JP2022064377A - Battery separator, electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing battery separator - Google Patents

Battery separator, electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing battery separator Download PDF

Info

Publication number
JP2022064377A
JP2022064377A JP2020172967A JP2020172967A JP2022064377A JP 2022064377 A JP2022064377 A JP 2022064377A JP 2020172967 A JP2020172967 A JP 2020172967A JP 2020172967 A JP2020172967 A JP 2020172967A JP 2022064377 A JP2022064377 A JP 2022064377A
Authority
JP
Japan
Prior art keywords
heat
particles
battery separator
organic particles
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020172967A
Other languages
Japanese (ja)
Inventor
拓真 薮▲さき▼
Takuma Yabusaki
潤 辻本
Jun Tsujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2020172967A priority Critical patent/JP2022064377A/en
Publication of JP2022064377A publication Critical patent/JP2022064377A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

To provide a battery separator capable of successfully exhibiting both heat resistance and DRY adhesiveness, and also capable of giving good output characteristics to a nonaqueous secondary battery by the loss of adhesiveness after electrolyte injection.SOLUTION: There is provided a battery separator including a polyolefin microporous membrane and a porous layer laminated on at least one face of the polyolefin microporous membrane. The porous layer includes organic particles and heat resistant particles. The organic particles are polyethylene and have a melting point of 60°C or more and 90°C or less. When the cross section of the porous layer is observed using a scanning electron microscope, the thickness of a heat resistant particle layer is 1.5 μm or more and 5.0 μm or less on one face where heat resistant particles exist, the magnification of number average particle size of the organic particles with respect to the thickness of the heat resistant particle layer is 1.1 times or more and 2.0 times or less, and the porous layer includes 10 pts.vol. or more and 40 pts.vol. or less of the organic particles with respect to 100 pts.vol. of the total of the organic particles and the heat resistant particles.SELECTED DRAWING: None

Description

本発明は電池用セパレータ、電極体、非水電解質二次電池、及び電池用セパレータの製造方法に関する。 The present invention relates to a battery separator, an electrode body, a non-aqueous electrolyte secondary battery, and a method for manufacturing a battery separator.

非水電解質二次電池、中でも、リチウムイオン二次電池は、携帯電話や携帯情報端末等の小型電子機器に使用されて広く普及している。非水電解質二次電池の形態としては、例えば、円筒型電池、角型電池、ラミネート型電池等が挙げられる。一般に、これらの電池は、正極と負極とが電池用セパレータを介して配置された電極体と、非水電解液とが外装体に収納された構成を有する。電極体の構造としては、例えば、正極と負極とをセパレータを介して積層した積層電極体、正極と負極とを電池用セパレータを介して渦巻き状に巻回した巻回電極体などが挙げられる。
従来、電池用セパレータとしては、主にポリオレフィン樹脂からなる微多孔膜(ポリオレフィン微多孔膜ともいう)が使用されている。ポリオレフィン微多孔膜は、電解液含浸によりイオン透過性を有し、電気絶縁性、耐電解液性及び耐酸化性に優れ、電池の異常発熱時に120~150℃程度の温度においてセパレータの細孔を閉塞することにより、電流の流れを遮断して、発火などを防ぐことができる。 近年、電池用セパレータにおいて、ポリオレフィン微多孔膜の一方又は両方の面に機能層を設けることで安全性を向上させる試みがなされている。
Non-aqueous electrolyte secondary batteries, especially lithium ion secondary batteries, are widely used in small electronic devices such as mobile phones and personal digital assistants. Examples of the form of the non-aqueous electrolyte secondary battery include a cylindrical battery, a square battery, a laminated battery and the like. Generally, these batteries have a configuration in which a positive electrode and a negative electrode are arranged via a battery separator, and a non-aqueous electrolytic solution is housed in an outer body. Examples of the structure of the electrode body include a laminated electrode body in which a positive electrode and a negative electrode are laminated via a separator, a wound electrode body in which a positive electrode and a negative electrode are spirally wound via a battery separator, and the like.
Conventionally, as a separator for a battery, a microporous membrane mainly made of a polyolefin resin (also referred to as a polyolefin microporous membrane) has been used. The microporous polyolefin film has ion permeability due to impregnation with an electrolytic solution, is excellent in electrical insulation, electrolytic solution resistance and oxidation resistance, and forms the pores of the separator at a temperature of about 120 to 150 ° C. when the battery generates abnormal heat. By blocking, the flow of electric current can be cut off and ignition or the like can be prevented. In recent years, in battery separators, attempts have been made to improve safety by providing a functional layer on one or both surfaces of a microporous polyolefin membrane.

例えば特許文献1には、多孔膜の少なくとも片面に、無機フィラーと樹脂バインダーとを含む多孔層を備えることで140℃における熱収縮率を5.0%未満に抑制し、高い安全性を備えた非水電解液電池を提供することができるとの記載がある。
又、特許文献2には、ポリオレフィン系多孔フィルムの少なくとも片面に、セルロース系樹脂と無機粒子と融点が100~140℃の熱可塑性樹脂粒子を含む粒子含有層を設けることで耐熱性に加えて多孔膜のシャットダウン温度を低温化し、優れた電池性能と安全性を両立できることが提案されている。
For example, Patent Document 1 provides a porous layer containing an inorganic filler and a resin binder on at least one surface of the porous membrane, thereby suppressing the heat shrinkage rate at 140 ° C. to less than 5.0% and providing high safety. There is a statement that a non-aqueous electrolyte battery can be provided.
Further, in Patent Document 2, a particle-containing layer containing a cellulose-based resin, inorganic particles, and thermoplastic resin particles having a melting point of 100 to 140 ° C. is provided on at least one surface of the polyolefin-based porous film, thereby providing porous in addition to heat resistance. It has been proposed that the shutdown temperature of the film can be lowered to achieve both excellent battery performance and safety.

他方、リチウムイオン二次電池は充放電に伴う電極の膨潤・収縮によりセパレータと電極の界面での部分的な遊離が起こりやすい。その結果、電池の膨れ、電池内部の抵抗増大、サイクル性能の低下に繋がる。そのため、電解液を注入後の電池内での電極との接着性を発揮する電池用セパレータが近年提案されている。例えば、特許文献3には無機粒子と、電解液に対して膨潤可能なコアシェル構造を有する有機粒子を含有する非水系二次電池機能層用組成物を電池用セパレータに用いることで、保護機能と有機粒子の膨潤に伴う電極への接着機能を同時に発現させることが提案されている。 On the other hand, in a lithium ion secondary battery, partial release at the interface between the separator and the electrode tends to occur due to swelling and contraction of the electrode due to charging and discharging. As a result, the battery swells, the resistance inside the battery increases, and the cycle performance deteriorates. Therefore, a battery separator that exhibits adhesiveness to an electrode in a battery after injecting an electrolytic solution has been proposed in recent years. For example, Patent Document 3 provides a protective function by using a composition for a non-aqueous secondary battery functional layer containing inorganic particles and organic particles having a core-shell structure that can swell with respect to an electrolytic solution as a battery separator. It has been proposed to simultaneously develop the function of adhering to the electrode due to the swelling of organic particles.

特開2018-195564号公報Japanese Unexamined Patent Publication No. 2018-195564 特開2011-168048号公報Japanese Unexamined Patent Publication No. 2011-168408 WO2016/152026 A1WO2016 / 152626 A1

リチウムイオン二次電池の製造工程において、捲回電極体の搬送性向上、歩留まり抑制のために電解液がない状態で電極と電池用セパレータを接着させる手法がある。そこで、電池用セパレータには従来の耐熱性に加えて電極との接着性(電解液が無い状態の接着であるためDRY接着性とも言う)が要求される。一方で、電極と電池用セパレータをDRY接着させ、その接着力が電解液注液後の電池内部でも維持されると、接着している電極活物質表面が塞がれた状態となり、リチウムイオンの移動が妨げられることで電池の出力特性低下に繋がる。
本発明は、上記課題を鑑みたものであり、耐熱性とDRY接着性の双方に優れ、且つ、電池の出力特性にも優れた電池用セパレータと電池用セパレータの製造方法、電池用セパレータを用いた電極体及び二次電池を提供することを目的とする。
In the manufacturing process of a lithium ion secondary battery, there is a method of adhering an electrode and a battery separator in the absence of an electrolytic solution in order to improve the transportability of the wound electrode body and suppress the yield. Therefore, in addition to the conventional heat resistance, the battery separator is required to have adhesiveness to the electrode (also referred to as DRY adhesiveness because it is an adhesive without an electrolytic solution). On the other hand, when the electrode and the battery separator are DRY-bonded and the adhesive strength is maintained inside the battery after injecting the electrolytic solution, the surface of the bonded electrode active material is closed and the lithium ion The hindrance to movement leads to deterioration of the output characteristics of the battery.
The present invention has been made in view of the above problems, and uses a battery separator, a method for manufacturing a battery separator, and a battery separator, which are excellent in both heat resistance and DRY adhesiveness and also have excellent battery output characteristics. It is an object of the present invention to provide an electrode body and a secondary battery which have been used.

本発明者らは、上記課題を解決するため、鋭意検討を重ねた結果、耐熱粒子と特定の融点備えたポリエチレンからなる有機粒子を含む多孔層を備え、前記多孔層における有機粒子の比率、耐熱粒子層の厚み、および耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率を鋭意検討することで上記課題を解決できることを見出し、本発明を完成するに至った。より詳しくは、ポリオレフィン微多孔膜の少なくとも一方の面に耐熱粒子と、耐熱粒子層の厚み以上のポリエチレン粒子を用いて多孔層を構築することで、耐熱性とDRY接着性の双方を良好に発揮することができると共に、電解液注液後に接着性が喪失することで非水系二次電池に対して低抵抗を付与可能な電池用セパレータに関する。
すなわち、本発明は、以下の構成を有する。
(1)ポリオレフィン微多孔膜と、
前記ポリオレフィン微多孔膜の少なくとも一方の面に積層された多孔層と、を備える電池用セパレータであって、
多孔層は有機粒子と、耐熱粒子を含み、
前記有機粒子はポリエチレンであり、
前記有機粒子は融点が60℃以上90℃以下であり、
走査型電子顕微鏡を用いて前記多孔層の断面を観察し、耐熱粒子の存在する一方の面について耐熱粒子層の厚みが1.5μm以上、5.0μm以下であり、
前記耐熱粒子層の厚みに対する前記有機粒子の平均粒径の倍率が1.1倍以上、2.0倍以下であり、
前記多孔層における有機粒子と耐熱粒子の合計100体積部に対して有機粒子が10体積部以上、40体積部以下である。
(2)耐熱粒子がアルミナ、ベーマイトもしくは硫酸バリウムを含む。
(3)正極と、負極と、前記(1)又は(2)に記載の電池用セパレータと、を備える電極体。
(4)前記(1)、又は(2)に記載の電池用セパレータを用いた非水系二次電池。
(5)前記(1)又は(2)に記載の電池用セパレータの製造方法であって、以下の工程(a)~(e)を順次含む、電池用セパレータの製造方法。
(a)水を主成分とする溶媒に分散剤を添加後、更に耐熱粒子を添加して攪拌し、混合液を得る工程。
(b)前記混合液をビーズミル分散機にて分散処理を施し、マスターバッチ液を得る工程。
(c)前記マスターバッチ液に前記有機粒子、バインダーを添加し、更に、その他添加剤を添加してコーティング組成物を得る工程。
(d)ポリオレフィン微多孔膜の少なくとも片面にコーティング組成物をコーティングする工程。
(e)前記コーティング後、溶媒をドライヤーで乾燥させ、多孔層を形成する工程。
As a result of diligent studies to solve the above problems, the present inventors have provided a porous layer containing organic particles made of heat-resistant particles and polyethylene having a specific melting point, and the ratio of organic particles in the porous layer and heat resistance. We have found that the above problems can be solved by diligently examining the ratio of the average particle size of the organic particles to the thickness of the particle layer and the thickness of the heat-resistant particle layer, and have completed the present invention. More specifically, by constructing a porous layer using heat-resistant particles and polyethylene particles having a thickness equal to or larger than the thickness of the heat-resistant particle layer on at least one surface of the polyolefin microporous film, both heat resistance and DRY adhesiveness are satisfactorily exhibited. The present invention relates to a battery separator capable of imparting low resistance to a non-aqueous secondary battery by losing adhesiveness after injecting an electrolytic solution.
That is, the present invention has the following configuration.
(1) Polyolefin microporous membrane and
A battery separator comprising a porous layer laminated on at least one surface of the polyolefin microporous membrane.
The porous layer contains organic particles and heat-resistant particles,
The organic particles are polyethylene,
The organic particles have a melting point of 60 ° C. or higher and 90 ° C. or lower, and have a melting point of 60 ° C. or higher and 90 ° C. or lower.
The cross section of the porous layer was observed using a scanning electron microscope, and the thickness of the heat-resistant particle layer was 1.5 μm or more and 5.0 μm or less on one surface where the heat-resistant particles were present.
The ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 1.1 times or more and 2.0 times or less.
The number of organic particles is 10 parts by volume or more and 40 parts by volume or less with respect to a total of 100 parts by volume of organic particles and heat-resistant particles in the porous layer.
(2) The heat-resistant particles contain alumina, boehmite or barium sulfate.
(3) An electrode body including a positive electrode, a negative electrode, and the battery separator according to (1) or (2) above.
(4) A non-aqueous secondary battery using the battery separator according to (1) or (2) above.
(5) The method for manufacturing a battery separator according to (1) or (2) above, which comprises the following steps (a) to (e) in sequence.
(A) A step of adding a dispersant to a solvent containing water as a main component, further adding heat-resistant particles, and stirring the mixture to obtain a mixed solution.
(B) A step of subjecting the mixed liquid to a dispersion treatment with a bead mill disperser to obtain a masterbatch liquid.
(C) A step of adding the organic particles and a binder to the masterbatch liquid, and further adding other additives to obtain a coating composition.
(D) A step of coating at least one surface of the polyolefin microporous membrane with the coating composition.
(E) A step of forming a porous layer by drying the solvent with a dryer after the coating.

本発明によれば、耐熱性及び電極とセパレータとのDRY接着性に優れ、且つ、電池の出力特性に優れた電池用セパレータ、電池用セパレータを用いた電極体及び二次電池及び電池用セパレータの製造方法を提供する。 According to the present invention, a battery separator, an electrode body using the battery separator, a secondary battery, and a battery separator, which are excellent in heat resistance, DRY adhesion between the electrode and the separator, and excellent battery output characteristics. Provide a manufacturing method.

1.電池用セパレータ
[ポリオレフィン微多孔膜]
本発明の実施形態におけるポリオレフィン微多孔膜の厚さは、電池用セパレータの機能を有する限りにおいて特に制限されるものではないが、25μm以下が好ましい。より好ましくは7μm以上、20μm以下であり、更に好ましくは9μm以上、16μm以下である。ポリオレフィン微多孔膜の厚さが25μm以下であると、実用的な膜強度と孔閉塞機能を両立させることができ、電池ケースの単位容積当たりの面積が制約されず、電池の高容量化に適する。
1. 1. Battery separator
[Polyolefin microporous membrane]
The thickness of the microporous polyolefin membrane in the embodiment of the present invention is not particularly limited as long as it has the function of a battery separator, but is preferably 25 μm or less. It is more preferably 7 μm or more and 20 μm or less, and further preferably 9 μm or more and 16 μm or less. When the thickness of the microporous polyolefin membrane is 25 μm or less, it is possible to achieve both practical membrane strength and pore closing function, the area per unit volume of the battery case is not restricted, and it is suitable for increasing the capacity of the battery. ..

ポリオレフィン微多孔膜の透気抵抗度は300sec/100ccAir以下が好ましい。より好ましくは200sec/100ccAir以下であり、更に好ましくは150sec/100ccAir以下である。好ましい下限は特に限定するものではない。透気抵抗度が300sec/100ccAir以下であると、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)及び電池の寿命(電解液の保持量と密接に関係する)において十分であり、電池としての機能を十分に発揮することができ、十分な機械的強度と絶縁性が得られることで充放電時に短絡が起こる可能性が低くなる。 The air permeability resistance of the polyolefin microporous membrane is preferably 300 sec / 100 ccAir or less. It is more preferably 200 sec / 100 cc Air or less, and even more preferably 150 sec / 100 cc Air or less. The preferred lower limit is not particularly limited. When the air permeation resistance is 300 sec / 100 ccAir or less, sufficient battery charge / discharge characteristics, particularly ion permeability (charge / discharge operating voltage) and battery life (closely related to the amount of electrolyte retained) are sufficient. Therefore, the function as a battery can be fully exhibited, and the possibility of a short circuit during charging / discharging is reduced by obtaining sufficient mechanical strength and insulating properties.

