JP2013257944A - Aluminum base terminal fitting, and terminal connection structure of wire - Google Patents

Aluminum base terminal fitting, and terminal connection structure of wire Download PDF

Info

Publication number
JP2013257944A
JP2013257944A JP2012131416A JP2012131416A JP2013257944A JP 2013257944 A JP2013257944 A JP 2013257944A JP 2012131416 A JP2012131416 A JP 2012131416A JP 2012131416 A JP2012131416 A JP 2012131416A JP 2013257944 A JP2013257944 A JP 2013257944A
Authority
JP
Japan
Prior art keywords
elastic piece
alloy
conductor
aluminum
terminal fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012131416A
Other languages
Japanese (ja)
Inventor
Tetsuya Kuwabara
鉄也 桑原
Hajime Ota
肇 太田
Taichiro Nishikawa
太一郎 西川
Takayasu Sugihara
崇康 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012131416A priority Critical patent/JP2013257944A/en
Publication of JP2013257944A publication Critical patent/JP2013257944A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum base terminal fitting in which stress relaxation is difficult, and different metal contact corrosion (battery corrosion) can be reduced, and to provide a terminal connection structure of a wire.SOLUTION: A terminal fitting 10 includes a conductor connection to be connected with a conductor 210 composed of an Al alloy, or the like, and a fitting part 13 to be connected with a portion of the other terminal fitting (e.g., a male fitting part 140). The fitting part 13 includes a cylindrical box part 14 extending to the conductor connection, and a resilient piece 15 located on the inside of the box part 14 and is brought into contact with the male fitting part 140 by a biasing force. The resilient piece 15 is bonded to the box part 14. The conductor connection and the box part 14 are composed of an aluminum alloy. In a conduction path from the box part 14 to the male fitting part 140 via the resilient piece 15, a contact part of an Al-based member and a Ti-based member composed of titanium or a titanium alloy is provided. Since the contact current is small between Al-Ti, battery corrosion can be reduced. Since the resilient piece 15 has a high strength, stress relaxation is difficult.

Description

本発明は、アルミニウム又はアルミニウム合金からなる導体に取り付けられるアルミニウム基端子金具、このアルミニウム基端子金具を具える電線の端末接続構造に関する。特に、応力緩和し難く、異種金属接触腐食が進行し難いアルミニウム基端子金具に関するものである。   The present invention relates to an aluminum base terminal fitting attached to a conductor made of aluminum or an aluminum alloy, and an end connection structure of an electric wire including the aluminum base terminal fitting. In particular, the present invention relates to an aluminum-based terminal metal fitting that is difficult to relieve stress and that does not easily proceed with dissimilar metal contact corrosion.

従来、自動車や飛行機などの移動用機器、ロボットなどの産業機器などに具える電線は、その端部において絶縁層を除去して導体を露出させ、この露出部分に端子金具を取り付けて利用されている。端子金具は、種々の形態がある。例えば、端子金具同士を接続する形態では、両端子金具を電気的に接続する電気的接続部として、図4に示すようなメス型嵌合部130を具えるメス型端子金具100Fや、オス型嵌合部140を具えるオス型端子金具100Mがある。図4に示す端子金具100F,100Mの形状は例示である。なお、図4では、分かり易いように、メス型嵌合部130のみ、断面を示す。   Conventionally, electric wires provided in mobile equipment such as automobiles and airplanes, industrial equipment such as robots, etc. are used by removing the insulating layer at the end to expose the conductor and attaching terminal fittings to this exposed part. Yes. There are various types of terminal fittings. For example, in a form in which the terminal fittings are connected to each other, as an electrical connection portion for electrically connecting both terminal fittings, a female terminal fitting 100F having a female fitting portion 130 as shown in FIG. There is a male terminal fitting 100M having a fitting portion 140. The shapes of the terminal fittings 100F and 100M shown in FIG. 4 are examples. In FIG. 4, only the female fitting portion 130 is shown in cross section for easy understanding.

メス型嵌合部130は、筒状の箱部131と、箱部131の内面に対向配置された弾性片132,133とを具える。オス型嵌合部140は、棒状体である。図4(B)に示すように箱部131にオス型嵌合部140を挿入して両嵌合部130,140を嵌合すると、オス型嵌合部140は、弾性片132,133の付勢力によって強固に挟持されて、両端子金具100F,100Mは電気的に接続される。   The female fitting part 130 includes a cylindrical box part 131 and elastic pieces 132 and 133 arranged to face the inner surface of the box part 131. The male fitting part 140 is a rod-shaped body. As shown in FIG. 4 (B), when the male fitting part 140 is inserted into the box part 131 and the fitting parts 130 and 140 are fitted, the male fitting part 140 is firmly fixed by the urging force of the elastic pieces 132 and 133. The both terminal fittings 100F and 100M are electrically connected by being sandwiched.

端子金具100F,100Mは、代表的には、素材板にプレス成形といった塑性加工を施すことで、所定の形状に成形されて製造される。例えば、図4に示すメス型端子金具100Fは、一つの素材板に塑性加工を施して製造されており、嵌合部130を構成する筒部131及び弾性片132,133と、電線200の導体210を把持する圧着片を具えるワイヤバレル部110と、電線200の絶縁層220を把持する圧着片を具えるインシュレーションバレル部120とを一体に具える。従って、各部110,120,130は、一様な材質から構成されている。   The terminal fittings 100F and 100M are typically manufactured by being molded into a predetermined shape by subjecting a material plate to plastic working such as press molding. For example, the female terminal fitting 100F shown in FIG. 4 is manufactured by performing plastic working on a single material plate, and includes a cylindrical portion 131 and elastic pieces 132 and 133 constituting the fitting portion 130, and a conductor 210 of the electric wire 200. A wire barrel part 110 having a crimping piece to be gripped and an insulation barrel part 120 having a crimping piece to grip the insulating layer 220 of the electric wire 200 are integrally provided. Therefore, each part 110,120,130 is comprised from the uniform material.

従来、電線の導体や端子金具の構成材料は、導電性に優れた銅(Cu)や銅合金といった銅系材料が主流である。近年、電線の軽量化のために、比重が銅の約1/3であるアルミニウム(Al)又はアルミニウム合金(以下、Al合金等と呼ぶ)を導体や端子金具の構成材料に用いることが検討されている。   Conventionally, copper-based materials such as copper (Cu) and copper alloys, which are excellent in electrical conductivity, are the mainstream as constituent materials for electric wire conductors and terminal fittings. In recent years, in order to reduce the weight of electric wires, it has been studied to use aluminum (Al) or aluminum alloy (hereinafter referred to as Al alloy) whose specific gravity is about 1/3 of copper as a constituent material for conductors and terminal fittings. ing.

特許文献1では、アルミニウム電線の導体に取り付ける端子金具として、導体圧着部を具えるアルミニウム系成形体と、ばね接点部(弾性片)を具える鉄系成形体とを組み合わせた構造のものを開示している。この端子金具は、Al合金等に比較して一般に高強度でへたり難い鉄(Fe)系材料によって弾性片が構成されている。そのため、この端子金具は、経時的に応力緩和し難く、別の端子金具(オス型端子金具)との接触状態が劣化することを抑制できる。   Patent Document 1 discloses a structure in which an aluminum-based molded body having a conductor crimping portion and an iron-based molded body having a spring contact portion (elastic piece) are combined as a terminal fitting attached to a conductor of an aluminum electric wire. doing. In this terminal fitting, an elastic piece is formed of an iron (Fe) -based material that is generally high in strength and difficult to sag compared to an Al alloy or the like. For this reason, this terminal fitting is difficult to relieve stress over time, and the contact state with another terminal fitting (male terminal fitting) can be suppressed from deteriorating.

特許第3984539号公報Japanese Patent No. 3984539

しかし、異種金属を組み合わせると、異種金属接触腐食(電池腐食)が生じ得る。特許文献1では、AlとFeとの間のイオン化傾向の差が、AlとCuとの間のイオン化傾向の差よりも小さいことから、アルミニウム系成形体に対して鉄系成形体を用いることで、銅系材料からなる成形体を用いる場合に比較して、電池腐食を低減できることを記載している。しかし、AlとFeとの間では、電池腐食によってAlの溶解を招くため、長期の使用によって、端子金具を構成するアルミニウム系成形体やアルミニウム電線の導体が溶出する恐れがある。例えば、アルミニウム系成形体と鉄系成形体との組物に樹脂被覆などの防食処理を施すと、周囲環境から生成される電解液に接触することを抑制できるため、電池腐食を低減できる。しかし、この場合、防食処理が別途必要になる。   However, when different metals are combined, different metal contact corrosion (battery corrosion) may occur. In Patent Document 1, since the difference in ionization tendency between Al and Fe is smaller than the difference in ionization tendency between Al and Cu, by using an iron-based molded body for an aluminum-based molded body, It describes that battery corrosion can be reduced as compared with the case where a molded body made of a copper-based material is used. However, since Al dissolves due to battery corrosion between Al and Fe, there is a possibility that the aluminum-based molded body constituting the terminal fitting and the conductor of the aluminum electric wire may be eluted by long-term use. For example, when an anticorrosion treatment such as resin coating is applied to an assembly of an aluminum-based molded body and an iron-based molded body, contact with an electrolytic solution generated from the surrounding environment can be suppressed, so that battery corrosion can be reduced. However, in this case, anticorrosion treatment is required separately.

また、電池腐食は、イオン化傾向の差だけで一概に決定されるものではない。本発明者らは、純アルミニウムと、各種の金属との間の接触腐食電流を測定した。測定には、特開2010-281687号公報に記載される手法を利用した。その結果、イオン化傾向の差が大きい金属の組であっても、接触腐食電流が必ずしも大きいわけではなかった。例えば、めっきなどに利用されるNiやSnについていうと、Al-Ni組のイオン化傾向の差は、Al-Sn組のイオン化傾向の差よりも小さい。しかし、Al-Ni組の接触腐食電流は、35μA/cm2であり、Al-Sn組の接触腐食電流:9μA/cm2よりも非常に大きかった。なお、Al-Fe組の接触腐食電流は29μA/cm2(ここではFeとして炭素鋼を使用)、Al-Cu組の接触腐食電流は58μA/cm2である。この結果から、電解液に接触した金属が酸化膜などの電気的抵抗体を生成する量の大小(生成しない場合もある)が電池腐食に大きな影響を与える、と考えられる。 Moreover, battery corrosion is not determined unconditionally only by the difference in ionization tendency. The inventors measured the contact corrosion current between pure aluminum and various metals. For the measurement, the technique described in JP 2010-281687 A was used. As a result, the contact corrosion current was not necessarily large even for a set of metals having a large difference in ionization tendency. For example, regarding Ni and Sn used for plating and the like, the difference in ionization tendency of the Al—Ni group is smaller than the difference in ionization tendency of the Al—Sn group. However, Al-Ni sets of contact corrosion current is 35μA / cm 2, Al-Sn sets of contact corrosion current: was much greater than 9 .mu.A / cm 2. The contact corrosion current of the Al—Fe group is 29 μA / cm 2 (here, carbon steel is used as Fe), and the contact corrosion current of the Al—Cu group is 58 μA / cm 2 . From this result, it is considered that the amount of the metal in contact with the electrolytic solution that generates an electrical resistor such as an oxide film (which may not be generated) greatly affects the battery corrosion.

例えば、アルミニウム合金によって端子金具の全体を構成した場合、この端子金具とAl合金等からなる導体との間や、この端子金具を構成する各部分間では、主成分が共通することで、電池腐食を実質的に防止できる。しかし、従来、端子金具に適したアルミニウム合金の機械的特性や、その特性を満たす材質について十分に検討されていない。   For example, when the entire terminal fitting is composed of an aluminum alloy, the main component is common between the terminal fitting and a conductor made of an Al alloy or the like, and between parts constituting the terminal fitting. Can be substantially prevented. However, mechanical properties of aluminum alloys suitable for terminal fittings and materials that satisfy the properties have not been sufficiently studied.

上述のオス型嵌合部とメス型嵌合部とを接続する形態では、長期に亘り接続状態を維持するために、弾性片が経時的に応力緩和し難く、弾性片によるばね荷重(接圧)が十分に高いこと、好ましくは高温であっても高いばね荷重を維持できることが望まれる。例えば、端子金具を構成するアルミニウム合金板の厚さをある程度厚くすると、ばね荷重を高められる。しかし、素材板が厚くなると、加工時に歪みが大きくなるため割れなどを生じる恐れがあり、端子金具の生産性の低下を招く。また、素材板が厚いことで、端子金具自体が大型になる。そのため、この対処は、小型化が望まれる用途、例えば自動車用途などに適さない。   In the above-described configuration in which the male fitting portion and the female fitting portion are connected, in order to maintain the connection state for a long period of time, the elastic piece is difficult to relieve stress over time, and the spring load (contact pressure) by the elastic piece is difficult. ) Is sufficiently high, preferably a high spring load can be maintained even at high temperatures. For example, if the thickness of the aluminum alloy plate constituting the terminal fitting is increased to some extent, the spring load can be increased. However, when the material plate is thick, distortion is increased during processing, which may cause cracks and the like, which leads to a decrease in productivity of terminal fittings. Further, the thick metal plate increases the size of the terminal fitting itself. Therefore, this countermeasure is not suitable for applications where downsizing is desired, such as automobile applications.

