JP2022030045A - Electric wire with crimp contact - Google Patents

Electric wire with crimp contact Download PDF

Info

Publication number
JP2022030045A
JP2022030045A JP2020133766A JP2020133766A JP2022030045A JP 2022030045 A JP2022030045 A JP 2022030045A JP 2020133766 A JP2020133766 A JP 2020133766A JP 2020133766 A JP2020133766 A JP 2020133766A JP 2022030045 A JP2022030045 A JP 2022030045A
Authority
JP
Japan
Prior art keywords
wire
electric wire
conductor
crimp terminal
strands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020133766A
Other languages
Japanese (ja)
Other versions
JP7488151B2 (en
Inventor
祥 吉田
Sho Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2020133766A priority Critical patent/JP7488151B2/en
Publication of JP2022030045A publication Critical patent/JP2022030045A/en
Application granted granted Critical
Publication of JP7488151B2 publication Critical patent/JP7488151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

To provide an electric wire with a crimp contact that prevents an increase in the resistance between element wires and prevents element wire break.SOLUTION: An electric wire with a crimp contact comprises: an electric wire having a conducting wire composed of a plurality of element wires and an insulating coating part that covers the outer periphery of the conducting wire; and a crimp contact that is crimped to the conducting wire of the electric wire, and in the electric wire with a crimp contact, the crimp contact has a crimped part that is crimped to the conducting wire. The conducting wire is formed of aluminum material. On a longitudinal section of the crimped part, the ratio of the length L1 of a welded part where at least part of the plurality of element wires is welded to the length L of the crimped part (L1/L), the lengths being along an extension direction of the electric wire, is 0.10 or more.SELECTED DRAWING: Figure 1

Description

本開示は、圧着端子付き電線に関する。 The present disclosure relates to an electric wire with a crimp terminal.

近年、自動車の軽量化を目的に、自動車用ワイヤハーネスの素線について、銅系材料からアルミニウム系材料への切り替えが進んでいる。一方で、アルミニウム系材料の表面は体積抵抗率の高い酸化皮膜で覆われているため、アルミニウム系材料からなる素線間の接触抵抗値は高い。 In recent years, in order to reduce the weight of automobiles, the wire harnesses for automobiles have been switched from copper-based materials to aluminum-based materials. On the other hand, since the surface of the aluminum-based material is covered with an oxide film having a high volume resistivity, the contact resistance value between the strands made of the aluminum-based material is high.

アルミニウム系材料の素線間の抵抗を下げるために、アルミニウム系材料の素線同士をはんだで接合する方法や、表面の酸化皮膜を破壊する程度にアルミニウム系材料の素線同士を強圧着する方法が検討されている。しかしながら、はんだで接合する方法では、素線間の抵抗値のばらつきが大きいことがある。また、素線同士を強圧着する方法では、圧着によって素線が切れることがある。 In order to reduce the resistance between the wires of the aluminum-based material, a method of joining the wires of the aluminum-based material with solder, or a method of strongly crimping the wires of the aluminum-based material to the extent that the oxide film on the surface is destroyed. Is being considered. However, in the method of joining with solder, the variation in the resistance value between the strands may be large. Further, in the method of strongly crimping the strands to each other, the strands may be cut by the crimping.

また、特許文献1には、導線の先端部に形成されて素線同士を接合する素線一体化部が素線束部よりも大径の半球状に形成され、先端面に球面状に曲がる曲面を有するとともに後端面に平面を有しており、素線束部に圧着端子の圧着部が圧着された、圧着端子付き電線が記載されている。 Further, in Patent Document 1, a wire-integrated portion formed at the tip of a lead wire and joining the wires to each other is formed in a hemispherical shape having a diameter larger than that of the wire bundle, and is curved on the tip surface in a spherical shape. A wire with a crimp terminal is described, which has a flat surface on the rear end surface and has a crimp portion of a crimp terminal crimped on a bundle of strands.

特許文献1の圧着端子付き電線では、素線の損傷などが従来に比べて改善されてるものの、導線の最外周に配置される素線と圧着端子との間の接触抵抗値は依然として高く、素線と圧着端子との抵抗値を低下させるための強圧着加工によって、素線切れが発生する可能性がある。また、素線同士の溶接で形成された素線一体化部の凝固組織部を含む、素線の溶接時の熱の影響を受ける熱影響組織部と、素線の溶接時の熱の影響を受けない非熱影響組織部とは、材料としての変形の挙動が異なる。凝固組織部を含む熱影響組織部と非熱影響組織部とを含む導線部分が同じ圧着条件で圧着端子と圧着加工されるため、これらの組織部の変形挙動の違いによって、素線切れが生じることがある。 In the electric wire with a crimp terminal of Patent Document 1, although the damage of the wire is improved as compared with the conventional case, the contact resistance value between the wire arranged on the outermost circumference of the conductor and the crimp terminal is still high. Strong crimping to reduce the resistance between the wire and the crimp terminal may cause wire breakage. In addition, the heat-affected zone affected by the heat during welding of the strands, including the solidified structure portion of the strand integrated portion formed by welding the strands, and the effect of heat during welding of the strands The behavior of deformation as a material is different from the non-heat-affected zone that is not affected. Since the conductor portion including the heat-affected structure portion including the solidified structure portion and the non-heat-affected structure portion is crimped with the crimp terminal under the same crimping conditions, the wire breakage occurs due to the difference in the deformation behavior of these structure portions. Sometimes.

特許第6373077号Patent No. 6373077

本開示の目的は、素線間の抵抗の上昇を抑制すると共に、素線切れを抑制した圧着端子付き電線を提供することである。 An object of the present disclosure is to provide an electric wire with a crimp terminal that suppresses an increase in resistance between strands and suppresses breakage of strands.

[1] 複数の素線から構成される導線および前記導線の外周を被覆する絶縁被覆部を有する電線と、前記電線の前記導線に圧着されている圧着端子とを備え、前記圧着端子が前記導線に圧着されている圧着部を有する圧着端子付き電線であって、前記導線は、アルミニウム系材料からなり、前記圧着部の縦断面において、前記電線の延在方向に沿った、前記圧着部の長さLに対する前記複数の素線のうちの少なくとも一部が溶接している溶接部の長さL1の比(L1/L)は、0.10以上であることを特徴とする圧着端子付き電線。
[2] 前記圧着部以外の前記導線の断面における平均結晶粒径(d)に対する前記圧着部の前記導線の断面における平均結晶粒径(d1)の比(d1/d)は、1.1以上である、上記[1]に記載の圧着端子付き電線。
[3] 前記圧着部以外の前記導線の断面における平均ビッカース硬さ(h)に対する前記圧着部の前記導線の断面における平均ビッカース硬さ(h1)の比(h1/h)は、0.80以下である、上記[1]または[2]に記載の圧着端子付き電線。
[1] An electric wire having a lead wire composed of a plurality of strands and an insulating coating portion covering the outer periphery of the lead wire, and a crimp terminal crimped to the lead wire of the electric wire are provided, and the crimp terminal is the lead wire. An electric wire with a crimp terminal having a crimping portion crimped to, wherein the lead wire is made of an aluminum-based material, and the length of the crimping portion along the extending direction of the electric wire in the vertical cross section of the crimping portion. A wire with a crimp terminal, wherein the ratio (L1 / L) of the length L1 of the welded portion to which at least a part of the plurality of strands is welded is 0.10 or more.
[2] The ratio (d1 / d) of the average crystal grain size (d1) in the cross section of the conductor of the crimping portion to the average crystal grain size (d) in the cross section of the conducting wire other than the crimping portion is 1.1 or more. The electric wire with a crimp terminal according to the above [1].
[3] The ratio (h1 / h) of the average Vickers hardness (h1) in the cross section of the conductor of the crimping portion to the average Vickers hardness (h) in the cross section of the conducting wire other than the crimping portion is 0.80 or less. The electric wire with a crimp terminal according to the above [1] or [2].

