく、10質量%以上の溶解性を示すことが最も好ましい。なお、本発明に使用される良溶媒の種類は、非水溶性高分子の種類に応じて適宜選択される。良溶媒は、単独の溶媒であってもよく、2種以上の溶媒が混合された混合溶媒であってもよい。
本発明において「非水溶性高分子の貧溶媒」とは、非水溶性高分子に対し、25℃において1質量%未満の溶解性を示す溶媒のことをいう。貧溶媒は、非水溶性高分子に対し、25℃において、0.5質量%以下の溶解性を示すことが好ましく、0.2質量%以下の溶解性を示すことがより好ましく、0.1質量%以下の溶解性を示すことがさらに好ましく、0.05質量%以下の溶解性を示すことが最も好ましい。本発明に使用される貧溶媒の種類は、非水溶性高分子の種類に応じて適宜選択される。貧溶媒は、単独の溶媒であってもよく、2種以上の溶媒が混合された混合溶媒であってもよい。
特定の高分子化合物に対し、特定の溶媒が良溶媒であるか貧溶媒であるかの判断には、ハンセン溶解度パラメータ(HSP)を利用することができる。例えば、当該高分子化合物のHSPの分散項、分極項、および水素結合項をそれぞれδD1、δP1、δH1とし、当該溶媒のHSPの分散項、分極項、および水素結合項をそれぞれδD2、δP2、δH2とした場合に、下記式で表される高分子化合物と溶媒とのHSPの距離Ra(MPa1/2)の値が小さいほど、高分子化合物の溶解度が高くなる傾向にある。
Ra=4(δD1-δD2+(δP1-δP2+(δH1-δH2
また、上記特定の高分子化合物の相互作用半径をRとした場合に、Ra/Rの比が1未満だと可溶、Ra/Rの比が1だと部分的に可溶、およびRa/Rの比が1を超えると不溶であると予測される。
あるいは、サンプル瓶等の中で特定の高分子化合物と特定の溶媒とを混合する試験を行うことにより、当該溶媒が、当該高分子化合物に対して良溶媒であるか貧溶媒であるかを容易に判別することができる。
上記良溶媒と上記貧溶媒とは、混合され、均一な溶媒として使用される。したがって、上記良溶媒および上記貧溶媒は互いに相溶性を有する。本発明においては、使用される貧溶媒の沸点は、使用される良溶媒の沸点よりも高い。空孔率が比較的高く、均質な多孔質体が得られ易いことから、貧溶媒の沸点は、良溶媒の沸点よりも10℃以上高いことが好ましく、90℃以上高いことがより好ましい。貧溶媒の沸点は、乾燥速度の観点から、300℃未満であることが好ましい。
本発明において「非水溶性高分子」とは、25℃における水に対する溶解度が1質量%未満である高分子のことをいう。非水溶性高分子の25℃における水に対する溶解度は、0.5質量%以下が好ましく、0.2質量%以下がより好ましく、0.1質量%以下がさらに好ましい。
溶液調製工程で用いられる「非水溶性高分子」は、多孔質の成形体を構成する非水溶性高分子と同じ高分子である。非水溶性高分子としては、良溶媒と貧溶媒とが存在するものが使用される。使用される非水溶性高分子の種類は、良溶媒と貧溶媒とが存在するものである限り特に制限はない。非水溶性高分子の例としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂;ポリフッ化ビニル、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等のフッ素系樹脂;ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート等の(メタ)アクリル系樹脂;ポリスチレン、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体等のスチレン系樹脂;エチルセルロース、酢酸セルロース、セルロースプロピオネート等の非水溶性セルロース誘導体;ポリ塩化ビニル、エチレン-塩化ビニル共重合体等の塩化ビニル系樹脂;エチレン-ビニルアルコール共重合体等が挙げられる。水溶性高分子を修飾して非水溶化したポリマー等も使用可能である。なかでも、非水溶性高分子の多孔質体の有用性およびその製造方法の有用性の観点から、非水溶性高分子は、脂肪族高分子化合物(すなわち、芳香環を有しない高分子化合物)であることが好ましい。空孔率が比較的高く、均質な多孔質体が得られ易いことから、非水溶性高分子は、付加重合型の高分子化合物(すなわち、エチレン性不飽和二重結合を有するモノマーの当該エチレン性不飽和二重結合の重合によって生成する高分子化合物;例、ビニル系重合体、ビニリデン系重合体)であることが好ましい。三次元ネットワーク状の多孔質構造を有する多孔質体の有用性、およびその製造方法の有用性の観点から、非水溶性高分子は、エチレン-ビニルアルコール共重合体、またはフッ化ビニリデン-ヘキサフルオロプロピレン共重合体であることが好ましい。
非水溶性高分子の平均重合度は、特に限定はないが、好ましくは70以上500,000以下であり、より好ましくは100以上200,000以下である。なお、非水溶性高分子の平均重合度は、公知方法(例、NMR測定等)により求めることができる。
以下、特定の非水溶性高分子を例に挙げて、好適な良溶媒および好適な貧溶媒について具体的に説明する。以下の非水溶性高分子に対して、以下説明する良溶媒と貧溶媒を使用することにより、本発明の製造方法を有利に実施することができる。なお、以下に挙げる良溶媒は、1種単独でまたは2種以上を組み合わせて用いることができる。以下に挙げる貧溶媒は、1種単独でまたは2種以上を組み合わせて用いることができる。
1.非水溶性高分子がエチレン-ビニルアルコール共重合体である場合