本発明は上記事情を鑑みてなされたものであり、その目的の一つは、応力緩和し難く、電池腐食を低減できるアルミニウム基端子金具を提供することにある。また、本発明の他の目的は、応力緩和し難く、電池腐食を低減できる電線の端末接続構造を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an aluminum base terminal metal fitting which is difficult to relieve stress and can reduce battery corrosion. Another object of the present invention is to provide an electric wire terminal connection structure that is less likely to relieve stress and can reduce battery corrosion.

本発明は、箱部と弾性片とを別部材とし、両者を接合によって一体化とすると共に、アルミニウム合金からなる部分に接触する材質を特定の材質とすることで上記目的を達成する。   The present invention achieves the above object by using a box part and an elastic piece as separate members, integrating them together by joining, and using a specific material as a material that comes into contact with a portion made of an aluminum alloy.

本発明のアルミニウム基端子金具は、電線の導体が接続される導体接続部と、別の端子金具の一部が接続される嵌合部とを具える端子金具である。上記導体接続部に接続される上記導体は、アルミニウム又はアルミニウム合金から構成されるものとする。上記嵌合部は、上記導体接続部に延設された筒状の箱部と、上記箱部の内側に配置された弾性片とを具える。上記箱部は、塑性加工によって成形されている。上記弾性片は、付勢力によって上記別の端子金具の一部に接触する。また、上記弾性片は、上記箱部に接合されている。上記導体接続部及び上記箱部は、アルミニウム合金から構成されている。そして、上記箱部から上記弾性片を経て上記別の端子金具に至る導電経路に、アルミニウム合金から構成されるAl系部材と、チタン又はチタン合金から構成されるTi系部材との接触部を具える。   The aluminum-based terminal fitting of the present invention is a terminal fitting including a conductor connecting portion to which a conductor of an electric wire is connected and a fitting portion to which a part of another terminal fitting is connected. The said conductor connected to the said conductor connection part shall be comprised from aluminum or aluminum alloy. The fitting portion includes a cylindrical box portion extended to the conductor connection portion, and an elastic piece disposed inside the box portion. The box part is formed by plastic working. The elastic piece comes into contact with a part of the another terminal fitting by an urging force. The elastic piece is joined to the box portion. The conductor connection part and the box part are made of an aluminum alloy. The conductive path from the box portion through the elastic piece to the other terminal fitting is provided with a contact portion between an Al-based member composed of an aluminum alloy and a Ti-based member composed of titanium or a titanium alloy. Yeah.

本発明のアルミニウム基端子金具は、その一部を構成するアルミニウム合金に接触する部材が、Alとの間における接触腐食電流が小さい金属によって構成されている。より具体的には、この部材は、Alとの間における接触腐食電流が2μm/cm2であるチタン(Ti)、又はチタン合金から構成されている。そのため、本発明のアルミニウム基端子金具は、端子金具の構成要素間で生じ得る電池腐食を効果的に低減できる。また、本発明のアルミニウム基端子金具は、導体接続部がアルミニウム合金から構成されていることから、Al合金等からなる導体との間で電池腐食が実質的に生じない。 In the aluminum base terminal metal fitting of the present invention, the member that contacts the aluminum alloy that constitutes a part of the aluminum base terminal metal fitting is made of a metal having a small contact corrosion current with Al. More specifically, this member is made of titanium (Ti) or a titanium alloy whose contact corrosion current with Al is 2 μm / cm 2 . Therefore, the aluminum-based terminal fitting of the present invention can effectively reduce battery corrosion that can occur between the components of the terminal fitting. In the aluminum base terminal fitting of the present invention, since the conductor connecting portion is made of an aluminum alloy, battery corrosion does not substantially occur between the conductor made of an Al alloy or the like.

更に、弾性片の主要な構成材料をばね特性に優れる材料とすることで、本発明のアルミニウム基端子金具は、長期に亘り応力緩和し難い。   Furthermore, by making the main constituent material of the elastic piece a material having excellent spring characteristics, the aluminum-based terminal fitting of the present invention is less likely to relieve stress over a long period of time.

以上の点から、本発明のアルミニウム基端子金具は、経時的な電池腐食を低減できる上に、応力緩和によるばね荷重の低下を抑制して、長期に亘り高いばね荷重を維持できる。従って、本発明のアルミニウム基端子金具は、端子金具同士の接続状態が経時的に緩み難く、低抵抗な接続構造を構築することができる。また、導体接続部及び箱部が、一般にチタンやチタン合金に比較して塑性加工性に優れるアルミニウム合金から構成されるため、所望の形状に容易に成形できる。従って、本発明のアルミニウム基端子金具は、製造性にも優れる。   From the above points, the aluminum-based terminal fitting of the present invention can reduce battery corrosion over time, and can suppress a decrease in spring load due to stress relaxation and maintain a high spring load over a long period of time. Therefore, the aluminum base terminal metal fitting of the present invention can construct a low resistance connection structure in which the connection state between the terminal metal fittings is not loosened with time. In addition, since the conductor connecting portion and the box portion are generally made of an aluminum alloy that is superior in plastic workability as compared with titanium or a titanium alloy, it can be easily formed into a desired shape. Therefore, the aluminum-based terminal fitting of the present invention is excellent in manufacturability.

本発明の一形態として、上記弾性片の構成材料の引張強さが上記箱部を構成するアルミニウム合金の引張強さよりも高い形態が挙げられる。   As one form of this invention, the form whose tensile strength of the constituent material of the said elastic piece is higher than the tensile strength of the aluminum alloy which comprises the said box part is mentioned.

上記形態は、弾性片が相対的に高強度であることから、ひいては耐力も高く、応力緩和し難い。また、上記形態は、箱部が相対的に低強度であることから、ひいては伸びといった靭性に優れ、成形性に優れる。   In the above embodiment, since the elastic piece has a relatively high strength, the yield strength is high, and it is difficult to relax the stress. Moreover, since the said part is relatively low intensity | strength, the said form is excellent in toughness called elongation by extension, and is excellent in a moldability.

本発明の一形態として、上記弾性片が上記箱部を構成するアルミニウム合金の引張強さよりも高い引張強さを有するアルミニウム合金から構成されており、上記弾性片における上記別の端子金具との接点領域に接点層を具え、上記Al系部材が上記弾性片であり、上記Ti系部材が上記弾性片と上記接点層との間に設けられた接点介在層である形態が挙げられる。接点層は、錫又は錫合金から構成されている。この形態ではAl系部材とTi系部材との接触部は、アルミニウム合金からなる弾性片とチタン又はチタン合金からなる接点介在層との接触箇所である。   As one form of this invention, the said elastic piece is comprised from the aluminum alloy which has a tensile strength higher than the tensile strength of the aluminum alloy which comprises the said box part, and the contact with the said another terminal metal fitting in the said elastic piece Examples include a contact layer in a region, the Al-based member is the elastic piece, and the Ti-based member is a contact intervening layer provided between the elastic piece and the contact layer. The contact layer is made of tin or a tin alloy. In this embodiment, the contact portion between the Al-based member and the Ti-based member is a contact location between the elastic piece made of an aluminum alloy and the contact intervening layer made of titanium or titanium alloy.

上記形態は、箱部と弾性片との接合箇所がアルミニウム合金から構成されるため、箱部と弾性片との間で電池腐食が実質的に生じない。また、上記形態は、弾性片と接点層との間に接点介在層が存在するため、弾性片と接点層との間、つまりAlとSnとの間での電池腐食を防止できる。更に、上記形態は、弾性片が高強度なアルミニウム合金から構成されて耐力にも優れることから、応力緩和し難い。加えて、上記形態は、接点層が柔らかい錫や錫合金によって構成されるため、別の端子金具に十分に密着して、低抵抗な接続構造を構築することができる。   In the above form, since the joint portion between the box portion and the elastic piece is made of an aluminum alloy, battery corrosion does not substantially occur between the box portion and the elastic piece. Moreover, since the said form has a contact intervening layer between an elastic piece and a contact layer, it can prevent battery corrosion between an elastic piece and a contact layer, ie, between Al and Sn. Furthermore, in the above embodiment, since the elastic piece is made of a high-strength aluminum alloy and has excellent proof stress, it is difficult to relax the stress. In addition, since the contact layer is made of soft tin or tin alloy, the above-described form can be sufficiently adhered to another terminal fitting to construct a low resistance connection structure.

本発明の一形態として、上記導体接続部及び上記箱部は、6000系合金からなる板材に塑性加工が施されて形成された形態が挙げられる。   As one form of this invention, the said conductor connection part and the said box part have the form formed by performing plastic working to the board | plate material which consists of 6000 series alloys.

本発明者らが調べた結果、6000系合金は、高強度で耐熱性にも優れる上に、熱処理条件を調整して種々の組織とすることで、機械的特性を異ならせることができる、との知見を得た。例えば、強度や耐力が高く高温でも応力緩和し難いものや、伸びが高く成形性に優れるものが得られる、との知見を得た。上記形態は、6000系合金からなる板材として成形性に優れる組織のものを選択することで、導体接続部及び箱部を精度よく成形可能であり、生産性に優れる。   As a result of investigations by the present inventors, the 6000 series alloy has high strength and excellent heat resistance, and can be made to have different mechanical properties by adjusting the heat treatment conditions into various structures. I got the knowledge. For example, they obtained knowledge that strength and proof strength are high and stress relaxation is difficult even at high temperatures, and that high elongation and excellent moldability are obtained. The said form can shape | mold a conductor connection part and a box part accurately, and is excellent in productivity by selecting the thing of the structure | tissue which is excellent in a moldability as a board | plate material which consists of 6000 series alloys.

上述の弾性片がアルミニウム合金から構成された形態として、上記導体接続部、上記箱部、及び上記弾性片のいずれもが、6000系合金から構成された形態が挙げられる。   As a form in which the above-mentioned elastic piece is made of an aluminum alloy, a form in which all of the conductor connection part, the box part, and the elastic piece are made of a 6000 series alloy can be cited.

上記形態は、端子金具の大部分が高強度で耐熱性にも優れる6000系合金によって構成されるため、高温環境でも好適に使用できる。また、上記形態は、箱部と弾性片とが同一組成であることから接合性にも優れる。更に、上記形態は、6000系合金の熱処理条件を調整することで、弾性片用の素材と、導体接続部及び箱部用の素材とを容易に作製できる点から、生産性にも優れる。   Since most of the terminal fittings are made of a 6000 series alloy having high strength and excellent heat resistance, the above-described form can be suitably used even in a high temperature environment. Moreover, since the said form and the elastic piece are the same compositions, the said form is excellent also in bondability. Furthermore, the said form is excellent also in productivity from the point that the raw material for elastic pieces and the raw material for conductor connection parts and a box part can be easily produced by adjusting the heat processing conditions of 6000 series alloy.

本発明の一形態として、上記Ti系部材が上記弾性片であり、上記弾性片における上記別の端子金具との接点領域に接点層を具える形態が挙げられる。接点層は、錫又は錫合金から構成されている。この形態では、Al系部材とTi系部材との接触部は、アルミニウム合金からなる箱部とチタン又はチタン合金からなる弾性片との接触箇所である。   As one form of this invention, the said Ti type member is the said elastic piece, and the form which provides a contact layer in the contact area | region with the said another terminal metal fitting in the said elastic piece is mentioned. The contact layer is made of tin or a tin alloy. In this embodiment, the contact portion between the Al-based member and the Ti-based member is a contact portion between a box portion made of an aluminum alloy and an elastic piece made of titanium or a titanium alloy.

上記形態は、箱部と弾性片との間における電池腐食を効果的に低減できる。かつ、上記形態は、室温での耐力が非常に高い材質:チタン又はチタン合金によって弾性片の全体が構成されているため、長期に亘り応力緩和し難い。また、上記形態は、接点層が柔らかい錫や錫合金によって構成されるため、別の端子金具に十分に密着して、低抵抗な接続構造を構築することができる。   The said form can reduce battery corrosion between a box part and an elastic piece effectively. And since the whole elastic piece is comprised by the material which has very high yield strength at room temperature: titanium or a titanium alloy, the said form cannot relieve stress over a long period of time. Moreover, since the said contact layer is comprised with a soft tin or tin alloy, the said form can fully contact | adhere to another terminal metal fitting, and can construct | assemble a low-resistance connection structure.

本発明の一形態として、上記Ti系部材がβ相組織から構成された形態が挙げられる。   As one form of this invention, the form from which the said Ti-type member was comprised from (beta) phase structure | tissue is mentioned.