本開示によれば、素線間の抵抗の上昇を抑制すると共に、素線切れを抑制した圧着端子付き電線を提供することができる。 According to the present disclosure, it is possible to provide an electric wire with a crimp terminal that suppresses an increase in resistance between strands and suppresses breakage of strands.

図1は、実施形態の圧着端子付き電線の一例を示す縦断面図である。FIG. 1 is a vertical sectional view showing an example of an electric wire with a crimp terminal according to an embodiment.

以下、実施形態に基づき詳細に説明する。 Hereinafter, a detailed description will be given based on the embodiment.

本発明者らは、鋭意研究を重ねた結果、圧着端子が圧着している圧着部における導線の状態を適正化することによって、素線間の抵抗の上昇を抑制すると共に素線切れを抑制できることを見出し、かかる知見に基づき本開示を完成させるに至った。 As a result of diligent research, the present inventors have been able to suppress an increase in resistance between strands and suppress wire breakage by optimizing the state of the conductor in the crimped portion where the crimp terminal is crimped. Based on this finding, we have completed this disclosure.

実施形態の圧着端子付き電線は、複数の素線から構成される導線および前記導線の外周を被覆する絶縁被覆部を有する電線と、前記電線の前記導線に圧着されている圧着端子とを備え、前記圧着端子が前記導線に圧着されている圧着部を有する圧着端子付き電線であって、前記導線は、アルミニウム系材料からなり、前記圧着部の縦断面において、前記電線の延在方向に沿った、前記圧着部の長さLに対する前記複数の素線のうちの少なくとも一部が溶接している溶接部の長さL1の比(L1/L)は、0.10以上である。 The electric wire with a crimp terminal of the embodiment includes a wire composed of a plurality of strands, an electric wire having an insulating coating portion covering the outer periphery of the wire, and a crimp terminal crimped to the wire of the wire. The crimp terminal is a wire with a crimp terminal having a crimp portion crimped to the lead wire, and the lead wire is made of an aluminum-based material and is along the extending direction of the wire in the vertical cross section of the crimp portion. The ratio (L1 / L) of the length L1 of the welded portion to which at least a part of the plurality of strands is welded to the length L of the crimped portion is 0.10 or more.

図1は、実施形態の圧着端子付き電線の一例を示す縦断面図である。図1に示すように、実施形態の圧着端子付き電線1は、電線10および圧着端子20を備える。また、圧着端子付き電線1は、圧着端子20が導線11に圧着されている圧着部30を有する。 FIG. 1 is a vertical sectional view showing an example of an electric wire with a crimp terminal according to an embodiment. As shown in FIG. 1, the electric wire 1 with a crimp terminal of the embodiment includes an electric wire 10 and a crimp terminal 20. Further, the electric wire 1 with a crimp terminal has a crimp portion 30 in which the crimp terminal 20 is crimped to the lead wire 11.

電線10は、導線11および絶縁被覆部13を有する。導線11は、複数の素線12から構成される。導線11の端部には、溶接部41aが設けられる。溶接部41aでは、複数の素線12のうちの少なくとも一部が溶接している。複数の素線12は、溶接部41aを介して、相互に接続される。 The electric wire 10 has a conducting wire 11 and an insulating coating portion 13. The conductor 11 is composed of a plurality of strands 12. A welded portion 41a is provided at the end of the conducting wire 11. At the welded portion 41a, at least a part of the plurality of strands 12 is welded. The plurality of strands 12 are connected to each other via the welded portion 41a.

導線11は、圧縮されていてもよく、導線11の延在方向に垂直な断面の外径は、円形でもよいし、平形でもよい。また、導線11は、複数の素線12を撚り合わせた撚線でもよいし、複数の素線12の束である束線でもよい。 The conductor 11 may be compressed, and the outer diameter of the cross section perpendicular to the extending direction of the conductor 11 may be circular or flat. Further, the conductor 11 may be a stranded wire obtained by twisting a plurality of strands 12 or a bundled wire which is a bundle of the plurality of strands 12.

絶縁被覆部13は、導線11の外周を被覆する。絶縁被覆部13の形状は筒状である。 The insulating coating portion 13 covers the outer periphery of the conducting wire 11. The shape of the insulating coating portion 13 is tubular.

圧着端子20は、導線11の端部に設けられる溶接部41aを含む電線10の導線11に圧着されている。導線11の端部に圧着されている圧着端子20は、導線11の外周を環状に覆っている。 The crimp terminal 20 is crimped to the conductor 11 of the electric wire 10 including the welded portion 41a provided at the end of the conductor 11. The crimp terminal 20 crimped to the end of the conductor 11 covers the outer circumference of the conductor 11 in an annular shape.

具体的には、電線10の端部から絶縁被覆部13の一部を剥離、いわゆる皮剥ぎし、皮剥ぎで露出した導線11の端部を溶接してなる溶接部41aを含む導線11の部分に対して、圧着端子20のワイヤバレル部21がかしめられると、ワイヤバレル部21は、溶接部41aおよび露出している導線11の外周を環状に覆うように、電線10に圧着される。圧着端子20のワイヤバレル部21が電線10に圧着されると、環状の圧着部30が形成される。圧着端子20は、圧着部30を介して、電線10の導線11と電気的に接続される。 Specifically, the portion of the lead wire 11 including the welded portion 41a formed by peeling a part of the insulating coating portion 13 from the end portion of the electric wire 10, so-called peeling, and welding the end portion of the lead wire 11 exposed by the peeling. On the other hand, when the wire barrel portion 21 of the crimp terminal 20 is crimped, the wire barrel portion 21 is crimped to the electric wire 10 so as to cover the welded portion 41a and the outer periphery of the exposed lead wire 11 in an annular shape. When the wire barrel portion 21 of the crimp terminal 20 is crimped to the electric wire 10, an annular crimp portion 30 is formed. The crimp terminal 20 is electrically connected to the lead wire 11 of the electric wire 10 via the crimp portion 30.

上記のように、圧着端子20は溶接部41aにも圧着されている。そのため、電線10に対する圧着端子20の圧着力を従来に比べて小さくしても、素線12および圧着端子20の接触抵抗値を低下できると共に、素線12間の抵抗値のばらつきを小さくできる。圧着部30における素線12の減面率が小さいため、素線切れを抑制できる。一方で、圧着部30における素線12の減面率が大きいと、素線切れを生じることがある。 As described above, the crimp terminal 20 is also crimped to the welded portion 41a. Therefore, even if the crimping force of the crimping terminal 20 with respect to the electric wire 10 is made smaller than before, the contact resistance values of the strands 12 and the crimping terminals 20 can be reduced, and the variation in the resistance values between the strands 12 can be reduced. Since the surface reduction rate of the wire 12 in the crimping portion 30 is small, it is possible to suppress the wire breakage. On the other hand, if the surface reduction rate of the wire 12 in the crimping portion 30 is large, the wire may be broken.