エチレン-ビニルアルコール共重合体(EVOH)は、モノマー単位として、エチレン単位およびビニルアルコール単位を含有する共重合体である。EVOH中のエチレン単位の含有量は、特に制限はないが、好ましくは10モル%以上であり、より好ましくは15モル%以上であり、さらに好ましくは20モル%以上であり、特に好ましくは25モル%以上である。また、EVOH中のエチレン単位の含有量は、好ましくは60モル%以下であり、より好ましくは50モル%以下であり、さらに好ましくは45モル%以下である。EVOHのけん化度は、特に制限はないが、好ましくは80モル%以上であり、より好ましくは90モル%以上であり、さらに好ましくは95モル%以上である。けん化度の上限は、けん化に関する技術的限界により定まり、例えば、99.99モル%である。なお、EVOHのエチレン単位の含有量およびけん化度は、公知方法(例、H-NMR測定等)により求めることができる。
また、EVOHは、通常、エチレンとビニルエステルとの共重合体を、アルカリ触媒等を用いてけん化して製造される。そのため、EVOHは、ビニルエステル単位を含有し得る。当該単位のビニルエステルは、典型的には酢酸ビニルであり、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル等であってよい。EVOHは、本発明の効果を顕著に損なわない範囲で、エチレン単位、ビニルアルコール単位、およびビニルエステル単位以外の他のモノマー単位を含有していてもよい。
EVOHの好適な良溶媒としては、水とアルコールとの混合溶媒、ジメチルスルホキシド(DMSO)等が挙げられる。混合溶媒に用いられるアルコールとしては、プロピルアルコールが好ましい。プロピルアルコールは、n-プロピルアルコールおよびイソプロピルアルコールのいずれであってもよい。したがって、特に好適な良溶媒は、水とプロピルアルコールとの混合溶媒、またはDMSOである。
EVOHの好適な貧溶媒としては、水;アルコール;γ-ブチロラクトン等の環状エステル類;炭酸プロピレン等の環状カーボネート類;スルホラン等の環状スルホン類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、2-エトキシエタノール等のエーテル基含有モノオール類、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等のジオール類などが挙げられる。なかでも、環状エステル類、環状カーボネート類、環状スルホン類、またはエーテル基含有モノオール類が好ましく、γ-ブチロラクトン、炭酸プロピレン、スルホラン、またはエーテル基含有モノオール類がより好ましく、γ-ブチロラクトン、またはスルホランがさらに好ましい。貧溶媒の溶解パラメータ(ヒルデブラント(Hildebrand)のSP値)δが、EVOHの溶解パラメータδよりも1.6MPa1/2以上大きいことが好ましい。
なお、EVOHでは、水およびアルコールは、EVOHの貧溶媒であるが、水とアルコール(特にプロピルアルコール)との混合溶媒は良溶媒である。ここで、水とアルコールとの混合溶媒は、水が減量された良溶媒の、水とアルコールとの混合溶媒と、これよりも沸点が高い貧溶媒の水との混合溶媒みなすことができるため、EVOHの溶液の調製に、水とアルコールとの混合溶媒を単独で用いることができる。よって、本発明において、特定の非水溶性高分子に対し、2種類以上の貧溶媒を混合した溶媒が良溶媒になる場合には、溶液調製のための非水溶性高分子の良溶媒および非水溶性高分子の貧溶媒を含有する混合溶媒として、この2種以上の貧溶媒の混合溶媒を単独で用いることができる。
2.非水溶性高分子が酢酸セルロースである場合
酢酸セルロースの好適な良溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等の含窒素極性溶媒(特に含窒素非プロトン性極性溶媒);蟻酸メチル、酢酸メチル等のエステル類;アセトン、シクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン、ジオキソラン等の環状エーテル類;メチルグリコール、メチルグリコールアセテート等のグリコール誘導体;塩化メチレン、クロロホルム、テトラクロロエタン等のハロゲン化炭化水素;炭酸プロピレン等の環状カーボネート類;DMSO等の含硫黄極性溶媒(特に含硫黄非プロトン性極性溶媒)などが挙げられる。なかでも、含硫黄非プロトン性極性溶媒が好ましく、DMSOがより好ましい。
酢酸セルロースの好適な貧溶媒としては、水;1-ヘキサノール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等のアルコール類が挙げられる。アルコール類としては、炭素数4~6の1価または2価のアルコール類が好ましい。
3.非水溶性高分子がポリフッ化ビニリデンである場合
ポリフッ化ビニリデンの好適な良溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等の含窒素極性溶媒(特に含窒素非プロトン性極性溶媒);DMSO等の含硫黄極性溶媒(特に含硫黄非プロトン性極性溶媒)などが挙げられる。なかでも、含窒素非プロトン性極性溶媒が好ましく、N,N-ジメチルホルムアミドがより好ましい。
ポリフッ化ビニリデンの好適な貧溶媒としては、水;1-ヘキサノール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、グリセリン等のアルコール類;テトラヒドロフラン、ジオキサン、ジオキソラン等の環状エーテル類等が挙げられる。なかでも、アルコール類が好ましく、炭素数3~6の2価または3価のアルコール類がより好ましい。
4.非水溶性高分子がフッ化ビニリデン-ヘキサフルオロプロピレン共重合体である場合
フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(P(VDF-HFP))は、モノマー単位として、フッ化ビニリデン単位およびヘキサフルオロプロピレン単位を含有する共重合体である。これらの単位の共重合割合は特に制限はなく、セパレータの特性に応じて適宜決定すればよい。フッ化ビニリデン-ヘキサフルオロプロピレン共重合体は、公知方法に従い合成して入手することができ、市販品(例、アルケマ社製Kynar FLEX 2850-00、2800-00、2800-20、2750-01、2500-20、3120-50、2851-00、2801-00、2821-00、2751-00、2501-00等)としても入手可能である。
P(VDF-HFP)の好適な良溶媒としては、アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン等の環状エーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等の含窒素極性溶媒(特に含窒素非プロトン性極性溶媒);DMSO等の含硫黄極性溶媒(特に含硫黄非プロトン性極性溶媒)などが挙げられる。気化による除去が容易であることから、良溶媒としては、アセトン、メチルエチルケトン、またはテトラヒドロフランが好ましく、アセトン、またはメチルエチルケトンがより好ましい。
P(VDF-HFP)の好適な貧溶媒としては、水;1-ヘキサノール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、グリセリン等のアルコール類などが挙げられる。環境に対する負荷の低さ、入手の容易さ、取り扱いの容易さ等の観点から、貧溶媒としては、水、または炭素数3~6の2価または3価のアルコール類が好ましい。
非水溶性高分子、良溶媒、および貧溶媒の使用量は、使用するこれらの種類に応じて適宜選択するとよい。非水溶性高分子の混合量は、良溶媒100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、さらに好ましくは10質量部以上である。また、非水溶性高分子の混合量は、良溶媒100質量部に対して、好ましくは40質量部以下、より好ましくは上35質量部以下、さらに好ましくは30質量部以下である。貧溶媒の混合量は、良溶媒100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上、さらに好ましくは30質量部以上である。また、貧溶媒の混合量は、良溶媒100質量部に対して、好ましくは400質量部以下、より好ましく200質量部以下、さらに好ましくは100質量部以下である。これらの量を変化させることで、得られる多孔質体の孔の状態(例、空孔率、空孔径など)を制御することができる。
非水溶性高分子の溶液は、本発明の効果を著しく損なわない範囲内で、非水溶性高分子および混合溶媒以外の成分をさらに含有していてもよい。
非水溶性高分子の溶液の調製方法には特に制限はない。非水溶性高分子を良溶媒に溶解させて、そこに貧溶媒を添加して均一に混合してもよい、非水溶性高分子を、良溶媒と貧溶媒との混合溶媒に添加して、非水溶性高分子を溶解させてもよい。溶液の調製には、公知の撹拌装置、混合装置等を用いることができる。非水溶性高分子の溶液の調製の際には、超音波照射、加熱等を行ってもよい。加熱温度としては、例えば40℃以上100℃以下である。加熱により非水溶性高分子の溶液を調製した後、良溶媒と貧溶媒とが分離しない範囲で冷却してよい。また、この冷却は、非水溶性高分子が析出しない範囲で行うことが好ましい。析出した非水溶性高分子が不純物となり得るためである。
次に、乾燥工程について説明する。当該乾燥工程においては、上記で調製した非水溶性高分子の溶液を乾燥して、混合溶媒を除去する。そして、この溶液の乾燥を、過熱水蒸気を用いて行う。当該乾燥工程において、非水溶性高分子の多孔質状の骨格が形成される。当該乾燥工程では、混合溶媒を除去する操作によって、具体的には貧溶媒の気化によって、空孔を形成して、樹脂多孔質体を得る。
典型的には、例えば、非水溶性高分子と、貧溶媒が高濃度化した混合溶媒とを相分離させることによって、空孔を形成する。具体的には、貧溶媒は、良溶媒よりも沸点が高いため、当該工程では、貧溶媒よりも良溶媒が優先的に気化する。良溶媒が減少していくと、混合溶媒中の貧溶媒の濃度が増加する。非水溶性高分子の貧溶媒に対する溶解度が、良溶媒に対する溶解度よりも小さいため、非水溶性高分子と、貧溶媒が高濃度化した混合溶媒とが相分離して、非水溶性高分子の多孔質状の骨格が形成される。この相分離は、スピノーダル分解であってよい。最終的には、良溶媒が除去されて非水溶性高分子が析出し、高沸点の貧溶媒が気化により除去されて空孔が生成する。このようにして、非水溶性高分子の多孔質体が生成する。なお、非水溶性高分子と、貧溶媒が高濃度化した混合溶媒とを相分離させるには、良溶媒の種類と使用量および貧溶媒の種類と使用量を適切に選択するとよい。
ここで、加熱または減圧によって非水溶性高分子の溶液の乾燥を行う場合、雰囲気に露出した非水溶性高分子の溶液の表面が乾燥界面となる。溶液の表面およびその近傍(すなわち、表層部)では、溶液内部と比べて混合溶媒の気化速度が大きくなり、これにより、溶液の表層部と内部とで組成にズレが生じる。その結果、溶液の表層部では多孔質化が起こらず、得られる樹脂多孔質体の表層部にスキン層が形成される。
これに対し、本発明では、過熱水蒸気によって乾燥を行う。よって、乾燥は、過熱水蒸気と非水溶性高分子の溶液との接触を伴う。したがって、過熱水蒸気の存在下、特に過熱水蒸気雰囲気下で乾燥が行われる。過熱水蒸気によって乾燥を行うことにより、樹脂多孔質体の表層部でのスキン層の形成を抑制することができる。その理由は次のように考えられる。
過熱水蒸気は、100℃以上に加熱された水蒸気である。過熱水蒸気は、図1に示すように、熱風と比べてはるかに大きなエンタルピーを有し、伝熱方法は、対流、輻射、凝縮の複合伝熱である。よって、過熱水蒸気によれば、熱風等の加熱方法に比べて急速な加熱が可能である。