β相(体心立方晶)からなる組織は非常に高強度であることから、上記形態は、強度に優れるTi部材を具えることができる。また、β相は、塑性加工性にも優れる。そのため、例えば、β相組織の素材に塑性加工を施すことで、所望の形状の弾性片を容易に製造できる。従って、特にβ相組織からなる弾性片を具える形態は、生産性に優れる上に、長期に亘り応力緩和し難い。   Since the structure composed of the β phase (body-centered cubic crystal) has a very high strength, the above embodiment can include a Ti member having excellent strength. The β phase is also excellent in plastic workability. Therefore, for example, an elastic piece having a desired shape can be easily manufactured by performing plastic working on a material having a β phase structure. Therefore, in particular, the form having an elastic piece made of a β-phase structure is excellent in productivity and difficult to relieve stress over a long period of time.

本発明の一形態として、上記導体接続部が上記導体を圧着する圧着片を具える形態が挙げられる。   As one form of this invention, the form in which the said conductor connection part provides the crimping | compression-bonding piece which crimps | bonds the said conductor is mentioned.

導体接続部は、アルミニウム合金から構成されるため成形性に優れることから、圧着片も塑性加工によって形成可能である。従って、上記形態は、生産性に優れる。   Since the conductor connecting portion is made of an aluminum alloy and has excellent formability, the crimping piece can also be formed by plastic working. Therefore, the said form is excellent in productivity.

本発明の電線の端末接続構造は、導体を具える電線と、上記導体の端部に取り付けられた端子金具とを具え、上記導体がアルミニウム又はアルミニウム合金から構成されており、上記端子金具が本発明のアルミニウム基端子金具である。   An electric wire terminal connection structure of the present invention includes an electric wire having a conductor and a terminal fitting attached to an end portion of the conductor, and the conductor is made of aluminum or an aluminum alloy. It is the aluminum base terminal metal fitting of invention.

本発明の電線の端末接続構造は、電線の導体の主成分:Alと、この導体が接触する導体接続部の主成分:Alとが共通しているため、導体と端子金具との間で電池腐食が実質的に生じない。従って、電池腐食に対する特別な処理を施す必要がなく、生産性に優れる。また、本発明の電線の端末接続構造は、応力緩和し難く、かつ電池腐食を低減できる本発明のアルミニウム基端子金具を具えるため、長期に亘り、十分なばね荷重を有することができ、低抵抗な接続状態を維持できる。   The terminal connection structure of the electric wire of the present invention has a common component between the conductor of the electric wire: Al and the main component of the conductor connection part that the conductor contacts: Al, so that the battery is connected between the conductor and the terminal fitting. There is virtually no corrosion. Therefore, it is not necessary to perform a special treatment for battery corrosion, and the productivity is excellent. Moreover, since the terminal connection structure of the electric wire of the present invention includes the aluminum-based terminal metal fitting of the present invention that is difficult to relieve stress and can reduce battery corrosion, it can have a sufficient spring load for a long period of time. Resistant connection can be maintained.

本発明の一形態として、自動車の配線構造に用いられる形態が挙げられる。   As one form of this invention, the form used for the wiring structure of a motor vehicle is mentioned.

本発明の電線の端末接続構造は、電線の導体と端子金具の箱部及び導体接続部とが少なくともAl合金等によって構成され、かつ端子金具の別の一部もFeやCuよりも軽量なチタンやチタン合金によって構成されるため、軽量である。従って、上記形態は、軽量化が望まれる自動車用途に好適に利用できる。   The wire terminal connection structure of the present invention is such that the conductor of the wire, the box portion of the terminal fitting and the conductor connecting portion are made of at least an Al alloy or the like, and another portion of the terminal fitting is lighter than Fe or Cu. Because it is made of titanium alloy, it is lightweight. Therefore, the said form can be utilized suitably for the motor vehicle use for which weight reduction is desired.

本発明のアルミニウム基端子金具、及び本発明の電線の端末接続構造は、応力緩和し難く、電池腐食を低減できる。   The aluminum base terminal fitting of the present invention and the terminal connection structure of the electric wire of the present invention are less likely to relieve stress and can reduce battery corrosion.

本発明のアルミニウム基端子金具の概略構成図であり、(A)は、本発明のアルミニウム基端子金具とオス型端子金具との嵌合前、(B)は、両端子金具の嵌合部を嵌合した状態を示す。It is a schematic configuration diagram of the aluminum base terminal fitting of the present invention, (A) before the fitting of the aluminum base terminal fitting and the male terminal fitting of the present invention, (B) is a fitting portion of both terminal fittings The state which fitted is shown. 本発明のアルミニウム基端子金具に具える弾性片を模式的に示す断面図であり、(A)は、弾性片と接点層との間に接点介在層を具える形態(i)、(B)は、箱部と弾性片との間に接合介在層を具える形態(ii)、(C)は、弾性片全体がチタン又はチタン合金から構成される形態(iii)を示す。It is a cross-sectional view schematically showing an elastic piece provided in the aluminum base terminal metal fitting of the present invention, (A) is a form comprising a contact intervening layer between the elastic piece and the contact layer (i), (B) Are forms (ii) and (C) in which a bonding intervening layer is provided between the box portion and the elastic piece, and forms (iii) in which the entire elastic piece is made of titanium or a titanium alloy. 応力緩和特性を示すグラフであり、(A)は、荷重残存率の経時的変化を示すグラフ、(B)は、荷重の経時的変化を示すグラフである。FIG. 4 is a graph showing stress relaxation characteristics, where (A) is a graph showing a change with time of a load remaining rate, and (B) is a graph showing a change with time of a load. 従来のメス型端子金具、及びオス型端子金具の概略構成図であり、(A)は、両端子金具の嵌合前、(B)は、両端子金具の嵌合部を嵌合した状態を示す。It is a schematic configuration diagram of a conventional female terminal fitting and male terminal fitting, (A) is before fitting both terminal fittings, (B) is a state where the fitting portions of both terminal fittings are fitted. Show.

以下、本発明をより詳細に説明する。まず、図1を参照して本発明のアルミニウム基端子金具の具体的な形状を説明する。   Hereinafter, the present invention will be described in more detail. First, a specific shape of the aluminum base terminal fitting of the present invention will be described with reference to FIG.

[端子金具]
(全体構成)
本発明のアルミニウム基端子金具:端子金具10は、その基本的形状は図4で説明したメス型端子金具100Fと同様である。具体的には、端子金具10は、電線200に具える導体210が接続される導体接続部と、導体接続部の一方の側に延設されて、別の接続対象と電気的に接続される電気的接続部とを具える。端子金具10では、導体接続部はワイヤバレル部11であり、電気的接続部は、別の端子金具の一部(図1ではオス型端子金具100Mに具える棒状のオス型嵌合部140。以下、相手側嵌合部と呼ぶ)に嵌合して電気的に接続される嵌合部13である。その他、端子金具10は、導体接続部の他方の側に延設されて、電線200に具える絶縁層220を保持するインシュレーションバレル部12を具えることができる。
[Terminal bracket]
(overall structure)
The basic shape of the aluminum base terminal fitting: terminal fitting 10 of the present invention is the same as that of the female terminal fitting 100F described in FIG. Specifically, the terminal fitting 10 is extended to one side of the conductor connection portion to which the conductor 210 included in the electric wire 200 is connected, and is electrically connected to another connection object. With electrical connections. In the terminal fitting 10, the conductor connecting portion is the wire barrel portion 11, and the electrical connecting portion is a part of another terminal fitting (in FIG. 1, a rod-like male fitting portion 140 provided in the male terminal fitting 100M. Hereinafter, it is a fitting portion 13 that is fitted and electrically connected to a mating fitting portion. In addition, the terminal fitting 10 can include an insulation barrel portion 12 that extends to the other side of the conductor connection portion and holds the insulating layer 220 included in the electric wire 200.

<導体接続部>
導体接続部は、導体を圧着する圧着タイプのもの、溶融した導体が接続される溶融タイプのものなどがある。圧着タイプは、一対の圧着片や一つの圧着筒体を主体とするワイヤバレル部を具えるものが挙げられる。図1に示すワイヤバレル部11は、断面U字状であり、電線の導体が配置される底部と、この底部に立設される一対の圧着片を具える形態を示す。圧着片は、導体を挟持するように折り曲げられ、更に圧縮されて導体を圧着する。圧着筒体は、導体が挿入される孔を有し、この孔に導体が挿入され、更に圧縮されて導体を圧着する。溶融タイプは、断面U字状であり、電線の導体が配置される底部と、この底部に立設される一対の壁片を具える形態が挙げられる。このU字部分によって溶融した導体を保持する。
<Conductor connection>
The conductor connection portion includes a crimp type that crimps a conductor and a melt type that connects a melted conductor. Examples of the crimping type include those having a wire barrel portion mainly composed of a pair of crimping pieces and one crimping cylinder. The wire barrel portion 11 shown in FIG. 1 has a U-shaped cross section, and shows a form including a bottom portion on which a conductor of an electric wire is arranged and a pair of crimping pieces standing on the bottom portion. The crimping piece is bent so as to sandwich the conductor and is further compressed to crimp the conductor. The crimping cylinder has a hole into which the conductor is inserted, and the conductor is inserted into the hole and further compressed to crimp the conductor. The melting type has a U-shaped cross section, and includes a form including a bottom portion on which a conductor of an electric wire is disposed and a pair of wall pieces standing on the bottom portion. The melted conductor is held by this U-shaped part.

<嵌合部>
嵌合部13は、相手側嵌合部が挿入される筒状の箱部14と、相手側嵌合部に接触する少なくとも一つの弾性片15とを具える。弾性片15の少なくとも一部は、箱部14の内側に配置される。図1に示す例では、弾性片15の全体が箱部14内に配置されている。
<Mating part>
The fitting portion 13 includes a cylindrical box portion 14 into which the mating fitting portion is inserted, and at least one elastic piece 15 that contacts the mating fitting portion. At least a part of the elastic piece 15 is disposed inside the box portion 14. In the example shown in FIG. 1, the entire elastic piece 15 is arranged in the box portion 14.

箱部14は、相手側嵌合部が挿入可能な筒状であれば、その形状は特に問わない。相手側嵌合部の全周を覆うように箱部14が存在する形態は、(1)箱部14の剛性が高く変形し難い、(2)相手側嵌合部の保護・脱落防止を図ることができる、(3)弾性片15の接合面積を十分に有することができる。箱部14の表面の一部に弾性片15との接合領域を具える。   The shape of the box part 14 is not particularly limited as long as the mating part can be inserted into the box part 14. The form in which the box part 14 exists so as to cover the entire circumference of the mating part of the mating part is (1) the rigidity of the box part 14 is high and difficult to be deformed, and (2) the mating part mating part is protected and prevented from falling off. (3) The elastic piece 15 can have a sufficient bonding area. A part of the surface of the box part 14 is provided with a joining region with the elastic piece 15.

上述の導体接続部を構成する圧着片や壁片は、素材板にプレス加工といった塑性加工を施して、底部から立設するように成形することで製造できる。ワイヤバレル部11と同様の形態のインシュレーションバレル部12を具える場合、つまり断面U字状であり、絶縁層220が配置される底部と、この底部に立設される一対の圧着片とを具える場合も同様に、上記素材板にプレス加工などを施すことで製造できる。箱部14も、導体接続部を形成する素材板にプレス加工といった塑性加工を施して、この素材板の所定の位置に所定の形状(例えば、四角筒状)に成形することで製造できる。つまり、導体接続部やインシュレーションバレル部12の形状によっては、導体接続部などと箱部14とは、一つの素材板に適宜塑性加工を施すことで製造でき、生産性に優れる。   The pressure-bonding piece and the wall piece constituting the above-described conductor connecting portion can be manufactured by performing plastic working such as press working on the material plate and forming it so as to stand upright from the bottom. When the insulation barrel portion 12 having the same form as the wire barrel portion 11 is provided, that is, having a U-shaped cross section, a bottom portion on which the insulating layer 220 is disposed, and a pair of crimping pieces standing on the bottom portion Similarly, in the case of preparation, the material plate can be manufactured by pressing or the like. The box portion 14 can also be manufactured by subjecting a material plate forming the conductor connecting portion to plastic processing such as press processing and forming the material plate into a predetermined shape (for example, a rectangular tube shape) at a predetermined position of the material plate. That is, depending on the shape of the conductor connection portion and the insulation barrel portion 12, the conductor connection portion and the box portion 14 can be manufactured by appropriately plasticizing one material plate, and the productivity is excellent.