例えば、電線10の端部から5mm以上20mm以下離れた部分の絶縁被覆部13を皮剥ぎし、露出した導線11の端部を溶接加工した後、溶接部41aを含む導線11の端部に圧着端子20が圧着される。また、図1に示すように、導線11の外周を覆う絶縁被覆部13、すなわち皮剥ぎしていない絶縁被覆部13に対して、圧着端子20のインシュレーションバルブ部22が圧着されてもよい。 For example, the insulating coating portion 13 at a portion separated from the end portion of the electric wire 10 by 5 mm or more and 20 mm or less is peeled off, the exposed end portion of the conductor wire 11 is welded, and then crimped to the end portion of the conductor wire 11 including the welded portion 41a. The terminal 20 is crimped. Further, as shown in FIG. 1, the insulation valve portion 22 of the crimp terminal 20 may be crimped to the insulating coating portion 13 that covers the outer periphery of the conducting wire 11, that is, the insulating coating portion 13 that has not been peeled off.

導線11は、アルミニウム合金を含むアルミニウム系材料からなる。換言すると、導線11を構成する複数の素線12は、アルミニウム系材料からなる。アルミニウム系材料の組成は、97.5質量%以上のAl、任意成分としてFe、Si、CuおよびMgからなる群より選択される1種以上の元素、ならびに不可避不純物からなる。 The conductor 11 is made of an aluminum-based material including an aluminum alloy. In other words, the plurality of strands 12 constituting the conductor 11 are made of an aluminum-based material. The composition of the aluminum-based material consists of 97.5% by mass or more of Al, one or more elements selected from the group consisting of Fe, Si, Cu and Mg as optional components, and unavoidable impurities.

Fe(鉄)の含有量が0.05質量%以上であると、導線の強度を向上できるため、素線切れを抑制できる。Feの含有量が0.50質量%以下であると、導線の高い導電性を維持できると共に、伸線加工性の低下を抑制できる。このため、Feの含有量の下限値は、好ましくは0.05質量%以上、より好ましくは0.10質量%以上であり、Feの含有量の上限値は、好ましくは0.50質量%以下、より好ましくは0.25質量%以下である。 When the Fe (iron) content is 0.05% by mass or more, the strength of the conductor can be improved, so that the wire breakage can be suppressed. When the Fe content is 0.50% by mass or less, high conductivity of the conducting wire can be maintained and deterioration of wire drawing workability can be suppressed. Therefore, the lower limit of the Fe content is preferably 0.05% by mass or more, more preferably 0.10% by mass or more, and the upper limit of the Fe content is preferably 0.50% by mass or less. , More preferably 0.25% by mass or less.

Si(ケイ素)の含有量が0.01質量%以上であると、導線の強度を向上できるため、素線切れを抑制できる。Siの含有量が0.20質量%以下であると、導線の高い導電性を維持できる。このため、Siの含有量の下限値は、好ましくは0.01質量%以上、より好ましくは0.05質量%以上であり、Siの含有量の上限値は、好ましくは0.20質量%以下、より好ましくは0.10質量%以下である。ただし、時効析出型の6000系合金を用いる場合は強度と導電性への寄与度が異なり、Siの含有量の下限値は、好ましくは0.30質量%以上、Siの含有量の上限値は、好ましくは0.7質量%以下である。 When the content of Si (silicon) is 0.01% by mass or more, the strength of the conducting wire can be improved, so that the breaking of the wire can be suppressed. When the Si content is 0.20% by mass or less, the high conductivity of the conducting wire can be maintained. Therefore, the lower limit of the Si content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and the upper limit of the Si content is preferably 0.20% by mass or less. , More preferably 0.10% by mass or less. However, when an aging precipitation type 6000 series alloy is used, the contribution to strength and conductivity is different, the lower limit of the Si content is preferably 0.30% by mass or more, and the upper limit of the Si content is. It is preferably 0.7% by mass or less.

Cu(銅)の含有量が0.10質量%以上であると、導線の高い導電性を維持しながら、導線の強度を向上できる。Cuの含有量が0.25質量%以下であると、導線の高い導電性を維持できる。このため、Cuの含有量の下限値は、好ましくは0.10質量%以上、より好ましくは0.15質量%以上であり、Cuの含有量の上限値は、好ましくは0.25質量%以下、より好ましくは0.20質量%以下である。 When the Cu (copper) content is 0.10% by mass or more, the strength of the conductor can be improved while maintaining the high conductivity of the conductor. When the Cu content is 0.25% by mass or less, the high conductivity of the conducting wire can be maintained. Therefore, the lower limit of the Cu content is preferably 0.10% by mass or more, more preferably 0.15% by mass or more, and the upper limit of the Cu content is preferably 0.25% by mass or less. , More preferably 0.20% by mass or less.

Mg(マグネシウム)の含有量が0.03質量%以上であると、導線の高い導電性を維持しながら、導線の強度を向上できる。Mgの含有量が0.15質量%以下であると、導線の高い導電性を維持できる。このため、Mgの含有量の下限値は、好ましくは0.03質量%以上、より好ましくは0.05質量%以上であり、Mgの含有量の上限値は、好ましくは0.15質量%以下、より好ましくは0.10質量%以下である。ただし、時効析出型の6000系合金を用いる場合は強度と導電性への寄与度が異なり、Mgの含有量の下限値は、好ましくは0.35質量%以上、Mgの含有量の上限値は、好ましくは0.80質量%以下である。 When the content of Mg (magnesium) is 0.03% by mass or more, the strength of the conductor can be improved while maintaining the high conductivity of the conductor. When the Mg content is 0.15% by mass or less, the high conductivity of the conducting wire can be maintained. Therefore, the lower limit of the Mg content is preferably 0.03% by mass or more, more preferably 0.05% by mass or more, and the upper limit of the Mg content is preferably 0.15% by mass or less. , More preferably 0.10% by mass or less. However, when an aging precipitation type 6000 series alloy is used, the contribution to strength and conductivity is different, the lower limit of the Mg content is preferably 0.35% by mass or more, and the upper limit of the Mg content is. It is preferably 0.80% by mass or less.

任意成分としてのFe、Si、CuおよびMgからなる群より選択される1種以上の元素の合計含有量が0.05質量%以上であると、導線の強度を向上できるため、素線切れを抑制できる。任意成分の合計含有量が2.10質量%以下であると、導線の高い導電性を維持できると共に、伸線加工性の低下を抑制できる。このため、任意成分の含有量の下限値は、好ましくは0.05質量%以上、より好ましくは0.10質量%以上であり、任意成分の含有量の上限値は、好ましくは2.10質量%以下、より好ましくは0.50質量%以下である。 When the total content of one or more elements selected from the group consisting of Fe, Si, Cu and Mg as an optional component is 0.05% by mass or more, the strength of the lead wire can be improved, so that the wire breaks. Can be suppressed. When the total content of the optional components is 2.10% by mass or less, the high conductivity of the conducting wire can be maintained and the deterioration of the wire drawing workability can be suppressed. Therefore, the lower limit of the content of the arbitrary component is preferably 0.05% by mass or more, more preferably 0.10% by mass or more, and the upper limit of the content of the arbitrary component is preferably 2.10% by mass. % Or less, more preferably 0.50% by mass or less.