ポリオレフィン微多孔膜の空孔率は30%以上、70%以下が好ましい。より好ましくは35%以上、60%以下であり、更に好ましくは40%以上、55%以下である。空孔率が30%以上、70%以下であると、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)及び電池の寿命(電解液の保持量と密接に関係する)において十分であり、電池としての機能を十分に発揮することができ、十分な機械的強度と絶縁性が得られることで充放電時に短絡が起こる可能性が低くなる。 The porosity of the microporous polyolefin membrane is preferably 30% or more and 70% or less. It is more preferably 35% or more and 60% or less, and further preferably 40% or more and 55% or less. When the vacancy rate is 30% or more and 70% or less, sufficient battery charge / discharge characteristics, particularly ion permeability (charge / discharge operating voltage) and battery life (closely related to the amount of electrolytic solution retained). It is sufficient, can fully exert its function as a battery, and can obtain sufficient mechanical strength and insulating property, so that the possibility of a short circuit during charging / discharging is reduced.

ポリオレフィン微多孔膜を構成するポリオレフィン樹脂は特に制限されるものではないが、ポリエチレンやポリプロピレンが好ましい。又、単一物又は2種以上の異なるポリオレフィン樹脂の混合物、例えばポリエチレンとポリプロピレンとの混合物であってもよいし、異なるオレフィンの共重合体であってもよい。電気絶縁性、及びイオン透過性等の基本特性に加え、電池異常昇温時において、電流を遮断し、過度の昇温を抑制する孔閉塞効果を具備しているからである。 The polyolefin resin constituting the polyolefin microporous film is not particularly limited, but polyethylene and polypropylene are preferable. Further, it may be a single substance or a mixture of two or more different polyolefin resins, for example, a mixture of polyethylene and polypropylene, or a copolymer of different olefins. This is because, in addition to basic characteristics such as electrical insulation and ion permeability, it has a hole closing effect that cuts off the current and suppresses an excessive temperature rise when the battery temperature rises abnormally.

中でも、ポリエチレンが優れた孔閉塞性能の観点から特に好ましい。以下、本発明で用いるポリオレフィン樹脂としてポリエチレンを例に詳述するが、本発明の実施形態はこれに限定されるものではない。 Of these, polyethylene is particularly preferable from the viewpoint of excellent pore closing performance. Hereinafter, polyethylene will be described in detail as an example of the polyolefin resin used in the present invention, but the embodiments of the present invention are not limited thereto.

ポリエチレンとしては、例えば、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレン等が挙げられる。又、重合触媒にも特に制限はなく、チーグラー・ナッタ系触媒やフィリップス系触媒やメタロセン系触媒等が挙げられる。これらのポリエチレンはエチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外のα-オレフィンとしてはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、(メタ)アクリル酸、(メタ)アクリル酸のエステル、スチレン等が好適である。 Examples of polyethylene include ultra-high molecular weight polyethylene, high-density polyethylene, medium-density polyethylene, low-density polyethylene and the like. The polymerization catalyst is also not particularly limited, and examples thereof include Ziegler-Natta catalysts, Philips catalysts, and metallocene catalysts. These polyethylenes may be not only ethylene homopolymers but also copolymers containing a small amount of other α-olefins. Examples of α-olefins other than ethylene include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, (meth) acrylic acid, (meth) acrylic acid ester, and styrene. Is preferable.

ポリエチレンは単一物でもよいが、2種以上のポリエチレンからなる混合物であることが好ましい。ポリエチレン混合物としては重量平均分子量(Mw)の異なる2種類以上の超高分子量ポリエチレン同士の混合物、同様な高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンの混合物を用いてもよいし、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンからなる群から選ばれる2種以上ポリエチレンの混合物を用いてもよい。 The polyethylene may be a single material, but is preferably a mixture of two or more types of polyethylene. As the polyethylene mixture, a mixture of two or more types of ultra-high molecular weight polyethylenes having different weight average molecular weights (Mw), a similar mixture of high-density polyethylene, medium-density polyethylene and low-density polyethylene may be used, or ultra-high molecular weight polyethylene may be used. , A mixture of two or more polyethylenes selected from the group consisting of high density polyethylene, medium density polyethylene and low density polyethylene may be used.

ポリオレフィン微多孔膜は、充放電反応の異常時に孔が閉塞する機能を有することが必要である。従って、構成する樹脂の融点は70℃以上、150℃以下が好ましい。より好ましくは80℃以上、140℃以下、更に好ましくは100℃以上、130℃以下である。構成する樹脂の融点が70℃以上、150℃以下であると、正常使用時に孔閉塞機能が発現してしまって電池が使用不可になることがなく、又、異常反応時に孔閉塞機能が発現することで安全性を確保できる。 The microporous polyolefin membrane needs to have the function of closing the pores when the charge / discharge reaction is abnormal. Therefore, the melting points of the constituent resins are preferably 70 ° C. or higher and 150 ° C. or lower. It is more preferably 80 ° C. or higher and 140 ° C. or lower, and further preferably 100 ° C. or higher and 130 ° C. or lower. When the melting point of the constituent resin is 70 ° C. or higher and 150 ° C. or lower, the pore closing function is not exhibited during normal use and the battery is not disabled, and the pore closing function is exhibited during an abnormal reaction. This can ensure safety.

[ポリオレフィン微多孔膜の製造方法]
ポリオレフィン微多孔膜の製造方法としては、所望の特性を有するポリオレフィン微多孔膜が製造できれば、特に限定されず、従来公知の方法を用いることができる。ポリオレフィン微多孔膜の製造方法は、例えば、日本国特許第2132327号公報および日本国特許第3347835号公報、国際公開2006/137540号等に記載された方法を用いることができる。以下、ポリオレフィン微多孔膜の製造方法の一例について、説明する。尚、ポリオレフィン微多孔膜の製造方法は、下記の方法に限定されない。
[Manufacturing method of microporous polyolefin membrane]
The method for producing the microporous polyolefin membrane is not particularly limited as long as the microporous polyolefin membrane having desired characteristics can be produced, and a conventionally known method can be used. As a method for producing a microporous polyolefin membrane, for example, the methods described in Japanese Patent No. 2132327, Japanese Patent No. 3347835, International Publication No. 2006/137540 and the like can be used. Hereinafter, an example of a method for producing a microporous polyolefin membrane will be described. The method for producing the microporous polyolefin membrane is not limited to the following method.

ポリオレフィン微多孔膜の製造方法は、下記の工程(1)~(5)を含むことができ、更に下記の工程(6)~(8)の少なくとも1つの工程を含むこともできる。 The method for producing a microporous polyolefin membrane can include the following steps (1) to (5), and can further include at least one of the following steps (6) to (8).

(1)前記ポリオレフィン樹脂と成膜用溶剤とを溶融混練し、ポリオレフィン溶液を調製する工程
(2)前記ポリオレフィン溶液を押出し、冷却しゲル状シートを形成する工程
(3)前記ゲル状シートを延伸する第1の延伸工程
(4)前記延伸後のゲル状シートから成膜用溶剤を除去する工程
(5)前記成膜用溶剤除去後のシートを乾燥する工程
(6)前記乾燥後のシートを延伸する第2の延伸工程
(7)前記乾燥後のシートを熱処理する工程
(8)前記延伸工程後のシートに対して架橋処理及び/又は親水化処理する工程
以下、各工程についてそれぞれ説明する。
(1) A step of melt-kneading the polyolefin resin and a film-forming solvent to prepare a polyolefin solution (2) A step of extruding the polyolefin solution and cooling to form a gel-like sheet (3) Stretching the gel-like sheet First stretching step (4) Step of removing the film-forming solvent from the stretched gel-like sheet (5) Step of drying the sheet after removing the film-forming solvent (6) The dried sheet Second stretching step of stretching (7) Step of heat-treating the dried sheet (8) Step of cross-linking and / or hydrophilizing the sheet after the stretching step Each step will be described below.

(1)ポリオレフィン溶液の調製工程
ポリオレフィン樹脂に、それぞれ適当な成膜用溶剤を添加した後、溶融混練し、ポリオレフィン溶液を調製する。溶融混練方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
(1) Preparation Step of Polyolefin Solution After adding an appropriate film-forming solvent to each of the polyolefin resins, melt-knead them to prepare a polyolefin solution. As the melt-kneading method, for example, a method using a twin-screw extruder described in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Since the melt-kneading method is known, the description thereof will be omitted.

ポリオレフィン溶液中、ポリオレフィン樹脂と成膜用溶剤との配合割合は、特に限定されるものではないが、ポリオレフィン樹脂20~30質量部に対して、成膜用溶剤70~80質量部であることが好ましい。ポリオレフィン樹脂の割合が上記範囲内であると、ポリオレフィン溶液を押し出す際にダイ出口でスウェルやネックインが防止でき、押出し成形体(ゲル状成形体)の成形性及び自己支持性が良好となる。 The mixing ratio of the polyolefin resin and the film-forming solvent in the polyolefin solution is not particularly limited, but may be 70 to 80 parts by mass of the film-forming solvent with respect to 20 to 30 parts by mass of the polyolefin resin. preferable. When the proportion of the polyolefin resin is within the above range, swells and neck-ins can be prevented at the die outlet when the polyolefin solution is extruded, and the formability and self-supporting property of the extruded body (gel-like molded body) are improved.

(2)ゲル状シートの形成工程
ポリオレフィン溶液を押出機からダイに送給し、シート状に押し出す。同一又は異なる組成の複数のポリオレフィン溶液を、押出機から一つのダイに送給し、そこで層状に積層し、シート状に押出してもよい。
(2) Gel-like sheet forming step The polyolefin solution is fed from the extruder to the die and extruded into a sheet. A plurality of polyolefin solutions having the same or different composition may be fed from an extruder to one die, where the layers may be laminated and extruded into a sheet.

押出方法はフラットダイ法及びインフレーション法のいずれでもよい。押出し温度は140~250℃好ましく、押出速度は0.2~15m/分が好ましい。ポリオレフィン溶液の各押出量を調節することにより、膜厚を調節することができる。押出方法としては、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。 The extrusion method may be either a flat die method or an inflation method. The extrusion temperature is preferably 140 to 250 ° C., and the extrusion speed is preferably 0.2 to 15 m / min. The film thickness can be adjusted by adjusting each extrusion amount of the polyolefin solution. As the extrusion method, for example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used.

得られた押出し成形体を冷却することによりゲル状シートを形成する。ゲル状シートの形成方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下で行うのが好ましい。冷却により、成膜用溶剤によって分離されたポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適したゲル状シートとなる。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。 A gel-like sheet is formed by cooling the obtained extruded body. As a method for forming the gel-like sheet, for example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Cooling is preferably performed at a rate of 50 ° C./min or higher, at least up to the gelation temperature. Cooling is preferably performed at 25 ° C. or lower. By cooling, the microphase of the polyolefin separated by the film-forming solvent can be immobilized. When the cooling rate is within the above range, the crystallinity is maintained in an appropriate range, and a gel-like sheet suitable for stretching is obtained. As a cooling method, a method of contacting with a refrigerant such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, but it is preferable to contact with a roll cooled with the refrigerant for cooling.

(3)第1の延伸工程
次に、得られたゲル状シートを少なくとも一軸方向に延伸する。ゲル状シートは成膜用溶剤を含むので、均一に延伸できる。ゲル状シートは、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば、同時二軸延伸及び逐次延伸の組合せ)のいずれで
もよい。
(3) First Stretching Step Next, the obtained gel-like sheet is stretched at least in the uniaxial direction. Since the gel-like sheet contains a film-forming solvent, it can be uniformly stretched. After heating, the gel-like sheet is preferably stretched at a predetermined magnification by a tenter method, a roll method, an inflation method, or a combination thereof. The stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferable. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching and multi-stage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.

本工程における延伸倍率(面積延伸倍率)は、9倍以上が好ましく、16倍以上がより好ましく、25倍以上が特に好ましい。又、機械方向(MD)及び幅方向(TD)での延伸倍率は、互いに同じでも異なってもよい。尚、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の面積延伸倍率のことをいう。 The stretching ratio (area stretching ratio) in this step is preferably 9 times or more, more preferably 16 times or more, and particularly preferably 25 times or more. Further, the draw ratios in the mechanical direction (MD) and the width direction (TD) may be the same or different from each other. The stretching ratio in this step refers to the area stretching ratio of the microporous membrane immediately before being subjected to the next step, based on the microporous membrane immediately before this step.

本工程の延伸温度は、ポリオレフィン樹脂の結晶分散温度(Tcd)~Tcd+30℃の範囲内にするのが好ましく、結晶分散温度(Tcd)+5℃~結晶分散温度(Tcd)+28℃の範囲内にするのがより好ましく、Tcd+10℃~Tcd+26℃の範囲内にするのが特に好ましい。例えば、ポリオレフィン樹脂としてポリエチレン系樹脂を用いる場合は、延伸温度を90~140℃とするのが好ましく、より好ましくは100~130
℃にする。結晶分散温度(Tcd)は、ASTM D4065による動的粘弾性の温度特性測定により求められる。
The stretching temperature in this step is preferably in the range of the crystal dispersion temperature (Tcd) to Tcd + 30 ° C. of the polyolefin resin, and is in the range of the crystal dispersion temperature (Tcd) + 5 ° C. to the crystal dispersion temperature (Tcd) + 28 ° C. Is more preferable, and it is particularly preferable that the temperature is in the range of Tcd + 10 ° C to Tcd + 26 ° C. For example, when a polyethylene resin is used as the polyolefin resin, the stretching temperature is preferably 90 to 140 ° C, more preferably 100 to 130.
Bring to ℃. The crystal dispersion temperature (Tcd) is determined by measuring the temperature characteristics of dynamic viscoelasticity with ASTM D4065.

以上のような延伸によりポリオレフィンラメラ間に開裂が起こり、ポリオレフィン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに細孔が拡大するが、適切な条件で延伸を行うと、貫通孔径を制御し、更に薄い膜厚でも高い空孔率を有する事が可能となる。 Due to the above stretching, cleavage occurs between the polyolefin lamellas, the polyolefin phase becomes finer, and a large number of fibrils are formed. Fibrils form a three-dimensionally irregularly connected network structure. The mechanical strength is improved and the pores are expanded by stretching, but if stretching is performed under appropriate conditions, it is possible to control the through-hole diameter and have a high porosity even with a thinner film thickness.

所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより機械的強度に優れた微多孔膜が得られる。その方法の詳細は日本国特許第3347854号公報に記載されている。 Depending on the desired physical properties, a temperature distribution may be provided in the film thickness direction for stretching, whereby a microporous film having excellent mechanical strength can be obtained. Details of the method are described in Japanese Patent No. 3347854.

(4)成膜用溶剤の除去
洗浄溶媒を用いて、成膜用溶剤の除去(洗浄)を行う。ポリオレフィン相は成膜用溶剤相と相分離しているので、成膜用溶剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する多孔質の膜が得られる。洗浄溶媒およびこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号公報や特開2002-256099号公報に開示
の方法を利用することができる。
(4) Removal of film-forming solvent The film-forming solvent is removed (cleaned) using a cleaning solvent. Since the polyolefin phase is phase-separated from the film-forming solvent phase, when the film-forming solvent is removed, it is composed of fibrils that form a fine three-dimensional network structure, and pores (voids) that communicate irregularly in three dimensions. A porous membrane having the above is obtained. Since the cleaning solvent and the method for removing the film-forming solvent using the cleaning solvent are known, the description thereof will be omitted. For example, the method disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.

(5)乾燥
成膜用溶剤を除去した微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥温度はポリオレフィン樹脂の結晶分散温度(Tcd)以下であることが好ましく、特にTcdより5℃以上低いことが好ましい。乾燥は、微多孔膜を100質量部(乾燥質量)として、残存洗浄溶媒が5質量部以下になるまで行うのが好ましく、3質量部以下になるまで行うのがより好ましい。残存洗浄溶媒が上記範囲内であると、後段の微多孔膜の延伸工程及び
熱処理工程を行ったときに微多孔膜の空孔率が維持され、イオン透過性の悪化が抑制される。
(5) Drying The microporous film from which the film-forming solvent has been removed is dried by a heat-drying method or an air-drying method. The drying temperature is preferably not less than the crystal dispersion temperature (Tcd) of the polyolefin resin, and particularly preferably 5 ° C. or more lower than Tcd. Drying is preferably carried out with the microporous membrane as 100 parts by mass (dry mass) until the residual cleaning solvent is 5 parts by mass or less, and more preferably 3 parts by mass or less. When the residual cleaning solvent is within the above range, the porosity of the microporous membrane is maintained when the subsequent microporous membrane stretching step and heat treatment step are performed, and deterioration of ion permeability is suppressed.

(6)第2の延伸工程
乾燥後の微多孔膜を、少なくとも一軸方向に延伸することが好ましい。微多孔膜の延伸は、加熱しながら上記と同様にテンター法等により行うことができる。延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸及び逐次延伸のいずれでもよい。本工程における延伸温度は、特に限定されるものではないが、通常90~135℃が好ましく、より好ましくは95~130℃である。
(6) Second Stretching Step It is preferable to stretch the microporous membrane after drying at least in the uniaxial direction. The microporous membrane can be stretched by the tenter method or the like in the same manner as described above while heating. The stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either simultaneous biaxial stretching or sequential stretching may be used. The stretching temperature in this step is not particularly limited, but is usually preferably 90 to 135 ° C, more preferably 95 to 130 ° C.

