JP2022032657A - Laminar graphite and resin composition - Google Patents

Laminar graphite and resin composition Download PDF

Info

Publication number
JP2022032657A
JP2022032657A JP2020136669A JP2020136669A JP2022032657A JP 2022032657 A JP2022032657 A JP 2022032657A JP 2020136669 A JP2020136669 A JP 2020136669A JP 2020136669 A JP2020136669 A JP 2020136669A JP 2022032657 A JP2022032657 A JP 2022032657A
Authority
JP
Japan
Prior art keywords
graphite
flaky graphite
resin
mass
flaky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020136669A
Other languages
Japanese (ja)
Inventor
亮 谷内
Ryo Yanai
厚輝 渋谷
Atsuteru Shibuya
智秋 斉木
Tomoaki Saiki
英之 横田
Hideyuki Yokota
亨 矢野
Toru Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2020136669A priority Critical patent/JP2022032657A/en
Publication of JP2022032657A publication Critical patent/JP2022032657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

To provide laminar graphite that has excellent dispersibility when blended in a resin, a coating or the like and achieves significantly improved properties.SOLUTION: The inventive laminar graphite has an average thickness of 10 nm-200 nm. A mixture composed of bisphenol A diglycidyl ether 100 pts.mass and the laminar graphite 10 pts.mass has a viscosity of 10 Pa s-300 Pa s at 25°C.SELECTED DRAWING: None

Description

本発明は、特定物性を有する薄片化黒鉛及びそれを含有する樹脂組成物に関する。 The present invention relates to flaky graphite having specific physical characteristics and a resin composition containing the same.

積層物質である黒鉛を剥離して得られるグラフェン等の薄片化黒鉛は、二次電池の電極の導電助剤(例えば、特許文献1を参照)、導電性インク(例えば、特許文献2を参照)、樹脂やエラストマーのフィラー(例えば、特許文献3及び4を参照)、ガスバリア材(例えば、特許文献5及び6を参照)等として使用されている。薄片化黒鉛は、薄片化されて薄くなり、層数が少ないほど凝集を起こしやすくなるため、マトリックスに分散しにくくなり充分な物性が得られない場合があった。 Fragmented graphite such as graphite obtained by peeling graphite, which is a laminated material, is a conductive auxiliary agent (for example, see Patent Document 1) and a conductive ink (for example, see Patent Document 2) for electrodes of a secondary battery. , Resin and elastomer fillers (see, for example, Patent Documents 3 and 4), gas barrier materials (see, for example, Patent Documents 5 and 6) and the like. The flaky graphite is flaky and thin, and the smaller the number of layers, the easier it is for aggregation to occur. Therefore, it becomes difficult to disperse in the matrix and sufficient physical properties may not be obtained.

特開2016-060887号公報Japanese Unexamined Patent Publication No. 2016-0608887 国際公開第2016/002254号International Publication No. 2016/002254 特表2013-517200号公報Special Table 2013-517200 Gazette 特表2015-517583号公報Special Table 2015-517583 Gazette 国際公開第2013/062246号International Publication No. 2013/062246 特表2018-503541号公報Special Table 2018-503541

本発明の課題は、樹脂、塗料等に配合した場合に分散性が良好であり且つ物性の改良効果が大きい薄片化黒鉛を提供することにある。 An object of the present invention is to provide flaky graphite having good dispersibility and a large effect of improving physical properties when blended in a resin, a paint or the like.

本発明者らは、上記課題について鋭意検討を行なった結果、平均厚さが特定の範囲にあり且つビスフェノールAジグリシジルエーテルと混合したときに特定の粘度を有する薄片化黒鉛が、上記課題を解決できることを見出し、本発明を完成させた。
即ち、本発明は、平均厚さが10nm~200nmである薄片化黒鉛であって、ビスフェノールAジグリシジルエーテル100質量部及び薄片化黒鉛10質量部からなる混合物の25℃における粘度が、10Pa・s~300Pa・sである薄片化黒鉛である。
As a result of diligent studies on the above-mentioned problems, the present inventors have solved the above-mentioned problems with flaky graphite having an average thickness in a specific range and having a specific viscosity when mixed with bisphenol A diglycidyl ether. We found what we could do and completed the present invention.
That is, the present invention is a flaky graphite having an average thickness of 10 nm to 200 nm, and the viscosity of a mixture consisting of 100 parts by mass of bisphenol A diglycidyl ether and 10 parts by mass of flaky graphite at 25 ° C. is 10 Pa · s. It is a flaky graphite having a speed of about 300 Pa · s.

また、本発明は、上記薄片化黒鉛と合成樹脂とを含有する樹脂組成物である。 Further, the present invention is a resin composition containing the above-mentioned flaky graphite and a synthetic resin.

本発明によれば、樹脂、塗料等に配合した場合に分散性が良好であり且つ靱性、伸縮性、耐衝撃性等の物性の改良効果が大きい薄片化黒鉛を提供することができる。 According to the present invention, it is possible to provide flaky graphite having good dispersibility when blended in a resin, a paint or the like, and having a large effect of improving physical properties such as toughness, elasticity and impact resistance.