弾性片15は、箱部14に挿入された相手側嵌合部に直接接触して、導通をとる部材である。弾性片15が一つの場合、この弾性片15と箱部14の内面とで相手側嵌合部を挟み、弾性片15の付勢力によって、相手側嵌合部を箱部14の内面に押し付けることで、箱部14と相手側嵌合部と弾性片15とが圧接する。弾性片15が複数の場合、例えば、図1に示すように二つの弾性片152,153を対向配置させて相手側嵌合部を挟み、両弾性片152,153の付勢力によって、弾性片152,153と相手側嵌合部とが圧接する。上述の圧接により、箱部14から弾性片15(152,153)を経て相手側嵌合部に至る導電経路が構築される。   The elastic piece 15 is a member that is brought into direct contact with the mating fitting portion inserted into the box portion 14 and becomes conductive. When there is one elastic piece 15, the mating mating portion is sandwiched between the elastic piece 15 and the inner surface of the box portion 14, and the mating mating portion is pressed against the inner surface of the box portion 14 by the urging force of the elastic piece 15. Thus, the box portion 14, the mating fitting portion, and the elastic piece 15 are in pressure contact. In the case where there are a plurality of elastic pieces 15, for example, as shown in FIG. The joint is in pressure contact. By the above-described pressure contact, a conductive path from the box part 14 to the mating part fitting part through the elastic piece 15 (152, 153) is constructed.

弾性片15は、例えば、所定の幅に切断した帯状の金属板に曲げ加工などを適宜施して、付勢力を発現可能な屈曲形状としたものが挙げられる。弾性片15は、その表面の一部に箱部14との接合領域を具え、他部に相手側嵌合部と直接(又は間接的に)接触する接点領域を具える。接合領域は、代表的には、箱部14の内面に接合される。弾性片15が箱部14の外面に接合された形態とすることもできる。   Examples of the elastic piece 15 include a bent shape in which a band-shaped metal plate cut into a predetermined width is appropriately subjected to a bending process or the like so that an urging force can be expressed. The elastic piece 15 has a joint region with the box portion 14 on a part of its surface, and a contact region that directly (or indirectly) contacts the mating fitting portion on the other portion. The joining region is typically joined to the inner surface of the box portion 14. The elastic piece 15 may be joined to the outer surface of the box portion 14.

図1に示す弾性片152は、帯状板の両端部を屈曲した断面〕状の屈曲部材であり、両端部に接合領域を具え、中央部が接点領域である。弾性片153は、帯状板の一端部に対して他端側が傾斜するように折り曲げられ、他端側寄りの領域の一部が山状に屈曲した屈曲部材であり、一端部が接合領域154(図2)、山状の突出部分が接点領域157(図2)である。両弾性片152,153は、互いの接点領域間が、挿入される相手側嵌合部の厚さよりも若干狭くなるように対向配置される(図1(A))。この配置により、図1(B)に示すように相手側嵌合部(ここではオス型嵌合部140)を嵌合部13の箱部14に挿入すると、弾性片152の中央部(接点領域)は弾性片153側に相手側嵌合部を押し付け、弾性片153の山状の突出部分(接点領域)は、弾性片152側に相手側嵌合部を押し付ける。このようにして、両弾性片152,153は、相手側嵌合部を挟持すると共に相手側嵌合部と接触して、電気的に接続される。この接触状態は、弾性片15の付勢力によって維持される。   The elastic piece 152 shown in FIG. 1 is a bending member having a cross-section obtained by bending both end portions of a belt-like plate, and has a joining region at both end portions and a center portion as a contact region. The elastic piece 153 is a bent member that is bent so that the other end side is inclined with respect to one end portion of the belt-like plate, a part of the region near the other end side is bent in a mountain shape, and one end portion is a joining region 154 ( 2), the mountain-shaped protrusion is the contact region 157 (FIG. 2). Both elastic pieces 152, 153 are arranged to face each other so that the distance between their contact areas is slightly narrower than the thickness of the mating fitting portion to be inserted (FIG. 1 (A)). With this arrangement, as shown in FIG. 1 (B), when the mating fitting portion (here, male fitting portion 140) is inserted into the box portion 14 of the fitting portion 13, the central portion (contact region) of the elastic piece 152 is obtained. ) Presses the mating fitting portion against the elastic piece 153 side, and the mountain-shaped protruding portion (contact area) of the elastic piece 153 presses the mating fitting portion against the elastic piece 152 side. In this way, both elastic pieces 152, 153 sandwich the mating fitting portion and contact the mating fitting portion to be electrically connected. This contact state is maintained by the urging force of the elastic piece 15.

弾性片15における接点領域には接点層17(図2)を具えることが好ましい。接点層17の構成材料は、錫、又は錫合金が好ましい。この形態は、接点材料が柔らかい錫、又は錫合金によって構成されるため、端子金具10(図1)と別の端子金具との接続時に接点材料(接点層17)が容易に変形して、両端子金具の接触面積を十分に広く確保できる上に両端子金具が密着できる。従って、この形態は、低抵抗な接続構造を構築できる。弾性片15における接点領域以外の箇所の表面にも被覆層を具えることができる。例えば、弾性片15における箱部14との接合領域を除く全域に被覆層を具える場合、外部環境からの機械的保護や耐食性(耐酸化性)の向上を図ることができる。被覆層の構成材料は、例えば、錫、錫合金が挙げられる。   The contact region of the elastic piece 15 is preferably provided with a contact layer 17 (FIG. 2). The constituent material of the contact layer 17 is preferably tin or a tin alloy. In this form, since the contact material is made of soft tin or tin alloy, the contact material (contact layer 17) is easily deformed at the time of connection between the terminal fitting 10 (FIG. 1) and another terminal fitting. In addition to ensuring a sufficiently large contact area of the child metal fittings, both terminal metal fittings can be in close contact with each other. Therefore, this form can construct a connection structure with low resistance. A coating layer can also be provided on the surface of the elastic piece 15 other than the contact area. For example, in the case where the covering layer is provided in the entire area of the elastic piece 15 excluding the joining region with the box portion 14, mechanical protection from the external environment and improvement in corrosion resistance (oxidation resistance) can be achieved. Examples of the constituent material of the coating layer include tin and a tin alloy.

そして、本発明では、箱部14と弾性片15とが別部材であり、接合によって一体化されている点を特徴の一つとする。箱部14と弾性片15との接合には、レーザ溶接などの高エネルギー熱源を利用した溶接、TIG溶接、摩擦撹拌接合:FSWなどの固相拡散による接合などを利用することができる。   In the present invention, the box part 14 and the elastic piece 15 are separate members and are integrated by joining. For joining the box portion 14 and the elastic piece 15, welding using a high energy heat source such as laser welding, TIG welding, friction stir welding: joining by solid phase diffusion such as FSW, or the like can be used.

(組成)
本発明では、箱部14、及び箱部14に連続するワイヤバレル部11やインシュレーションバレル部12は、アルミニウム合金から構成されることを特徴の一つとする。また、本発明では、箱部14から弾性片15を経て相手側嵌合部に至る導電経路に、チタン又はチタン合金から構成されるTi系部材を具えることを特徴の一つとする。端的にいうと、弾性片15又は弾性片15の近傍がチタン又はチタン合金から構成されている。また、Ti系部材は、アルミニウム合金からなる部材に接して設けられている。
(composition)
One feature of the present invention is that the box portion 14 and the wire barrel portion 11 and the insulation barrel portion 12 continuous to the box portion 14 are made of an aluminum alloy. Further, in the present invention, one of the characteristics is that a Ti-based member made of titanium or a titanium alloy is provided in a conductive path from the box part 14 through the elastic piece 15 to the mating fitting part. In short, the elastic piece 15 or the vicinity of the elastic piece 15 is made of titanium or a titanium alloy. The Ti-based member is provided in contact with a member made of an aluminum alloy.

図2を参照して、弾性片15及びその近傍の具体的な形態を説明する。図2(A)に示す形態(i)は、アルミニウム合金からなる弾性片15Aと、弾性片15Aの表面の少なくとも一部に設けられたTi系部材(図2(A)では接点介在層20)とを具える。図2(B)に示す形態(ii)は、アルミニウム合金以外の金属からなる弾性片15Bと、弾性片15Bの表面の少なくとも一部に設けられたTi系部材(図2(B)では接合介在層30)とを具える。図2(C)に示す形態(iii)は、チタン又はチタン合金からなる弾性片15C(=Ti系部材)を具える。   A specific configuration of the elastic piece 15 and the vicinity thereof will be described with reference to FIG. The form (i) shown in FIG. 2 (A) includes an elastic piece 15A made of an aluminum alloy, and a Ti-based member (contact contact layer 20 in FIG. 2 (A)) provided on at least a part of the surface of the elastic piece 15A. With. The form (ii) shown in FIG. 2 (B) includes an elastic piece 15B made of a metal other than an aluminum alloy, and a Ti-based member provided on at least a part of the surface of the elastic piece 15B (in FIG. With layer 30). The form (iii) shown in FIG. 2 (C) includes an elastic piece 15C (= Ti-based member) made of titanium or a titanium alloy.

形態(i)では、箱部14や弾性片15Aを構成するアルミニウム合金は、特に、強度や曲げなどの機械的特性や耐熱性、成形性に優れる組成のものが好適に利用できる。例えば、JIS規格に規定される2000系合金、6000系合金、7000系合金などが挙げられる。これらの合金は、高強度である上に、高温(例えば、100℃超。自動車用途などでは120℃〜150℃程度)であってもクリープ変形し難い。そのため、高温環境での使用でも応力緩和し難く、高いばね荷重を維持できる。2000系合金は、ジュラルミン、超ジュラルミンと呼ばれるAl-Cu系合金であり、強度に優れる。具体的な合金番号として、例えば、2024,2219などが挙げられる。6000系合金は、Al-Mg-Si系合金であり、強度、耐食性、陽極酸化性に優れる。具体的な合金番号として、例えば、6056,6061などが挙げられる。7000系合金は、超々ジュラルミンと呼ばれるAl-Zn-Mg系合金であり、非常に高強度である。具体的な合金番号として、例えば、7075などが挙げられる。   In the form (i), as the aluminum alloy constituting the box part 14 and the elastic piece 15A, a composition excellent in mechanical properties such as strength and bending, heat resistance, and formability can be suitably used. For example, 2000 series alloy, 6000 series alloy, 7000 series alloy etc. prescribed | regulated to JIS standard are mentioned. These alloys have high strength and are not easily deformed by creep even at high temperatures (for example, higher than 100 ° C., such as about 120 ° C. to 150 ° C. for automobile applications). Therefore, it is difficult to relieve stress even when used in a high temperature environment, and a high spring load can be maintained. 2000 series alloy is an Al-Cu series alloy called duralumin and super duralumin, and is excellent in strength. Specific alloy numbers include, for example, 2024, 2219. The 6000 series alloy is an Al-Mg-Si series alloy and is excellent in strength, corrosion resistance, and anodic oxidation. Specific alloy numbers include, for example, 6056 and 6061. The 7000 series alloy is an Al-Zn-Mg series alloy called ultra-super duralumin and has very high strength. Specific examples of the alloy number include 7075.

箱部14を構成するアルミニウム合金と弾性片15Aを構成するアルミニウム合金とは、異なる組成でもよいし、同じ組成でもよい。いずれの場合も、弾性片15Aの構成材料(主としてアルミニウム合金、又はアルミニウム合金と補強層としてのTi系部材との複合材)の引張強さが、箱部14の構成材料の引張強さに比較して高いことが好ましい。引張強さ(室温)が高いことで、耐力(0.2%耐力(室温))も高くなり、永久変形し難くなることで、弾性片15Aが応力緩和し難くなる。特に、弾性片15Aは、高温でも応力緩和し難いように、耐熱性に優れるアルミニウム合金から構成されることが好ましい。   The aluminum alloy constituting the box portion 14 and the aluminum alloy constituting the elastic piece 15A may have different compositions or the same composition. In any case, the tensile strength of the constituent material of the elastic piece 15A (mainly aluminum alloy, or a composite material of aluminum alloy and a Ti-based member as a reinforcing layer) is compared with the tensile strength of the constituent material of the box portion 14. Therefore, it is preferable that it is high. Since the tensile strength (room temperature) is high, the proof stress (0.2% proof stress (room temperature)) is also high, and the elastic piece 15A is difficult to relieve stress by becoming hard to be permanently deformed. In particular, the elastic piece 15A is preferably made of an aluminum alloy having excellent heat resistance so that stress relaxation is difficult even at high temperatures.

箱部14の構成材料と弾性片15Aの構成材料とが異なる組成の場合、箱部14は、塑性加工性に優れるアルミニウム合金、特に、熱処理によって十分な伸びを有することができる6000系合金が好ましい。弾性片15Aは、高強度で耐熱性に優れる2000系合金、6000系合金、7000系合金のいずれかが好ましい。   When the constituent material of the box portion 14 and the constituent material of the elastic piece 15A have different compositions, the box portion 14 is preferably an aluminum alloy excellent in plastic workability, particularly a 6000 series alloy that can have sufficient elongation by heat treatment. . The elastic piece 15A is preferably a 2000 series alloy, a 6000 series alloy, or a 7000 series alloy having high strength and excellent heat resistance.