本工程における微多孔膜の延伸の一軸方向への延伸倍率(面積延伸倍率)は、一軸延伸の場合、機械方向又は幅方向に1.0~2.0倍とする。二軸延伸の場合、面積延伸倍率は、下限値が1.0倍であるのが好ましく、より好ましくは1.1倍、更に好ましくは1.2倍である。上限値は、3.5倍が好適である。機械方向及び幅方向に各々1.0~2.0倍とし、機械方向と幅方向での延伸倍率が互いに同じでも異なってもよい。尚、
本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の延伸倍率のことをいう。
In the case of uniaxial stretching, the stretching ratio (area stretching ratio) of the stretching of the microporous membrane in this step is 1.0 to 2.0 times in the mechanical direction or the width direction. In the case of biaxial stretching, the lower limit of the area stretching ratio is preferably 1.0 times, more preferably 1.1 times, and further preferably 1.2 times. The upper limit is preferably 3.5 times. It may be 1.0 to 2.0 times in the machine direction and the width direction, respectively, and the draw ratios in the machine direction and the width direction may be the same or different from each other. still,
The draw ratio in this step refers to the draw ratio of the microporous membrane immediately before being subjected to the next step, based on the microporous membrane immediately before this step.

(7)熱処理
又、乾燥後の微多孔膜は、熱処理を行うことができる。熱処理によって結晶が安定化し、ラメラが均一化される。熱処理方法としては、熱固定処理及び/又は熱緩和処理を用いることができる。熱固定処理とは、膜の寸法が変わらないように保持しながら加熱する熱処理である。熱緩和処理とは、膜を加熱中に機械方向や幅方向に熱収縮させる熱処理である。熱固定処理は、テンター方式又はロール方式により行うのが好ましい。例えば、熱
緩和処理方法としては特開2002-256099号公報に開示の方法が挙げられる。熱処理温度はポリオレフィン樹脂のTcd~Tmの範囲内が好ましく、微多孔膜の延伸温度±5℃の範囲内がより好ましく、微多孔膜の第2の延伸温度±3℃の範囲内が特に好ましい。
(7) Heat treatment Further, the microporous membrane after drying can be heat-treated. The heat treatment stabilizes the crystals and makes the lamella uniform. As the heat treatment method, heat fixing treatment and / or heat relaxation treatment can be used. The heat fixing process is a heat treatment that heats the film while keeping the dimensions of the film unchanged. The heat relaxation treatment is a heat treatment in which the membrane is heat-shrinked in the mechanical direction or the width direction during heating. The heat fixing treatment is preferably performed by a tenter method or a roll method. For example, as a heat relaxation treatment method, the method disclosed in JP-A-2002-256099 can be mentioned. The heat treatment temperature is preferably in the range of Tcd to Tm of the polyolefin resin, more preferably in the range of the stretching temperature of the microporous film ± 5 ° C., and particularly preferably in the range of the second stretching temperature of the microporous film ± 3 ° C.

(8)架橋処理、親水化処理
又、乾燥後の微多孔膜に対して、更に、架橋処理および親水化処理を行うこともできる。例えば、微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射をすることにより、架橋処理を行う。電子線の照射の場合、0.1~100Mradの電子線量が好ましく、100~300kVの加速電圧が好ましい。架橋処理により微多孔膜のメルトダウン温度が上昇する。又、親水化処理は、モノマーグラフト、界面活性剤処理、
コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
(8) Crosslinking Treatment and Hydrophilization Treatment Further, the microporous membrane after drying can be further subjected to a crosslinking treatment and a hydrophilic treatment. For example, the microporous membrane is crosslinked by irradiating it with ionizing radiation such as α-rays, β-rays, γ-rays, and electron beams. In the case of electron beam irradiation, an electron dose of 0.1 to 100 Mrad is preferable, and an acceleration voltage of 100 to 300 kV is preferable. The cross-linking treatment raises the meltdown temperature of the microporous membrane. In addition, the hydrophilization treatment includes monomer grafting, surfactant treatment, and
It can be done by corona discharge or the like. The monomer graft is preferably performed after the cross-linking treatment.

2.多孔層
本発明の実施形態に係る電池用セパレータは、上記ポリオレフィン微多孔膜の少なくとも片面に多孔層が設けられており、耐熱粒子、有機粒子、分散剤、バインダー及び界面活性剤を含む。
2. 2. Porous layer The battery separator according to the embodiment of the present invention is provided with a porous layer on at least one surface of the polyolefin microporous membrane, and contains heat-resistant particles, organic particles, a dispersant, a binder and a surfactant.

[耐熱粒子]
本発明の実施形態における耐熱粒子としては、炭酸カルシウム、リン酸カルシウム 、非晶性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ 、シリカーアルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム 、ゼオライト、硫化モリブデン、マイカ、ベーマイトなどが挙げられる。中でもアルミナ、ベーマイト、硫酸バリウムが安価に入手しやすく好適である。
耐熱粒子の平均粒径は特に限定されるものではないが、上限は1.5μm以下が好ましく、より好ましくは1.2μm以下更に好ましくは1.0μm以下である。耐熱粒子の平均粒径が1.5μmを超えると、多孔層中の個々の耐熱粒子の隙間が広くなることで、多孔層の構造が脆くなり、熱によるポリオレフィン微多孔膜の収縮を抑制することが困難となる場合がある。又、耐熱粒子の平均粒径の下限は0.3μm以上が好ましく、より好ましくは0.4μm以上、更に好ましくは0.5μm以上である。耐熱粒子の平均粒径が0.3μm未満であると、多孔層中の個々の耐熱粒子の隙間が狭くなることで、多孔層の厚さ1μmあたりの透気抵抗度の上昇幅が10.0sec/100ccAir以上となる場合がある。耐熱粒子の平均粒径が0.3μm以上であり、1.5μm以下であると、多孔層の厚さ1μmあたりの透気抵抗度の上昇幅が10.0sec/100ccAir以下となり、又、熱によるポリオレフィン微多孔膜の収縮を抑制することができる。
[Heat-resistant particles]
The heat-resistant particles in the embodiment of the present invention include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, and calcium fluoride. , Lithium fluoride, zeolite, molybdenum sulfide, mica, boehmite and the like. Of these, alumina, boehmite, and barium sulfate are suitable because they are inexpensive and easily available.
The average particle size of the heat-resistant particles is not particularly limited, but the upper limit is preferably 1.5 μm or less, more preferably 1.2 μm or less, and further preferably 1.0 μm or less. When the average particle size of the heat-resistant particles exceeds 1.5 μm, the gaps between the individual heat-resistant particles in the porous layer become wide, so that the structure of the porous layer becomes brittle and the shrinkage of the polyolefin microporous film due to heat is suppressed. May be difficult. The lower limit of the average particle size of the heat-resistant particles is preferably 0.3 μm or more, more preferably 0.4 μm or more, and further preferably 0.5 μm or more. When the average particle size of the heat-resistant particles is less than 0.3 μm, the gaps between the individual heat-resistant particles in the porous layer are narrowed, so that the increase in air permeability resistance per 1 μm of the thickness of the porous layer is 10.0 sec. It may be / 100ccAir or more. When the average particle size of the heat-resistant particles is 0.3 μm or more and 1.5 μm or less, the increase width of the air permeation resistance per 1 μm of the thickness of the porous layer becomes 10.0 sec / 100 ccAir or less, and it depends on heat. It is possible to suppress the shrinkage of the polyolefin microporous membrane.

[有機粒子]
本発明の実施形態における有機粒子は融点が60℃以上90℃以下のポリエチレン粒子であり、水分散性樹脂であることが好ましく、ポリエチレン粒子の水分散体であることが好ましい。融点が60℃以上90℃以下であるポリエチレン粒子を選択することで電極とのDRY接着性が発揮できる。尚且つ電極活物質との相互作用は低く、電解液との相互作用が高いことで、電池内ではDRY接着している多孔層/電極界面に電解液が浸透し、DRY接着力の喪失及び電池の出力特性向上に貢献できる。例えば、有機粒子としてアクリル粒子を選択した場合、電極との相互作用が高くなることで電解液が多孔層/電極界面へ浸透しづらくなり、接着が維持されることで電極活物質表面がリチウムイオンの透過性低下、及び出力特性低下が懸念される。
[Organic particles]
The organic particles in the embodiment of the present invention are polyethylene particles having a melting point of 60 ° C. or higher and 90 ° C. or lower, preferably a water-dispersible resin, and preferably an aqueous dispersion of polyethylene particles. By selecting polyethylene particles having a melting point of 60 ° C. or higher and 90 ° C. or lower, DRY adhesion to the electrode can be exhibited. Moreover, the interaction with the electrode active material is low and the interaction with the electrolytic solution is high, so that the electrolytic solution permeates the porous layer / electrode interface to which DRY is adhered in the battery, resulting in loss of DRY adhesive force and the battery. Can contribute to the improvement of the output characteristics of. For example, when acrylic particles are selected as the organic particles, the interaction with the electrode becomes high, which makes it difficult for the electrolytic solution to penetrate into the porous layer / electrode interface, and the adhesion is maintained, so that the surface of the electrode active material is lithium ion. There is a concern that the transparency and output characteristics of the particles will decrease.

有機粒子の平均粒径は特に限定されるものではないが、耐熱粒子層の厚みを超える範囲であることが好ましい。有機粒子の平均粒径が耐熱粒子層の厚み以下となると、多孔層表面に有機粒子が突出できなくなり、DRY接着力を損なう場合がある。
有機粒子の融点の上限は90℃以下が好ましく、より好ましくは85℃以下、更に好ましくは80℃以下である。融点が90℃を超える場合、電池の組み立て工程において電極と電池用セパレータを熱圧着する際の温度が上昇し、工程に影響を及ぼす場合がある。又、有機粒子の融点の下限は60℃以上が好ましく、より好ましくは65℃以上、更に好ましくは70℃以上である。有機粒子の融点が60℃未満の場合、塗工における乾燥工程で有機粒子が軟化、溶融しやすくなり搬送ロールに付着し、電池用セパレータの外観が悪化する場合がある。加えて、有機粒子が溶融することでポリオレフィン微多孔膜と多孔層の空孔を塞いでしまい、電池内でのリチウムイオン透過性が低下し、抵抗が上昇する場合がある。
The average particle size of the organic particles is not particularly limited, but is preferably in the range exceeding the thickness of the heat-resistant particle layer. When the average particle size of the organic particles is equal to or less than the thickness of the heat-resistant particle layer, the organic particles cannot protrude on the surface of the porous layer, which may impair the DRY adhesive force.
The upper limit of the melting point of the organic particles is preferably 90 ° C. or lower, more preferably 85 ° C. or lower, still more preferably 80 ° C. or lower. If the melting point exceeds 90 ° C., the temperature at which the electrode and the battery separator are thermocompression bonded in the battery assembly process may increase, which may affect the process. The lower limit of the melting point of the organic particles is preferably 60 ° C. or higher, more preferably 65 ° C. or higher, still more preferably 70 ° C. or higher. When the melting point of the organic particles is less than 60 ° C., the organic particles tend to soften and melt in the drying step in the coating, and adhere to the transport roll, which may deteriorate the appearance of the battery separator. In addition, the melting of the organic particles may block the pores of the microporous polyolefin membrane and the porous layer, reducing the lithium ion permeability in the battery and increasing the resistance.

[分散剤]
本発明の実施形態における分散剤は、例えば、セルロース系樹脂、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、及びシリコーン系界面活性剤等を使用することができる。セルロース系樹脂の代表例としては、カルボキシメチルセルロース及びその誘導体が挙げられる。具体的には、ダイセルファインケム(株)製 1120、1220、SP200、SE400、DN-100L、日本製紙(株)製“サンローズ”(登録商標)FJ08HC、A04SH、第一工業製薬(株)製“セロゲン”(登録商標)7A、及びWS-C等である。アニオン系界面活性剤としては、具体的には、日本触媒(株)製DL-40、TL-37、東亜合成(株)製“アロン”(登録商標)A-6012、及びA-6114等が挙げられる。カチオン系界面活性剤としては、具体的には、サンノプコ(株)製SNディスパーサント4215、及びノプコスパース092等が挙げられる。両性界面活性剤としては、具体的には、花王ケミカル(株)製 アンヒトール20BS、及びアンヒトール20N等が挙げられる。ノニオン系界面活性剤としては、具体的には、花王ケミカル(株)製 エマルゲン103、及びエマルゲン705等が挙げられる。シリコーン系界面活性剤としては、具体的には、サンノプコ(株)製SNウエット125等が挙げられる。その中でも分散剤を効率よく耐熱粒子および有機粒子に作用させるには水溶性高分子が好ましい。中でも耐酸化性があり、入手しやすく、更に耐熱性の向上にも寄与するカルボキシメチルセルロース誘導体がより好ましい。
前記分散剤の多孔層中の含有量は特に規定するものではないが、耐熱粒子、有機粒子、分散剤およびバインダーの合計を100体積部として、好ましくは0.8体積部以上、より好ましくは1.4体積部以上、更に好ましくは2.0体積部以上であり、5.9体積部以下、より好ましくは4.5体積部以下、更に好ましくは3.0体積部以下である。
分散剤の含有量が0.8体積部未満であると、分散過程で個々の耐熱粒子の凝集体を十分に分散できず、多孔層中に凝集粒子が残るため、多孔層の構造に耐熱粒子の粒径よりも大きな隙間ができやすくなり、熱によるポリオレフィン微多孔膜の収縮を抑制できない場合がある。分散剤の添加量が5.9体積部より多いと、前記工程(b)で、一度、解砕した個々の耐熱粒子が分散剤を介して再度凝集し、多孔層中に未分散の凝集体が残るため、多孔層の構造に耐熱粒子の粒径よりも大きな隙間ができやすくなり、熱によるポリオレフィン微多孔膜の収縮を抑制できない場合がある。
[Dispersant]
As the dispersant in the embodiment of the present invention, for example, a cellulosic resin, an anionic surfactant, a cationic surfactant, a nonionic surfactant, a silicone-based surfactant and the like can be used. Typical examples of cellulosic resins include carboxymethyl cellulose and its derivatives. Specifically, Daicel FineChem Co., Ltd. 1120, 1220, SP200, SE400, DN-100L, Nippon Paper Industries Co., Ltd. "Sunrose" (registered trademark) FJ08HC, A04SH, Dai-ichi Kogyo Seiyaku Co., Ltd. " Cellogen "(registered trademark) 7A, WS-C, etc. Specific examples of the anionic surfactant include DL-40 and TL-37 manufactured by Nippon Shokubai Co., Ltd., "Aron" (registered trademark) A-6012 manufactured by Toagosei Co., Ltd., and A-6114. Can be mentioned. Specific examples of the cationic surfactant include SN Dispersant 4215 manufactured by San Nopco Ltd. and Nopco Spars 092. Specific examples of the amphoteric tenside include Anchtor 20BS and Anchtor 20N manufactured by Kao Chemical Co., Ltd. Specific examples of the nonionic surfactant include Kao Chemical Co., Ltd.'s Emulgen 103 and Emargen 705. Specific examples of the silicone-based surfactant include SN Wet 125 manufactured by San Nopco Ltd. Among them, a water-soluble polymer is preferable in order to efficiently cause the dispersant to act on the heat-resistant particles and the organic particles. Among them, a carboxymethyl cellulose derivative which has oxidation resistance, is easily available, and contributes to improvement of heat resistance is more preferable.
The content of the dispersant in the porous layer is not particularly specified, but the total of the heat-resistant particles, the organic particles, the dispersant and the binder is 100 parts by volume, preferably 0.8 parts by volume or more, more preferably 1. It is .4 parts by volume or more, more preferably 2.0 parts by volume or more, 5.9 parts by volume or less, more preferably 4.5 parts by volume or less, still more preferably 3.0 parts by volume or less.
If the content of the dispersant is less than 0.8 parts by volume, the aggregates of the individual heat-resistant particles cannot be sufficiently dispersed in the dispersion process, and the aggregated particles remain in the porous layer. It is easy to create gaps larger than the particle size of the particles, and it may not be possible to suppress the shrinkage of the polyolefin microporous film due to heat. When the amount of the dispersant added is more than 5.9 parts by volume, the individual heat-resistant particles once crushed in the step (b) are reaggregated via the dispersant, and the agglomerates not dispersed in the porous layer. Therefore, gaps larger than the particle size of the heat-resistant particles are likely to be formed in the structure of the porous layer, and shrinkage of the polyolefin microporous film due to heat may not be suppressed.