〔薄片化黒鉛〕
薄片化黒鉛は、黒鉛類が薄片化された物質であり、黒鉛の単位層が1層~数千層積層した層状構造を有する物質をいう。黒鉛類は、炭素からなる単位層を有する層状化合物である。黒鉛類としては、黒鉛の他に、黒鉛の層間を膨張させた膨張化黒鉛や、黒鉛を酸化剤で酸化した酸化黒鉛が含まれる。
[Sliced graphite]
The flaky graphite is a substance in which graphites are flaky, and refers to a substance having a layered structure in which one to several thousand layers of graphite are laminated. Graphites are layered compounds having a unit layer made of carbon. In addition to graphite, graphite includes expanded graphite obtained by expanding the layers of graphite and graphite oxide obtained by oxidizing graphite with an oxidizing agent.

本発明の薄片化黒鉛の平均厚さは、10nm~200nmである。平均厚さが10nmよりも薄い場合及び200nmよりも厚い場合は、樹脂等への分散性が低下する場合がある。薄片化黒鉛の平均厚さは20nm~100nmであることが好ましく、25nm~50nmであることが更に好ましく、30nm~40nmであることが最も好ましい。 The average thickness of the flaky graphite of the present invention is 10 nm to 200 nm. If the average thickness is thinner than 10 nm or thicker than 200 nm, the dispersibility in the resin or the like may decrease. The average thickness of the flaky graphite is preferably 20 nm to 100 nm, more preferably 25 nm to 50 nm, and most preferably 30 nm to 40 nm.

本発明において、薄片化黒鉛の厚さとは、薄片化黒鉛の積層面に対して垂直方向の厚さであり、薄片化黒鉛の平均厚さとは、任意の30個以上の薄片化黒鉛の厚さの平均値である。薄片化黒鉛の厚さは、例えば、薄片化黒鉛を走査型電子顕微鏡(SEM)により撮影したSEM画像を用いて測定できる。なお、単位層1層からなる薄片化黒鉛はグラフェンと呼ばれ、厚さは理論上、約0.335nmである。 In the present invention, the thickness of the flaky graphite is the thickness in the direction perpendicular to the laminated surface of the flaky graphite, and the average thickness of the flaky graphite is the thickness of any 30 or more flaky graphites. Is the average value of. The thickness of the flaky graphite can be measured, for example, by using an SEM image of the flaky graphite taken with a scanning electron microscope (SEM). The flaky graphite composed of one unit layer is called graphene, and its thickness is theoretically about 0.335 nm.

本発明の薄片化黒鉛は、ビスフェノールAジグリシジルエーテル100質量部及び薄片化黒鉛10質量部からなる混合物の25℃における粘度(以下、エポキシ粘度という)が、10Pa・s~300Pa・sとなる。エポキシ粘度は、ブルックフィールド回転粘度計を用いて、回転数1rpmでスピンドルを回転させてから1分後に測定した粘度である。薄片化黒鉛のエポキシ粘度が、10Pa・sよりも低い場合及び300Pa・sよりも大きい場合は、樹脂等への分散性が低下する場合がある。本発明の薄片化黒鉛のエポキシ粘度は、30Pa・s~150Pa・sが好ましく、50Pa・s~100Pa・sが更に好ましい。 The flaky graphite of the present invention has a viscosity (hereinafter referred to as epoxy viscosity) of a mixture consisting of 100 parts by mass of bisphenol A diglycidyl ether and 10 parts by mass of flaky graphite at 25 ° C. of 10 Pa · s to 300 Pa · s. The epoxy viscosity is the viscosity measured 1 minute after rotating the spindle at a rotation speed of 1 rpm using a Brookfield rotational viscometer. When the epoxy viscosity of the flaky graphite is lower than 10 Pa · s and larger than 300 Pa · s, the dispersibility in the resin or the like may decrease. The epoxy viscosity of the flaky graphite of the present invention is preferably 30 Pa · s to 150 Pa · s, more preferably 50 Pa · s to 100 Pa · s.

ビスフェノールAジグリシジルエーテルは、下記一般式(1)で表されるビスフェノールA型エポキシ樹脂におけるnが0の化合物である。また、ビスフェノールA型エポキシ樹脂では、下記式(2)で表されるグリシジルエーテル基を下記式(3)~(5)で表されるヒドロキシエーテル基で置換した異性体が存在する。一般式(1)におけるnが1以上の化合物や、式(2)で表されるグリシジルエーテル基を式(3)~(5)で表されるヒドロキシエーテル基で置換した異性体の含量が多い場合には、エポキシ粘度が高くなることから、本発明の薄片化黒鉛のエポキシ粘度の測定には、純度が少なくとも99%であるビスフェノールAジグリシジルエーテルを用いる。なお、ビスフェノールAジグリシジルエーテルの純度は、GPC(Gel Permeation Chromatography)により測定できる。 The bisphenol A diglycidyl ether is a compound in which n is 0 in the bisphenol A type epoxy resin represented by the following general formula (1). Further, in the bisphenol A type epoxy resin, there is an isomer in which the glycidyl ether group represented by the following formula (2) is replaced with the hydroxy ether group represented by the following formulas (3) to (5). The content of the compound in which n in the general formula (1) is 1 or more and the isomer in which the glycidyl ether group represented by the formula (2) is replaced with the hydroxy ether group represented by the formulas (3) to (5) is high. In some cases, since the epoxy viscosity becomes high, bisphenol A diglycidyl ether having a purity of at least 99% is used for measuring the epoxy viscosity of the flaky graphite of the present invention. The purity of bisphenol A diglycidyl ether can be measured by GPC (Gel Permeation Chromatography).