同じ組成のアルミニウム合金であっても、熱処理によって、結晶粒径の大きさ、析出物の含有量や大きさ、添加元素の固溶量などを変化させることで、種々の組織とすることができる。そして、組織が異なることで、特性を異ならせることができる。例えば、同じ組成のアルミニウム合金板を用意し、熱処理条件を調整することで、箱部14に適した素材(例えば、伸びが高く成形性に優れるもの)と、弾性片15Aに適した素材(例えば、強度や耐力が高く応力緩和し難いもの)とを製造できる。従って、この形態は、生産性に優れる。また、箱部14を構成するアルミニウム合金と、弾性片15Aを構成するアルミニウム合金とが同一組成である形態では、接合性にも優れる。更に、この形態は、箱部14と弾性片15Aとの間で実質的に電池腐食が生じ得ない。従って、この形態は、長期に亘り、箱部14と弾性片15Aとが強固に接合された状態を維持できる。この形態の材質は、6000系合金が好ましい。   Even aluminum alloys with the same composition can be made into various structures by changing the size of crystal grain size, the content and size of precipitates, the amount of solid solution of additive elements, etc. by heat treatment. . And a characteristic can be varied by a structure differing. For example, by preparing aluminum alloy plates of the same composition and adjusting the heat treatment conditions, a material suitable for the box part 14 (for example, a material having high elongation and excellent formability) and a material suitable for the elastic piece 15A (for example, , Having high strength and proof strength and difficult to relieve stress). Therefore, this form is excellent in productivity. Further, in the form in which the aluminum alloy constituting the box portion 14 and the aluminum alloy constituting the elastic piece 15A have the same composition, the bondability is also excellent. Further, in this embodiment, battery corrosion cannot substantially occur between the box portion 14 and the elastic piece 15A. Therefore, this form can maintain the state in which the box portion 14 and the elastic piece 15A are firmly joined for a long period of time. The material of this form is preferably a 6000 series alloy.

弾性片15Aでは、接点領域157と接点層17との間に、Ti系部材として接点介在層20を具える。この構成により、アルミニウム合金からなる弾性片15Aと錫などからなる接点層17とが直接接触せず、両者間における電池腐食を抑制して、長期に亘り接点層17を保持できる。このTi系部材:接点介在層20は、電池腐食の抑制部材(犠牲部材)として機能する。そのため、接点材料を介して弾性片15Aと相手側嵌合部との密着状態を良好に維持できる。従って、この場合、Ti系部材(接点介在層20)が介在していながらも、良好に導通をとることができる。   The elastic piece 15A includes a contact intervening layer 20 as a Ti-based member between the contact region 157 and the contact layer 17. With this configuration, the elastic piece 15A made of an aluminum alloy and the contact layer 17 made of tin or the like are not in direct contact, battery corrosion between them can be suppressed, and the contact layer 17 can be held for a long time. This Ti-based member: contact intervening layer 20 functions as a battery corrosion suppression member (sacrificial member). Therefore, the contact state between the elastic piece 15A and the mating fitting portion can be favorably maintained through the contact material. Therefore, in this case, even when the Ti-based member (contact intervening layer 20) is interposed, good conduction can be obtained.

弾性片15AにおけるTi系部材の形成領域は、適宜選択することができる。例えば、Ti系部材の形成領域を、上述の接点領域157を含み、更に広い範囲(例えば、板状の弾性片15Aの一面全面に層状のTi系部材を具える、など)とすると、弾性片15Aの高強度化、ひいては耐力の向上を図ることができる。この場合、Ti系部材は、弾性片15Aを構成するアルミニウム合金よりも高強度なチタン又はチタン合金によって構成することが好ましい。この形態は、Ti系部材:接点介在層20を電池腐食の抑制部材として機能させると共に、補強材としても機能させるため、弾性片15Aが応力緩和し難く、高いばね荷重を発現できる。また、弾性片15AにおけるTi系部材の形成領域が多い場合には、アルミニウム合金のみからなる弾性片であって同じ耐力を有するものと比較して、弾性片15Aの厚さを薄くできる。つまり、この場合には、端子金具の薄型化、小型化を図ることができる。但し、形態(i)では、弾性片15Aにおける箱部14との接合領域154は、電池腐食を抑制する観点から、アルミニウム合金であることが好ましい。弾性片15Aにおけるアルミニウム合金からなる部分が多い場合には、良好な導電性を有したり、軽量化を図ったりすることができる。   The formation region of the Ti-based member in the elastic piece 15A can be selected as appropriate. For example, when the Ti-based member forming region includes the above-described contact region 157 and has a wider range (for example, a layered Ti-based member is provided on the entire surface of the plate-shaped elastic piece 15A), the elastic piece It is possible to increase the strength of 15A and improve the proof stress. In this case, the Ti-based member is preferably made of titanium or a titanium alloy having higher strength than the aluminum alloy constituting the elastic piece 15A. In this embodiment, since the Ti-based member: the contact intervening layer 20 functions as a battery corrosion suppressing member and also functions as a reinforcing material, the elastic piece 15A is less likely to relieve stress and can exhibit a high spring load. Further, when the Ti-based member is formed on the elastic piece 15A in a large number of regions, the thickness of the elastic piece 15A can be reduced as compared with an elastic piece made of only an aluminum alloy and having the same proof stress. That is, in this case, the terminal fitting can be made thinner and smaller. However, in the form (i), the bonding region 154 with the box portion 14 in the elastic piece 15A is preferably an aluminum alloy from the viewpoint of suppressing battery corrosion. When the elastic piece 15A has many portions made of an aluminum alloy, the elastic piece 15A can have good conductivity and can be reduced in weight.

形態(ii)では、弾性片15Bの構成金属は、銅、銅合金、鉄、鉄合金などが挙げられる。これらの金属はいずれも、(1)箱部14を構成するアルミニウム合金よりも一般に引張強さ(室温)や耐力(室温)が高く、応力緩和し難いため、ばね特性に優れる、(2)耐熱性に優れており、高温であっても長期に亘り高いばね荷重を維持できる、(3)冷間加工性に優れており、所望の形状の弾性片15Bを容易に成形できる。特に、銅や銅合金は、導電性に優れて好ましく、鉄や鉄合金は、強度に優れて好ましい。銅合金は、従来の端子金具に利用されている黄銅などが好適に利用できる。鉄合金は、ステンレス鋼、炭素鋼などが好適に利用できる。   In the form (ii), examples of the constituent metal of the elastic piece 15B include copper, a copper alloy, iron, and an iron alloy. All of these metals are (1) generally higher in tensile strength (room temperature) and proof stress (room temperature) than the aluminum alloy constituting the box part 14 and are less likely to relieve stress. (3) It has excellent cold workability and can easily form the elastic piece 15B having a desired shape. In particular, copper and copper alloys are preferable because of their excellent conductivity, and iron and iron alloys are preferable because of their excellent strength. As the copper alloy, brass or the like used for conventional terminal fittings can be suitably used. As the iron alloy, stainless steel, carbon steel and the like can be suitably used.

弾性片15Bでは、箱部14との接合領域154に、Ti系部材として接合介在層30を具える。アルミニウム合金からなる箱部14と、アルミニウム合金以外の金属からなる弾性片15Bとの間にTi系部材(接合介在層30)が存在するため、箱部14と弾性片15Bとが直接接触せず、両者間における電池腐食を効果的に低減できる。この形態におけるTi系部材:接合介在層30は、電池腐食の抑制部材として機能する。弾性片15BにおけるTi系部材の形成領域も適宜選択できる。例えば、Ti系部材の形成領域を、上述の接合領域154を含み、更に広い範囲とすると(例えば、板状の弾性片15Bの一面全面に層状のTi系部材を具える、などとすると)、CuやFeよりも軽量なTiからなる部分(チタン合金の場合もある)が多くなり、軽量にできる。   The elastic piece 15B includes a bonding intervening layer 30 as a Ti-based member in a bonding region 154 with the box portion. Since a Ti-based member (bonding intervening layer 30) exists between the box part 14 made of an aluminum alloy and the elastic piece 15B made of a metal other than the aluminum alloy, the box part 14 and the elastic piece 15B are not in direct contact with each other. The battery corrosion between the two can be effectively reduced. The Ti-based member in this embodiment: the bonding intervening layer 30 functions as a battery corrosion suppression member. The formation region of the Ti-based member in the elastic piece 15B can also be selected as appropriate. For example, the formation region of the Ti-based member includes the above-described joining region 154, and is a wider range (for example, assuming that the entire surface of the plate-like elastic piece 15B includes a layered Ti-based member), There are more parts made of Ti that are lighter than Cu and Fe (sometimes titanium alloys), making it lighter.

上述の形態(i),(ii)に具えるTi系部材(接点介在層20、接合介在層30)の構成材料は、Ti及び不可避不純物から構成される純チタン、添加元素と残部がTi及び不可避不純物とから構成されるチタン合金のいずれでもよい。純チタンは、例えば、JIS規格に規定される4種などが挙げられる。チタン合金は、例えば、JIS規格に規定される80種(Ti-Al-V系β合金)などが挙げられる。   The constituent material of the Ti-based member (contact intervening layer 20, joint intervening layer 30) provided in the above-mentioned forms (i) and (ii) is pure titanium composed of Ti and inevitable impurities, the additive element and the balance are Ti and Any of titanium alloys composed of inevitable impurities may be used. Pure titanium includes, for example, four types defined in JIS standards. Examples of the titanium alloy include 80 types (Ti-Al-V β alloy) defined in JIS standards.

Ti系部材の厚さは、適宜選択することができる。電池腐食の低減の目的では、Ti系部材の厚さは極薄くてもよい(10μm程度)と考えられる。Ti系部材の製造性を考慮すると、0.2μm以上20μm以下程度が利用し易いと考えられる。強度や耐力の向上目的では、Ti系部材の厚さは、厚いほど好ましいが、重量の増加を招くことから、1μm以上20μm以下、更に10μm以下程度が好ましいと考えられる。また、Ti系部材は、β相組織によって構成されていると塑性加工性が高く好ましい。組成や組織の確認には、例えば、X線回折を利用することが挙げられる。   The thickness of the Ti-based member can be selected as appropriate. For the purpose of reducing battery corrosion, it is considered that the thickness of the Ti-based member may be extremely thin (about 10 μm). Considering the manufacturability of Ti-based members, it is considered that 0.2 to 20 μm is easy to use. For the purpose of improving strength and proof stress, the thickness of the Ti-based member is preferably as thick as possible. However, since it causes an increase in weight, it is considered that the thickness is preferably 1 μm to 20 μm, and more preferably about 10 μm or less. Moreover, it is preferable that the Ti-based member has a β-phase structure because of high plastic workability. For confirmation of the composition and structure, for example, use of X-ray diffraction can be mentioned.

形態(iii)では、弾性片15C全体の構成金属は、上述の列挙した各種の純チタン又はチタン合金が挙げられる。このような弾性片15Cは、(1)一般に引張強さ(室温)や耐力(室温)が高く、応力緩和し難い、(2)耐熱性にも優れることから、高温であっても長期に亘り高いばね荷重を維持できる。特に、Ti系部材:弾性片15Cを構成するチタン又はチタン合金は、箱部14を構成するアルミニウム合金よりも高強度であることが好ましい。また、チタン合金は、β相組織によって構成されていると、強度がより高いことから、弾性片15Cが薄くても、高いばね荷重を発現できる。従って、β相組織からなる弾性片15Cを具える形態は、弾性片15Cの薄型化を図ることができる。また、β相組織は塑性加工性にも優れることから、β相組織を有する素材板にプレス加工といった塑性加工を施すことで所望の形状の弾性片15Cを製造できる。従って、β相組織からなる弾性片15Cを具える形態は、生産性にも優れて好ましい。形態(iii)では、弾性片15Cにおける箱部14との接合領域154がチタン又はチタン合金によって構成されることから、箱部14と弾性片15Cとの間の電池腐食を効果的に低減できる。   In the form (iii), examples of the constituent metal of the entire elastic piece 15C include various pure titanium or titanium alloys listed above. Such elastic pieces 15C are (1) generally high in tensile strength (room temperature) and proof stress (room temperature), difficult to relieve stress, and (2) excellent in heat resistance. High spring load can be maintained. In particular, the Ti-based member: titanium or titanium alloy constituting the elastic piece 15C preferably has higher strength than the aluminum alloy constituting the box portion 14. In addition, when the titanium alloy is constituted by a β phase structure, the strength is higher, so that even if the elastic piece 15C is thin, a high spring load can be expressed. Therefore, the form including the elastic piece 15C made of β-phase structure can reduce the thickness of the elastic piece 15C. In addition, since the β phase structure is excellent in plastic workability, the elastic piece 15C having a desired shape can be manufactured by performing plastic working such as press working on the material plate having the β phase structure. Therefore, the form including the elastic piece 15C made of β-phase structure is preferable because of excellent productivity. In the form (iii), since the joining region 154 of the elastic piece 15C with the box portion 14 is made of titanium or a titanium alloy, battery corrosion between the box portion 14 and the elastic piece 15C can be effectively reduced.