[バインダー]
本発明の実施形態におけるバインダーは多孔層を構成する耐熱粒子同士が結着する効果、及び多孔層をポリオレフィン微多孔膜と密着させる効果を兼ね備えている。具体的には、アクリル系樹脂、ポリビニルアルコール、ポリ-N-ビニルアセトアミド等を使用することができ、市販されている水溶液又は水分散体を使用することができる。アクリル系樹脂としては、具体的には、東亜合成(株)製“ジュリマー”(登録商標)AT-210,ET-410,“アロン”(登録商標)A-104、AS-2000、NW-7060、トーヨーケム(株)製“LIOACCUM”(登録商標)シリーズ、JSR(株)製 TRD202A、TRD102A、荒川化学(株)製“ポリストロン”117、705、1280、昭和電工(株)製“コーガム”(登録商標)シリーズ、大成ファインケミカル(株)製 WEM-200U、及びWEM-3000等が挙げられる。ポリビニルアルコールとしては、具体的には、クラレ(株)製“クラレポバール”(登録商標)3-98、3-88、三菱ケミカル(株)製“ゴーセノール”(登録商標)N-300、GH-20等が挙げられる。ポリ-N-ビニルアセトアミドとしては、具体的には、昭和電工(株)製 GE191-104が挙げられる。中でも汎用性が高く、耐熱粒子同士の結着がしやすいアクリル系樹脂が好ましい。
多孔層におけるバインダーの含有量は特に規定するものではないが、耐熱粒子、有機粒子、分散剤及びバインダーの合計を100体積部として、好ましくは3.2体積部以上、より好ましくは5.6体積部以上、更に好ましくは8.0体積部以上であり、24.0体積部以下、より好ましくは、18.5体積部以下、更に好ましくは12.1体積部以下である。
[binder]
The binder in the embodiment of the present invention has an effect of binding heat-resistant particles constituting the porous layer and an effect of adhering the porous layer to the polyolefin microporous film. Specifically, an acrylic resin, polyvinyl alcohol, poly-N-vinylacetamide and the like can be used, and a commercially available aqueous solution or aqueous dispersion can be used. Specific examples of the acrylic resin include "Julimer" (registered trademark) AT-210, ET-410, "Aron" (registered trademark) A-104, AS-2000, and NW-7060 manufactured by Toagosei Corporation. , Toyochem Co., Ltd. "LIOCCUM" (registered trademark) series, JSR Co., Ltd. TRD202A, TRD102A, Arakawa Chemical Co., Ltd. "Polystron" 117, 705, 1280, Showa Denko Co., Ltd. "Cogam" ( Examples include the (registered trademark) series, WEM-200U manufactured by Taisei Fine Chemicals Co., Ltd., and WEM-3000. Specific examples of polyvinyl alcohol include "Kuraray Poval" (registered trademark) 3-98 and 3-88 manufactured by Kuraray Corporation, and "Gosenol" (registered trademark) N-300 and GH- manufactured by Mitsubishi Chemical Corporation. 20 etc. can be mentioned. Specific examples of the poly-N-vinylacetamide include GE191-104 manufactured by Showa Denko KK. Of these, acrylic resins, which are highly versatile and easily bond heat-resistant particles to each other, are preferable.
The content of the binder in the porous layer is not particularly specified, but the total of the heat-resistant particles, the organic particles, the dispersant and the binder is 100 parts by volume, preferably 3.2 parts by volume or more, and more preferably 5.6 parts by volume. More than parts, more preferably 8.0 parts by volume or more, 24.0 parts by volume or less, more preferably 18.5 parts by volume or less, still more preferably 12.1 parts by volume or less.

バインダーの含有量が3.2体積部未満であると、個々の耐熱粒子及び有機粒子をつなぎ留めているバインダーが不足し、多孔層としての構造が保てなくなることで、熱によるポリオレフィン微多孔膜の収縮を抑制することが困難となる場合がある。 If the content of the binder is less than 3.2 parts by volume, the binder that holds the individual heat-resistant particles and the organic particles is insufficient, and the structure as a porous layer cannot be maintained, so that the polyolefin microporous film due to heat is lost. It may be difficult to suppress the contraction of the particles.

バインダーの含有量が24.0体積部より多いと、多孔層中の耐熱粒子及び有機粒子の隙間がバインダーで目詰まりしてしまうため、多孔層の厚さ1μmあたりの透気抵抗度の上昇幅を10.0sec/100ccAir以下にできなくなる。加えて、電池用セパレータが熱にさらされた時に、耐熱粒子及び有機粒子の隙間に存在するバインダーが収縮してしまい、熱によるポリオレフィン微多孔膜の収縮を抑制することが困難となる場合がある。 If the content of the binder is more than 24.0 parts by volume, the gaps between the heat-resistant particles and the organic particles in the porous layer are clogged with the binder, so that the increase in air permeability resistance per 1 μm of the thickness of the porous layer increases. Cannot be set to 10.0 sec / 100 ccAir or less. In addition, when the battery separator is exposed to heat, the binder existing in the gaps between the heat-resistant particles and the organic particles shrinks, and it may be difficult to suppress the shrinkage of the polyolefin microporous membrane due to heat. ..

[溶媒]
本発明において溶媒とは、水溶性樹脂又は水分散性樹脂を溶解する液だけではなく、水溶性樹脂又は水分散性樹脂を粒子状に分散させるために用いる分散媒も広義的に含むものである。本発明の実施形態における溶媒とは水を主体とする。本発明で用いる水はイオン交換水又は蒸留水を用いるのが好ましい。溶媒は水のみであってもよいが必要に応じてアルコール類などの水溶性有機溶媒を混合して用いることができる。これら水溶性有機溶媒を用いることによって、乾燥速度、塗工性を向上させることができる。水溶性有機溶媒としては、例えばエタノール、イソプロピルアルコール、ベンジルアルコール等のアルコール類を、全塗布液に占める割合が0.1~10質量部の範囲で混合した混合液が好ましい。更に、1質量部未満であれば、アルコール類以外の有機溶媒を溶解可能な範囲で混合してもよい。ただし、塗布液中、アルコール類とその他の有機溶媒との合計は、10質量部未満とする。又、更に必要に応じて微粒子と水溶性樹脂又は水分散性樹脂以外の成分を本発明の目的を損なわない範囲で含んでいてもよい。そのような成分として、例えば、分散剤、pH調製剤などが挙げられる。
[solvent]
In the present invention, the solvent includes not only a liquid for dissolving the water-soluble resin or the water-dispersible resin but also a dispersion medium used for dispersing the water-soluble resin or the water-dispersible resin in the form of particles in a broad sense. The solvent in the embodiment of the present invention is mainly water. The water used in the present invention is preferably ion-exchanged water or distilled water. The solvent may be only water, but if necessary, a water-soluble organic solvent such as alcohols can be mixed and used. By using these water-soluble organic solvents, the drying speed and coatability can be improved. As the water-soluble organic solvent, a mixed solution in which alcohols such as ethanol, isopropyl alcohol, and benzyl alcohol are mixed in a range of 0.1 to 10 parts by mass in the total coating solution is preferable. Further, if it is less than 1 part by mass, an organic solvent other than alcohols may be mixed within a soluble range. However, the total amount of alcohols and other organic solvents in the coating liquid shall be less than 10 parts by mass. Further, if necessary, fine particles and components other than the water-soluble resin or the water-dispersible resin may be contained within a range that does not impair the object of the present invention. Examples of such a component include a dispersant, a pH adjuster and the like.

[界面活性剤]
コーティング組成物にはポリオレフィン微多孔膜上に、より均一な厚さで多孔層を形成するために、適宜、界面活性剤を含んでもよい。界面活性剤とは濡れ剤、レベリング剤、及び消泡剤等のことである。前記界面活性剤は耐熱粒子の分散状態を崩さないために、バインダーが十分に混ざった状態で最後に添加することが好ましい。
[Surfactant]
The coating composition may appropriately contain a surfactant in order to form a porous layer with a more uniform thickness on the microporous polyolefin membrane. Surfactants are wetting agents, leveling agents, defoaming agents and the like. In order not to disturb the dispersed state of the heat-resistant particles, it is preferable to add the surfactant last in a state where the binder is sufficiently mixed.

[耐熱粒子層の厚み]
本発明の実施形態における耐熱粒子層の厚みは1.5以上、5.0μm以下であることが好ましく、これは走査型電子顕微鏡を用いて電池用セパレータの多孔層の断面を観察し、耐熱粒子の存在する一方の面について耐熱粒子のみで構成された部分の平均値である。耐熱粒子層の厚みの上限は5.0μm以下であり、4.5μm以下、更に好ましくは4μm以下である。耐熱粒子層の厚みが5.0μmを超えると、電池用セパレータとしての厚みも増加し、電池内における電極間距離が長くなることで出力特性が低下する恐れがある。更には、電池用セパレータの厚みが増加することで、円筒型電池、角型電池、ラミネート型電池等の非水電解質二次電池における体積エネルギー密度を損なう場合がある。耐熱粒子層の厚みの下限は1.5μm以上であり、より好ましくは2μm以上、更に好ましくは3.0μm以上である。耐熱粒子層の厚みが1.5μm未満であると、熱によるポリオレフィン微多孔膜の収縮を抑制することが困難となる場合がある。
[Thickness of heat-resistant particle layer]
The thickness of the heat-resistant particle layer in the embodiment of the present invention is preferably 1.5 or more and 5.0 μm or less, which is obtained by observing the cross section of the porous layer of the battery separator using a scanning electron microscope. It is the average value of the portion composed of only heat-resistant particles on one surface in which the present is present. The upper limit of the thickness of the heat-resistant particle layer is 5.0 μm or less, 4.5 μm or less, and more preferably 4 μm or less. If the thickness of the heat-resistant particle layer exceeds 5.0 μm, the thickness of the battery separator also increases, and the distance between the electrodes in the battery becomes long, which may deteriorate the output characteristics. Further, an increase in the thickness of the battery separator may impair the volumetric energy density in a non-aqueous electrolyte secondary battery such as a cylindrical battery, a square battery, or a laminated battery. The lower limit of the thickness of the heat-resistant particle layer is 1.5 μm or more, more preferably 2 μm or more, and further preferably 3.0 μm or more. If the thickness of the heat-resistant particle layer is less than 1.5 μm, it may be difficult to suppress the shrinkage of the polyolefin microporous film due to heat.

[耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率]
本発明の実施形態における耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率は1.1倍以上、2.0以下であることが好ましく、これは、前記耐熱粒子層の厚みに対する有機粒子の平均粒径の比を示す。耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率の上限は2.0倍以下であり、好ましくは1.8倍以下、更に好ましくは1.5倍以下である。耐熱粒子層の厚みに対して有機粒子の平均粒径の倍率が2.0倍を超えると、搬送工程で有機粒子が脱落する恐れがある。耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率の下限は1.1倍以上であり、好ましくは1.2倍以上、更に好ましくは1.3倍以上である。耐熱粒子層の厚みに対して有機粒子の平均粒径の倍率が1.1倍未満となると、有機粒子が耐熱粒子に被覆され多孔層表面に露出することができず、DRY接着性を損失する恐れがある。
[Multiple of the average particle size of organic particles to the thickness of the heat-resistant particle layer]
The ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer in the embodiment of the present invention is preferably 1.1 times or more and 2.0 times or less, which is the thickness of the organic particles to the thickness of the heat-resistant particle layer. Shows the ratio of average particle size. The upper limit of the magnification of the average particle size of the organic particles with respect to the thickness of the heat-resistant particle layer is 2.0 times or less, preferably 1.8 times or less, and more preferably 1.5 times or less. If the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer exceeds 2.0 times, the organic particles may fall off in the transport process. The lower limit of the magnification of the average particle size of the organic particles with respect to the thickness of the heat-resistant particle layer is 1.1 times or more, preferably 1.2 times or more, and more preferably 1.3 times or more. When the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is less than 1.1 times, the organic particles are covered with the heat-resistant particles and cannot be exposed on the surface of the porous layer, resulting in loss of DRY adhesiveness. There is a fear.

[多孔層における有機粒子の体積比率]
多孔層における有機粒子の体積比率の上限は、耐熱粒子と有機粒子の合計100体積部に対して40体積部以下あり、好ましくは35体積部以下、更に好ましくは30体積部以下であることが好ましい。有機粒子の体積比率が、耐熱粒子と有機粒子の合計100体積部に対して40体積部を超えると、多孔層内の熱可塑部分の割合が増加し耐熱性を損なう場合がある。多孔層における有機粒子の体積比率の下限は、耐熱粒子と有機粒子の合計100体積部に対して10体積部以上であり、好ましくは15体積部以上、更に好ましくは20体積部以上である。有機粒子の体積比率が、耐熱粒子と有機粒子の合計100体積部に対して10体積部未満となると、電池の組み立て工程において電極と電池用セパレータを熱圧着した際にDRY接着力が十分得られず、生産性低下に繋がる。
尚、有機粒子であるポリエチレン粒子の密度は0.91g/cm、耐熱粒子であるアルミナは4.0g/cm、硫酸バリウムは4.5g/cm、ベーマイトは3.07g/cmで計算した。
[Volume ratio of organic particles in the porous layer]
The upper limit of the volume ratio of the organic particles in the porous layer is 40 parts by volume or less, preferably 35 parts by volume or less, and more preferably 30 parts by volume or less with respect to 100 parts by volume of the total of heat-resistant particles and organic particles. .. If the volume ratio of the organic particles exceeds 40 parts by volume with respect to 100 parts by volume of the heat-resistant particles and the organic particles in total, the ratio of the thermoplastic part in the porous layer may increase and the heat resistance may be impaired. The lower limit of the volume ratio of the organic particles in the porous layer is 10 parts by volume or more, preferably 15 parts by volume or more, and more preferably 20 parts by volume or more with respect to 100 parts by volume of the total of the heat-resistant particles and the organic particles. When the volume ratio of the organic particles is less than 10 parts by volume with respect to the total 100 parts by volume of the heat-resistant particles and the organic particles, sufficient DRY adhesive force is obtained when the electrode and the battery separator are thermocompression bonded in the battery assembly process. However, it leads to a decrease in productivity.
The density of polyethylene particles, which are organic particles, is 0.91 g / cm 3 , the density of alumina, which is heat-resistant particles, is 4.0 g / cm 3 , barium sulfate is 4.5 g / cm 3 , and boehmite is 3.07 g / cm 3 . Calculated.

[多孔層の空孔率]
多孔層の空孔率は30以上、90%以下が好ましく、より好ましくは40以上、70%以下である。 改質多孔層の空孔率が上記好ましい範囲であると、改質多孔層を積層して得られた電池用セパレータは膜の電気抵抗が低く、大電流が流れやすく、又、膜強度が維持される。
[Porosity of porous layer]
The porosity of the porous layer is preferably 30 or more and 90% or less, more preferably 40 or more and 70% or less. When the porosity of the modified porous layer is within the above-mentioned preferable range, the battery separator obtained by laminating the modified porous layer has a low electrical resistance of the membrane, a large current easily flows, and the membrane strength is maintained. Will be done.

[電池用セパレータのDRY接着力]
電池用セパレータのDRY接着力の上限は20N/m以下であることが好ましく、より好ましくは18N/m以下であり、更に好ましくは16N/m以下である。DRY接着力が20N/mを超えると、電池の組み立て工程でDRY接着させた電池用セパレータ及び電極を捲回又は積層する等の加工が困難となり、生産性低下する場合がある。電池用セパレータのDRY接着力の下限は2N/m以上であることが好ましく、より好ましくは4N/m以上、更に好ましくは6N/m以上である。DRY接着が2N/m未満であると、電池の組み立て工程において電極と電池用セパレータを熱圧着した際に接着力が十分得られず、生産性低下に繋がる。
電池用セパレータは、電極とDRY接着させた後に電解液を注液した際、電極との接着力が2N/m以下に低下することが好ましく、より好ましくは1.8N/m以下、更に好ましくは1.5N/m以下に低下することが好ましい。電解液注液後の接着力が2N/mを超えるとDRY接着している電極表面が塞がれた状態なり、リチウムイオンの移動が妨げられることで電池の出力特性を損なう場合がある。
[DRY adhesive strength of battery separator]
The upper limit of the DRY adhesive force of the battery separator is preferably 20 N / m or less, more preferably 18 N / m or less, and further preferably 16 N / m or less. If the DRY adhesive force exceeds 20 N / m, it becomes difficult to perform processing such as winding or laminating the DRY-bonded battery separator and electrodes in the battery assembly process, which may reduce productivity. The lower limit of the DRY adhesive force of the battery separator is preferably 2 N / m or more, more preferably 4 N / m or more, and further preferably 6 N / m or more. If the DRY adhesion is less than 2 N / m, sufficient adhesive force cannot be obtained when the electrode and the battery separator are thermocompression bonded in the battery assembly process, which leads to a decrease in productivity.
The battery separator preferably has an adhesive force of 2 N / m or less, more preferably 1.8 N / m or less, still more preferably 1.8 N / m or less, when the electrolytic solution is injected after adhering it to the electrode in DRY. It is preferably reduced to 1.5 N / m or less. If the adhesive force after injecting the electrolytic solution exceeds 2 N / m, the surface of the electrode to which DRY is adhered becomes blocked, and the movement of lithium ions is hindered, which may impair the output characteristics of the battery.