Figure 2022032657000001
Figure 2022032657000001

(式(1)中、nは0以上の整数を表す。) (In equation (1), n represents an integer of 0 or more.)

Figure 2022032657000002
Figure 2022032657000002

本発明の薄片化黒鉛の比表面積は、10m/g~40m/gであることが好ましいい。本発明において、薄片化黒鉛の比表面積はBET法による測定値であり、JIS Z8830(ガス吸着による粉体(固体)の比表面積測定方法)に準拠して測定される。薄片化黒鉛の比表面積が10m/gよりも小さい場合及び40m/gよりも大きい場合は、樹脂等への分散性が低下する場合がある。薄片化黒鉛の比表面積は12m/g~30m/gであることが更に好ましく、15m/g~20m/gであることが最も好ましい。 The specific surface area of the flaky graphite of the present invention is preferably 10 m 2 / g to 40 m 2 / g. In the present invention, the specific surface area of the flaky graphite is a value measured by the BET method, and is measured in accordance with JIS Z8830 (a method for measuring the specific surface area of powder (solid) by gas adsorption). When the specific surface area of the flaky graphite is smaller than 10 m 2 / g and larger than 40 m 2 / g, the dispersibility in the resin or the like may decrease. The specific surface area of the flaky graphite is more preferably 12 m 2 / g to 30 m 2 / g, and most preferably 15 m 2 / g to 20 m 2 / g.

本発明の薄片化黒鉛のかさ密度は、0.05g/cm~0.3g/cmであることが好ましい。本発明において、薄片化黒鉛のかさ密度はJIS K1469(電池用アセチレンブラック)に準拠して測定される。薄片化黒鉛のかさ密度が0.03g/cmよりも小さい場合及び0.3g/cmよりも大きい場合は、樹脂等への分散性が低下する場合がある。薄片化黒鉛のかさ密度は0.055g/cm~0.2g/cmであることが更に好ましく、0.06g/cm~0.1g/cmであることが最も好ましい。 The bulk density of the flaky graphite of the present invention is preferably 0.05 g / cm 3 to 0.3 g / cm 3 . In the present invention, the bulk density of flaky graphite is measured according to JIS K1469 (acetylene black for batteries). When the bulk density of the flaky graphite is smaller than 0.03 g / cm 3 and larger than 0.3 g / cm 3 , the dispersibility in the resin or the like may decrease. The bulk density of the flaky graphite is more preferably 0.055 g / cm 3 to 0.2 g / cm 3 , and most preferably 0.06 g / cm 3 to 0.1 g / cm 3 .

本発明の薄片化黒鉛の製造方法は、特に限定されず、公知の装置により黒鉛類に対して、剪断力、超音波振動、キャビテーション、マイクロ波等を加えて薄片化し、平均厚さが上記した範囲となるまで薄片化すればよい。黒鉛類の薄片化に用いられる装置としては、サンドミル、アトライター、ビーズミル等の媒体撹拌ミル;回転ミル、振動ミル、遊星ミル等のボールやロッドを媒体とする容器駆動型ミル;ジェットミル、ロールミル、ハンマーミル、ピンミル、高圧乳化機、超音波乳化機、マイクロ波オーブン等が挙げられる。高圧乳化機としては、例えば、貫通型高圧乳化機及び衝突型高圧乳化機が挙げられる。貫通型高圧乳化機の貫通形式としては、シングルノズル形式、スリットノズル形式等が挙げられる。衝突型高圧乳化機の衝突形式としては、原料を含む液を、バルブ等の平面やボール等の球面に衝突させる形式、原料を含む液同士を衝突させる形式等が挙げられる。 The method for producing flaky graphite of the present invention is not particularly limited, and a known device is used to apply shear force, ultrasonic vibration, cavitation, microwaves, etc. to the graphite to thin it, and the average thickness is as described above. It may be sliced until it reaches the range. Devices used for slicing graphite include medium stirring mills such as sand mills, attritors, and bead mills; container-driven mills using balls and rods such as rotary mills, vibration mills, and planetary mills; jet mills and roll mills. , Hammer mill, pin mill, high pressure emulsifier, ultrasonic emulsifier, microwave oven and the like. Examples of the high-pressure emulsifier include a penetration type high-pressure emulsifier and a collision-type high-pressure emulsifier. Examples of the penetration type of the penetration type high-pressure emulsifier include a single nozzle type and a slit nozzle type. Examples of the collision type of the collision type high-pressure emulsifier include a type in which a liquid containing a raw material collides with a flat surface such as a valve or a spherical surface such as a ball, and a type in which the liquid containing the raw material collides with each other.

黒鉛類の薄片化は、溶媒を用いる湿式薄片化方法、溶媒使用しない乾式薄片化方法のいずれの方法であってもよく、それぞれの装置の薄片化方法に合わせて、選択すればよい。 The thinning of graphite may be either a wet thinning method using a solvent or a dry thinning method using no solvent, and may be selected according to the thinning method of each apparatus.