弾性片15Cにおける接点領域157に接点層17を具える形態とすると、相手側嵌合部と密着でき、接続抵抗を低減できて好ましい。   A configuration in which the contact layer 17 is provided in the contact region 157 of the elastic piece 15C is preferable because it can be in close contact with the mating fitting portion and the connection resistance can be reduced.

なお、形態(i)では、接点介在層20と接点層17との間、形態(ii)では、弾性片15Bと接点層17との間、形態(iii)では、弾性片15Cと接点層17との間に、Niなどの金属からなる層を具えることができる。   In the form (i), between the contact intervening layer 20 and the contact layer 17, in the form (ii), between the elastic piece 15B and the contact layer 17, in the form (iii), the elastic piece 15C and the contact layer 17 In between, a layer made of a metal such as Ni can be provided.

(端子金具の製造方法)
本発明のアルミニウム基端子金具は、例えば、種々の組成の素材板を用意して、以下の工程を経て製造することができる。
製法(1):第一の素材板から箱部や導体接続部、インシュレーションバレル部(以下、箱部等と呼ぶ)を作製、第二の素材板から弾性片を作製⇒接合
製法(2):第一の素材板から弾性片を作製⇒第二の素材板に弾性片を接合⇒第二の素材板を箱部等に成形
製法(3):第一の素材板から弾性片を作製⇒第二の素材板を箱部等に成形途中に弾性片を接合⇒箱部等に最終成形
(Method for manufacturing terminal fittings)
The aluminum-based terminal fitting of the present invention can be manufactured through the following steps, for example, by preparing material plates having various compositions.
Manufacturing method (1): Box part, conductor connection part, insulation barrel part (hereinafter referred to as box part) is made from the first material plate, elastic piece is made from the second material plate ⇒ Joining manufacturing method (2) : Create an elastic piece from the first material plate ⇒ Join the elastic piece to the second material plate ⇒ Mold the second material plate into a box etc.Production method (3): Create an elastic piece from the first material plate ⇒ Join the elastic piece in the middle of molding the second material plate to the box etc. ⇒ Final molding to the box etc.

製法(1)は、箱部を成形し易い。また、製法(1)では、例えば、箱部の外表面に接合領域を具えると、接合作業を行い易い。この場合、弾性片の接合領域が箱部外に配置され、弾性片の接点領域が箱部内に配置されるように弾性片を形成する。製法(2)は、接合作業を行い易い。製法(3)は、成形の制限があるものの、接合作業が比較的行い易い。   In the production method (1), the box part is easily formed. Further, in the manufacturing method (1), for example, if a bonding region is provided on the outer surface of the box part, it is easy to perform the bonding operation. In this case, the elastic piece is formed so that the joining area of the elastic piece is arranged outside the box part and the contact area of the elastic piece is arranged inside the box part. Production method (2) facilitates the joining operation. The production method (3) is relatively easy to perform the joining work, although there are molding restrictions.

箱部等に用いられるアルミニウム合金からなる素材板は、例えば、鋳造→熱間圧延→冷間圧延→熱処理という工程により製造できる。この熱処理は、箱部等を成形できる程度に引張強さが低く、伸びが高い素材板が得られるように条件を選択する。熱処理後の素材板を所定の形状に打ち抜いて、所定の形状になるようにプレス加工といった塑性加工を施して箱部等を成形する。   The raw material plate made of an aluminum alloy used for the box portion or the like can be manufactured by, for example, a process of casting → hot rolling → cold rolling → heat treatment. Conditions for this heat treatment are selected so that a material plate having a low tensile strength and a high elongation can be obtained to such an extent that a box portion or the like can be formed. The material plate after the heat treatment is punched into a predetermined shape, and a box portion or the like is formed by performing plastic processing such as press processing so as to be in a predetermined shape.

弾性片をアルミニウム合金とする形態(i)では、上述の素材板の製造工程における熱処理条件を強度や耐力が高い素材が得られる条件とすることで、弾性片用の素材板を製造できる。つまり、熱処理条件以外の工程を箱部等用の素材板と共通に行える。熱処理後の素材板を所定の形状に打ち抜きして又は切断して、所定の形状になるように曲げ加工などを施して弾性片を成形する。弾性片は、箱部よりも比較的簡易な形状であるため、箱部よりも比較的容易に成形できる。従って、弾性片用の素材板には、箱部等に用いる素材板のような高い成形性を有していないものを利用できる。特に、図1,図2に示すような屈曲形状の弾性片とする場合、成形し易く、生産性に優れる。上記成形の前後にTi系部材(接点介在層など)の形成を行う。Ti系部材の厚さや形成領域などによって、Ti系部材の形成時期を選択するとよい。   In the form (i) in which the elastic piece is made of an aluminum alloy, the raw material plate for the elastic piece can be manufactured by setting the heat treatment conditions in the above-described raw material plate manufacturing process as a condition for obtaining a material having high strength and proof strength. That is, processes other than the heat treatment conditions can be performed in common with the material plate for the box portion or the like. An elastic piece is formed by punching or cutting the heat-treated material plate into a predetermined shape and bending it to a predetermined shape. Since the elastic piece has a relatively simple shape as compared with the box portion, it can be formed relatively easily than the box portion. Therefore, as the material plate for the elastic piece, a material plate that does not have high formability such as a material plate used for a box portion or the like can be used. In particular, when the elastic piece is bent as shown in FIGS. 1 and 2, it is easy to mold and is excellent in productivity. A Ti-based member (such as a contact intervening layer) is formed before and after the molding. The formation time of the Ti-based member may be selected depending on the thickness of the Ti-based member and the formation region.

アルミニウム合金に施す熱処理をより詳しく説明する。6000系合金にT6処理(溶体化処理後に人工時効)やT7処理(溶体化処理後に最大強さを得る人工時効処理条件を超えて過剰時効)を施すと、箱部等の成形に必要な伸びが十分に得られる。6000系合金にT8処理(溶体化処理後に冷間加工を行い、更に人工時効)やT9処理(溶体化処理後に人工時効を行い、更に冷間加工)を施すと、冷間加工による加工硬化などにより、弾性片が高いばね荷重を発生するために必要な強度や耐力を得ることができる。   The heat treatment applied to the aluminum alloy will be described in more detail. When T6 treatment (artificial aging after solution treatment) or T7 treatment (excessive aging exceeding the artificial aging treatment condition that obtains the maximum strength after solution treatment) is applied to 6000 series alloys, the elongation required for forming the box part etc. Is sufficiently obtained. When 6000 series alloy is subjected to T8 treatment (cold working after solution treatment and further artificial aging) and T9 treatment (artificial aging after solution treatment and further cold working), work hardening by cold working, etc. Thus, the strength and proof stress necessary for the elastic piece to generate a high spring load can be obtained.

6000系合金に施すT6処理の具体的な条件は、例えば、溶体化処理:510℃〜550℃程度、時効処理:160℃〜180℃程度、5時間〜30時間程度などが挙げられる。T6処理において時効処理の温度を200℃〜250℃と高めにしてT7処理とすると、成形性をより向上することができる。6000系合金に施すT8処理,T9処理の具体的な条件は、例えば、溶体化処理及び時効処理:上述のT6処理と同様、冷間加工は冷間圧延が挙げられる。冷間加工は、総圧下率:5%〜50%程度が挙げられる。なお、T8処理では、溶体化処理後に予備時効処理を施してから冷間加工を行うと、冷間加工後に施す最終の時効処理後の耐力や強度を制御し易い。予備時効処理の具体的な条件は、70℃〜120℃、1時間〜15時間程度が挙げられる。   Specific conditions for the T6 treatment applied to the 6000 series alloy include, for example, solution treatment: about 510 ° C to 550 ° C, aging treatment: about 160 ° C to 180 ° C, and about 5 hours to 30 hours. When the temperature of the aging treatment is increased to 200 ° C. to 250 ° C. in the T6 treatment and the T7 treatment is performed, the moldability can be further improved. Specific conditions for the T8 treatment and T9 treatment applied to the 6000 series alloy include, for example, solution treatment and aging treatment: As with the above-described T6 treatment, cold working includes cold rolling. For cold working, the total reduction ratio is about 5% to 50%. In the T8 treatment, if cold working is performed after the preliminary aging treatment is performed after the solution treatment, the proof stress and strength after the final aging treatment performed after the cold working can be easily controlled. Specific conditions for the pre-aging treatment include 70 ° C. to 120 ° C. and about 1 hour to 15 hours.

アルミニウム合金からなる弾性片や素材板などの表面に(層状の)Ti系部材を形成するには、例えば、蒸着(例えば、真空蒸着など)、溶射等が挙げられる。所望の領域及び所望の厚さのTi系部材が形成できるように上述の条件を調整する。   In order to form a (layered) Ti-based member on the surface of an elastic piece or a material plate made of an aluminum alloy, for example, vapor deposition (for example, vacuum vapor deposition), thermal spraying, or the like can be given. The above-described conditions are adjusted so that a Ti region member having a desired region and a desired thickness can be formed.

弾性片をアルミニウム合金以外の金属とする形態(ii)では、弾性片の素材は、所望の組成の板材などを利用することができる。市販品でもよい。素材以外の点は、形態(i)と同様であり、素材を所定の形状にした後、所望の領域に(層状の)Ti系部材を形成すると共に、曲げ加工などを施して所望の形状に成形する。   In the form (ii) in which the elastic piece is a metal other than the aluminum alloy, a plate material having a desired composition can be used as the material of the elastic piece. Commercial products may be used. The points other than the material are the same as in the form (i), and after forming the material into a predetermined shape, a (layered) Ti-based member is formed in a desired region and subjected to bending or the like to obtain the desired shape. Mold.

弾性片全体をチタン又はチタン合金とする形態(iii)では、弾性片の素材は、所望の組成の板材などを利用することができる。市販品でもよい。この素材を所定の形状に打ち抜きして又は切断して、曲げ加工などを施して所望の形状に成形する。塑性加工性を高めるために、曲げ加工前にβ相組織とするための熱処理(例えば、加熱温度:700℃〜900℃程度、加熱時間:0.5時間〜5時間程度)を施すことができる。β相組織を有する素材を利用してもよい。   In the form (iii) in which the entire elastic piece is made of titanium or a titanium alloy, a plate material having a desired composition can be used as the material of the elastic piece. Commercial products may be used. This material is punched or cut into a predetermined shape, and subjected to bending or the like to form a desired shape. In order to improve plastic workability, heat treatment (for example, heating temperature: about 700 ° C. to 900 ° C., heating time: about 0.5 hours to 5 hours) for forming a β phase structure can be performed before bending. A material having a β phase structure may be used.

接点層を具える形態は、任意の段階で接点層を形成することができる。つまり、素材板(切断などしていないもの)の段階、所定の形状に打ち抜かれた又は切断された素材片の段階、プレス加工や曲げ加工などが施された最終形状の段階のいずれでもよい。但し、形態(i)では、弾性片の上に接点介在層を形成した後、接点介在層の外周に錫などからなる接点層を形成する。接点層の形成には、種々のめっき法、例えば、置換めっき法や電気めっき法といった湿式めっき法、プラズマスパッタリング法などの真空めっき法などが利用できる。   The form including the contact layer can form the contact layer at any stage. That is, any of a stage of a material plate (not cut), a stage of a blank piece cut or cut into a predetermined shape, and a stage of a final shape subjected to press work or bending work may be used. However, in the form (i), after the contact intervening layer is formed on the elastic piece, the contact layer made of tin or the like is formed on the outer periphery of the contact intervening layer. For the formation of the contact layer, various plating methods, for example, wet plating methods such as displacement plating methods and electroplating methods, vacuum plating methods such as plasma sputtering methods, and the like can be used.

なお、端子金具は、素材の特性(荷重残存率、残存荷重、0.2%耐力、引張強さ、伸び、導電率など)、組成、組織を実質的に維持する。   The terminal fitting substantially maintains the material characteristics (load residual ratio, residual load, 0.2% yield strength, tensile strength, elongation, conductivity, etc.), composition, and structure.

[電線の端末接続構造]
(電線)
本発明のアルミニウム基端子金具が取り付けられる電線は、導体と、導体の外周に設けられた絶縁層とを具える。特に、導体がAl合金等から構成されたアルミニウム基電線とする。つまり、本発明の電線の端末接続構造は、導体接続部がアルミニウム合金からなる端子金具と、Al合金等からなる導体との接続構造、という主成分が同種の金属からなる接続構造である。そのため、電線の導体と端子金具との間で電池腐食が実質的に生じない。
[Wire terminal connection structure]
(Electrical wire)
The electric wire to which the aluminum base terminal metal fitting of the present invention is attached includes a conductor and an insulating layer provided on the outer periphery of the conductor. In particular, the conductor is an aluminum-based electric wire made of an Al alloy or the like. In other words, the terminal connection structure of the electric wire according to the present invention is a connection structure in which the main component is a connection structure between a terminal metal fitting whose conductor connection portion is made of an aluminum alloy and a conductor made of an Al alloy or the like. Therefore, battery corrosion does not substantially occur between the conductor of the electric wire and the terminal fitting.