[コーティング組成物製造方法]
本発明の実施形態における多孔層を得るためのコーティング組成物製造方法は以下の工程を有する。すなわち、
(a)水を主成分とする溶媒に分散剤を添加後、更に耐熱粒子を添加して攪拌し、混合液を得る工程。
(b)前記混合液をビーズ粒径が1.0mm以下のセラミック製ビーズを使用したビーズミル分散機にて分散処理を施し、マスターバッチ液を得る工程。
(c)前記マスターバッチ液に前記有機粒子、バインダーを添加し、更に、その他添加剤を添加してコーティング組成物を得る工程。 前記工程(a)において、攪拌方法は特に限定されるものではないが、ディスパー羽根による攪拌、自転公転ミキサー、ペイントシェイカー、ボールミル、超音波分散機、ホモジナイザー、及びプラネタリーミキサー等を用いてもよい。又、溶媒中で分散剤を効果的に耐熱粒子に作用させるには、分散剤が溶媒に十分に溶解している状態で耐熱粒子を投入することが重要である。従って、溶媒に対して分散剤、次いで耐熱粒子の順番で添加することが好ましい。
[Method for manufacturing coating composition]
The method for producing a coating composition for obtaining a porous layer according to the embodiment of the present invention has the following steps. That is,
(A) A step of adding a dispersant to a solvent containing water as a main component, further adding heat-resistant particles, and stirring the mixture to obtain a mixed solution.
(B) A step of dispersing the mixed solution with a bead mill disperser using ceramic beads having a bead particle size of 1.0 mm or less to obtain a masterbatch solution.
(C) A step of adding the organic particles and a binder to the masterbatch liquid, and further adding other additives to obtain a coating composition. In the step (a), the stirring method is not particularly limited, but stirring with a disper blade, a rotation / revolution mixer, a paint shaker, a ball mill, an ultrasonic disperser, a homogenizer, a planetary mixer and the like may be used. .. Further, in order for the dispersant to effectively act on the heat-resistant particles in the solvent, it is important to add the heat-resistant particles in a state where the dispersant is sufficiently dissolved in the solvent. Therefore, it is preferable to add the dispersant to the solvent and then the heat-resistant particles in this order.

前記工程(b)はビーズミル分散機を用い、混合液に含まれる耐熱粒子の凝集体にセラミック製ビーズを衝突させることで、個々の耐熱粒子に解砕する工程である。本発明ではビーズミル分散機を使用し、ビーズ粒径、ビーズ充填率を好適な条件に合わせることで砕けやすい粒子を適度に分散させることが可能である。又、硫酸バリウムのような砕けやすい粒子を解砕する場合は、セラミック製ビーズを使用しないメディアレス分散機が、粒子へのダメージが少なく、適しているとされている。 The step (b) is a step of crushing the heat-resistant particles into individual heat-resistant particles by colliding the ceramic beads with the agglomerates of the heat-resistant particles contained in the mixed solution using a bead mill disperser. In the present invention, a bead mill disperser is used, and by adjusting the bead particle size and the bead filling rate to suitable conditions, it is possible to appropriately disperse fragile particles. Further, when crushing fragile particles such as barium sulfate, a medialess disperser that does not use ceramic beads is said to be suitable because it causes less damage to the particles.

[ビーズ粒径]
前記セラミック製ビーズのビーズ粒径は特に限定されるものではないが、数平均値が0.3mm以上、1.0mm以下が好ましい。より好ましくは0.4mm以上、0.8mm以下であり、更に好ましくは0.5mm以上0.7mm以下である。
[Bead particle size]
The bead diameter of the ceramic beads is not particularly limited, but the number average value is preferably 0.3 mm or more and 1.0 mm or less. It is more preferably 0.4 mm or more and 0.8 mm or less, and further preferably 0.5 mm or more and 0.7 mm or less.

ビーズ粒径が0.3mm未満であると、セラミック製ビーズ1個あたりの質量が小さく、セラミック製ビーズ間に発生するずり応力が小さくなるため、耐熱粒子の凝集体を十分に解砕できず、コーティング組成物中に多孔層の厚さよりも大きな凝集体が残る。すると、多孔層の構造に耐熱粒子の粒径よりも大きな隙間ができやすくなり、熱によるポリオレフィン微多孔膜の収縮を抑制できなくなることや、電池セルの正極と負極の極間距離が大きくなることで電池セル容量に占めるセパレータの割合が多くなり、電池の容量密度が低下する場合がある。 When the bead particle size is less than 0.3 mm, the mass per ceramic bead is small and the shear stress generated between the ceramic beads is small, so that the aggregate of heat-resistant particles cannot be sufficiently crushed. Aggregates larger than the thickness of the porous layer remain in the coating composition. Then, a gap larger than the particle size of the heat-resistant particles is likely to be formed in the structure of the porous layer, the shrinkage of the polyolefin microporous film due to heat cannot be suppressed, and the distance between the positive electrode and the negative electrode of the battery cell becomes large. In some cases, the ratio of the separator to the battery cell capacity increases, and the battery capacity density may decrease.

ビーズ粒径が1.0mmより大きいと、セラミック製ビーズ間の接触点が少なくなり、コーティング組成物中に多孔層の厚さよりも大きな凝集体が残る。すると、多孔層の構造に耐熱粒子の粒径よりも大きな隙間ができやすくなり、熱によるポリオレフィン微多孔膜の収縮を抑制できなくなることや、電池セルの正極と負極の極間距離が大きくなることで電池セル容量に占めるセパレータの割合が多くなり、電池の容量密度が低下する場合がある。 When the bead particle size is larger than 1.0 mm, the number of contact points between the ceramic beads is reduced, and agglomerates larger than the thickness of the porous layer remain in the coating composition. Then, a gap larger than the particle size of the heat-resistant particles is likely to be formed in the structure of the porous layer, the shrinkage of the polyolefin microporous film due to heat cannot be suppressed, and the distance between the positive electrode and the negative electrode of the battery cell becomes large. In some cases, the ratio of the separator to the battery cell capacity increases, and the battery capacity density may decrease.

ここでセラミック製ビーズの材質は特に限定されるものではないが、アルミナ、ジルコニア、窒化ケイ素から選ばれる少なくとも1種類を使用できる。 Here, the material of the ceramic beads is not particularly limited, but at least one selected from alumina, zirconia, and silicon nitride can be used.

[ビーズ充填率]
前記セラミック製ビーズのビーズ充填率は特に限定されるものではないが、65%以上、85%以下が好ましい。より好ましくは70%以上、80%以下である。ここでビーズ充填率とは、使用するセラミック製ビーズの重量(g)を、充填密度(g/cm)で除して得られた体積(cm)を、更にヴェッセル容量(cm)で除した、セラミック製ビーズの体積占有率である。
[Bead filling rate]
The bead filling rate of the ceramic beads is not particularly limited, but is preferably 65% or more and 85% or less. More preferably, it is 70% or more and 80% or less. Here, the bead filling factor is the volume (cm 3 ) obtained by dividing the weight (g) of the ceramic beads to be used by the filling density (g / cm 3 ), and further by the Vessel capacity (cm 3 ). Divided volume occupancy of ceramic beads.

ビーズ充填率が65%未満であると、前記ヴェッセル内でのセラミック製ビーズの存在量が少ないため、セラミック製ビーズ間の接触点が少なくなり、耐熱粒子の凝集体が残存しやすくなる。すると、多孔層から耐熱粒子の凝集体が脱落することや、電池セルの正極と負極の極間距離が大きくなることで電池セル容量に占めるセパレータの割合が多くなり、電池の容量密度が低下する場合がある。 When the bead filling rate is less than 65%, the abundance of the ceramic beads in the Vessel is small, so that the contact points between the ceramic beads are reduced, and agglomerates of heat-resistant particles are likely to remain. Then, agglomerates of heat-resistant particles fall off from the porous layer, and the distance between the positive and negative electrodes of the battery cell increases, so that the ratio of the separator to the battery cell capacity increases and the battery capacity density decreases. In some cases.

ビーズ充填率が85%より大きいと、セラミック製ビーズ間の接触点が過剰に多くなることで、すでに解砕された個々の耐熱粒子を、より細かい粒子に粉砕してしまい、多孔層を形成する耐熱粒子同士の隙間に細かい粒子が入ることで、耐熱性塗工層の厚さ1μmあたりの透気抵抗度の上昇幅が10.0sec/100ccAirより大きくなる場合がある。 When the bead filling factor is larger than 85%, the contact points between the ceramic beads become excessively large, and the individual heat-resistant particles that have already been crushed are crushed into finer particles to form a porous layer. When fine particles enter the gaps between the heat-resistant particles, the increase width of the air permeation resistance per 1 μm thickness of the heat-resistant coating layer may be larger than 10.0 sec / 100 ccAir.

前記工程(c)において、攪拌方法は特に限定されるものではないが、ディスパー羽根による攪拌、自転公転ミキサー、ペイントシェイカー、ボールミル、超音波分散機、ホモジナイザー、及びプラネタリーミキサー等を用いてもよい。前記有機粒子、バインダーは、前記工程(b)でビーズミル分散処理の前に混合液に添加しないことが重要である。つまり、混合液にはビーズミル分散処理により発生する熱、及び高いせん断力がかかるため、有機粒子の解砕やバインダーがゲル化や凝集を起こす可能性がある。すると、多孔層表面に有機粒子のみを突出させた構造を得ることが困難となり、耐熱性とDRY接着性の双方を発揮できない場合がある。従って、前記バインダーは工程(c)で添加するのが好ましい。 In the step (c), the stirring method is not particularly limited, but stirring with a disper blade, a rotation / revolution mixer, a paint shaker, a ball mill, an ultrasonic disperser, a homogenizer, a planetary mixer and the like may be used. .. It is important that the organic particles and the binder are not added to the mixed solution before the bead mill dispersion treatment in the step (b). That is, since the mixed liquid is subjected to the heat generated by the bead mill dispersion treatment and the high shearing force, there is a possibility that the organic particles may be crushed or the binder may gel or aggregate. Then, it becomes difficult to obtain a structure in which only organic particles are projected on the surface of the porous layer, and it may not be possible to exhibit both heat resistance and DRY adhesiveness. Therefore, it is preferable to add the binder in the step (c).

[多孔層の形成方法]
本発明を得るための多孔層の形成方法は以下の構成を有する。すなわち、
(d)ポリオレフィン微多孔膜の少なくとも片面にコーティング組成物をコーティングする工程。
(e)前記コーティング後、溶媒をドライヤーで乾燥させ、多孔層を形成する工程。
である。
[Method of forming a porous layer]
The method for forming the porous layer for obtaining the present invention has the following constitution. That is,
(D) A step of coating at least one surface of the polyolefin microporous membrane with the coating composition.
(E) A step of forming a porous layer by drying the solvent with a dryer after the coating.
Is.

前記工程(d)において、ポリオレフィン微多孔膜の少なくとも片面に多孔層をコーティングする方法は公知の方法を用いることができる。例えば、リバースロール・コート法、グラビア・コート法、小径グラビアコーター法、キス・コート法、ロールブラッシュ法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法及びダイコート法等が挙げられ、これらの方法は単独又は組み合わせて行うことができる。 In the step (d), a known method can be used as a method for coating at least one surface of the microporous polyolefin membrane with a porous layer. Examples thereof include a reverse roll coat method, a gravure coat method, a small diameter gravure coater method, a kiss coat method, a roll brush method, an air knife coat method, a Meyer bar coat method, a pipe doctor method, a blade coat method and a die coat method. , These methods can be performed alone or in combination.

前記工程(e)において、ドライヤーの乾燥温度は特に規定されるものではないが、40℃以上、90℃以下が好ましい。より好ましくは45℃以上、80℃以下であり、更に好ましくは50℃以上、70℃以下である。乾燥温度が40℃未満であると溶媒を十分に乾燥させることができないため、多孔層中に溶媒が残存し、特に溶媒が水である場合は、電池用セパレータの水分率が高くなる場合がある。乾燥温度が90℃より高いと、多孔層が形成される前に、ポリオレフィン微多孔膜が熱により収縮してしまう場合がある。
加えて、乾燥温度は上記乾燥温度範囲で有機粒子の融点未満の温度に設定することが好ましい。有機粒子の融点以上の温度で乾燥すると、有機粒子の軟化あるいは溶融しやすくなり搬送ロールに付着し、電池用セパレータの外観が悪化する場合がある。加えて、有機粒子が溶融することでポリオレフィン微多孔膜と多孔層の空孔を塞いでしまい、電池内でのリチウムイオン透過性が低下し、抵抗が上昇する場合がある。
In the step (e), the drying temperature of the dryer is not particularly specified, but is preferably 40 ° C. or higher and 90 ° C. or lower. It is more preferably 45 ° C. or higher and 80 ° C. or lower, and further preferably 50 ° C. or higher and 70 ° C. or lower. If the drying temperature is less than 40 ° C., the solvent cannot be sufficiently dried, so that the solvent remains in the porous layer, and particularly when the solvent is water, the water content of the battery separator may increase. .. If the drying temperature is higher than 90 ° C., the microporous polyolefin membrane may shrink due to heat before the porous layer is formed.
In addition, the drying temperature is preferably set to a temperature lower than the melting point of the organic particles in the above drying temperature range. When the organic particles are dried at a temperature higher than the melting point of the organic particles, the organic particles tend to soften or melt and adhere to the transport roll, which may deteriorate the appearance of the battery separator. In addition, the melting of the organic particles may block the pores of the microporous polyolefin membrane and the porous layer, reducing the lithium ion permeability in the battery and increasing the resistance.

本発明の実施形態に係る電池用セパレータは、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウムイオン二次電池、リチウムポリマー二次電池、及びリチウム-硫黄電池等の二次電池等の電池用セパレータとして用いることができる。特に、リチウムイオン二次電池のセパレータとして用いるのが好ましい。 The battery separator according to the embodiment of the present invention includes a nickel-hydrogen battery, a nickel-cadmium battery, a nickel-zinc battery, a silver-zinc battery, a lithium ion secondary battery, a lithium polymer secondary battery, a lithium-sulfur battery, and the like. It can be used as a battery separator for a secondary battery or the like. In particular, it is preferable to use it as a separator for a lithium ion secondary battery.

以下、本発明を実施例により、更に詳細に説明するが、本発明の実施態様は、これらの実施例に限定されるものではない。尚、実施例で用いた評価法、分析の各法及び材料は、以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the embodiments of the present invention are not limited to these Examples. The evaluation methods, analysis methods and materials used in the examples are as follows.

(有機粒子の融点)
有機粒子の分散液を60℃で乾燥させ、有機粒子の乾燥体を得た。次に、前記有機粒子の乾燥体約6mgに対して、DSC装置PYR IS Diamond DSC(Perkin Elmer社製)を用いて昇温過程のDSC測定を行った。ここで測定温度範囲は30-230℃、昇温速度は10℃/minである。上記測定により得られた熱流曲線のピーク温度を有機粒子の融点とした。
(Melting point of organic particles)
The dispersion liquid of the organic particles was dried at 60 ° C. to obtain a dried body of the organic particles. Next, DSC measurement in the temperature raising process was performed on about 6 mg of the dried body of the organic particles using a DSC device PYR IS Diamond DSC (manufactured by Perkin Elmer). Here, the measurement temperature range is 30-230 ° C., and the temperature rise rate is 10 ° C./min. The peak temperature of the heat flow curve obtained by the above measurement was taken as the melting point of the organic particles.

(有機粒子の平均粒径)
走査電子顕微鏡(日本電子(株)製JSM6701F)を用いて、多孔層表面のLEI像を倍率1000倍で撮影した(加速電圧2.0kV)。次いで任意の有機粒子100個の長径を測定し、その数平均値を平均粒径とした。尚、有機粒子の添加比率が低く、倍率1000倍で撮影したLEI像の多孔層表面に有機粒子が100個存在しない場合は、積算して100個の有機粒子を測定できるように前記と同倍率のLEI像を複数枚撮影した。
(Average particle size of organic particles)
A LEI image of the surface of the porous layer was photographed at a magnification of 1000 times using a scanning electron microscope (JSM6701F manufactured by JEOL Ltd.) (acceleration voltage 2.0 kV). Next, the major axis of 100 arbitrary organic particles was measured, and the average value of the numbers was taken as the average particle size. If the addition ratio of organic particles is low and 100 organic particles are not present on the surface of the porous layer of the LEI image taken at a magnification of 1000 times, the same magnification as above can be measured so that 100 organic particles can be integrated and measured. Multiple LEI images were taken.

(耐熱粒子層の厚み測定)
走査電子顕微鏡(日本電子(株)製JSM6701F)を用いて、イオンミリングで切断したセパレータ断面のLEI像を倍率3000倍で撮影した(加速電圧2.0kV)。次いで、耐熱粒子の存在する一方の面について耐熱粒子のみで構成された部分の10点の厚みを測定し、その平均値を耐熱粒子層の厚みとした。
(耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率)
耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率は以下の式より算出した。
(Measurement of heat resistant particle layer thickness)
Using a scanning electron microscope (JSM6701F manufactured by JEOL Ltd.), a LEI image of a cross section of a separator cut by ion milling was photographed at a magnification of 3000 (acceleration voltage 2.0 kV). Next, the thickness of 10 points of the portion composed of only the heat-resistant particles was measured on one surface on which the heat-resistant particles exist, and the average value was taken as the thickness of the heat-resistant particle layer.
(Magnification of the average particle size of organic particles with respect to the thickness of the heat-resistant particle layer)
The ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer was calculated from the following formula.

耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率(倍)=有機粒子の平均粒径(μm)/耐熱粒子層の厚み(μm)
(DRY接着性)
カルボキシメチルセルロースを1.5質量部含む水溶液を人造黒鉛96.5質量部に加えて混合し、更に固形分として2質量部のスチレンブタジエンラテックスを加えて混合して負極合剤含有スラリーとした。この負極合剤含有スラリーを、厚みが8μmの銅箔からなる負極集電体の両面に均一に塗付して乾燥して負極層を形成し、その後、ロールプレス機により圧縮成形して集電体を除いた負極層の密度を1.5g/cmにして、負極を作製した。
上記で作製された負極(幅40mm、長さ50mm)、ポリエチレンテレフタレート(PET)フィルム(幅60mm、長さ70mm)を用意し、電池用セパレータと負極を短辺同士の中心軸が揃い且つ互いの短辺が重なるように積層し、更にPETフィルムを重ね、更にもう1枚の負極を最初に準備した負極とちょうど重なるように積層させた。上記積層物を精密加熱加圧装置(新東工業株式会社製、CYPT-10)を用いて85℃、2MPa、1秒の条件で熱プレスし電池用セパレータと負極を接着させた。
Multiplier (times) of the average particle size of the organic particles with respect to the thickness of the heat-resistant particle layer = average particle size of the organic particles (μm) / thickness of the heat-resistant particle layer (μm)
(DRY adhesiveness)
An aqueous solution containing 1.5 parts by mass of carboxymethyl cellulose was added to 96.5 parts by mass of artificial graphite and mixed, and 2 parts by mass of styrene-butadiene latex as a solid content was further added and mixed to obtain a slurry containing a negative electrode mixture. This negative electrode mixture-containing slurry is uniformly applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 8 μm and dried to form a negative electrode layer, and then compression-molded by a roll press to collect electricity. A negative electrode was prepared by setting the density of the negative electrode layer excluding the body to 1.5 g / cm 3 .
Prepare the negative electrode (width 40 mm, length 50 mm) and polyethylene terephthalate (PET) film (width 60 mm, length 70 mm) produced above, and align the central axes of the short sides of the battery separator and the negative electrode with each other. The short sides were laminated so as to overlap, a PET film was further laminated, and another negative electrode was laminated so as to exactly overlap with the initially prepared negative electrode. The laminate was hot-pressed using a precision heating and pressurizing device (CYPT-10, manufactured by Shinto Kogyo Co., Ltd.) at 85 ° C., 2 MPa, and 1 second to bond the battery separator and the negative electrode.

PETフィルム及び接着されていない負極を取り除き試験片を、両面テープ(ニチバン ナイスタック(R)15mm幅)を用い試験片負極面とアルミ板を張り合わせた。更に2kgのゴムローラ(テスター産業 SA-1003-B)を試験片上で2往復させ固定化した。負極と接着していない電池用セパレータ短辺に測定用冶具固定用の補助紙(幅50mm、長さ80mm)を短辺が合うように取り付けた。 The PET film and the unbonded negative electrode were removed, and the test piece was attached to the negative electrode surface of the test piece using a double-sided tape (Nichiban Nystack (R) 15 mm width) and an aluminum plate. Further, a 2 kg rubber roller (Tester Sangyo SA-1003-B) was reciprocated twice on the test piece and fixed. Auxiliary paper (width 50 mm, length 80 mm) for fixing the measuring jig was attached to the short side of the battery separator that was not adhered to the negative electrode so that the short side matched.

引張用測定冶具を取り付けた卓上型精密万能試験機(SHIMAZU AGS-X)に取り付け、補助紙を引張り上げることで180度剥離試験(剥離速度300mm/min)を実施し、引張り上げた変位が20mmから80mmの間の電池用セパレータと負極の180度剥離に伴う応力の平均値をDRY接着力とした。平均値が2.0N/m以上となる場合にDRY接着性があると判断した。 A 180-degree peel test (peeling speed 300 mm / min) was performed by attaching to a desktop precision universal testing machine (SHIMAZU AGS-X) equipped with a measuring tool for tension and pulling up the auxiliary paper, and the displacement pulled up was 20 mm. The average value of the stresses associated with the 180-degree peeling of the battery separator and the negative electrode between 1 and 80 mm was taken as the DRY adhesive force. When the average value is 2.0 N / m or more, it is judged that there is DRY adhesiveness.

(電解液注液後の接着力)
カルボキシメチルセルロースを1.5質量部含む水溶液を人造黒鉛96.5質量部に加えて混合し、更に固形分として2質量部のスチレンブタジエンラテックスを加えて混合して負極合剤含有スラリーとした。この負極合剤含有スラリーを、厚みが8μmの銅箔からなる負極集電体の両面に均一に塗付して乾燥して負極層を形成し、その後、ロールプレス機により圧縮成形して集電体を除いた負極層の密度を1.5g/cmにして、負極を作製した。
上記で作製された負極(幅10mm、長さ100mm)、ポリエチレンテレフタレート(PET)フィルム(幅25mm、長さ120mm)を用意し、電池用セパレータ(幅17mm、長さ110mm)と負極を短辺同士の中心軸が揃い且つ互いの短辺の一辺が重なるように積層し、更にPETフィルムを重ね、更にもう1枚の負極を最初に準備した負極とちょうど重なるように積層させた。上記積層物を精密加熱加圧装置(新東工業株式会社製、CYPT-10)を用いて85℃、2MPa、1秒の条件で熱プレスし電池用セパレータと負極を接着させた。
幅90mm、長さ135mmのアルミラミネートを用意し、幅45mm、長さ135mmとなるように二つ折りにした。上記アルミラミネート上にDRY接着させた電池用セパレータと負極の積層物を設置し、エチレンカーボネートとエチルメチルカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの割合で溶解させた電解液を100μL滴下した。電解液がなじんだ後、真空シーラーでアルミラミネート開口部の三辺を封止した。
次に、精密加熱加圧装置(新東工業株式会社製、CYPT-10)を用いて90℃、0.7MPa、150秒の条件でアルミラミネート内の電池用セパレータと負極の積層物を熱プレスした。
アルミラミネートを開封して電池用セパレータ/負極の積層物を取り出し、メンディングテープ(幅25mm、長さ18mm)を10mmほど飛び出している電池用セパレータのみの部分に対して5-6mm被るように張り付けた。
引張用測定冶具を取り付けた卓上型精密万能試験機(SHIMAZU AGS-X)に上側が電極、下側が電池用セパレータとなるように取り付け、負極を引張り上げることで180度剥離試験(剥離速度300mm/min)を実施した。引張り上げた変位が20mmから60mmの間の電池用セパレータと負極の180度剥離に伴う応力の平均値を電解液注液後の接着力とし、平均値が2.0N/mを超える場合に電解液注液後の接着性があると判断した。
(Adhesive strength after injecting electrolyte)
An aqueous solution containing 1.5 parts by mass of carboxymethyl cellulose was added to 96.5 parts by mass of artificial graphite and mixed, and 2 parts by mass of styrene-butadiene latex as a solid content was further added and mixed to obtain a slurry containing a negative electrode mixture. This negative electrode mixture-containing slurry is uniformly applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 8 μm and dried to form a negative electrode layer, and then compression-molded by a roll press to collect electricity. A negative electrode was prepared by setting the density of the negative electrode layer excluding the body to 1.5 g / cm 3 .
Prepare the negative electrode (width 10 mm, length 100 mm) and polyethylene terephthalate (PET) film (width 25 mm, length 120 mm) produced above, and attach the battery separator (width 17 mm, length 110 mm) and the negative electrode to each other on the short sides. They were laminated so that their central axes were aligned and one side of each short side overlapped, a PET film was further laminated, and another negative electrode was laminated so as to exactly overlap with the initially prepared negative electrode. The laminate was hot-pressed using a precision heating and pressurizing device (CYPT-10, manufactured by Shinto Kogyo Co., Ltd.) at 85 ° C., 2 MPa, and 1 second to bond the battery separator and the negative electrode.
An aluminum laminate having a width of 90 mm and a length of 135 mm was prepared, and folded in half so as to have a width of 45 mm and a length of 135 mm. A DRY-bonded battery separator and negative electrode laminate were placed on the aluminum laminate, and LiPF 6 was dissolved in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 at a ratio of 1 mol / L. 100 μL of the electrolytic solution was added dropwise. After the electrolyte was applied, the three sides of the aluminum laminate opening were sealed with a vacuum sealer.
Next, using a precision heating and pressurizing device (CYPT-10 manufactured by Shinto Kogyo Co., Ltd.), the laminate of the battery separator and the negative electrode in the aluminum laminate is hot-pressed under the conditions of 90 ° C., 0.7 MPa, and 150 seconds. bottom.
Open the aluminum laminate, take out the battery separator / negative electrode laminate, and attach the mending tape (width 25 mm, length 18 mm) to the part of the battery separator that protrudes about 10 mm so that it covers 5-6 mm. rice field.
Attached to a desktop precision universal testing machine (SHIMAZU AGS-X) equipped with a tension measuring jig so that the upper side is an electrode and the lower side is a battery separator, and the negative electrode is pulled up to perform a 180 degree peeling test (peeling speed 300 mm /). min) was carried out. The average value of the stress associated with 180-degree peeling of the battery separator and the negative electrode with a pulled-up displacement of 20 mm to 60 mm is the adhesive force after injection of the electrolytic solution, and electrolysis is performed when the average value exceeds 2.0 N / m. It was judged that there was adhesiveness after liquid injection.

(耐熱性試験)
50mm角の試料を3枚用意し、予め150度に過熱したオーブンに投入し、1時間経過後に取り出し冷却する。冷却後のMD(縦)、TD(横)寸法を予め計測していたMD、TDの初期寸法で割り算出し熱収縮率とした。
(Heat resistance test)
Prepare three 50 mm square samples, put them in an oven preheated to 150 degrees, take them out after 1 hour, and cool them. The MD (vertical) and TD (horizontal) dimensions after cooling were calculated by dividing by the initial dimensions of the MD and TD that had been measured in advance, and used as the heat shrinkage rate.

熱収縮率(%)={初期寸法(mm)―収縮度の寸法(mm)}/初期寸法(mm)×100
この時、熱収縮率が5.0%未満であるものを特に良好、5%以上10%未満を良好、10%以上であるものを不良とし表記した。
Heat shrinkage rate (%) = {initial dimension (mm) -shrinkage degree dimension (mm)} / initial dimension (mm) x 100
At this time, those having a heat shrinkage rate of less than 5.0% were described as particularly good, those having a heat shrinkage rate of 5% or more and less than 10% were described as good, and those having a heat shrinkage rate of 10% or more were described as defective.

(電池評価)
正極の作製
バインダーとしてPVDFを1.2質量部含むNMP溶液を、活物質としてのコバルト酸リチウム97質量部、カーボンブラック1.8質量部に加えて混合し、正極合剤含有スラリーとした。この正極合剤含有スラリーを、厚みが20μmのアルミ箔からなる正極集電体の両面に均一に塗布して乾燥して正極層を形成し、その後、ロールプレス機により圧縮成型して集電体を除いた正極層の密度を3.6g/cmにして正極を作製した。
負極の作製
カルボキシメチルセルロースナトリウムを1.0質量部含む水溶液を、活物質としての人造黒鉛98質量部に加えて混合し、更にバインダーとして固形分として1.0質量部含むスチレンブタジエンラテックスを加えて混合して負極合剤含有スラリーとした。この負極合剤含有スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に均一に塗付して乾燥して負極層を形成し、その後、ロールプレス機により圧縮成形して集電体を除い
た負極層の密度を1.45g/cmにして、負極を作製した。
試験用電池の作製
上記正極、負極にタブ付けされたものと各電池用セパレータを使用して巻回体を作製した。次いで、平板プレス機(新東工業 CYPT-20特)を用いて捲回体を85℃、2MPa、10秒の条件で熱プレスし電池用セパレータと正極、負極を接着させた。アルミラミネート袋内に熱プレスした巻回体を設置し、電解液(1.1mol/L,LiPF,エチレンカーボネート/エチルメチルカーボネート/ジエチレンカーボネート=3/5/2(体積比)に0.5重量%ビニレンカーボネート、2重量%フルオロエチレンカーボネートを添加したもの)を750μL滴下し真空ラミネータにて封止した。次いで0.2C(Cは電池が1時間で満充電できる電流値をあらわし、本電池の場合300mAとしている)にて全容量の10%を充電後、一晩放置し、ガス抜きの為にラミネートの1辺を開けすぐに再度真空シーラーで封止した。次いで0.1C、4.35V、カットオフ電流0.05Cの定電流定電圧充電し、更に0.1Cで3Vまで定電流放電した。その後、0.2C、4.35V、カットオフ電流0.05Cの定電流定電圧充電しその後0.2C、3V定電流放電した。この0.2Cの充放電を3回繰り返した。これを300mAh級の試験用電池とした。
出力特性試験
上記試験用電池を用いて出力特性試験を実施した。0.2C、4.35V、カットオフ電流0.05Cの定電流定電圧充電したのち、0.2Cで3Vまで定電流放電しこの容量を0.2C放電容量として記録した。次いで0.2C、4.35V、カットオフ電流0.05Cの定電流定電圧充電し、その後3Cで3Vまで定電流放電しこの容量を3C放電容量として記録した。
(Battery evaluation)
Preparation of Positive Electrode An NMP solution containing 1.2 parts by mass of PVDF as a binder was added to 97 parts by mass of lithium cobalt oxide and 1.8 parts by mass of carbon black as active materials and mixed to obtain a positive electrode mixture-containing slurry. This positive electrode mixture-containing slurry is uniformly applied to both sides of a positive electrode current collector made of aluminum foil having a thickness of 20 μm and dried to form a positive electrode layer, and then compression-molded by a roll press machine to form a current collector. A positive electrode was prepared by setting the density of the positive electrode layer excluding the above to 3.6 g / cm 3 .
Preparation of Negative Electrode An aqueous solution containing 1.0 part by mass of sodium carboxymethyl cellulose was added to 98 parts by mass of artificial graphite as an active material and mixed, and further, styrene butadiene latex containing 1.0 part by mass of solid content as a binder was added and mixed. To obtain a slurry containing a negative electrode mixture. This negative electrode mixture-containing slurry is uniformly applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm and dried to form a negative electrode layer, and then compression-molded by a roll press to collect electricity. A negative electrode was prepared by setting the density of the negative electrode layer excluding the body to 1.45 g / cm 3 .
Preparation of test battery A wound body was prepared using the one tabbed on the positive electrode and the negative electrode and the separator for each battery. Next, the wound body was hot-pressed at 85 ° C., 2 MPa, and 10 seconds using a flat plate press machine (Shinto Kogyo CYPT-20 special) to bond the battery separator, the positive electrode, and the negative electrode. A heat-pressed winder was placed in an aluminum laminate bag, and 0.5 in an electrolytic solution (1.1 mol / L, LiPF 6 , ethylene carbonate / ethylmethyl carbonate / diethylene carbonate = 3/5/2 (volume ratio)). 750 μL (with weight% vinylene carbonate and 2% by weight fluoroethylene carbonate added) was added dropwise and sealed with a vacuum laminator. Next, after charging 10% of the total capacity with 0.2C (C represents the current value that the battery can fully charge in 1 hour, and 300mA in the case of this battery), leave it overnight and laminate it for degassing. One side of the was opened and immediately sealed again with a vacuum sealer. Then, it was charged with a constant current constant voltage of 0.1C, 4.35V and a cutoff current of 0.05C, and then discharged at a constant current of 0.1C to 3V. Then, it was charged with a constant current constant voltage of 0.2C, 4.35V and a cutoff current of 0.05C, and then discharged with a constant current of 0.2C and 3V. This charge / discharge of 0.2C was repeated three times. This was used as a 300 mAh class test battery.
Output characteristic test An output characteristic test was carried out using the above test battery. After charging with a constant current and constant voltage of 0.2C, 4.35V and a cutoff current of 0.05C, a constant current discharge was performed at 0.2C to 3V, and this capacity was recorded as a 0.2C discharge capacity. Then, a constant current constant voltage charge of 0.2C, 4.35V and a cutoff current of 0.05C was performed, and then a constant current discharge was performed at 3C to 3V, and this capacity was recorded as a 3C discharge capacity.

3C放電容量維持率を以下の式にて算出した。 The 3C discharge capacity retention rate was calculated by the following formula.

3C放電容量維持率=[3C放電容量]/[0.2C放電容量]
これを計3個の試験用電池で同様の処理をし、3C放電容量維持率の平均値を出力特性とした。
3C discharge capacity retention rate = [3C discharge capacity] / [0.2C discharge capacity]
This was treated in the same manner with a total of three test batteries, and the average value of the 3C discharge capacity retention rate was taken as the output characteristic.

この時、3C放電容量維持率の平均値が75%以上であるものを特に良好、65%以上75%未満を良好、65%未満であるものを不良とし表記した。 At this time, those having an average value of the 3C discharge capacity retention rate of 75% or more were described as particularly good, those having a value of 65% or more and less than 75% were described as good, and those having an average value of less than 65% were described as defective.