湿式薄片化方法に使用する溶媒としては、静電気が帯電しにくいことから、メタノール、エタノール、イソプロパノール、エチレングリコール、プロピレングリコール、メトキシエタノール等のアルコール系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;ピリジン、ピペリジン、モルホリン、テトラヒドロフラン、ジオキサン等の複素環式溶媒;1-エチル-3-メチルイミダゾリウムテトラフルオロボレート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロフォスフェート等のイオン液体、ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド、水等が好ましい。 As the solvent used in the wet fragmentation method, since it is difficult to be charged with static electricity, alcohol-based solvents such as methanol, ethanol, isopropanol, ethylene glycol, propylene glycol and methoxyethanol; ketone solvents such as acetone and methyl ethyl ketone; pyridine, Heterocyclic solvents such as piperidine, morpholine, tetrahydrofuran, dioxane; ionic liquids such as 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, dimethylformamide, N- Methylpyrrolidone, dimethyl sulfoxide, water and the like are preferable.

湿式薄片化方法により黒鉛類を薄片化する場合は、界面活性剤を併用してもよい。界面活性剤は、黒鉛類を溶剤中に分散させ、薄片化を促進するとともに、黒鉛類の層間に溶剤を侵入しやすくして薄片化を促進する。界面活性剤は、薄片化後、必要に応じて溶剤により洗浄して除去すればよい。好ましい界面活性剤としては、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルグリコシド等の非イオン界面活性剤が挙げられる。 When the graphite is sliced by the wet flaking method, a surfactant may be used in combination. The surfactant disperses the graphite in the solvent and promotes flaking, and also facilitates the penetration of the solvent between the layers of the graphite to promote flaking. The surfactant may be removed by washing with a solvent if necessary after thinning. Preferred surfactants include nonionic surfactants such as glycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether and alkyl glycoside.

黒鉛類を薄片化する場合は、水溶性塩を併用してもよい。水溶性塩は、薄片化工程において、固体状の水溶性塩は薄片化を促進する媒体として機能し、溶媒に溶解した水溶性塩は黒鉛類の層間に作用して薄片化を促進する。水溶性塩は、薄片化後、水洗により容易に除去できる。好ましい水溶性塩としては、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸ナトリウム、硫酸カリウム、硫酸カルシウム、酢酸ナトリウム等が挙げられる。 When thinning graphites, a water-soluble salt may be used in combination. In the thinning step, the solid water-soluble salt functions as a medium for promoting the thinning, and the water-soluble salt dissolved in the solvent acts between the layers of the graphite to promote the thinning. The water-soluble salt can be easily removed by washing with water after flaking. Preferred water-soluble salts include sodium chloride, potassium chloride, magnesium chloride, sodium sulfate, potassium sulfate, calcium sulfate, sodium acetate and the like.

上記した平均厚さ及びエポキシ粘度を有する薄片化黒鉛は、基材中で凝集が起こりにくく分散性が大幅に改善される。これにより、薄片化黒鉛による物性の改善効果、例えば、導電性、放熱性、機械物性(耐衝撃性、曲げ強度、圧縮強度等)等を向上することができる。本発明の薄片化黒鉛は、合成樹脂等の樹脂、エラストマー、塗料、インク等への添加剤;電池用電極の導電性添加剤等の用途に好適に使用できる。 The flaky graphite having the above-mentioned average thickness and epoxy viscosity is less likely to aggregate in the substrate, and the dispersibility is greatly improved. Thereby, the effect of improving the physical properties of the flaky graphite, for example, conductivity, heat dissipation, mechanical properties (impact resistance, bending strength, compressive strength, etc.) can be improved. The flaky graphite of the present invention can be suitably used as an additive to resins such as synthetic resins, elastomers, paints, inks, etc .; conductive additives for battery electrodes and the like.

〔樹脂組成物〕
本発明の樹脂組成物は、本発明の薄片化黒鉛と合成樹脂とを含有する。本発明の樹脂組成物に好ましく使用できる合成樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アルキッド樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、変性ポリフェニレンエーテル樹脂、ポリウレタン、ポリイミド、ポリイミドアミド、ポリエーテルイミド、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、フッ素系樹脂、ABS樹脂、AS樹脂、アクリル樹脂、シリコーン等が挙げられる。これらの合成樹脂のなかでも、本発明の薄片化黒鉛を多量に配合しても、凝集が起こりにくく物性を大きく改善できることから、エポキシ樹脂が好ましい。
[Resin composition]
The resin composition of the present invention contains the flaky graphite of the present invention and a synthetic resin. Synthetic resins that can be preferably used in the resin composition of the present invention include epoxy resin, phenol resin, melamine resin, urea resin, alkyd resin, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polycarbonate resin, and polyacetal resin. , Modified polyphenylene ether resin, polyurethane, polyimide, polyimideamide, polyetherimide, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, fluororesin, ABS resin, AS resin, acrylic resin, silicone and the like. Among these synthetic resins, an epoxy resin is preferable because even if a large amount of the flaky graphite of the present invention is blended, aggregation is unlikely to occur and the physical properties can be greatly improved.

本発明の樹脂組成物に含有される合成樹脂が熱可塑性樹脂の場合には、他の添加剤と同様に、合成樹脂と添加剤とを混練する工程で本発明の薄片化黒鉛を配合すればよい。本発明の樹脂組成物に含有される合成樹脂が熱硬化性樹脂の場合には、未硬化の熱硬化性樹脂に本発明の薄片化黒鉛を配合し、必要に応じて樹脂組成物を硬化させればよい。 When the synthetic resin contained in the resin composition of the present invention is a thermoplastic resin, the flaky graphite of the present invention may be blended in the step of kneading the synthetic resin and the additive in the same manner as with other additives. good. When the synthetic resin contained in the resin composition of the present invention is a thermosetting resin, the uncured thermosetting resin is mixed with the flaky graphite of the present invention, and the resin composition is cured as necessary. Just do it.