上述した成分以外の残部は不可避不純物である。不可避不純物は、製造工程上、不可避的に含まれうることもあり、含有量によっては導線の導電率および強度を低下させる要因にもなりうるため、不可避不純物の含有量は少ないことが好ましい。不可避不純物としては、例えば、Mn、Zn、Ti、B、Vなどの元素が挙げられる。なお、上記不可避不純物の含有量の上限は、上記元素毎に、好ましくは0.03質量%以下、より好ましくは0.01質量%以下であり、上記元素の合計で、好ましくは0.10質量%以下、より好ましくは0.05質量%以下である。 The rest other than the above-mentioned components are unavoidable impurities. The unavoidable impurities may be unavoidably contained in the manufacturing process, and depending on the content, it may be a factor of lowering the conductivity and the strength of the conducting wire. Therefore, it is preferable that the content of the unavoidable impurities is small. Examples of unavoidable impurities include elements such as Mn, Zn, Ti, B, and V. The upper limit of the content of the unavoidable impurities is preferably 0.03% by mass or less, more preferably 0.01% by mass or less for each of the above elements, and the total of the above elements is preferably 0.10% by mass. % Or less, more preferably 0.05% by mass or less.

図1に示すように、圧着部30の縦断面において、電線10の延在方向に沿った、圧着部30の長さLに対する溶接部41aの長さL1の比(L1/L)は、0.10以上である。圧着部30の縦断面は、圧着部30における導線11の中心軸に沿った面である。溶接部41aは、複数の素線12のうちの少なくとも一部の素線12同士が溶接している部分である。 As shown in FIG. 1, in the vertical cross section of the crimping portion 30, the ratio (L1 / L) of the length L1 of the welded portion 41a to the length L of the crimping portion 30 along the extending direction of the electric wire 10 is 0. .10 or more. The vertical cross section of the crimping portion 30 is a surface along the central axis of the conducting wire 11 in the crimping portion 30. The welded portion 41a is a portion where at least a part of the strands 12 of the plurality of strands 12 are welded to each other.

ここで、複数の素線12を溶接して溶接部41aが形成されると、溶接部41aの組織、および導線11における溶接部41aに隣接した溶接隣接部41bの組織は、溶接時の熱の影響を受けて変化する。このように、導線11は、溶接部41aおよび溶接隣接部41bを有する熱影響組織部41を端部側に有し、溶接時の熱の影響を受けない非熱影響組織部42を溶接隣接部41bと隣接する中央部側に有する。 Here, when a plurality of strands 12 are welded to form the welded portion 41a, the structure of the welded portion 41a and the structure of the welded adjacent portion 41b adjacent to the welded portion 41a in the conducting wire 11 are the heat of the welding. It changes under the influence. As described above, the lead wire 11 has the heat-affected zone 41 having the welded portion 41a and the welded adjacent portion 41b on the end side, and the non-heat-affected zone portion 42 which is not affected by the heat at the time of welding is the welded adjacent portion. It is on the central side adjacent to 41b.

非熱影響組織部42は、溶接前の導線11の組織と同じであり、熱影響組織部41は、溶接前の導線11の組織が溶接の熱によって変化した組織である。熱影響組織部41および非熱影響組織部42は、材料としての変形の挙動が異なる。熱影響組織部41および非熱影響組織部42は、SEMで観察すると、明確に異なる。 The non-heat-affected zone 42 has the same structure as that of the lead wire 11 before welding, and the heat-affected zone 41 is a structure in which the structure of the lead wire 11 before welding is changed by the heat of welding. The heat-affected tissue portion 41 and the non-heat-affected tissue portion 42 differ in the behavior of deformation as materials. The heat-affected tissue section 41 and the non-heat-affected tissue section 42 are clearly different when observed by SEM.

そして、電線10の延在方向に沿った圧着部30の長さLに対する電線10の延在方向に沿った溶接部41aの長さL1の比(L1/L)が0.10以上であると、圧着部30の大部分が熱影響組織部41であるため、熱影響組織部41と非熱影響組織部42との圧着時の変形挙動の違いによって発生する素線12の切れやクラックを抑制できる。素線12のクラックの発生を抑制できるので、素線12間の抵抗値の上昇、導線11の耐食性の低下、導線11の引張破断強度の低下などを抑制できる。このような観点から、上記比(L1/L)は、0.10以上であり、好ましくは0.30以上、より好ましくは0.50以上である。 The ratio (L1 / L) of the length L1 of the welded portion 41a along the extending direction of the electric wire 10 to the length L of the crimping portion 30 along the extending direction of the electric wire 10 is 0.10 or more. Since most of the crimping portion 30 is the heat-affected structure portion 41, the wire 12 is suppressed from being cut or cracked due to the difference in deformation behavior during crimping between the heat-affected structure portion 41 and the non-heat-affected structure portion 42. can. Since the occurrence of cracks in the strands 12 can be suppressed, it is possible to suppress an increase in the resistance value between the strands 12, a decrease in the corrosion resistance of the conductor 11, a decrease in the tensile breaking strength of the conductor 11, and the like. From such a viewpoint, the above ratio (L1 / L) is 0.10 or more, preferably 0.30 or more, and more preferably 0.50 or more.

一方で、上記比(L1/L)が0.10未満であると、圧着端子20の圧着時における熱影響組織部41と非熱影響組織部42との変形挙動の違いで生じる素線12の切れやクラックを抑制できない。 On the other hand, when the ratio (L1 / L) is less than 0.10, the strands 12 caused by the difference in deformation behavior between the heat-affected structure portion 41 and the non-heat-affected structure portion 42 during crimping of the crimp terminal 20. Cuts and cracks cannot be suppressed.

圧着端子20の構成としては、Fクリンプのように、導線11に圧着されているときに、導線11の外周を環状に覆っていればよく、ワイヤバレル部21やインシュレーションバルブ部22を具備しなくてもよい。 As the configuration of the crimp terminal 20, it is sufficient to cover the outer circumference of the conductor 11 in an annular shape when crimped to the conductor 11 as in the F crimp, and the wire barrel portion 21 and the insulation valve portion 22 are provided. It does not have to be.

また、圧着部30以外の導線11の断面における平均結晶粒径(d)に対する圧着部30の導線11の断面における平均結晶粒径(d1)の比(d1/d)は、1.1以上であることが好ましい。圧着部30以外の導線11は、圧着部30で圧着されていない導線11の部分、すなわち非圧着部である。 Further, the ratio (d1 / d) of the average crystal grain size (d1) in the cross section of the conductor 11 of the crimping portion 30 to the average crystal grain size (d) in the cross section of the conductor 11 other than the crimping portion 30 is 1.1 or more. It is preferable to have. The conductor 11 other than the crimping portion 30 is a portion of the conducting wire 11 that has not been crimped by the crimping portion 30, that is, a non-crimping portion.

比(d1/d)が1.1以上であると、非圧着部における導線11の平均結晶粒径(d)に比べて、圧着部30における導線11の平均結晶粒径(d1)が粗大化することによって、圧着部30における導線11の応力緩和性が増加し、圧着部30における内部圧力の低下が抑制される。そのため、素線間の抵抗の上昇を抑制することができる。このような観点から、上記比(d1/d)は、好ましくは1.1以上であり、より好ましくは1.5以上、さらに好ましくは2.0以上である。 When the ratio (d1 / d) is 1.1 or more, the average crystal grain size (d1) of the lead wire 11 in the crimping portion 30 becomes coarser than the average crystal grain size (d) of the lead wire 11 in the non-crimping portion. By doing so, the stress relaxation property of the lead wire 11 in the crimping portion 30 is increased, and the decrease in the internal pressure in the crimping portion 30 is suppressed. Therefore, it is possible to suppress an increase in resistance between the strands. From such a viewpoint, the above ratio (d1 / d) is preferably 1.1 or more, more preferably 1.5 or more, still more preferably 2.0 or more.