過熱水蒸気の存在下に非水溶性高分子の溶液が置かれると、非水溶性高分子の溶液の表面において過熱水蒸気の凝縮が起こり、非水溶性高分子の溶液の表面の上に水層が形成される。この水層から熱伝達されることで、非水溶性高分子の溶液に含まれる溶媒と、水層中の水とが気化し、非水溶性高分子の溶液の乾燥が行われる。ここで、水は非水溶性高分子の貧溶媒であるため、非水溶性高分子の溶液の表層部では水によって相分離が引き起こされ、この相分離に起因して表層部に多孔質骨格および孔が形成される。よって、過熱水蒸気によって乾燥を行うことにより、非水溶性高分子の溶液の表層部において、積極的に多孔質化を引き起こすことができ、得られる樹脂多孔質体の表層部でのスキン層の形成を抑制することができる。
過熱水蒸気による非水溶性高分子の溶液の乾燥は、例えば、乾燥炉、乾燥チャンバ等に公知方法によって生成した過熱水蒸気を導入し、乾燥炉、乾燥チャンバ等に非水溶性高分子の溶液を置くことによって行うことができる。過熱水蒸気が100℃以上の水蒸気であることから、乾燥温度は、100℃以上であり、好ましくは140℃以上、より好ましくは150℃以上200℃以下である。乾燥工程の実施方法の具体的な例について以下説明する。
過熱水蒸気を導入可能な乾燥炉を用意する。その乾燥炉の構成例を図2に示す。図2に示す例では、乾燥炉10には、過熱水蒸気導入管20を介して、加熱手段としての熱交換器40が接続されている。乾燥炉10は、バッチ式であっても、ベルトコンベア等を備える連続式のものであってもよい。過熱水蒸気導入管20は、第1バルブ30を有している。熱交換器40は、制御盤50に電気的に接続されている。熱交換器40は、熱媒体の流路となるチューブ(図示せず)を内部に備えている。熱交換器40は、水蒸気導入管60を介して水蒸気発生手段としてのボイラー80と接続されている。水蒸気導入管60は、第2バルブ70を有している。
第1バルブ30および第2バルブ70を閉じた状態で、ボイラー80内で水蒸気を発生させる。第2バルブ70を開き、水蒸気導入管60を介して水蒸気を熱交換器40に導入する。熱交換器40内のチューブに熱媒体を通し、チューブを介して水蒸気を加熱する。このとき、熱媒体の温度および流速を制御盤50によって制御する。熱媒体の温度は、乾燥炉10内の温度に応じて、100℃を超えるの温度のなかから適宜選択する。この加熱によって、水蒸気を過熱水蒸気に変化させる。なお、過熱水蒸気は、公知の過熱水蒸気発生装置を用いて生成することもできる。
第1バルブ30を開き、過熱水蒸気導入管20を介して、乾燥炉10内に過熱水蒸気を導入する。このとき、乾燥炉10内で過熱水蒸気が凝縮しないように、乾燥炉10内を100℃以上に加熱しておく。乾燥炉内の温度は、好ましくは140℃以上であり、より好ましくは150℃以上200℃以下である。なお、乾燥過程においては、混合溶媒が気化する際に非水溶性高分子の溶液から熱を奪って当該溶液が冷却されるため、非水溶性高分子の溶液の温度は、通常、乾燥炉内の温度よりも低くなる。このため、乾燥炉内の温度は、非水溶性高分子の融点以上であってもよい。
過熱水蒸気が導入された乾燥炉10内に、非水溶性高分子の溶液を置く。過熱水蒸気と非水溶性高分子の溶液とが接触し、過熱水蒸気が有する熱によって溶液中の混合溶媒が気化し、乾燥が行われる。乾燥中は、過熱水蒸気を乾燥炉10内に導入し続けることが好ましい。
所望の形状の多孔質体を得る場合、当該所望の形状に対応した形状の型に非水溶性高分子の溶液を入れ、これを過熱水蒸気を用いて乾燥する方法を好適に用いることができる。膜状の多孔質体を得る場合、基材の表面上に非水溶性高分子の溶液を薄膜状に塗工し、これを過熱水蒸気を用いて乾燥する方法を好適に用いることができる。
有益な用途が多いことから、本発明においては、膜状の多孔質体を得ることが好ましい。よって、本発明に係る製造方法は、溶液調製工程の後であって乾燥工程の前に、基材の表面上に調製した非水溶性高分子の溶液を薄膜状に塗工する工程(以下、「塗工工程」ともいう)を含むことが好ましい。
膜状の樹脂多孔質体を得る場合の塗工工程ついて詳細に説明する。用いられる基材は、基材として機能し得る限り特に限定されない。基材は、最終的に多孔質体から剥離して用いられるものであってもよいし、剥離せずに用いられるものであってもよい。基材の形状は、特に限定されず、平面を有するものが好ましい。形状の例としては、シート状、フィルム状、箔状、板状等が挙げられる。基材の構成材料としては、樹脂、ガラス、金属等が挙げられる。
上記樹脂の例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、ポリ塩化ビニル、ポリ(メタ)アクリレート、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド等が挙げられる。
上記金属の例としては、アルミニウム、銅、ニッケル、ステンレス鋼等が挙げられる。また、ガラス繊維強化エポキシ樹脂等の繊維強化樹脂などの複数の材料を用いたものを基材として用いることができる。
また、基材は、複層構造を有していてもよい。例えば、基材は、フッ素樹脂を含む剥離層を有していてもよい。例えば、基材は、樹脂層を有する紙等であってよい。
基材が剥離せずに用いられる場合、得られる樹脂多孔質体の機能層としての役割を有するものであってもよい。例えば、基材は、補強材、支持材等の機能を有していてもよい。また、基材は、二次電池の電極(特に二次電池の電極の活物質層)であってもよい。このとき、樹脂多孔質体の製造方法を、二次電池の電極一体型セパレータの製造方法とすることができる。
非水溶性高分子の溶液の塗工方法は特に制限されず、基材の種類に応じて適宜選択すればよい。塗工方法の例としては、ダイコーティング法、グラビアコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、ブレードコーティング法、スプレーコーティング法、キャスティング法等が挙げられる。塗工厚みは特に制限されず、多孔質体の用途に応じて適宜設定すればよく、例えば、1μm以上500μm以下であり、好ましくは10μm以上300μm以下である。