[実施例1]
脱イオン水49.0質量部に対してアルミナ粒子(平均粒径0.5μm、密度4.0g/cm)50質量部、カルボキシメチルセルロース1質量部をディスパーで攪拌し、ビーズミル分散機(浅田鉄工(株)製ピコミルPCM-LR)を用いて周波数50Hz、流量10Kg/毎時の条件下で7回処理し、アルミナ分散液を得た。
[Example 1]
50 parts by mass of alumina particles (average particle size 0.5 μm, density 4.0 g / cm 3 ) and 1 part by mass of carboxymethyl cellulose were stirred with a disper for 49.0 parts by mass of deionized water, and a bead mill disperser (Asada Iron Works). Using Picomill PCM-LR manufactured by Co., Ltd.), the treatment was performed 7 times under the conditions of a frequency of 50 Hz and a flow rate of 10 kg / hour to obtain an alumina dispersion.

上記アルミナ分散液100質量部に対してポリエチレン粒子分散体ケミパールA100(三井化学(株)製、固形分濃度40%、融点83℃)7.11質量部を、ディスパー羽根を取り付けたスリーワンモーター(東機産業(株)製)にて攪拌しながら加え、更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度40%のアクリル樹脂水分散体4.69質量部を撹拌しながら加え更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度50%のフッ素系界面活性剤0.38質量部を撹拌しながら加え、更に10分撹拌してコーティング組成物を得た。
前記コーティング組成物を、厚さ12μmのポリオレフィン微多孔膜の片面に、マイクログラビア法にて乾燥温度50℃、搬送速度5m/毎分の条件にてコーティングし、電池用セパレータを得た。前記電池用セパレータについて、耐熱粒子層の厚みは3.0μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が1.3倍であり、前記電池用セパレータの多孔層中のアルミナとケミパールA100の合計を100体積部とした時、アルミナ粒子/ケミパールA100=80/20体積部であった。
Three-one motor (East) with 7.11 parts by mass of polyethylene particle dispersion Chemipearl A100 (manufactured by Mitsui Chemicals Co., Ltd., solid content concentration 40%, melting point 83 ° C.) and a disper blade attached to 100 parts by mass of the above alumina dispersion. The mixture was added with stirring by Kisangyo Co., Ltd.), and the mixture was further stirred for 10 minutes. Next, 4.69 parts by mass of an acrylic resin aqueous dispersion having a solid content concentration of 40% was added to 100 parts by mass of the alumina dispersion while stirring, and the mixture was further stirred for 10 minutes. Next, 0.38 part by mass of a fluorine-based surfactant having a solid content concentration of 50% was added to 100 parts by mass of the alumina dispersion while stirring, and further stirred for 10 minutes to obtain a coating composition.
The coating composition was coated on one side of a microporous polyolefin membrane having a thickness of 12 μm under the conditions of a drying temperature of 50 ° C. and a transport speed of 5 m / min by a microgravure method to obtain a battery separator. Regarding the battery separator, the thickness of the heat-resistant particle layer is 3.0 μm, the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 1.3 times, and alumina and chemipearl in the porous layer of the battery separator. When the total of A100 was 100 parts by volume, the amount was alumina particles / Chemipearl A100 = 80/20 parts by volume.

[実施例2]
ポリエチレン粒子分散体(平均粒径4.0μm、融点60℃、固形分濃度40%)を用いたこと以外は、実施例1と同様にして電池用セパレータを得た。
[Example 2]
A battery separator was obtained in the same manner as in Example 1 except that a polyethylene particle dispersion (average particle size 4.0 μm, melting point 60 ° C., solid content concentration 40%) was used.

[実施例3]
ポリエチレン粒子分散体(平均粒径4.0μm、融点90℃、固形分濃度40%)を用いたこと以外は、実施例1と同様にして電池用セパレータを得た。
[Example 3]
A battery separator was obtained in the same manner as in Example 1 except that a polyethylene particle dispersion (average particle size 4.0 μm, melting point 90 ° C., solid content concentration 40%) was used.

[実施例4]
実施例1で調製したコーティング組成物を用いて耐熱粒子層の厚みが3.6μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が1.1倍となるよう塗工した以外は、実施例1と同様にして電池用セパレータを得た。
[Example 4]
Except for coating using the coating composition prepared in Example 1 so that the thickness of the heat-resistant particle layer is 3.6 μm and the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 1.1 times. A battery separator was obtained in the same manner as in Example 1.

[実施例5]
実施例1で調製したコーティング組成物を用いて耐熱粒子層の厚みが2.0μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が2.0倍となるよう塗工した以外は、実施例1と同様にして電池用セパレータを得た。
[Example 5]
Except for coating using the coating composition prepared in Example 1 so that the thickness of the heat-resistant particle layer is 2.0 μm and the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 2.0 times. A battery separator was obtained in the same manner as in Example 1.

[実施例6]
ポリエチレン粒子分散体(平均粒径2.0μm、融点83℃、固形分濃度40%)を用いて、実施例1と同様にして電池用セパレータを得た。得られた電池用セパレータの耐熱粒子層の厚みは3.0μmであった。
[Example 6]
Using a polyethylene particle dispersion (average particle size 2.0 μm, melting point 83 ° C., solid content concentration 40%), a battery separator was obtained in the same manner as in Example 1. The thickness of the heat-resistant particle layer of the obtained battery separator was 3.0 μm.

[実施例7]
ポリエチレン粒子分散体(平均粒径6.5μm、融点83℃、固形分濃度40%)を用いて、実施例1と同様にして電池用セパレータを得た。得られた電池用セパレータの耐熱粒子層の厚みは5.0μmであった。
[Example 7]
Using a polyethylene particle dispersion (average particle size 6.5 μm, melting point 83 ° C., solid content concentration 40%), a battery separator was obtained in the same manner as in Example 1. The thickness of the heat-resistant particle layer of the obtained battery separator was 5.0 μm.

[実施例8]
請求項1と同様にして得られたアルミナ分散液100質量部に対して、ポリエチレン粒子ケミパールA100(三井化学(株)製、固形分濃度40%、融点83℃)3.16質量部を、ディスパー羽根を取り付けたスリーワンモーターにて攪拌しながら加え、更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度40%のアクリル樹脂水分散体4.17質量部を撹拌しながら加え更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度50%のフッ素系界面活性剤0.33質量部を撹拌しながら加え、更に10分撹拌してコーティング組成物を得た。
前記コーティング組成物を、厚さ12μmのポリオレフィン微多孔膜の片面に、マイクログラビア法にて乾燥温度50℃、搬送速度5m/毎分の条件にてコーティングし、電池用セパレータを得た。前記電池用セパレータについて、耐熱粒子層の厚みは3.0μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が1.3倍であり、前記電池用セパレータの多孔層中のアルミナとケミパールA100の合計を100体積部とした時、アルミナ粒子/ケミパールA100=90/10体積部であった。
[Example 8]
With respect to 100 parts by mass of the alumina dispersion obtained in the same manner as in claim 1, 3.16 parts by mass of polyethylene particle Chemipearl A100 (manufactured by Mitsui Kagaku Co., Ltd., solid content concentration 40%, melting point 83 ° C.) was added. The mixture was added while stirring with a three-one motor equipped with blades, and further stirred for 10 minutes. Next, 4.17 parts by mass of an acrylic resin aqueous dispersion having a solid content concentration of 40% was added to 100 parts by mass of the alumina dispersion while stirring, and the mixture was further stirred for 10 minutes. Next, 0.33 parts by mass of a fluorine-based surfactant having a solid content concentration of 50% was added to 100 parts by mass of the alumina dispersion while stirring, and further stirred for 10 minutes to obtain a coating composition.
The coating composition was coated on one side of a microporous polyolefin membrane having a thickness of 12 μm under the conditions of a drying temperature of 50 ° C. and a transport speed of 5 m / min by a microgravure method to obtain a battery separator. Regarding the battery separator, the thickness of the heat-resistant particle layer is 3.0 μm, the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 1.3 times, and alumina and chemipearl in the porous layer of the battery separator. When the total of A100 was 100 parts by volume, the amount was alumina particles / Chemipal A100 = 90/10 parts by volume.

[実施例9]
請求項1と同様にして得られたアルミナ分散液100質量部に対して、ポリエチレン粒子ケミパールA100(三井化学(株)製、固形分濃度40%、融点83℃)18.96質量部を、ディスパー羽根を取り付けたスリーワンモーターにて攪拌しながら加え、更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度40%のアクリル樹脂水分散体6.25質量部を撹拌しながら加え更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度50%のフッ素系界面活性剤0.5質量部を撹拌しながら加え、更に10分撹拌してコーティング組成物を得た。
前記コーティング組成物を、厚さ12μmのポリオレフィン微多孔膜の片面に、マイクログラビア法にて乾燥温度50℃、搬送速度5m/毎分の条件にてコーティングし、電池用セパレータを得た。前記電池用セパレータについて、耐熱粒子層の厚みは3.0μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が1.3倍であり、前記電池用セパレータの多孔層中のアルミナとケミパールA100の合計を100体積部とした時、アルミナ粒子/ケミパールA100=60/40体積部であった。
[Example 9]
With respect to 100 parts by mass of the alumina dispersion obtained in the same manner as in claim 1, 18.96 parts by mass of polyethylene particle Chemipearl A100 (manufactured by Mitsui Kagaku Co., Ltd., solid content concentration 40%, melting point 83 ° C.) was added. The mixture was added while stirring with a three-one motor equipped with blades, and further stirred for 10 minutes. Next, 6.25 parts by mass of an acrylic resin aqueous dispersion having a solid content concentration of 40% was added to 100 parts by mass of the alumina dispersion while stirring, and the mixture was further stirred for 10 minutes. Next, 0.5 part by mass of a fluorine-based surfactant having a solid content concentration of 50% was added to 100 parts by mass of the alumina dispersion while stirring, and the mixture was further stirred for 10 minutes to obtain a coating composition.
The coating composition was coated on one side of a microporous polyolefin membrane having a thickness of 12 μm under the conditions of a drying temperature of 50 ° C. and a transport speed of 5 m / min by a microgravure method to obtain a battery separator. Regarding the battery separator, the thickness of the heat-resistant particle layer is 3.0 μm, the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 1.3 times, and alumina and chemipearl in the porous layer of the battery separator. When the total of A100 was 100 parts by volume, the amount was alumina particles / Chemipal A100 = 60/40 parts by volume.

[実施例10]
脱イオン水49.0質量部に対して硫酸バリウム(平均粒径1.2μm、密度4.5g/cm)50質量部、カルボキシメチルセルロース1質量部をディスパーで攪拌し、ビーズミル分散機(浅田鉄工(株)製ピコミルPCM-LR)を用いて周波数50Hz、流量10Kg/毎時の条件下で1回処理し、アルミナ分散液を得た。
[Example 10]
Barium sulfate (average particle size 1.2 μm, density 4.5 g / cm 3 ) 50 parts by mass and 1 part by mass of carboxymethyl cellulose were stirred with a disper with respect to 49.0 parts by mass of deionized water, and a bead mill disperser (Asada Iron Works). Using Picomill PCM-LR manufactured by Co., Ltd.), the treatment was performed once under the conditions of a frequency of 50 Hz and a flow rate of 10 kg / hour to obtain an alumina dispersion.

上記アルミナ分散液100質量部に対してポリエチレン粒子ケミパールA100(三井化学(株)製、固形分濃度40%、融点83℃)6.32質量部を、ディスパー羽根を取り付けたスリーワンモーター(東機産業(株)製)にて攪拌しながら加え、更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度40%のアクリル樹脂水分散体4.17質量部を撹拌しながら加え更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度50%のフッ素系界面活性剤0.33質量部を撹拌しながら加え、更に10分撹拌してコーティング組成物を得た。
前記コーティング組成物を、厚さ12μmのポリオレフィン微多孔膜の片面に、マイクログラビア法にて乾燥温度50℃、搬送速度5m/毎分の条件にてコーティングし、電池用セパレータを得た。前記電池用セパレータについて、耐熱粒子層の厚みは3.0μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が1.3倍であり、前記電池用セパレータの多孔層中の硫酸バリウムとケミパールA100の合計を100体積部とした時、硫酸バリウム/ケミパールA100=80/20体積部であった。
Three-one motor (Toki Sangyo) with 6.32 parts by mass of polyethylene particles Chemipearl A100 (manufactured by Mitsui Chemicals Co., Ltd., solid content concentration 40%, melting point 83 ° C.) and a disper blade attached to 100 parts by mass of the above alumina dispersion. (Manufactured by Co., Ltd.) was added while stirring, and the mixture was further stirred for 10 minutes. Next, 4.17 parts by mass of an acrylic resin aqueous dispersion having a solid content concentration of 40% was added to 100 parts by mass of the alumina dispersion while stirring, and the mixture was further stirred for 10 minutes. Next, 0.33 parts by mass of a fluorine-based surfactant having a solid content concentration of 50% was added to 100 parts by mass of the alumina dispersion while stirring, and further stirred for 10 minutes to obtain a coating composition.
The coating composition was coated on one side of a 12 μm-thick polyolefin microporous film under the conditions of a drying temperature of 50 ° C. and a transport speed of 5 m / min by a micrograving method to obtain a battery separator. Regarding the battery separator, the thickness of the heat-resistant particle layer is 3.0 μm, the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 1.3 times, and the barium sulfate in the porous layer of the battery separator is used. When the total of Chemipearl A100 was 100 parts by volume, barium sulfate / Chemipearl A100 = 80/20 parts by volume.

[実施例11]
脱イオン水49.0質量部に対してベーマイト(平均粒径1.2μm、密度3.07g/cm)50質量部、カルボキシメチルセルロース1質量部をディスパーで攪拌し、ビーズミル分散機(浅田鉄工(株)製ピコミルPCM-LR)を用いて周波数50Hz、流量10Kg/毎時の条件下で1回処理し、アルミナ分散液を得た。
[Example 11]
50 parts by mass of boehmite (average particle size 1.2 μm, density 3.07 g / cm 3 ) and 1 part by mass of carboxymethyl cellulose were stirred with a disper with respect to 49.0 parts by mass of deionized water, and a bead mill disperser (Asada Iron Works (Asada Iron Works) Using Picomill PCM-LR manufactured by Co., Ltd.), the treatment was performed once under the conditions of a frequency of 50 Hz and a flow rate of 10 kg / hour to obtain an alumina dispersion.

上記アルミナ分散液100質量部に対してポリエチレン粒子ケミパールA100(三井化学(株)製、固形分濃度40%、融点83℃)9.26質量部を、ディスパー羽根を取り付けたスリーワンモーター(東機産業(株)製)にて攪拌しながら加え、更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度40%のアクリル樹脂水分散体6.11質量部を撹拌しながら加え更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度50%のフッ素系界面活性剤0.49質量部を撹拌しながら加え、更に10分撹拌してコーティング組成物を得た。
前記コーティング組成物を、厚さ12μmのポリオレフィン微多孔膜の片面に、マイクログラビア法にて乾燥温度50℃、搬送速度5m/毎分の条件にてコーティングし、電池用セパレータを得た。前記電池用セパレータについて、耐熱粒子層の厚みは3.0μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が1.3倍であり、前記電池用セパレータは多孔層中のベーマイトとケミパールA100の合計を100体積部とした時、ベーマイト/ケミパールA100=80/20体積部であった。
Three-one motor (Toki Sangyo Co., Ltd.) with 9.26 parts by mass of polyethylene particles Chemipearl A100 (manufactured by Mitsui Chemicals Co., Ltd., solid content concentration 40%, melting point 83 ° C.) and a disper blade attached to 100 parts by mass of the above alumina dispersion. (Manufactured by Co., Ltd.) was added while stirring, and the mixture was further stirred for 10 minutes. Next, 6.11 parts by mass of an acrylic resin aqueous dispersion having a solid content concentration of 40% was added to 100 parts by mass of the alumina dispersion while stirring, and the mixture was further stirred for 10 minutes. Next, 0.49 parts by mass of a fluorine-based surfactant having a solid content concentration of 50% was added to 100 parts by mass of the alumina dispersion while stirring, and further stirred for 10 minutes to obtain a coating composition.
The coating composition was coated on one side of a 12 μm-thick polyolefin microporous film under the conditions of a drying temperature of 50 ° C. and a transport speed of 5 m / min by a micrograving method to obtain a battery separator. Regarding the battery separator, the thickness of the heat-resistant particle layer is 3.0 μm, the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 1.3 times, and the battery separator is boehmite and chemipearl in the porous layer. When the total of A100 was 100 parts by volume, it was boehmite / chemipearl A100 = 80/20 parts by volume.