平均結晶粒径(d1)は、圧着部30の縦断面において、電線の延在方向に沿って圧着部30の長さLを5等分し、5つの横断面毎に平均結晶粒径を測定し、これらの測定値を平均して得ることができる。また、平均結晶粒径(d)は、圧着部30以外の導線11の縦断面において、圧着部30の長さLに相当する長さを5等分し、5つの横断面毎に平均結晶粒径を測定し、これらの測定値を平均して得ることができる。 For the average crystal grain size (d1), the length L of the crimping portion 30 is divided into five equal parts along the extending direction of the electric wire in the vertical cross section of the crimping portion 30, and the average crystal grain size is measured for each of the five cross sections. However, these measured values can be averaged and obtained. Further, the average crystal grain size (d) is obtained by dividing the length corresponding to the length L of the crimping portion 30 into five equal parts in the vertical cross section of the lead wire 11 other than the crimping portion 30, and the average crystal grain is divided into five cross sections. The diameter can be measured and these measurements can be averaged to obtain.

また、圧着部30以外の導線11の断面における平均ビッカース硬さ(h)に対する圧着部30の導線11の断面における平均ビッカース硬さ(h1)の比(h1/h)は、0.80以下であることが好ましい。 Further, the ratio (h1 / h) of the average Vickers hardness (h1) in the cross section of the lead wire 11 of the crimping portion 30 to the average Vickers hardness (h) in the cross section of the lead wire 11 other than the crimping portion 30 is 0.80 or less. It is preferable to have.

比(h1/h)が0.80以下であると、圧着部30における導線11が変形しやすいことによって、圧着部30における導線11全体で変形が進み、局所的な抵抗値の上昇が抑制される。そのため、素線間の抵抗の上昇を抑制することができる。このような観点から、上記比(h1/h)は、好ましくは0.80以下であり、より好ましくは0.70以下、さらに好ましくは0.60以下である。 When the ratio (h1 / h) is 0.80 or less, the conductor 11 in the crimping portion 30 is easily deformed, so that the entire conductor 11 in the crimping portion 30 is deformed and the local increase in resistance value is suppressed. To. Therefore, it is possible to suppress an increase in resistance between the strands. From such a viewpoint, the above ratio (h1 / h) is preferably 0.80 or less, more preferably 0.70 or less, still more preferably 0.60 or less.

平均ビッカース硬さ(h1)は、圧着部30の縦断面において、電線の延在方向に沿って圧着部30の長さLを5等分し、5つの横断面毎に1mm間隔で5カ所のビッカース硬さを測定し、これらの測定値を平均して得ることができる。また、平均ビッカース硬さ(h)は、圧着部30以外の導線11の縦断面において、圧着部30の長さLに相当する長さを5等分し、5つの横断面毎に1mm間隔で5カ所のビッカース硬さを測定し、これらの測定値を平均して得ることができる。 The average Vickers hardness (h1) is obtained by dividing the length L of the crimping portion 30 into five equal parts along the extending direction of the electric wire in the vertical cross section of the crimping portion 30, and at five locations at 1 mm intervals for each of the five cross sections. Vickers hardness can be measured and these measurements can be averaged to obtain. Further, the average Vickers hardness (h) is obtained by dividing the length corresponding to the length L of the crimping portion 30 into five equal parts in the vertical cross section of the lead wire 11 other than the crimping portion 30, at intervals of 1 mm for each of the five cross sections. Vickers hardness at 5 locations can be measured and these measurements can be averaged to obtain.

0.2mm以上1.0mm以下の線径を有する素線12を7本以上300本以下で撚り合わせてなる導線11では、素線間の抵抗上昇の抑制および素線切れの抑制がさらに向上する。特に、上記範囲内の線径を有する素線12が7本以上であると、導線11の柔軟性が増加するため、圧着端子付き電線1に対する作業性を向上できる。また、上記範囲内の線径を有する素線12が300本以下であると、導線11を構成する素線12の素線切れをさらに抑制できる。また、3.0sq(3.0mm)以上の断面積を有するアルミニウム系材料の導線において、素線間の抵抗上昇の抑制は従来困難であったが、比(L1/L)が0.10以上である圧着端子付き電線1では、3.0sq以上の断面積を有する導線11であっても、素線間の抵抗の上昇を抑制することができる。導線11を構成する素線12の本数および素線12の線径は、圧着端子付き電線1の用途に応じて、適宜選択される。 In the conductor 11 formed by twisting 7 or more and 300 or less strands 12 having a wire diameter of 0.2 mm or more and 1.0 mm or less, the suppression of resistance increase between the strands and the suppression of wire breakage are further improved. .. In particular, when the number of strands 12 having a wire diameter within the above range is 7 or more, the flexibility of the conducting wire 11 is increased, so that the workability for the electric wire 1 with a crimp terminal can be improved. Further, when the number of strands 12 having a wire diameter within the above range is 300 or less, it is possible to further suppress the breakage of the strands 12 constituting the conductor 11. Further, in a conductor of an aluminum-based material having a cross-sectional area of 3.0 sq (3.0 mm 2 ) or more, it has been difficult to suppress an increase in resistance between the strands, but the ratio (L1 / L) is 0.10. In the electric wire 1 with a crimp terminal as described above, even if the conductor wire 11 has a cross-sectional area of 3.0 sq or more, it is possible to suppress an increase in resistance between the strands. The number of strands 12 constituting the lead wire 11 and the wire diameter of the strands 12 are appropriately selected according to the use of the electric wire 1 with a crimp terminal.

圧着端子20を構成する材料は、圧着端子付き電線1の用途や導線11を構成するアルミニウム系材料の種類に応じて、適宜選択される。その中でも、圧着端子付き電線1の低抵抗化の観点から、アルミニウムおよびアルミニウム合金を含むアルミニウム系材料、銅および銅合金を含む銅系材料が好ましく、純銅および黄銅がより好ましい。さらに、アルミニウム合金および銅合金は、Ni、Si、Zn、Sn、Mg、Mn、Cr、およびCoからなる群より選択される1種以上の元素を含有してもよい。 The material constituting the crimp terminal 20 is appropriately selected depending on the use of the electric wire 1 with the crimp terminal and the type of the aluminum-based material constituting the conductor 11. Among them, aluminum-based materials including aluminum and aluminum alloys, copper-based materials including copper and copper alloys are preferable, and pure copper and brass are more preferable, from the viewpoint of lowering the resistance of the electric wire 1 with crimp terminals. Further, the aluminum alloy and the copper alloy may contain one or more elements selected from the group consisting of Ni, Si, Zn, Sn, Mg, Mn, Cr, and Co.

圧着端子付き電線1は、軽量化に加えて、素線間の抵抗上昇の抑制や素線切れが起こらないことを要求される、ワイヤハーネス、好ましくは自動車用のワイヤハーネスに好適に用いられる。 The electric wire 1 with a crimp terminal is suitably used for a wire harness, preferably a wire harness for an automobile, which is required to suppress an increase in resistance between strands and prevent wire breakage in addition to weight reduction.