本発明の樹脂組成物における薄片化黒鉛の配合量は、使用する合成樹脂の種類や求められる物性に応じて異なるが、合成樹脂100質量部に対して、本発明の薄片化黒鉛1~150質量部であることが好ましく、2~100質量部であることがより好ましい。 The blending amount of the flaky graphite in the resin composition of the present invention varies depending on the type of the synthetic resin used and the required physical characteristics, but 1 to 150 mass by mass of the flaky graphite of the present invention is relative to 100 parts by mass of the synthetic resin. The amount is preferably parts, and more preferably 2 to 100 parts by mass.

以下に、実施例及び比較例により本発明を更に詳細に説明する。ただし、以下の実施例等により本発明は何ら制限されるものではない。なお、実施例中の「部」や「%」は、特にことわらない限り質量によるものである。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following examples and the like. In addition, "part" and "%" in an Example are based on mass unless otherwise specified.

〔製造例1〕
国際公開第2016/148252号パンフレットの実験例1に準じて、天然黒鉛から薄片化黒鉛A1を調製した。即ち、1-ブチル-3-メチルイミダゾリウムヘキサフルオロフォスフェート74部と、ポリエチレングリコール(富士フイルム和光純薬製、製品名:ポリエチレングリコール20000)26部とを混合し加熱溶解し、天然黒鉛(富士フイルム和光純薬製)10部を分散させた。この分散液0.6gを0.5cmのバイアル瓶に採取し、フタをした後、マイクロウェーブ合成装置(バイオタージ・ジャパン製Initiator+)を用いて、分散液に2450MHzのマイクロ波を、170℃で30分間照射した。この後、分散液をアセトンで洗浄し、濾過後、オーブンで加熱乾燥することで、薄片化黒鉛A1を得た。
[Manufacturing Example 1]
Flake graphite A1 was prepared from natural graphite according to Experimental Example 1 of International Publication No. 2016/148252 pamphlet. That is, 74 parts of 1-butyl-3-methylimidazolium hexafluorophosphate and 26 parts of polyethylene glycol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product name: polyethylene glycol 20000) are mixed and dissolved by heating to dissolve natural graphite (Fuji). Film Wako Pure Chemical Industries, Ltd.) 10 parts were dispersed. 0.6 g of this dispersion is collected in a 0.5 cm 3 vial, covered, and then microwaved at 2450 MHz is applied to the dispersion at 170 ° C. using a microwave synthesizer (Initiator + manufactured by Biotage Japan). Was irradiated for 30 minutes. Then, the dispersion was washed with acetone, filtered, and then heated and dried in an oven to obtain flaky graphite A1.

〔製造例2〕
マイクロ波の照射条件を、170℃で30分間照射から、175℃で30分間照射に変更したこと以外は、製造例1と同様の操作を行い、薄片化黒鉛A2を得た。
[Manufacturing Example 2]
The same operation as in Production Example 1 was carried out except that the irradiation condition of the microwave was changed from irradiation at 170 ° C. for 30 minutes to irradiation at 175 ° C. for 30 minutes to obtain flaky graphite A2.

〔製造例3〕
マイクロ波の照射条件を、170℃で30分間照射から、180℃で60分間照射に変更したこと以外は、製造例1と同様の操作を行い、薄片化黒鉛A3を得た。
[Manufacturing Example 3]
The same operation as in Production Example 1 was carried out except that the irradiation condition of the microwave was changed from irradiation at 170 ° C. for 30 minutes to irradiation at 180 ° C. for 60 minutes to obtain flaky graphite A3.

〔製造例4〕
蒸留水100質量部に、薄片化黒鉛A3を15質量部添加し、ビーズミル(寿工業製、商品名:UAM-015)を用いて液温25℃にて、3回循環させた。なお、ビーズは、直径0.1mmのジルコニアビーズを450質量部使用した。得られた分散液からビーズを除去し、濾過後、オーブンで加熱乾燥することで、薄片化黒鉛A4を得た。
[Manufacturing Example 4]
15 parts by mass of flaky graphite A3 was added to 100 parts by mass of distilled water, and the mixture was circulated three times at a liquid temperature of 25 ° C. using a bead mill (manufactured by Kotobuki Kogyo Co., Ltd., trade name: UAM-015). As the beads, 450 parts by mass of zirconia beads having a diameter of 0.1 mm were used. The beads were removed from the obtained dispersion, filtered, and then heated and dried in an oven to obtain flaky graphite A4.

〔製造例5〕
天然黒鉛の代わりに、膨張化黒鉛(株式会社伊藤黒鉛工業製、製品名:EC1500)を使用したこと以外は、製造例1と同様の操作を行い、膨張化黒鉛由来の薄片化黒鉛A5を得た。
[Manufacturing Example 5]
The same operation as in Production Example 1 was performed except that expanded graphite (manufactured by Ito Graphite Industry Co., Ltd., product name: EC1500) was used instead of natural graphite to obtain flaky graphite A5 derived from expanded graphite. rice field.

〔製造例6〕
マイクロ波の照射条件を、170℃で30分間照射から、175℃で30分間照射に変更したこと以外は、製造例5と同様の操作を行い、薄片化黒鉛A6を得た。
[Manufacturing Example 6]
The same operation as in Production Example 5 was carried out except that the irradiation condition of the microwave was changed from irradiation at 170 ° C. for 30 minutes to irradiation at 175 ° C. for 30 minutes to obtain flaky graphite A6.