以上のようにして得られた基材上に塗工された非水溶性高分子の溶液を、乾燥工程に供することにより、膜状の樹脂多孔質体(すなわち、樹脂多孔質膜)を得ることができる。
以上のようにして、膜状を含め種々の形状の樹脂多孔質体を得ることができる。樹脂多孔質体は、スキン層の形成が抑制されているため、一つの主面から、それと対向する主面まで孔が連通した三次元ネットワーク状の多孔構造を有する。本発明の製造方法によれば、平均孔径が、例えば0.5μm以上(特に0.9μm以上、さらには1.4μm以上)5μm以下(特に4.2μm以下、さらには3.8μm以下)の多孔質体を得ることができる。なお、平均孔径は、多孔質体の断面電子顕微鏡写真を撮影し、100個以上の孔の径の平均値として求めることができる。孔の断面が非球状である場合には、孔の最大径と最小径との平均を孔径としてよい。また、本発明の製造方法によれば、空孔率が、例えば15%以上(特に42%以上、さらには51.5%以上、さらにまた61.5%以上)80%未満(特に75%未満)の多孔質体を得ることができる。なお、空孔率は、公知方法に従い、真密度と見かけ密度を用いて算出することができる。
本発明によれば、冷却して成形体を析出させる操作および溶媒を置換する操作を行う必要がなく、非水溶性高分子の溶液の調製と、乾燥による良溶媒および貧溶媒の除去という工程により、樹脂多孔質体を製造することができる。すなわち、本発明によれば、少ない工程数で樹脂多孔質体を製造することができる。また、本発明においては、樹脂多孔質体の表層部におけるスキン層の形成が抑制されている。したがって、樹脂多孔質体は、幅広い用途に使用可能である。
樹脂多孔質体の用途の例としては、梱包材料、建築資材、吸音材料、掃除用品、化粧用品、分離膜、吸着材、精製用担体、触媒担体、培養担体等が挙げられる。また、スキン層がないために電解液を透過可能であることを利用して、樹脂多孔質体を、二次電池用のセパレータとして使用することができる。樹脂多孔質体を、セパレータ用途に適用する場合には、活物質層の上に直接セパレータを形成できるため、セパレータの製造面において有利である。
したがって、上記の製造方法は、非水溶性高分子の良溶媒および当該非水溶性高分子の貧溶媒を含有する混合溶媒に、当該非水溶性高分子が溶解した溶液を調製する工程と、当該調製した溶液を、電極の活物質層上に塗工する工程と、当該塗工された溶液を、乾燥して当該混合溶媒を除去する工程とを包含し、当該貧溶媒の沸点が、当該良溶媒の沸点よりも高く、当該塗工された溶液の乾燥を、過熱水蒸気を用いて行う、二次電池の電極一体型セパレータの製造方法として応用することができる。
電極が正極である場合には、活物質層(すなわち、正極活物質層)は、正極活物質を含み得る。正極活物質としては、例えばリチウム遷移金属酸化物(例、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5等)、リチウム遷移金属リン酸化合物(例、LiFePO等)等が挙げられる。正極活物質層は、活物質以外の成分、例えば導電材、バインダ、リン酸リチウム等を含み得る。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。
電極が負極である場合には、活物質層(すなわち、負極活物質層)は、負極活物質を含み得る。負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料などが挙げられる。負極活物質層は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。
活物質層は、典型的には集電体上に形成される。集電体の例としては、アルミニウム箔、銅箔等が挙げられる。
各工程の操作については、上述の通りである。この二次電池用の電極一体型セパレータの製造方法は、二次電池の電極一体型セパレータを、少ない工程数で製造することができるという点で非常に優れている。
以上のようにして製造されたセパレータ一体型電極は、公知方法に従い、各種の二次電池に用いることができる。二次電池として好適には、リチウム二次電池であり、当該リチウム二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いることができる。
以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
実施例1
サンプル瓶に酢酸セルロース(Aldrich社製、平均分子量50,000)2.1質量部を秤量した。このサンプル瓶に、良溶媒としてのアセトン10質量部を添加した。サンプル瓶を40℃~50℃に加熱して、酢酸セルロースをアセトンに完全に溶解させた。その後、サンプル瓶に、貧溶媒としての水1.5質量部を添加し、撹拌した。このようにして、溶媒をアセトン/水の混合溶媒とする酢酸セルロース溶液を得た。
酢酸セルロース溶液を基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。
上流に熱交換器が接続され、さらにその上流にボイラーが接続されたベルトコンベア式の乾燥炉を用意した。ボイラーで水蒸気を発生させ、水蒸気を熱交換器に送り込み、加熱して過熱水蒸気に変化させた。乾燥炉内の温度を150℃に設定し、この過熱水蒸気を、100kg/hrの流量で乾燥炉内に送り込み、乾燥炉内の温度が150℃で安定するまで待機した。その後、酢酸セルロース溶液が塗布されたアルミニウム箔を乾燥炉内に入れて、60秒間乾燥を行い、アセトン/水の混合溶媒を除去した。このようにして、アルミニウム箔上に酢酸セルロースの多孔質膜を得た。
実施例2