次に、上記圧着端子付き電線1の製造方法について説明する。まず、電線10から絶縁被覆部13の一部を皮剥ぎし、導線11の端部を露出する。続いて、露出している導線11のうち、導線11の端部を含む端部周辺を構成している複数の素線12の少なくとも一部を溶接して、溶接部41aを形成する。 Next, a method of manufacturing the electric wire 1 with a crimp terminal will be described. First, a part of the insulating coating portion 13 is peeled off from the electric wire 10 to expose the end portion of the conducting wire 11. Subsequently, of the exposed conductors 11, at least a part of the plurality of strands 12 constituting the periphery of the end including the end of the conductor 11 is welded to form the welded portion 41a.

ファイバレーザー、YAGレーザ、半導体レーザのようなレーザで溶接部41aを形成する場合、導線11の端部の周辺から、電線の延在方向に沿ってレーザを走査し、導線11の端部まで溶接する。レーザ溶接では、導線11の端部を最後に溶接する。このような方法でレーザ溶接を行うことによって、溶接欠陥を減少できるため、導線11の引張破断強度の低下を抑制できる。また、上記のレーザ溶接に加えて、アーク溶接も適用できる。アーク溶接の場合、導線11の端部のみを溶接する。 When the welded portion 41a is formed by a laser such as a fiber laser, a YAG laser, or a semiconductor laser, the laser is scanned from the periphery of the end of the lead wire 11 along the extending direction of the electric wire and welded to the end of the lead wire 11. do. In laser welding, the end of the conductor 11 is welded last. By performing laser welding by such a method, welding defects can be reduced, so that a decrease in the tensile breaking strength of the conducting wire 11 can be suppressed. In addition to the above laser welding, arc welding can also be applied. In the case of arc welding, only the end of the conductor 11 is welded.

続いて、電線10の延在方向に沿った圧着部30の長さLに対する電線10の延在方向に沿った溶接部41aの長さL1の比(L1/L)が0.10以上になるように、溶接部41aを含む導線11に圧着端子20を圧着する。こうして、圧着端子付き電線1を得ることができる。 Subsequently, the ratio (L1 / L) of the length L1 of the welded portion 41a along the extending direction of the electric wire 10 to the length L of the crimping portion 30 along the extending direction of the electric wire 10 becomes 0.10 or more. As described above, the crimp terminal 20 is crimped to the lead wire 11 including the welded portion 41a. In this way, the electric wire 1 with a crimp terminal can be obtained.

以上説明した実施形態によれば、圧着部の長さLに対する溶接部の長さL1の比(L1/L)を調整し、圧着部における導線の状態を適正化することによって、圧着端子付き電線では、素線間の抵抗の上昇を抑制できると共に、素線切れを抑制できる。 According to the embodiment described above, the ratio (L1 / L) of the length L1 of the welded portion to the length L of the crimping portion is adjusted to optimize the state of the conducting wire in the crimping portion, so that the electric wire with the crimp terminal is used. Then, it is possible to suppress an increase in resistance between the strands and to suppress breakage of the strands.

以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本開示の概念および特許請求の範囲に含まれるあらゆる態様を含み、本開示の範囲内で種々に改変することができる。 Although the embodiments have been described above, the present invention is not limited to the above embodiments, but includes all aspects included in the concept of the present disclosure and the scope of claims, and various modifications are made within the scope of the present disclosure. be able to.

次に、実施例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, Examples and Comparative Examples will be described, but the present invention is not limited to these Examples.

(実施例1~14および比較例1~4)
表1に示す組成を有する複数の素線を撚り合わせることによって、表1に示す撚り構成(導線の断面積、素線の本数)を満たす電線を得た。続いて、表2に示す数値になるように、圧着端子を電線に圧着させた。こうして、圧着端子付き電線を得た。






(Examples 1 to 14 and Comparative Examples 1 to 4)
By twisting a plurality of strands having the compositions shown in Table 1, an electric wire satisfying the twisted configuration (cross-sectional area of conductors, number of strands) shown in Table 1 was obtained. Subsequently, the crimp terminal was crimped to the electric wire so as to have the numerical values shown in Table 2. In this way, an electric wire with a crimp terminal was obtained.






Figure 2022030045000002
Figure 2022030045000002

[測定および評価]
上記実施例および比較例で得られた圧着端子付き電線について、下記の測定および評価を行った。結果を表2に示す。
[Measurement and evaluation]
The electric wires with crimp terminals obtained in the above Examples and Comparative Examples were measured and evaluated as follows. The results are shown in Table 2.

[1] 比(L1/L)
電線の延在方向に沿った圧着部の長さLに対する電線の延在方向に沿った溶接部の長さL1の比(L1/L)は、上記実施例および比較例で得られた圧着端子付き電線について、圧着部における導線の中心軸に沿った面である圧着部の縦断面をSEMで観察した画像から得た。
[1] Ratio (L1 / L)
The ratio (L1 / L) of the length L1 of the welded portion along the extending direction of the electric wire to the length L of the crimping portion along the extending direction of the electric wire is the crimp terminal obtained in the above Examples and Comparative Examples. The attached electric wire was obtained from an image obtained by observing the vertical cross section of the crimped portion, which is a surface along the central axis of the conducting wire in the crimped portion, by SEM.

[2] 比(d1/d)
圧着部の導線の断面における平均結晶粒径(d1)は、圧着部の上記縦断面において、電線の延在方向に沿って圧着部の長さLを5等分し、5つの横断面毎に平均結晶粒径を測定し、これらの測定値を平均して得た。また、圧着部以外の導線の断面における平均結晶粒径(d)は、圧着部以外の導線の縦断面をSEMで観察し、この縦断面における圧着部の長さLに相当する長さを5等分し、5つの横断面毎に平均結晶粒径を測定し、これらの測定値を平均して得た。そして、得られた平均結晶粒径(d1)および平均結晶粒径(d)から比(d1/d)を算出した。
[2] Ratio (d1 / d)
The average crystal grain size (d1) in the cross section of the lead wire of the crimping portion is obtained by dividing the length L of the crimping portion into five equal parts along the extending direction of the electric wire in the vertical cross section of the crimping portion. The average crystal grain size was measured, and these measured values were averaged and obtained. Further, for the average crystal grain size (d) in the cross section of the lead wire other than the crimp portion, the vertical cross section of the lead wire other than the crimp portion is observed by SEM, and the length corresponding to the length L of the crimp portion in this vertical cross section is 5. It was divided into equal parts, and the average crystal grain size was measured for each of the five cross sections, and these measured values were averaged and obtained. Then, the ratio (d1 / d) was calculated from the obtained average crystal grain size (d1) and average crystal grain size (d).

[3] 比(h1/h)
圧着部の導線の断面における平均ビッカース硬さ(h1)は、圧着部の上記縦断面において、電線の延在方向に沿って圧着部の長さLを5等分し、5つの横断面毎に1mm間隔で5カ所のビッカース硬さを測定し、これらの測定値を平均して得た。また、圧着部以外の導線の断面における平均ビッカース硬さ(h)は、圧着部以外の導線の縦断面をSEMで観察し、この縦断面における圧着部の長さLに相当する長さを5等分し、5つの横断面毎に1mm間隔で5カ所のビッカース硬さを測定し、これらの測定値を平均して得た。そして、得られた平均ビッカース硬さ(h1)および平均ビッカース硬さ(h)から比(h1/h)を算出した。
[3] Ratio (h1 / h)
The average Vickers hardness (h1) in the cross section of the lead wire of the crimping portion is obtained by dividing the length L of the crimping portion into five equal parts along the extending direction of the electric wire in the vertical cross section of the crimping portion. Vickers hardness was measured at 5 points at 1 mm intervals, and these measured values were averaged and obtained. Further, for the average Vickers hardness (h) in the cross section of the lead wire other than the crimp portion, the vertical cross section of the lead wire other than the crimp portion is observed by SEM, and the length corresponding to the length L of the crimp portion in this vertical cross section is 5. It was divided into equal parts, and Vickers hardness was measured at 5 locations at 1 mm intervals for each of the 5 cross sections, and these measured values were averaged. Then, the ratio (h1 / h) was calculated from the obtained average Vickers hardness (h1) and the average Vickers hardness (h).