〔製造例7〕
マイクロ波の照射条件を、170℃で30分間照射から、180℃で60分間照射に変更したこと以外は、製造例5と同様の操作を行い、薄片化黒鉛A7を得た。
[Manufacturing Example 7]
The same operation as in Production Example 5 was carried out except that the irradiation condition of the microwave was changed from irradiation at 170 ° C. for 30 minutes to irradiation at 180 ° C. for 60 minutes to obtain flaky graphite A7.

〔製造例8〕
蒸留水100質量部に、天然黒鉛(富士フイルム和光純薬製)を15質量部添加し、ビーズミル(寿工業製、商品名:UAM-015)を用いて液温25℃にて、3回循環させた。なお、ビーズは、直径0.1mmのジルコニアビーズを450質量部使用した。得られた分散液からビーズを除去し、濾過後、オーブンで加熱乾燥することで、粗粉砕黒鉛を得た。天然黒鉛の代わりに、この粗粉砕黒鉛を使用したこと以外は、製造例1と同様の操作を行い、膨張化黒鉛由来の薄片化黒鉛A8を得た。
[Manufacturing Example 8]
15 parts by mass of natural graphite (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is added to 100 parts by mass of distilled water, and the mixture is circulated three times at a liquid temperature of 25 ° C. using a bead mill (manufactured by Kotobuki Kogyo, trade name: UAM-015). I let you. As the beads, 450 parts by mass of zirconia beads having a diameter of 0.1 mm were used. Beads were removed from the obtained dispersion, filtered, and then heated and dried in an oven to obtain coarsely pulverized graphite. The same operation as in Production Example 1 was carried out except that this coarsely pulverized graphite was used instead of natural graphite, to obtain flaky graphite A8 derived from expanded graphite.

〔製造例9〕
マイクロ波の照射条件を、170℃で30分間照射から、175℃で30分間照射に変更したこと以外は、製造例8と同様の操作を行い、薄片化黒鉛A9を得た。
[Manufacturing Example 9]
The same operation as in Production Example 8 was carried out except that the irradiation condition of the microwave was changed from irradiation at 170 ° C. for 30 minutes to irradiation at 175 ° C. for 30 minutes to obtain flaky graphite A9.

〔製造例10〕
マイクロ波の照射条件を、170℃で30分間照射から、180℃で60分間照射に変更したこと以外は、製造例8と同様の操作を行い、薄片化黒鉛A10を得た。
[Manufacturing Example 10]
The same operation as in Production Example 8 was carried out except that the irradiation condition of the microwave was changed from irradiation at 170 ° C. for 30 minutes to irradiation at 180 ° C. for 60 minutes to obtain flaky graphite A10.

薄片化黒鉛A1~A10について、平均厚さ、比表面積、エポキシ粘度及びかさ密度を測定した。エポキシ粘度の測定には、ビスフェノールAジグリシジルエーテルの純度が99.6質量%であるビスフェノールA型エポキシ樹脂(株式会社ADEKA製、製品名:アデカレジンEP4100E)を用いた。なお、薄片化黒鉛A2、A3、A5、A8、A9及びA10が本発明の平均厚さ及びエポキシ粘度を満たすことから実施例1~6とし、薄片化黒鉛A1、A4、A6及びA7を比較例1~4とした。結果を表1に示す。 The average thickness, specific surface area, epoxy viscosity and bulk density of the flaky graphite A1 to A10 were measured. For the measurement of the epoxy viscosity, a bisphenol A type epoxy resin (manufactured by ADEKA Co., Ltd., product name: Adecaredin EP4100E) having a purity of 99.6% by mass of bisphenol A diglycidyl ether was used. Since flaky graphite A2, A3, A5, A8, A9 and A10 satisfy the average thickness and epoxy viscosity of the present invention, Examples 1 to 6 are used, and flaky graphite A1, A4, A6 and A7 are comparative examples. It was set to 1 to 4. The results are shown in Table 1.

Figure 2022032657000003
Figure 2022032657000003

〔樹脂シートの作製〕
ビスフェノールA型エポキシ樹脂(株式会社ADEKA製、製品名:アデカレジンEP4100E)100質量部、薄片化黒鉛35質量部、及びイミダゾール系触媒(1-ベンジル-2-メチルイミダゾール)0.5質量部を、遊星式撹拌脱泡装置を用いて混合した。この混合物を温度160℃、圧力5MPaで1時間加熱し、熱プレス硬化させて厚さ3mmの樹脂シートを作製した。この樹脂シートを用いて、分散性、機械的物性(曲げ特性)、電気特性及び熱特性を評価した。結果を表2に示す。
[Preparation of resin sheet]
100 parts by mass of bisphenol A type epoxy resin (manufactured by ADEKA Co., Ltd., product name: Adecaledin EP4100E), 35 parts by mass of flaky graphite, and 0.5 parts by mass of imidazole-based catalyst (1-benzyl-2-methylimidazole), planetary Mixing was performed using a formula stirring defoaming device. This mixture was heated at a temperature of 160 ° C. and a pressure of 5 MPa for 1 hour and cured by hot press to prepare a resin sheet having a thickness of 3 mm. Using this resin sheet, dispersibility, mechanical properties (bending characteristics), electrical characteristics and thermal characteristics were evaluated. The results are shown in Table 2.