<導体>
導体を構成するアルミニウム合金は、例えば、Fe,Mg,Si,Cu,Zn,Ni,Mn,Ag,Cr及びZrから選択される1種以上の元素を合計で0.005質量%以上5.0質量%以下含有し、残部がAl及び不可避的不純物からなるものが挙げられる。各元素の好ましい含有量は、質量%で、Fe:0.005%以上2.2%以下、Mg:0.05%以上1.0%以下、Mn,Ni,Zr,Zn,Cr及びAg:合計で0.005%以上0.2%以下、Cu:0.05%以上0.5%以下、Si:0.04%以上1.0%以下が挙げられる。これらの添加元素は、1種のみ、又は2種以上を組み合わせて含有することができる。上記添加元素に加えて、Ti及びBの少なくとも一方を含有することができる。質量割合でTiは100ppm以上500ppm以下、Bは10ppm以上50ppm以下が挙げられる。上記添加元素を含有する合金として、例えば、Al-Fe合金、Al-Fe-Mg合金、Al-Fe-Mg-Si合金、Al-Fe-Si合金、Al-Fe-Mg-(Mn,Ni,Zr,Agの少なくとも1種)合金、Al-Fe-Cu合金、Al-Fe-Cu-(Mg,Siの少なくとも1種)合金、Al-Mg-Si-Cu合金などが挙げられる。導体を構成する線材として、公知のアルミニウム合金線やアルミニウム線を利用できる。
<Conductor>
The aluminum alloy constituting the conductor contains, for example, 0.005% by mass or more and 5.0% by mass or less of one or more elements selected from Fe, Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr and Zr in total. And what consists of Al and an inevitable impurity is mentioned. The preferred content of each element is mass%, Fe: 0.005% to 2.2%, Mg: 0.05% to 1.0%, Mn, Ni, Zr, Zn, Cr, and Ag: 0.005% to 0.2% in total Cu: 0.05% to 0.5%, Si: 0.04% to 1.0%. These additive elements can be contained alone or in combination of two or more. In addition to the additive element, at least one of Ti and B can be contained. In terms of mass ratio, Ti is 100 ppm to 500 ppm, and B is 10 ppm to 50 ppm. As an alloy containing the above additive elements, for example, Al-Fe alloy, Al-Fe-Mg alloy, Al-Fe-Mg-Si alloy, Al-Fe-Si alloy, Al-Fe-Mg- (Mn, Ni, Zr, Ag (at least one kind) alloy, Al-Fe-Cu alloy, Al-Fe-Cu- (at least one kind of Mg, Si) alloy, Al-Mg-Si-Cu alloy and the like. A known aluminum alloy wire or aluminum wire can be used as the wire constituting the conductor.

導体を構成する線材は、単線、複数の素線を撚り合わせた撚り線、撚り線を圧縮した圧縮線材のいずれでもよい。導体を構成する線材の線径(撚り線の場合は撚り合わせ前の素線の線径)は、用途などに応じて適宜選択できる。例えば、線径は、0.2mm以上1.5mm以下が挙げられる。   The wire constituting the conductor may be a single wire, a stranded wire obtained by twisting a plurality of strands, or a compressed wire obtained by compressing a stranded wire. The wire diameter of the wire constituting the conductor (in the case of a stranded wire, the wire diameter of the strand before twisting) can be appropriately selected depending on the application. For example, the wire diameter is 0.2 mm or more and 1.5 mm or less.

導体を構成する線材(撚り線の場合には素線)は、引張強さが110MPa以上200MPa以下、0.2%耐力が40MPa以上、伸びが10%以上、導電率が58%IACS以上の少なくとも一つを満たすものが挙げられる。特に、伸びが10%以上である線材は、耐衝撃性に優れることから、端子金具同士の接続作業時などで断線し難い。   The wire that constitutes the conductor (strand in the case of stranded wire) has at least one tensile strength of 110 MPa to 200 MPa, 0.2% proof stress of 40 MPa or more, elongation of 10% or more, and conductivity of 58% IACS or more The one that satisfies In particular, a wire having an elongation of 10% or more is excellent in impact resistance, and is difficult to be disconnected when connecting terminal fittings.

<絶縁層>
絶縁層の構成材料は、種々の絶縁材料、例えば、ポリ塩化ビニル(PVC)、ポリオレフィン系樹脂をベースとしたハロゲンフリーの樹脂組成物、難燃性組成物などが挙げられる。絶縁層の厚さは、所望の絶縁強度を考慮して適宜選択できる。
<Insulation layer>
Examples of the constituent material of the insulating layer include various insulating materials such as polyvinyl chloride (PVC), halogen-free resin compositions based on polyolefin resins, and flame retardant compositions. The thickness of the insulating layer can be appropriately selected in consideration of the desired insulating strength.

(電線の製造方法)
上記導体は、例えば、鋳造→熱間圧延(→ビレット鋳造材の場合:均質化処理)→冷間伸線加工(→適宜、軟化処理・撚り合わせ・圧縮)という工程により製造することができる。この導体に絶縁層を形成することで、アルミニウム基電線を製造することができる。
(Wire manufacturing method)
The conductor can be produced, for example, by a process of casting → hot rolling (→ in the case of billet cast material: homogenization treatment) → cold drawing (→ softening treatment / twisting / compression as appropriate). By forming an insulating layer on this conductor, an aluminum-based electric wire can be manufactured.

(電線の端末接続構造の製造方法)
上述の電線の端部において絶縁層を剥がして導体を露出させ、この露出部分を本発明のアルミニウム基端子金具の導体接続部に配置して接続する。例えば、圧着片を具える形態では、底部に導体を配置し、この導体を包むように圧着片を折り曲げ、更に圧縮する。クリンプハイト:C/Hが所定の大きさ(高さ)となるように圧縮状態を調整する。上述の工程により、本発明の電線の端末接続構造や、アルミニウム基電線の端部に本発明のアルミニウム基端子金具が取り付けられた端子付き電線を製造することができる。
(Manufacturing method of terminal connection structure of electric wire)
The insulating layer is peeled off at the end portion of the electric wire to expose the conductor, and this exposed portion is arranged and connected to the conductor connecting portion of the aluminum-based terminal fitting of the present invention. For example, in a form including a crimping piece, a conductor is arranged at the bottom, and the crimping piece is bent and further compressed so as to wrap the conductor. Crimp height: The compression state is adjusted so that C / H becomes a predetermined size (height). By the above-described steps, the terminal connection structure of the electric wire of the present invention and the electric wire with terminal in which the aluminum base terminal fitting of the present invention is attached to the end of the aluminum base electric wire can be manufactured.

[試験例1]
種々の組成の金属板を用意し、室温特性及び応力緩和特性を調べた。
[Test Example 1]
Metal plates with various compositions were prepared, and room temperature characteristics and stress relaxation characteristics were examined.

この試験では、表1に示す種類(合金番号)の2000系合金、6000系合金、7000系合金からなる市販のアルミニウム合金板を用意した。用意したアルミニウム合金板(圧延材)に表1に示す条件の熱処理を施した。また、表1に示す種類の純チタン(4種)からなる市販の純チタン板と、チタン合金(80種、β合金)からなる市販のチタン合金板を用意した。用意した金属板はいずれも、厚さ0.25mmとした。   In this test, commercially available aluminum alloy plates made of 2000 series alloy, 6000 series alloy, and 7000 series alloy of the types (alloy numbers) shown in Table 1 were prepared. The prepared aluminum alloy plate (rolled material) was subjected to heat treatment under the conditions shown in Table 1. In addition, a commercially available pure titanium plate made of pure titanium (4 types) shown in Table 1 and a commercially available titanium alloy plate made of titanium alloy (80 types, β alloy) were prepared. All of the prepared metal plates had a thickness of 0.25 mm.

比較として、従来の銅系端子金具の素材に利用されている銅合金板(黄銅1種:C2600-EH、厚さ:0.25mm、市販品)を用意した。   For comparison, a copper alloy plate (brass 1 type: C2600-EH, thickness: 0.25 mm, commercially available) used as a material for conventional copper-based terminal fittings was prepared.

用意した厚さ0.25mmの金属板の室温特性(0.2%耐力、引張強さ)、及び高温での応力緩和特性を調べた。その結果を表1に示す。   The room temperature characteristics (0.2% proof stress, tensile strength) of the prepared metal plate with a thickness of 0.25 mm and stress relaxation characteristics at high temperature were investigated. The results are shown in Table 1.

0.2%耐力(MPa)、引張強さ(MPa)はいずれも、JIS Z 2241(2011)の規定に基づいて測定した。純チタン板、チタン合金板、銅合金板については、JIS Z 2241(2011)の規定に基づいて室温での伸び(%)も測定した。   Both 0.2% proof stress (MPa) and tensile strength (MPa) were measured based on the provisions of JIS Z 2241 (2011). For pure titanium plates, titanium alloy plates, and copper alloy plates, the elongation (%) at room temperature was also measured based on the provisions of JIS Z 2241 (2011).

応力緩和特性は、JIS B 2712(2006)の規定に基づいて応力緩和試験を行い、残存荷重、荷重残存率を測定して評価した。ここでは、試料ごとに厚さ0.25mm×幅10mmの試験片を作製し、標点距離:30mm、試験温度:120℃、試験時間:1000時間、荷重負荷方法:A法とした。初期の試験荷重(初期荷重)は、試験片を弾性曲げ変形したときに生じる最大の引張応力が、各試料の0.2%耐力(表1に示す室温特性の0.2%耐力)の75%〜80%となるように設定した。設定した初期の試験荷重を室温で試験片に負荷した後、120℃に昇温し、経時的に荷重を測定した。ここでは、5時間後、10時間後、20時間後、50時間後、100時間後、以降100時間ごとに荷重を測定し、(測定した荷重/初期荷重)×100を荷重残存率(%)とする。荷重残存率(%)を図3(A)、時間ごとの荷重(残存荷重)を図3(B)に示す。   Stress relaxation characteristics were evaluated by conducting a stress relaxation test based on the provisions of JIS B 2712 (2006) and measuring the residual load and the load residual ratio. Here, a test piece having a thickness of 0.25 mm and a width of 10 mm was prepared for each sample, and the gauge distance was 30 mm, the test temperature was 120 ° C., the test time was 1000 hours, and the load application method was A method. The initial test load (initial load) is that the maximum tensile stress generated when the test piece is elastically deformed is 75% to 80% of the 0.2% proof stress of each sample (0.2% proof stress of the room temperature characteristics shown in Table 1). It set so that it might become. After the initial test load that was set was applied to the test piece at room temperature, the temperature was raised to 120 ° C. and the load was measured over time. Here, the load is measured every 5 hours, 10 hours, 20 hours, 50 hours, 100 hours, and 100 hours thereafter, and (the measured load / initial load) × 100 is the load remaining rate (%) And The residual load rate (%) is shown in FIG. 3 (A), and the load per hour (residual load) is shown in FIG. 3 (B).

Figure 2013257944
Figure 2013257944

表1に示すように2000系合金、6000系合金、7000系合金はいずれも、高強度であることが分かる。また、アルミニウム合金からなる試料No.1-1〜No.1-4は、室温での特性(ここでは0.2%耐力、引張強さ)が銅合金からなる試料No.100と同等程度又はそれ以下である。しかし、図3に示すように試料No.100は、使用初期に荷重が大きく低下し、荷重残存率が小さくなっているのに対して、試料No.1-1〜No.1-4は、経時的な荷重の低下が小さく、銅合金からなる試料No.100よりも荷重残存率が高いことが分かる。また、試料No.1-1〜No.1-4はいずれも、図3(B)に示すように経時的にみれば、残存する荷重が銅合金からなる試料No.100と同等、又は試料No.100よりも大きいことが分かる。例えば、2000系合金からなる試料No.1-1は、10時間後、6000系合金からなる試料No.1-3は、20時間後、7000系合金からなる試料No.1-4は、5時間後には、銅合金からなる試料No.100の荷重を上回っている。試料No.1-2は、1000時間後に試料No.100と同等の荷重となっている。   As shown in Table 1, it can be seen that all the 2000 series alloys, 6000 series alloys, and 7000 series alloys have high strength. Samples No.1-1 to No.1-4 made of an aluminum alloy have properties at room temperature (0.2% proof stress and tensile strength) equivalent to or lower than those of a sample No.100 made of a copper alloy. It is. However, as shown in FIG. 3, in sample No. 100, the load greatly decreased in the initial stage of use and the load remaining rate was small, whereas in samples No. 1-1 to No. 1-4, It can be seen that the decrease in load over time is small and the load remaining rate is higher than that of sample No. 100 made of copper alloy. In addition, all of sample Nos. 1-1 to 1-4 have the same remaining load as sample No. 100 made of a copper alloy as seen over time as shown in FIG. It can be seen that it is larger than No.100. For example, sample No.1-1 made of 2000 series alloy is 10 hours later, sample No.1-3 made of 6000 series alloy is 20 hours later, sample No.1-4 made of 7000 series alloy is 5 After time, the load of sample No. 100 made of copper alloy is exceeded. Sample No. 1-2 has the same load as Sample No. 100 after 1000 hours.