[4] サーマルサイクル試験後の素線間の抵抗値の上昇率
まず、サーマルサイクル試験前の圧着端子付き電線の電気抵抗値について、回路素子測定器(日置電機株式会社製、3560ACミリオームハイテスタ)を用いて、素線毎に、圧着端子と素線と間の抵抗値を測定した。次に、小型冷熱衝撃装置(エスペック株式会社製、TSE-12-A)を用いて、圧着端子付き電線について、-40℃で30分および120℃で30分の温度サイクルを240回繰り返すサーマルサイクル試験を行った。次に、サーマルサイクル試験後の圧着端子付き電線の電気抵抗値について、回路素子測定器を用いて、素線毎に、圧着端子と素線と間の抵抗値を測定した。これらの測定値から、抵抗値の上昇率について、平均値および標準偏差を算出した。平均値および標準偏差について、以下のランク付けを行った。抵抗値の上昇率が小さいほど、圧着端子付き電線は良好である。
[4] Increase rate of resistance value between strands after thermal cycle test First, regarding the electrical resistance value of the wire with crimp terminal before the thermal cycle test, a circuit element measuring instrument (3560AC milliohm high tester manufactured by Hioki Electric Co., Ltd.) Was used to measure the resistance value between the crimp terminal and the wire for each wire. Next, using a small thermal shock device (TSE-12-A, manufactured by ESPEC CO., LTD.), A thermal cycle is repeated 240 times for a wire with a crimp terminal at -40 ° C for 30 minutes and at 120 ° C for 30 minutes. A test was conducted. Next, regarding the electric resistance value of the electric wire with the crimp terminal after the thermal cycle test, the resistance value between the crimp terminal and the wire was measured for each wire using a circuit element measuring instrument. From these measured values, the mean value and standard deviation were calculated for the rate of increase in resistance value. The following rankings were made for the mean and standard deviation. The smaller the rate of increase in resistance, the better the wire with crimp terminals.

平均値は以下の通りである。
A:抵抗値の上昇率が120%以下
B:抵抗値の上昇率が120%超150%以下
C:抵抗値の上昇率が150%超
The average value is as follows.
A: The rate of increase in resistance is 120% or less B: The rate of increase in resistance is more than 120% and 150% or less C: The rate of increase in resistance is more than 150%

標準偏差は以下の通りである。
A:抵抗値の上昇率が150%以下
B:抵抗値の上昇率が150%超300%以下
C:抵抗値の上昇率が300%超
The standard deviation is as follows.
A: The rate of increase in resistance is 150% or less B: The rate of increase in resistance is more than 150% and less than 300% C: The rate of increase in resistance is more than 300%

[5] 引張破断強度
圧着端子付き電線の圧着端子と電線とを引張試験機に固定し、チャック間距離を100mm、引張速度を10mm/minの条件で引張試験を行った。そして、引張破断荷重を圧着部の断面積で割ることによって、引張破断強度(引張破断荷重/圧着部の断面積)を算出した。引張破断強度について、以下のランク付けを行った。引張破断強度が大きいほど、圧着端子付き電線は良好である。
[5] Tensile breaking strength The crimp terminal of the electric wire with a crimp terminal and the electric wire were fixed to a tensile tester, and a tensile test was conducted under the conditions of a chuck distance of 100 mm and a tensile speed of 10 mm / min. Then, the tensile breaking strength (tensile breaking load / cross-sectional area of the crimping portion) was calculated by dividing the tensile breaking load by the cross-sectional area of the crimping portion. The tensile breaking strength was ranked as follows. The higher the tensile breaking strength, the better the wire with a crimp terminal.

A:引張破断強度が50N/mm以上
C:引張破断強度が50N/mm未満
A: Tensile breaking strength is 50 N / mm 2 or more C: Tensile breaking strength is less than 50 N / mm 2 .

[6] 素線切れ
圧着端子付き電線について、圧着端子を電線に圧着させた直後に目視で素線切れを観察した。素線切れについて、以下のランク付けを行った。素線切れの本数が少ないほど、圧着端子付き電線は良好である。
[6] Wire breakage With respect to the wire with a crimp terminal, the wire breakage was visually observed immediately after the crimp terminal was crimped to the wire. The following rankings were made for broken wires. The smaller the number of broken wires, the better the wire with crimp terminals.

A:素線切れが生じない
C:素線切れが生じる
A: Wire breakage does not occur C: Wire breakage occurs

[7] 総合評価
総合評価として、以下のランク付けを行った。
[7] Comprehensive evaluation The following rankings were made as a comprehensive evaluation.

◎:抵抗値の上昇率の平均値が120%以下、かつ抵抗値の上昇率の標準偏差が150%以下、かつ引張破断強度が50N/mm以上、かつ素線切れが生じない
○:抵抗値の上昇率の平均値が150%以下、かつ抵抗値の上昇率の標準偏差が300%以下、かつ引張破断強度が50N/mm以上、かつ素線切れが生じなく、抵抗値の上昇率の平均値が120%超、または抵抗値の上昇率の標準偏差が150%超である
×:抵抗値の上昇率の平均値が150%超、または抵抗値の上昇率の標準偏差が300%超、または引張破断強度が50N/mm未満、または素線切れが生じる
⊚: The mean value of the increase rate of the resistance value is 120% or less, the standard deviation of the increase rate of the resistance value is 150% or less, the tensile breaking strength is 50 N / mm 2 or more, and the wire breakage does not occur. The mean value increase rate is 150% or less, the standard deviation of the resistance value increase rate is 300% or less, the tensile breaking strength is 50 N / mm 2 or more, and the wire breakage does not occur, and the resistance value increase rate. The mean value of the resistance value is more than 120%, or the standard deviation of the resistance value increase rate is more than 150%. ×: The mean value of the resistance value increase rate is more than 150%, or the standard deviation of the resistance value increase rate is 300%. Super or tensile breaking strength less than 50 N / mm 2 or wire breakage occurs

Figure 2022030045000003
Figure 2022030045000003

表1~2に示すように、実施例1~14では、比(L1/L)が0.10以上であるため、素線間の抵抗値の上昇、引張破断強度の低下、および素線切れを抑制できた。特に、実施例4~9、11、13では、比(d1/d)が1.1以上かつ比(h1/h)が0.80以下であるため、素線間の抵抗値の上昇および引張破断強度の低下をさらに抑制できた。 As shown in Tables 1 and 2, in Examples 1 to 14, since the ratio (L1 / L) is 0.10 or more, the resistance value between the strands increases, the tensile breaking strength decreases, and the strands break. Was able to be suppressed. In particular, in Examples 4 to 9, 11 and 13, since the ratio (d1 / d) is 1.1 or more and the ratio (h1 / h) is 0.80 or less, the resistance value between the strands increases and the tension is increased. The decrease in breaking strength could be further suppressed.