〔分散性の評価〕
作製した樹脂シートをミクロトームを用いて切断し、マイクロスコープを用いて断面の中央部を撮影し、画像解析ソフトにより、100μmあたりの粒子数と、凝集物比を測定した。なお、凝集物比は、面積40μm以上の粒子を凝集物とした場合の、粒子の面積の合計に対する凝集物の面積の合計の比(%)である。粒子数が多いほど分散性が良好であり、凝集物比が大きいほど凝集物の割合が多いことを示す。
[Evaluation of dispersibility]
The prepared resin sheet was cut using a microtome, the central part of the cross section was photographed using a microscope, and the number of particles per 100 μm 2 and the agglomerate ratio were measured by image analysis software. The agglomerate ratio is the ratio (%) of the total area of the agglomerates to the total area of the particles when the particles having an area of 40 μm 2 or more are used as agglomerates. The larger the number of particles, the better the dispersibility, and the larger the agglomerate ratio, the higher the agglomerate ratio.

〔機械的物性の評価〕
樹脂シートを幅25mmの短冊状に加工し、JIS K7171(プラスチック-曲げ特性の求め方)のA法に準じ、曲げ応力、曲げひずみ及び曲げ弾性率を測定した。曲げ応力、曲げひずみ及び曲げ弾性率が高いほど、曲げに関する機械的物性に優れることを示す。
[Evaluation of mechanical properties]
The resin sheet was processed into a strip with a width of 25 mm, and the bending stress, bending strain and bending elastic modulus were measured according to the method A of JIS K7171 (Plastic-How to determine bending characteristics). The higher the bending stress, bending strain and flexural modulus, the better the mechanical properties related to bending.

〔電気特性の評価〕
JIS K7194(導電性プラスチックの4探針法による抵抗率試験方法)に準じ、4探針法により表面抵抗率を測定した。表面抵抗率が低いほど導電性が向上し、電気特性に優れることを示す。
[Evaluation of electrical characteristics]
The surface resistivity was measured by the 4-probe method according to JIS K7194 (resistivity test method by the 4-probe method of conductive plastic). It is shown that the lower the surface resistivity, the better the conductivity and the better the electrical characteristics.

〔熱特性の評価〕
ASTM D7984-16に準じ、熱線法にて熱伝導率を測定した。熱伝導率が高いほど放熱性が向上し、熱特性に優れることを示す。
[Evaluation of thermal characteristics]
The thermal conductivity was measured by the hot wire method according to ASTM D7984-16. It is shown that the higher the thermal conductivity, the better the heat dissipation and the better the thermal characteristics.

Figure 2022032657000004
Figure 2022032657000004

実施例の薄片化黒鉛を配合した樹脂シートは、比較例の薄片化黒鉛を配合した樹脂シートよりも粒子数が多く、凝集物比が小さいことから、実施例の薄片化黒鉛が比較例の薄片化黒鉛よりもエポキシ樹脂への分散性に優れていることがわかる。また、実施例の薄片化黒鉛を配合した樹脂シートは、比較例の薄片化黒鉛を配合した樹脂シートよりも、曲げ特性(曲げ応力、曲げひずみ及び曲げ弾性率)が向上し、表面抵抗率及び熱伝導率が低下している。これはエポキシ樹脂シート中の薄片化黒鉛の分散性が向上したためと考えられる。 Since the resin sheet containing the flaky graphite of the example has a larger number of particles and a smaller aggregate ratio than the resin sheet containing the flaky graphite of the comparative example, the flaky graphite of the example is the flaky piece of the comparative example. It can be seen that the dispersibility in the epoxy resin is superior to that of graphite. Further, the resin sheet containing the flaky graphite of the example has improved bending characteristics (bending stress, bending strain and bending elastic modulus) as compared with the resin sheet containing the flaky graphite of the comparative example, and has a surface resistance and a surface resistance. The thermal conductivity is low. It is considered that this is because the dispersibility of the flaky graphite in the epoxy resin sheet is improved.

〔樹脂ストランドの作製〕
ポリプロピレン樹脂(ホモポリマー、メルトフローレート:8)100質量部、及び薄片化黒鉛2質量部を二軸混錬機を用いて230℃で混錬して押出し、太さ4mmの樹脂ストランドを作製した。
[Preparation of resin strand]
100 parts by mass of polypropylene resin (homopolymer, melt flow rate: 8) and 2 parts by mass of flaky graphite were kneaded at 230 ° C. using a twin-screw kneader and extruded to prepare a resin strand having a thickness of 4 mm. ..

〔分散性の評価〕
得られた樹脂ストランドをミクロトームを用いて切断し、マイクロスコープを用いて断面の中央部を撮影し、樹脂シートの分散性の評価と同様の手法により、100μmあたりの粒子数と、凝集物比を測定した。結果を表3に示す。
[Evaluation of dispersibility]
The obtained resin strand was cut using a microtome, the central part of the cross section was photographed using a microscope, and the number of particles per 100 μm 2 and the agglomerate ratio were measured by the same method as the evaluation of the dispersibility of the resin sheet. Was measured. The results are shown in Table 3.