[比較例1]
アクリルモノマー100質量部に油溶性重合開始剤0.5質量部を添加し溶解させることでモノマー溶液を得た。又、水100質量部に対して界面活性剤を1質量部添加することで界面活性剤水溶液を得た。得られた界面活性剤水溶液100質量部にモノマー溶液10質量部を添加した後、ホモジナイザーにて高速攪拌することで、モノマーエマルションを得た。得られたモノマーエマルションを窒素雰囲気下にて攪拌しながら70℃にて8時間重合することでアクリル粒子が分散したスラリーを得た。得られたスラリーを5μmメッシュフィルターにかけて5μm以上の粒子を除去し、溶媒を純水に置換し再分散させて固形分濃度が15%であるアクリル粒子分散体を得た。
請求項1と同様にして得られたアルミナ分散液100質量部に対して、アクリル粒子分散体25質量部を、ディスパー羽根を取り付けたスリーワンモーターにて攪拌しながら加え、更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度40%のアクリル樹脂水分散体4.69質量部を撹拌しながら加え更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度50%のフッ素系界面活性剤0.38質量部を撹拌しながら加え、更に10分撹拌してコーティング組成物を得た。
前記コーティング組成物を、厚さ12μmのポリオレフィン微多孔膜の片面に、マイクログラビア法にて乾燥温度50℃、搬送速度5m/毎分の条件にてコーティングし、電池用セパレータを得た。前記電池用セパレータについて、耐熱粒子層の厚みは3.0μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が1.3倍であり、前記電池用セパレータの多孔層中のアルミナとアクリル粒子の合計を100体積部とした時、アルミナ粒子/アクリル粒子=80/20体積部であった。
[Comparative Example 1]
A monomer solution was obtained by adding 0.5 part by mass of an oil-soluble polymerization initiator to 100 parts by mass of the acrylic monomer and dissolving it. Further, an aqueous surfactant solution was obtained by adding 1 part by mass of the surfactant to 100 parts by mass of water. A monomer emulsion was obtained by adding 10 parts by mass of a monomer solution to 100 parts by mass of the obtained aqueous surfactant solution and then stirring at high speed with a homogenizer. The obtained monomer emulsion was polymerized at 70 ° C. for 8 hours while stirring in a nitrogen atmosphere to obtain a slurry in which acrylic particles were dispersed. The obtained slurry was subjected to a 5 μm mesh filter to remove particles having a size of 5 μm or more, and the solvent was replaced with pure water and redispersed to obtain an acrylic particle dispersion having a solid content concentration of 15%.
To 100 parts by mass of the alumina dispersion obtained in the same manner as in claim 1, 25 parts by mass of the acrylic particle dispersion was added while stirring with a three-one motor equipped with a disper blade, and the mixture was further stirred for 10 minutes. Next, 4.69 parts by mass of an acrylic resin aqueous dispersion having a solid content concentration of 40% was added to 100 parts by mass of the alumina dispersion while stirring, and the mixture was further stirred for 10 minutes. Next, 0.38 part by mass of a fluorine-based surfactant having a solid content concentration of 50% was added to 100 parts by mass of the alumina dispersion while stirring, and further stirred for 10 minutes to obtain a coating composition.
The coating composition was coated on one side of a microporous polyolefin membrane having a thickness of 12 μm under the conditions of a drying temperature of 50 ° C. and a transport speed of 5 m / min by a microgravure method to obtain a battery separator. Regarding the battery separator, the thickness of the heat-resistant particle layer is 3.0 μm, the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 1.3 times, and alumina and acrylic in the porous layer of the battery separator. When the total number of particles was 100 parts by volume, alumina particles / acrylic particles = 80/20 parts by volume.

[比較例2]
ポリエチレン粒子分散体(平均粒径4.0μm、融点55℃、固形分濃度40%)を用いたこと以外は、実施例1と同様にして電池用セパレータを作製したが、塗工時に搬送ロールへ塗膜が転写してしまい正常な電池用セパレータ―を得ることができなかった。
[Comparative Example 2]
A battery separator was prepared in the same manner as in Example 1 except that a polyethylene particle dispersion (average particle size 4.0 μm, melting point 55 ° C., solid content concentration 40%) was used, but it was transferred to a transport roll at the time of coating. The coating film was transferred and a normal battery separator could not be obtained.

[比較例3]
ポリエチレン粒子分散体(平均粒径4.0μm、融点110℃、固形分濃度40%)を用いたこと以外は、実施例1と同様にして電池用セパレータを得た。
[Comparative Example 3]
A battery separator was obtained in the same manner as in Example 1 except that a polyethylene particle dispersion (average particle size 4.0 μm, melting point 110 ° C., solid content concentration 40%) was used.

[比較例4]
実施例1で調製したコーティング組成物を用いて耐熱粒子層の厚みが4.0μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が1.0倍となるよう塗工した以外は、実施例1と同様にして電池用セパレータを得た。
[Comparative Example 4]
Except for coating using the coating composition prepared in Example 1 so that the thickness of the heat-resistant particle layer is 4.0 μm and the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 1.0 times. A battery separator was obtained in the same manner as in Example 1.

[比較例5]
実施例1で調製したコーティング組成物を用いて耐熱粒子層の厚みが1.9μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が2.1倍となるよう塗工した以外は、実施例1と同様にして電池用セパレータを得た。ポリエチレン粒子の平均粒径を算出するために走査電子顕微鏡を用いて多孔層表面のLEI像を撮影すると、ポリエチレン粒子の脱落が確認され、正常な電池用セパレータ―を得ることができなかった。
[Comparative Example 5]
Except for coating using the coating composition prepared in Example 1 so that the thickness of the heat-resistant particle layer is 1.9 μm and the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 2.1 times. A battery separator was obtained in the same manner as in Example 1. When the LEI image of the surface of the porous layer was photographed using a scanning electron microscope to calculate the average particle size of the polyethylene particles, it was confirmed that the polyethylene particles had fallen off, and a normal battery separator could not be obtained.

[比較例6]
ポリエチレン粒子分散体(平均粒径1.5μm、融点83℃、固形分濃度40%)を用いて、実施例1と同様にして電池用セパレータを得た。得られた電池用セパレータの耐熱粒子層の厚みは1.4μmであった。
[Comparative Example 6]
Using a polyethylene particle dispersion (average particle size 1.5 μm, melting point 83 ° C., solid content concentration 40%), a battery separator was obtained in the same manner as in Example 1. The thickness of the heat-resistant particle layer of the obtained battery separator was 1.4 μm.

[比較例7]
ポリエチレン粒子分散体(平均粒径6.6μm、融点83℃、固形分濃度40%)を用いて、実施例1と同様にして電池用セパレータを得た。得られた電池用セパレータの耐熱粒子層の厚みは6.0μmであった。
[Comparative Example 7]
Using a polyethylene particle dispersion (average particle size 6.6 μm, melting point 83 ° C., solid content concentration 40%), a battery separator was obtained in the same manner as in Example 1. The thickness of the heat-resistant particle layer of the obtained battery separator was 6.0 μm.

[比較例8]
請求項1と同様にして得られたアルミナ分散液100質量部に対して、ポリエチレン粒子分散体ケミパールA100(三井化学(株)製、固形分濃度40%、融点83℃)2.47質量部を、ディスパー羽根を取り付けたスリーワンモーターにて攪拌しながら加え、更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度40%のアクリル樹脂水分散体4.08質量部を撹拌しながら加え更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度50%のフッ素系界面活性剤0.33質量部を撹拌しながら加え、更に10分撹拌してコーティング組成物を得た。
前記コーティング組成物を、厚さ12μmのポリオレフィン微多孔膜の片面に、マイクログラビア法にて乾燥温度50℃、搬送速度5m/毎分の条件にてコーティングし、電池用セパレータを得た。前記電池用セパレータについて、耐熱粒子層の厚みは3.0μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が1.3倍であり、前記電池用セパレータの多孔層中のアルミナとケミパールA100の合計を100体積部とした時、アルミナ粒子/ケミパールA100=92/8体積部であった。
[Comparative Example 8]
2.47 parts by mass of polyethylene particle dispersion Chemipearl A100 (manufactured by Mitsui Kagaku Co., Ltd., solid content concentration 40%, melting point 83 ° C.) is added to 100 parts by mass of the alumina dispersion obtained in the same manner as in claim 1. , The mixture was added while stirring with a three-one motor equipped with a dispersion blade, and further stirred for 10 minutes. Next, 4.08 parts by mass of an acrylic resin aqueous dispersion having a solid content concentration of 40% was added to 100 parts by mass of the alumina dispersion while stirring, and the mixture was further stirred for 10 minutes. Next, 0.33 parts by mass of a fluorine-based surfactant having a solid content concentration of 50% was added to 100 parts by mass of the alumina dispersion while stirring, and further stirred for 10 minutes to obtain a coating composition.
The coating composition was coated on one side of a microporous polyolefin membrane having a thickness of 12 μm under the conditions of a drying temperature of 50 ° C. and a transport speed of 5 m / min by a microgravure method to obtain a battery separator. Regarding the battery separator, the thickness of the heat-resistant particle layer is 3.0 μm, the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 1.3 times, and alumina and chemipearl in the porous layer of the battery separator. When the total of A100 was 100 parts by volume, the amount was alumina particles / Chemipal A100 = 92/8 parts by volume.

[比較例9]
請求項1と同様にして得られたアルミナ分散液100質量部に対して、ポリエチレン粒子分散体ケミパールA100(三井化学(株)製、固形分濃度40%、融点83℃)28.44質量部を、ディスパー羽根を取り付けたスリーワンモーターにて攪拌しながら加え、更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度40%のアクリル樹脂水分散体7.5質量部を撹拌しながら加え更に10分撹拌した。次いで、アルミナ分散液100質量部に対して固形分濃度50%のフッ素系界面活性剤0.6質量部を撹拌しながら加え、更に10分撹拌してコーティング組成物を得た。
前記コーティング組成物を、厚さ12μmのポリオレフィン微多孔膜の片面に、マイクログラビア法にて乾燥温度50℃、搬送速度5m/毎分の条件にてコーティングし、電池用セパレータを得た。前記電池用セパレータについて、耐熱粒子層の厚みは3.0μm、耐熱粒子層の厚みに対する有機粒子の平均粒径の倍率が1.3倍であり、前記電池用セパレータの多孔層中のアルミナとケミパールA100の合計を100体積部とした時、アルミナ粒子/ケミパールA100=50/50体積部であった。
[Comparative Example 9]
28.44 parts by mass of polyethylene particle dispersion Chemipearl A100 (manufactured by Mitsui Kagaku Co., Ltd., solid content concentration 40%, melting point 83 ° C.) was added to 100 parts by mass of the alumina dispersion obtained in the same manner as in claim 1. , The mixture was added while stirring with a three-one motor equipped with a dispersion blade, and further stirred for 10 minutes. Next, 7.5 parts by mass of an acrylic resin aqueous dispersion having a solid content concentration of 40% was added to 100 parts by mass of the alumina dispersion while stirring, and the mixture was further stirred for 10 minutes. Next, 0.6 parts by mass of a fluorine-based surfactant having a solid content concentration of 50% was added to 100 parts by mass of the alumina dispersion while stirring, and the mixture was further stirred for 10 minutes to obtain a coating composition.
The coating composition was coated on one side of a microporous polyolefin membrane having a thickness of 12 μm under the conditions of a drying temperature of 50 ° C. and a transport speed of 5 m / min by a microgravure method to obtain a battery separator. Regarding the battery separator, the thickness of the heat-resistant particle layer is 3.0 μm, the ratio of the average particle size of the organic particles to the thickness of the heat-resistant particle layer is 1.3 times, and alumina and chemipearl in the porous layer of the battery separator. When the total of A100 was 100 parts by volume, the amount was alumina particles / Chemipal A100 = 50/50 parts by volume.

Figure 2022064377000001
Figure 2022064377000001

Claims (5)

ポリオレフィン微多孔膜と、
前記ポリオレフィン微多孔膜の少なくとも一方の面に積層された多孔層と、を備える電池用セパレータであって、
多孔層は有機粒子と、耐熱粒子を含み、
前記有機粒子はポリエチレンであり、
前記有機粒子は融点が60℃以上、90℃以下であり、
走査型電子顕微鏡を用いて前記多孔層の断面を観察し、耐熱粒子の存在する一方の面について耐熱粒子層の厚みが1.5μm以上、5.0μm以下であり、
前記耐熱粒子層の厚みに対する前記有機粒子の数平均粒径の倍率が1.1倍以上、2.0倍以下であり、
前記多孔層における有機粒子と耐熱粒子の合計100体積部に対して有機粒子を10体積部以上、40体積部以下含む、
電池用セパレータ。
Polyolefin microporous membrane and
A battery separator comprising a porous layer laminated on at least one surface of the polyolefin microporous membrane.
The porous layer contains organic particles and heat-resistant particles,
The organic particles are polyethylene,
The organic particles have a melting point of 60 ° C. or higher and 90 ° C. or lower, and have a melting point of 60 ° C. or higher and 90 ° C. or lower.
The cross section of the porous layer was observed using a scanning electron microscope, and the thickness of the heat-resistant particle layer was 1.5 μm or more and 5.0 μm or less on one surface where the heat-resistant particles were present.
The ratio of the number average particle diameter of the organic particles to the thickness of the heat-resistant particle layer is 1.1 times or more and 2.0 times or less.
It contains 10 parts by volume or more and 40 parts by volume or less of organic particles with respect to a total of 100 parts by volume of organic particles and heat-resistant particles in the porous layer.
Battery separator.
耐熱粒子がアルミナ、ベーマイトもしくは硫酸バリウムを含む請求項1に記載の電池用セパレータ。 The battery separator according to claim 1, wherein the heat-resistant particles contain alumina, boehmite or barium sulfate. 正極と、負極と、前記請求項1又は2に記載の電池用セパレータと、を備える電極体。 An electrode body including a positive electrode, a negative electrode, and a battery separator according to claim 1 or 2. 請求項1又は2に記載の電池用セパレータを用いた非水系二次電池。 A non-aqueous secondary battery using the battery separator according to claim 1 or 2. 請求項1又は2に記載の電池用セパレータの製造方法であって、以下の工程(a)~(e)を順次含む、電池用セパレータの製造方法。
(a)水を主成分とする溶媒に分散剤を添加後、更に耐熱粒子を添加して攪拌し、混合液を得る工程。
(b)前記混合液をビーズミル分散機にて分散処理を施し、マスターバッチ液を得る工程。
(c)前記マスターバッチ液に前記有機粒子、バインダーを添加し、更に、その他添加剤を添加してコーティング組成物を得る工程。
(d)ポリオレフィン微多孔膜の少なくとも片面にコーティング組成物をコーティングする工程。
(e)前記コーティング後、溶媒をドライヤーで乾燥させ、多孔層を形成する工程。
The method for manufacturing a battery separator according to claim 1 or 2, wherein the method for manufacturing a battery separator comprises the following steps (a) to (e) in sequence.
(A) A step of adding a dispersant to a solvent containing water as a main component, further adding heat-resistant particles, and stirring the mixture to obtain a mixed solution.
(B) A step of subjecting the mixed liquid to a dispersion treatment with a bead mill disperser to obtain a masterbatch liquid.
(C) A step of adding the organic particles and a binder to the masterbatch liquid, and further adding other additives to obtain a coating composition.
(D) A step of coating at least one surface of the polyolefin microporous membrane with the coating composition.
(E) A step of forming a porous layer by drying the solvent with a dryer after the coating.
JP2020172967A 2020-10-14 2020-10-14 Battery separator, electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing battery separator Pending JP2022064377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020172967A JP2022064377A (en) 2020-10-14 2020-10-14 Battery separator, electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020172967A JP2022064377A (en) 2020-10-14 2020-10-14 Battery separator, electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing battery separator

Publications (1)

Publication Number Publication Date
JP2022064377A true JP2022064377A (en) 2022-04-26

Family

ID=81385980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020172967A Pending JP2022064377A (en) 2020-10-14 2020-10-14 Battery separator, electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing battery separator

Country Status (1)

Country Link
JP (1) JP2022064377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234093A1 (en) * 2022-05-31 2023-12-07 パナソニックエナジー株式会社 Non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234093A1 (en) * 2022-05-31 2023-12-07 パナソニックエナジー株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP6171117B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
US10680224B2 (en) Polyolefin multilayer microporous film, method for producing same, and cell separator
JP6143992B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP6863283B2 (en) Battery separator
JP6988881B2 (en) Separator for secondary batteries containing polyethylene microporous membrane
JP5712629B2 (en) Porous film and power storage device
JP2017050149A (en) Separator for secondary battery
KR102208408B1 (en) Separator for energy storage device, and laminated body, roll and secondary battery using the same
WO2012119361A1 (en) Co-extruded composite membrane comprising nano-sized pre-crosslinked rubber micropowder and lithium-ion battery using same
JP7229775B2 (en) Battery separator, electrode body and non-aqueous electrolyte secondary battery
JP2022064377A (en) Battery separator, electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing battery separator
JP2019102126A (en) Battery separator and non-aqueous electrolyte secondary battery
WO2021029397A1 (en) Separator for batteries and method for producing same
TW202245325A (en) Separator for power storage devices, and power storage device
JP2016181439A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2018181546A (en) Nonaqueous electrolyte secondary battery separator
JP7344644B2 (en) Multilayer porous membrane with polyolefin microporous membrane
WO2024010091A1 (en) Separator for power storage device
WO2023038069A1 (en) Separator for power storage device
EP4216248A1 (en) Separator for power storage device, and power storage device
TWI715676B (en) Separator for battery and manufacturing method thereof
JP2023152941A (en) Multilayer porous film, electrode body and non-aqueous secondary battery
JP2023152737A (en) Multilayer porous film, electrode body and non-aqueous secondary battery
JP2022048519A (en) Separator for battery and method for manufacturing the same
JP2024039479A (en) multilayer porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231005