一方、比較例1では、導線端部の溶接を行わなかったため、比(L1/L)が0であり、その結果、素線間の抵抗値が上昇し、引張破断強度が低下し、素線切れが生じた。比較例2では、比(L1/L)が0.10未満であるため、素線間の抵抗値が上昇し、素線切れが生じた。比較例3では、溶接が不十分であったため、比(L1/L)が0であり、その結果、素線間の抵抗値が上昇した。比較例4では、アーク溶接で導線の端部のみを溶接して比(L1/L)を0にしたため、素線間の抵抗値が上昇し、素線切れが生じた。 On the other hand, in Comparative Example 1, since the end of the conductor was not welded, the ratio (L1 / L) was 0, and as a result, the resistance value between the strands increased, the tensile breaking strength decreased, and the strands. There was a break. In Comparative Example 2, since the ratio (L1 / L) was less than 0.10, the resistance value between the strands increased and the strands were broken. In Comparative Example 3, the ratio (L1 / L) was 0 because the welding was insufficient, and as a result, the resistance value between the strands increased. In Comparative Example 4, since only the end portion of the conducting wire was welded by arc welding to set the ratio (L1 / L) to 0, the resistance value between the strands increased and the strands were broken.

1 圧着端子付き電線
10 電線
11 導線
12 素線
13 絶縁被覆部
20 圧着端子
21 ワイヤバレル部
22 インシュレーションバルブ部
30 圧着部
41 熱影響組織部
41a 溶接部
41b 溶接隣接部
42 非熱影響組織部
L 圧着部30の長さ
L1 溶接部31の長さ
1 Electric wire with crimp terminal 10 Electric wire 11 Lead wire 12 Wire 13 Insulation coating part 20 Crimping terminal 21 Wire barrel part 22 Insulation valve part 30 Crimping part 41 Heat-affected zone 41a Welded part 41b Welding adjacent part 42 Non-heat-affected zone L Length of crimping portion 30 L1 Length of welded portion 31

Claims (3)

複数の素線から構成される導線および前記導線の外周を被覆する絶縁被覆部を有する電線と、前記電線の前記導線に圧着されている圧着端子とを備え、前記圧着端子が前記導線に圧着されている圧着部を有する圧着端子付き電線であって、
前記導線は、アルミニウム系材料からなり、
前記圧着部の縦断面において、前記電線の延在方向に沿った、前記圧着部の長さLに対する前記複数の素線のうちの少なくとも一部が溶接している溶接部の長さL1の比(L1/L)は、0.10以上であることを特徴とする圧着端子付き電線。
It is provided with a conductor composed of a plurality of strands, an electric wire having an insulating coating portion covering the outer periphery of the conductor, and a crimp terminal crimped to the conductor of the wire, and the crimp terminal is crimped to the conductor. An electric wire with a crimp terminal that has a crimping part
The conductor is made of an aluminum-based material and is made of an aluminum-based material.
In the vertical cross section of the crimping portion, the ratio of the length L1 of the welded portion to which at least a part of the plurality of strands is welded to the length L of the crimping portion along the extending direction of the electric wire. (L1 / L) is an electric wire with a crimp terminal characterized by being 0.10 or more.
前記圧着部以外の前記導線の断面における平均結晶粒径(d)に対する前記圧着部の前記導線の断面における平均結晶粒径(d1)の比(d1/d)は、1.1以上である、請求項1に記載の圧着端子付き電線。 The ratio (d1 / d) of the average crystal grain size (d1) in the cross section of the conductor of the crimping portion to the average crystal grain size (d) in the cross section of the conductor other than the crimping portion is 1.1 or more. The electric wire with a crimp terminal according to claim 1. 前記圧着部以外の前記導線の断面における平均ビッカース硬さ(h)に対する前記圧着部の前記導線の断面における平均ビッカース硬さ(h1)の比(h1/h)は、0.80以下である、請求項1または2に記載の圧着端子付き電線。 The ratio (h1 / h) of the average Vickers hardness (h1) in the cross section of the conductor of the crimping portion to the average Vickers hardness (h) in the cross section of the conductor other than the crimping portion is 0.80 or less. The electric wire with a crimp terminal according to claim 1 or 2.
JP2020133766A 2020-08-06 2020-08-06 Wire with crimp terminal Active JP7488151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020133766A JP7488151B2 (en) 2020-08-06 2020-08-06 Wire with crimp terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020133766A JP7488151B2 (en) 2020-08-06 2020-08-06 Wire with crimp terminal

Publications (2)

Publication Number Publication Date
JP2022030045A true JP2022030045A (en) 2022-02-18
JP7488151B2 JP7488151B2 (en) 2024-05-21

Family

ID=80323909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020133766A Active JP7488151B2 (en) 2020-08-06 2020-08-06 Wire with crimp terminal

Country Status (1)

Country Link
JP (1) JP7488151B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291992B9 (en) 2001-03-01 2007-11-14 The Furukawa Electric Co., Ltd. Power distribution assembly
JP2013257944A (en) 2012-06-08 2013-12-26 Sumitomo Electric Ind Ltd Aluminum base terminal fitting, and terminal connection structure of wire
KR20170057243A (en) 2014-09-22 2017-05-24 후루카와 덴키 고교 가부시키가이샤 Terminal-equipped electrical wire
JP6674433B2 (en) 2017-11-28 2020-04-01 矢崎総業株式会社 Manufacturing method of electric wire with terminal and electric wire with terminal
JP7157545B2 (en) 2018-04-19 2022-10-20 古河電気工業株式会社 Wire with terminal

Also Published As

Publication number Publication date
JP7488151B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
JP5367759B2 (en) Wire conductor for wiring, method for manufacturing wire conductor for wiring, wire for wiring and copper alloy wire
CN109983141B (en) Covered electric wire, electric wire with terminal, copper alloy wire, and copper alloy stranded wire
JP2008016284A (en) Electric wire conductor for automobile
WO2010147018A1 (en) Electrical wire conductor and electrical wire for automobile
JP6080336B2 (en) Electric wire / cable
JP2008159403A (en) Wire conductor, and insulated wire
WO2018092350A1 (en) Twisted wire for wire harness and wire harness
JP7488151B2 (en) Wire with crimp terminal
JP2023036892A (en) Covered wire, wire with terminal, copper alloy wire, copper alloy twisted wire, and manufacturing method of copper alloy wire
US20190360074A1 (en) Covered Electrical Wire, Terminal-Equipped Electrical Wire, Copper Alloy Wire, and Copper Alloy Stranded Wire
CN110914923B (en) Coated electric wire, electric wire with terminal, and stranded wire
JP6807041B2 (en) Covered wires, wires with terminals, copper alloy wires, and copper alloy stranded wires
CN114402401A (en) Aluminum wire material, aluminum twisted wire, coated electric wire with crimp terminal, and CVT cable or CVT cable with crimp terminal
JP7448428B2 (en) Conductor for power cable and method for manufacturing power cable conductor having intermediate layer
JP7054482B2 (en) Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire
JP2021144805A (en) Connection structure
JP6807040B2 (en) Covered wires, wires with terminals, and copper alloy wires
JP7295817B2 (en) Conductor stranded wire for wire harness
JP6807027B2 (en) Covered wires, wires with terminals, copper alloy wires, and copper alloy stranded wires
US20210183532A1 (en) Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240509