Figure 2022032657000005
Figure 2022032657000005

実施例の薄片化黒鉛を配合した樹脂ストランドは、比較例の薄片化黒鉛を配合した樹脂ストランドよりも粒子数が多く、凝集物比が小さいことから、実施例の薄片化黒鉛が比較例の薄片化黒鉛よりもポリプロピレン樹脂への分散性に優れていることがわかる。 Since the resin strand containing the flaky graphite of the example has a larger number of particles and a smaller aggregate ratio than the resin strand containing the flaky graphite of the comparative example, the flaky graphite of the example is the flaky piece of the comparative example. It can be seen that the dispersibility in the polypropylene resin is superior to that of graphite.

Claims (4)

平均厚さが10nm~200nmである薄片化黒鉛であって、
ビスフェノールAジグリシジルエーテル100質量部及び薄片化黒鉛10質量部からなる混合物の25℃における粘度が、10Pa・s~300Pa・sとなる薄片化黒鉛。
A flaky graphite having an average thickness of 10 nm to 200 nm.
A flaky graphite having a viscosity of 10 Pa · s to 300 Pa · s at 25 ° C. of a mixture consisting of 100 parts by mass of bisphenol A diglycidyl ether and 10 parts by mass of flaky graphite.
比表面積が、10m/g~40m/gである請求項1に記載の薄片化黒鉛。 The flaky graphite according to claim 1, wherein the specific surface area is 10 m 2 / g to 40 m 2 / g. 請求項1又は2に記載の薄片化黒鉛と、合成樹脂とを含有する樹脂組成物。 A resin composition containing the flaky graphite according to claim 1 or 2 and a synthetic resin. 前記合成樹脂がエポキシ樹脂である請求項3に記載の樹脂組成物。 The resin composition according to claim 3, wherein the synthetic resin is an epoxy resin.
JP2020136669A 2020-08-13 2020-08-13 Laminar graphite and resin composition Pending JP2022032657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020136669A JP2022032657A (en) 2020-08-13 2020-08-13 Laminar graphite and resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020136669A JP2022032657A (en) 2020-08-13 2020-08-13 Laminar graphite and resin composition

Publications (1)

Publication Number Publication Date
JP2022032657A true JP2022032657A (en) 2022-02-25

Family

ID=80350133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020136669A Pending JP2022032657A (en) 2020-08-13 2020-08-13 Laminar graphite and resin composition

Country Status (1)

Country Link
JP (1) JP2022032657A (en)

Similar Documents

Publication Publication Date Title
Sadeghi et al. Highly conductive PP/PET polymer blends with high electromagnetic interference shielding performances in the presence of thermally reduced graphene nanosheets prepared through melt compounding
Dul et al. Graphene/carbon nanotube hybrid nanocomposites: effect of compression molding and fused filament fabrication on properties
Yang et al. Achieving improved electromagnetic interference shielding performance and balanced mechanical properties in polyketone nanocomposites via a composite MWCNTs carrier
Sharma et al. Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs
JP6240212B2 (en) Conductive sheet, method for producing the same, method for producing carbon composite paste, method for producing carbon composite filler, method for producing conductive resin material, and method for producing conductive rubber material
Muzaffar et al. Enhanced electromagnetic absorption in NiO and BaTiO3 based polyvinylidenefluoride nanocomposites
JP5916547B2 (en) Ultra-thin flaky silver powder and method for producing the same
Goto et al. Thermally conductive tough flexible elastomers as composite of slide-ring materials and surface modified boron nitride particles via plasma in solution
JP2015040211A (en) Graphene dispersion composition, and carbon-containing resin laminated body
KR20160071189A (en) Method for preparation of graphene by using pre-high speed homogenization and high pressure homogenization
da Silva et al. Phosphonium–based ionic liquid as dispersing agent for MWCNT in melt-mixing polystyrene blends: Rheology, electrical properties and EMI shielding effectiveness
JP2005063951A (en) Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof
JP2017141345A (en) Methods of manufacturing composite material sheet and thermally conductive sheet
CN114729171B (en) Dispersion, method for producing dispersion, and molded article
WO2017081867A1 (en) Method for producing composite material sheet and method for producing heat conductive sheet
Narimissa et al. The comparison between the effects of solvent casting and melt intercalation mixing processes on different characteristics of polylactide‐nanographite platelets composites
Amani et al. Synthesis and characterization of water-based epoxy-acrylate/graphene oxide decorated with Fe3O4 nanoparticles coatings and its enhanced anticorrosion properties
Lee et al. Highly dispersed graphene nanoplatelets in polypropylene composites by employing high-shear stress for enhanced dielectric properties and frequency-selective electromagnetic interference shielding capability
Yin et al. Effects of surface modification of halloysite nanotubes on the morphology and the thermal and rheological properties of polypropylene/halloysite composites
JP2022032657A (en) Laminar graphite and resin composition
Takahashi et al. Electrically conductive carbon fiber reinforced plastics induced by uneven distribution of polyaniline composite micron-sized particles in thermosetting matrix
Albozahid et al. Synthesis and characterization of hard copolymer polyurethane/functionalized graphene nanocomposites: Investigation of morphology, thermal stability, and rheological properties
JP2022032656A (en) Exfoliated graphite and resin composition
Li et al. Conductive nylon-MXD6 composites prepared by melt compounding associated with formation of carbon black-covered PET domains serving as big conductive particles
Zyane et al. BaTiO3 incorporation effect on the dielectric properties of polymer from aqueous emulsion: An enhanced dispersion technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240409