乾燥炉内の温度を200℃に変更した以外は、実施例1と同様にして、酢酸セルロースの多孔質膜を作製した。
比較例1
実施例1で作製した酢酸セルロース溶液を、基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。酢酸セルロース溶液が塗布されたアルミニウム箔を、30℃に設定した熱風乾燥機内に入れて、60秒間乾燥を行って、アセトン/水の混合溶媒を除去した。このようにして、アルミニウム箔上に酢酸セルロースの多孔質膜を得た。
比較例2
実施例1で作製した酢酸セルロース溶液を、基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。酢酸セルロース溶液が塗布されたアルミニウム箔を、60℃に設定した熱風乾燥機内に入れて、60秒間乾燥を行って、アセトン/水の混合溶媒を除去した。このようにして、アルミニウム箔上に酢酸セルロースの多孔質膜を得た。
比較例3
実施例1で作製した酢酸セルロース溶液を、基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。酢酸セルロース溶液が塗布されたアルミニウム箔を、表面温度50℃に設定したホットプレート上に置いて、60秒間乾燥を行って、アセトン/水の混合溶媒を除去した。このようにして、アルミニウム箔上に酢酸セルロースの多孔質膜を得た。
実施例3
サンプル瓶にフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ社製「Kynar-FLEX 2821-00」、グレード:パウダータイプ、以下「P(VDF-HFP)」と記す)1.0質量部を秤量した。このサンプル瓶に、良溶媒としてのメチルエチルケトン(MEK)3.2質量部を添加した。サンプル瓶を40℃~50℃に加熱して、P(VDF-HFP)をMEKに完全に溶解させた。その後、サンプル瓶に、貧溶媒としての1,2-プロパンジオール0.4質量部を添加し、撹拌した。このようにして、溶媒をMEK/プロパンジオールの混合溶媒とするP(VDF-HFP)溶液を得た。
P(VDF-HFP)溶液を基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。
上流に熱交換器が接続され、さらにその上流にボイラーが接続されたベルトコンベア式の乾燥炉を用意した。ボイラーで水蒸気を発生させ、水蒸気を熱交換器に送り込み、加熱して過熱水蒸気に変化させた。乾燥炉内の温度を170℃に設定し、この過熱水蒸気を、100kg/hrの流量で乾燥炉内に送り込み、乾燥炉内の温度が170℃で安定するまで待機した。その後、P(VDF-HFP)溶液が塗布されたアルミニウム箔を乾燥炉内に導入して、60秒間乾燥を行い、MEK/プロパンジオールの混合溶媒を除去した。このようにして、アルミニウム箔上にP(VDF-HFP)の多孔質膜を得た。
実施例4
乾燥炉内の温度を200℃に設定した以外は、実施例3と同様にして、アルミニウム箔上にP(VDF-HFP)の多孔質膜を得た。
比較例4
実施例3で作製したP(VDF-HFP)溶液を、基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。P(VDF-HFP)溶液が塗布されたアルミニウム箔を、100℃に設定した熱風乾燥機内に導入して、60秒間乾燥を行って、MEK/プロパンジオールの混合溶媒を除去した。このようにして、アルミニウム箔上にP(VDF-HFP)の多孔質膜を得た。
比較例5
実施例3で作製したP(VDF-HFP)溶液を、基材としてのアルミニウム箔上にキャスティングにより塗布した。このとき、塗布厚みは200μmであった。P(VDF-HFP)溶液が塗布されたアルミニウム箔を、表面温度80℃に設定したホットプレート上に置いて、60秒間乾燥を行って、MEK/プロパンジオールの混合溶媒を除去した。このようにして、アルミニウム箔上にP(VDF-HFP)の多孔質膜を得た。
〔液浸透評価〕
各実施例および各比較例で得られた多孔質膜の表面にエタノールを滴下して、エタノールが多孔質膜の裏面まで浸透したか否かを目視で評価した。結果を表1に示す。エタノールが多孔質膜の裏面まで浸透する場合には、スキン層がなく全体が多孔質化されていると判断できる。一方、エタノールが浸透しない場合は、多孔質膜の表層部にスキン層が形成されていると判断できる。
〔SEM観察による評価〕
比較例1および実施例1,3で得られた多孔質膜の表面を、走査型電子顕微鏡(SEM)にて観察した。比較例1および実施例1,3で得られた多孔質膜の表面のSEM写真を、それぞれ図3~5に示す。
Figure 2022065253000002
表1の結果が示すように、熱風で乾燥を行った比較例1では、エタノールが多孔質膜の裏面まで浸透しなかった。さらに、SEM画像(図3)に示すように、比較例1で得られた多孔質膜の表面には孔が確認できなかった。このことから、比較例1では、多孔質膜の表面にスキン層が形成されたことがわかる。加えて、熱風の温度を高くした比較例2、および加熱方法をホットプレートに変更した比較例3でも、エタノールが多孔質膜の裏面まで浸透せず、スキン層が形成されたことがわかる。
一方、過熱水蒸気を用いて乾燥を行った実施例1および2では、エタノールが多孔質膜の裏面まで浸透した。さらにSEM画像(図4)に示すように、実施例1および2で得られた多孔質膜の表面に多くの孔が形成されていることが確認できた。このことから、実施例1および2で得られた多孔質膜は、スキン層が形成されることなく多孔質化されたことがわかる。なお、実施例1と実施例2とでは、得られた多孔質膜の多孔質構造に差異は見られなかった。
また、実施例3および4ならびに比較例4および5の結果、加えて図5より、樹脂の種類を変えた場合でも、過熱水蒸気を用いて乾燥を行うことにより、スキン層が形成されることなく多孔質化されたことがわかる。このことから、過熱水蒸気を用いて乾燥を行うことによるスキン層の形成抑制効果は、水が貧溶媒となる樹脂(すなわち、非水溶性高分子)に対して発揮されることがわかる。
上記実施例において、樹脂多孔質体の製造に必要な工程は、非水溶性高分子の溶液の調製と、乾燥による混合溶媒の除去である。よって以上のことから、本発明によれば、非水溶性高分子を用いて、少ない工程数で、スキン層の形成が抑制された樹脂多孔質体を製造できることがわかる。
10 乾燥炉
20 過熱水蒸気導入管
30 第1バルブ
40 熱交換器
50 制御盤
60 水蒸気導入管
70 第2バルブ
80 ボイラー

Claims (4)

  1. 非水溶性高分子の良溶媒および前記非水溶性高分子の貧溶媒を含有する混合溶媒に、前記非水溶性高分子が溶解した溶液を調製する工程と、
    前記溶液を乾燥して前記混合溶媒を除去する工程と、
    を包含し、
    前記貧溶媒の沸点が、前記良溶媒の沸点よりも高く、
    前記溶液の乾燥を、過熱水蒸気を用いて行う、
    樹脂多孔質体の製造方法。
  2. 前記溶液を調製する工程の後であって前記溶液を乾燥する工程の前に、基材の表面上に前記調製した非水溶性高分子の溶液を薄膜状に塗工する工程をさらに包含する、請求項1に記載の製造方法。
  3. 前記基材が、二次電池の電極である、請求項2に記載の製造方法。
  4. 前記非水溶性高分子が、エチレン-ビニルアルコール共重合体、またはフッ化ビニリデン-ヘキサフルオロプロピレン共重合体である、請求項1~3のいずれか1項に記載の製造方法。
JP2020173668A 2020-10-15 2020-10-15 樹脂多孔質体の製造方法 Active JP7258000B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020173668A JP7258000B2 (ja) 2020-10-15 2020-10-15 樹脂多孔質体の製造方法
US17/502,002 US11926723B2 (en) 2020-10-15 2021-10-14 Production method of resin porous material
CN202111200853.6A CN114369283B (zh) 2020-10-15 2021-10-14 树脂多孔体的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020173668A JP7258000B2 (ja) 2020-10-15 2020-10-15 樹脂多孔質体の製造方法

Publications (2)

Publication Number Publication Date
JP2022065253A true JP2022065253A (ja) 2022-04-27
JP7258000B2 JP7258000B2 (ja) 2023-04-14

Family

ID=81137819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020173668A Active JP7258000B2 (ja) 2020-10-15 2020-10-15 樹脂多孔質体の製造方法

Country Status (3)

Country Link
US (1) US11926723B2 (ja)
JP (1) JP7258000B2 (ja)
CN (1) CN114369283B (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008679A1 (en) * 1988-03-07 1989-09-21 Rikagaku Kenkyusho Process for producing porous polymer membrane and composite polymer membrane
WO1998025997A1 (fr) * 1996-12-10 1998-06-18 Daicel Chemical Industries, Ltd. Films poreux, leur procede de production et films stratifies et feuilles d'enregistrement fabriques a l'aide desdits films poreux
JPH1171476A (ja) * 1996-12-10 1999-03-16 Daicel Chem Ind Ltd 多孔質膜およびその製造方法
JP2000143848A (ja) * 1998-11-13 2000-05-26 Daicel Chem Ind Ltd インク受像シート及びその製造方法
JP2000296668A (ja) * 1999-04-14 2000-10-24 Daicel Chem Ind Ltd インク受像シート及びその製造方法
JP2004111157A (ja) * 2002-09-17 2004-04-08 Matsushita Electric Ind Co Ltd 二次電池およびその製造方法
WO2013137237A1 (ja) * 2012-03-12 2013-09-19 三菱レイヨン株式会社 多孔質膜の製造方法、および多孔質膜の乾燥装置
JP2017031299A (ja) * 2015-07-31 2017-02-09 株式会社日本触媒 発泡親水性架橋重合体およびその製造方法
JP2017164726A (ja) * 2016-03-18 2017-09-21 宇部興産株式会社 ポリイミド多孔質膜の製造方法、及びポリイミド多孔質膜
JP2021030666A (ja) * 2019-08-29 2021-03-01 トヨタ自動車株式会社 非水溶性高分子の多孔質体の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671345A (en) * 1969-12-11 1972-06-20 Gen Tire & Rubber Co Poromeric material having a patent leather-type finish and process for making
US5238636A (en) 1988-03-07 1993-08-24 Rikagaku Kenkyusho Processes for producing porous polymer films and composite films
US8147732B2 (en) * 2004-01-20 2012-04-03 Porous Power Technologies, Llc Highly microporous polymers and methods for producing and using the same
JP5567262B2 (ja) 2008-09-08 2014-08-06 帝人株式会社 非水系二次電池用セパレータ、その製造方法および非水系二次電池
JP2011236292A (ja) 2010-05-07 2011-11-24 Kri Inc ポリフッ化ビニリデン多孔質体
KR20140025579A (ko) * 2011-06-22 2014-03-04 다이킨 고교 가부시키가이샤 고분자 다공질막 및 고분자 다공질막의 제조 방법
CN104272502B (zh) 2012-06-28 2016-12-21 株式会社吴羽 非水电解质二次电池用树脂膜的制造方法以及非水电解质二次电池用树脂膜
JP7148422B2 (ja) 2019-01-22 2022-10-05 トヨタ自動車株式会社 電極一体型セパレータの製造方法
JP7303987B2 (ja) * 2020-03-06 2023-07-06 トヨタ自動車株式会社 セパレータ一体型電極の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008679A1 (en) * 1988-03-07 1989-09-21 Rikagaku Kenkyusho Process for producing porous polymer membrane and composite polymer membrane
WO1998025997A1 (fr) * 1996-12-10 1998-06-18 Daicel Chemical Industries, Ltd. Films poreux, leur procede de production et films stratifies et feuilles d'enregistrement fabriques a l'aide desdits films poreux
JPH1171476A (ja) * 1996-12-10 1999-03-16 Daicel Chem Ind Ltd 多孔質膜およびその製造方法
JP2000143848A (ja) * 1998-11-13 2000-05-26 Daicel Chem Ind Ltd インク受像シート及びその製造方法
JP2000296668A (ja) * 1999-04-14 2000-10-24 Daicel Chem Ind Ltd インク受像シート及びその製造方法
JP2004111157A (ja) * 2002-09-17 2004-04-08 Matsushita Electric Ind Co Ltd 二次電池およびその製造方法
WO2013137237A1 (ja) * 2012-03-12 2013-09-19 三菱レイヨン株式会社 多孔質膜の製造方法、および多孔質膜の乾燥装置
JP2017031299A (ja) * 2015-07-31 2017-02-09 株式会社日本触媒 発泡親水性架橋重合体およびその製造方法
JP2017164726A (ja) * 2016-03-18 2017-09-21 宇部興産株式会社 ポリイミド多孔質膜の製造方法、及びポリイミド多孔質膜
JP2021030666A (ja) * 2019-08-29 2021-03-01 トヨタ自動車株式会社 非水溶性高分子の多孔質体の製造方法

Also Published As

Publication number Publication date
US11926723B2 (en) 2024-03-12
CN114369283B (zh) 2023-08-18
US20220119613A1 (en) 2022-04-21
JP7258000B2 (ja) 2023-04-14
CN114369283A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
KR102335587B1 (ko) 이차전지용 세퍼레이터 및 이차전지
CN112646423B (zh) 多孔质体的制造方法
CN112442210A (zh) 非水溶性高分子的多孔质体的制造方法
KR102520618B1 (ko) 세퍼레이터 일체형 전극의 제조 방법
KR102544659B1 (ko) 수지 다공질체의 제조 방법
CN114369282B (zh) 树脂多孔体的制造方法
JP7465428B2 (ja) 樹脂多孔質体の製造方法
JP7258000B2 (ja) 樹脂多孔質体の製造方法
JP7276691B2 (ja) セパレータ一体型電極の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7258000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150