この試験によって、上述のアルミニウム合金は、応力緩和特性に優れること、特に、100℃超といった高温での応力緩和特性に優れることが確認された。また、上述のアルミニウム合金は、従来の銅合金からなる端子金具に対して、遜色ない程度の応力緩和特性を有するといえる。   By this test, it was confirmed that the above-described aluminum alloy was excellent in stress relaxation characteristics, particularly excellent in stress relaxation characteristics at a high temperature exceeding 100 ° C. Moreover, it can be said that the above-mentioned aluminum alloy has a stress relaxation characteristic comparable to that of a terminal fitting made of a conventional copper alloy.

一方、純チタンからなる試料No.1-5、チタン合金からなる試料No.1-6はいずれも、銅合金からなる試料No.100と同等、更にそれ以上の強度及び0.2%耐力を有し、室温での特性に優れることが分かる。このことから、上述の純チタンやチタン合金は、従来の銅合金からなる端子金具に対して、応力緩和特性により優れると期待される。また、伸びを比較すると、試料No.1-5,No.1-6はいずれも15%、試料No.100は13%であり、試料No.1-5,No.1-6は試料No.100よりも伸びにも優れることが分かる。このため、試料No.1-5,No.1-6は塑性加工性にも優れるといえる。   On the other hand, sample No.1-5 made of pure titanium and sample No.1-6 made of titanium alloy are both equivalent to sample No.100 made of copper alloy, and have higher strength and 0.2% proof stress. It can be seen that the characteristics at room temperature are excellent. From this, the above-mentioned pure titanium and titanium alloy are expected to be more excellent in stress relaxation characteristics than a conventional terminal fitting made of a copper alloy. Also, when comparing the elongation, sample No. 1-5 and No. 1-6 are both 15%, sample No. 100 is 13%, and sample No. 1-5 and No. 1-6 are sample No. It turns out that it is excellent also in elongation than .100. Therefore, it can be said that Samples No. 1-5 and No. 1-6 are excellent in plastic workability.

[試験例2]
同一組成のアルミニウム合金板を複数用意して、異なる条件で熱処理を施し、機械的特性を調べた。
[Test Example 2]
A plurality of aluminum alloy plates having the same composition were prepared, subjected to heat treatment under different conditions, and mechanical properties were examined.

この試験では、試験例1で用いた市販のアルミニウム合金板(圧延材)と同様のものであって、6000系合金:6056からなり、厚さ0.25mmのものを用意し、表2に示す条件の熱処理を施した。T8処理では、溶体化処理後、低温(80℃)での予備時効処理を施してから、冷間加工として冷間圧延(圧下率:20%)を行い、最後に高温(170℃)での最終時効処理を施した。T9処理では、溶体化処理、時効処理を順に施した後、冷間加工として冷間圧延(圧下率:20%)を行った。   In this test, it is the same as the commercially available aluminum alloy plate (rolled material) used in Test Example 1 and is made of 6000 series alloy: 6056, with a thickness of 0.25 mm, and the conditions shown in Table 2 The heat treatment was performed. In T8 treatment, after solution treatment, pre-aging treatment at low temperature (80 ℃) is performed, then cold rolling (rolling ratio: 20%) is performed as cold working, and finally at high temperature (170 ℃). The final aging treatment was performed. In the T9 treatment, solution treatment and aging treatment were sequentially performed, and then cold rolling (rolling rate: 20%) was performed as cold working.

用意した厚さ0.25mmのアルミニウム合金板の室温特性(0.2%耐力、引張強さ、伸び、導電率)を調べた。その結果を表2に示す。   The room temperature characteristics (0.2% proof stress, tensile strength, elongation, conductivity) of the prepared aluminum alloy plate having a thickness of 0.25 mm were examined. The results are shown in Table 2.

0.2%耐力(MPa)、引張強さ(MPa)、伸び(%)はいずれも、JIS Z 2241(2011)の規定に基づいて測定した。導電率(%)は、四端子法で測定した電気抵抗から算出した。   0.2% proof stress (MPa), tensile strength (MPa), and elongation (%) were all measured based on the provisions of JIS Z 2241 (2011). The conductivity (%) was calculated from the electrical resistance measured by the four probe method.

比較として、試験例1と同様の銅合金板(黄銅1種:C2600-EH、厚さ:0.25mm、市販品)を用意した。この銅合金板の導電率のみ、カタログ値である。   For comparison, the same copper alloy plate as in Test Example 1 (Brass 1 type: C2600-EH, thickness: 0.25 mm, commercially available product) was prepared. Only the electrical conductivity of this copper alloy plate is a catalog value.

Figure 2013257944
Figure 2013257944

表2に示すように、同一組成のアルミニウム合金であっても、熱処理条件によって機械的特性を異ならせることができることが分かる。試料No.2-1,No.2-2では、比較的低強度で伸びが高く、靭性に優れることが分かる。そのため、試料No.2-1,No.2-2は、塑性加工を施した場合にも割れ難く、成形性に優れると期待される。一方、試料No.2-3,No.2-4は、比較的高強度であり、試料No.2-1,No.2-2よりも高強度であることから、応力緩和特性に優れると期待される。   As shown in Table 2, it can be seen that even if the aluminum alloy has the same composition, the mechanical properties can be varied depending on the heat treatment conditions. It can be seen that Samples No. 2-1 and 2-2 have relatively low strength, high elongation, and excellent toughness. Therefore, Samples No. 2-1 and No. 2-2 are expected to be excellent in formability because they are difficult to break even when subjected to plastic working. On the other hand, Samples No.2-3 and No.2-4 have relatively high strength and higher strength than Samples No.2-1 and No.2-2. Be expected.

用意した厚さ0.25mmのアルミニウム合金板の成形性を調べた。成形性は、各アルミニウム板から幅10mmの帯状の試験片をそれぞれ作製し、以下の90°曲げ試験及び密着曲げ試験を行って評価した。90°曲げ試験では、限界曲げ半径を評価した。限界曲げ半径は、試験片を90°に曲げた後、曲げ部分であって外側面の割れを観察し、割れが発生しない最小曲げ半径とした。密着曲げ試験は、曲げ半径:1mmでU字状に試験片を折り曲げ、折り曲げられて接近している帯状の試験片の両縁が更に接触するまで試験片を折り曲げ、この曲げの後、曲げ部分であって外側面の割れの有無を調べた。その結果を表3に示す。   The formability of the prepared aluminum alloy plate having a thickness of 0.25 mm was examined. Formability was evaluated by preparing strip-shaped test pieces each having a width of 10 mm from each aluminum plate and performing the following 90 ° bending test and adhesion bending test. In the 90 ° bending test, the critical bending radius was evaluated. The limit bending radius was set to the minimum bending radius at which no cracking occurred by observing a crack on the outer surface of the bent portion after bending the specimen at 90 °. In the close-contact bending test, the test piece is bent in a U-shape with a bending radius of 1 mm, and the test piece is bent until both edges of the strip-shaped test piece that is bent and approached contact each other. Then, the presence or absence of cracks on the outer surface was examined. The results are shown in Table 3.

Figure 2013257944
Figure 2013257944

表3に示すように、比較的低強度で伸びが大きい試料No.2-1,No.2-2は、密着曲げといった強加工が施された場合にも、割れがなく、成形性に優れることが分かる。   As shown in Table 3, samples No.2-1 and No.2-2, which have relatively low strength and large elongation, have no cracks and excellent formability even when subjected to strong processing such as tight bending. I understand that.

この試験から、同一組成のアルミニウム合金に対して、熱処理条件を適宜調整することで、成形性に優れるものや高強度なもの、といった特性が異なるものが得られることが確認された。特に、6000系合金では、T6処理やT7処理を施すことで、成形性を高められ、T8処理やT9処理を行うことでより高強度になることが確認された。   From this test, it was confirmed that the aluminum alloy having the same composition can be obtained by appropriately adjusting the heat treatment conditions so that different properties such as excellent formability and high strength can be obtained. In particular, it was confirmed that the formability of 6000 series alloys can be improved by performing T6 treatment or T7 treatment, and that the strength can be increased by performing T8 treatment or T9 treatment.

更に、試験例1,2の結果から、嵌合部に具える箱部と弾性片とが別部材である端子金具を製造するにあたり、弾性片の素材には、試験例1のアルミニウム合金板や試験例2の試料No.2-3,No.2-4のアルミニウム合金板を好適に利用できるといえる。又は、弾性片の素材には、試験例1の純チタン板やチタン合金板を好適に利用できるといえる。箱部等の素材には、試験例2の試料No.2-1,No.2-2のアルミニウム合金板を好適に利用できるといえる。   Furthermore, from the results of Test Examples 1 and 2, when manufacturing a terminal fitting in which the box part provided in the fitting part and the elastic piece are separate members, the material of the elastic piece includes the aluminum alloy plate of Test Example 1 and It can be said that the aluminum alloy plates of Samples No. 2-3 and No. 2-4 of Test Example 2 can be suitably used. Alternatively, it can be said that the pure titanium plate or titanium alloy plate of Test Example 1 can be suitably used as the elastic piece material. It can be said that the aluminum alloy plates of Sample No. 2-1 and No. 2-2 of Test Example 2 can be suitably used for the material such as the box portion.

[試験例3]
端子金具を作製して、アルミニウム基電線の端部に取り付けて端子付き電線を作製し、電池腐食の状態を調べた。
[Test Example 3]
A terminal fitting was prepared and attached to the end of an aluminum-based electric wire to prepare a terminal-attached electric wire, and the state of battery corrosion was examined.

この試験では、図1に示す箱部14と弾性片15とが別部材である端子金具10を作製した。試料No.3-1は、箱部等の素材として、試験例2の試料No.2-1のアルミニウム合金板(厚さ0.25mm 6000系)を用い、弾性片の素材として、試験例1の試料No.1-6のチタン合金板(厚さ0.25mm 80種)を用いた。素材をそれぞれ所定の形状に打ち抜いた後、所定の形状に成形した。そして、チタン合金板からなる弾性片における接点領域にのみ、めっきによって錫層(厚さ1μm)を設けた後、箱部に弾性片を接合した。試料No.3-2は、箱部等の素材として、試験例2の試料No.2-1のアルミニウム合金板(厚さ0.25mm 6000系)を用い、弾性片の素材として、試験例2の試料No.2-4のアルミニウム合金板(厚さ0.25mm 6000系)を用いた。素材をそれぞれ所定の形状に打ち抜いた後、所定の形状に成形した。そして、試料No.2-4のアルミニウム合金からなる弾性片の接点領域にのみ、蒸着によってチタン層(厚さ0.5μm)を形成した後、チタン層の上にめっきによって錫層(厚さ1μm)を設けた。チタン層は、純チタンからなるものとした。錫層は接点層であり、チタン層は、接点介在層である。   In this test, the terminal fitting 10 in which the box portion 14 and the elastic piece 15 shown in FIG. 1 are separate members was produced. Sample No. 3-1 uses the aluminum alloy plate (thickness: 0.25 mm, 6000 series) of Sample No. 2-1 of Test Example 2 as the material for the box and the like, and the material of Test Example 1 as the material for the elastic piece. The titanium alloy plate of sample No. 1-6 (thickness 0.25 mm, 80 types) was used. Each material was punched into a predetermined shape and then formed into a predetermined shape. Then, only a contact layer in the elastic piece made of a titanium alloy plate was provided with a tin layer (thickness 1 μm) by plating, and then the elastic piece was joined to the box portion. Sample No. 3-2 uses the aluminum alloy plate (thickness: 0.25 mm, 6000 series) of sample No. 2-1 in Test Example 2 as the material for the box and the like, and the material of Test Example 2 as the material for the elastic piece. Sample No.2-4 aluminum alloy plate (thickness 0.25 mm, 6000 series) was used. Each material was punched into a predetermined shape and then formed into a predetermined shape. And after forming a titanium layer (thickness 0.5 μm) by vapor deposition only on the contact area of the elastic piece made of the aluminum alloy of sample No.2-4, a tin layer (thickness 1 μm) by plating on the titanium layer Was provided. The titanium layer was made of pure titanium. The tin layer is a contact layer, and the titanium layer is a contact intervening layer.

比較として、銅合金からなる端子金具:試料No.3-100も用意した。試験例1の試料No.100と同様の銅合金板を用意し、この銅合金板(厚さ0.25mm)の全面に錫めっきを施したものを用いて、端子金具10と同様の形状のものを作製した。   For comparison, a terminal fitting made of a copper alloy: Sample No. 3-100 was also prepared. Prepare a copper alloy plate similar to Sample No. 100 of Test Example 1 and use the same copper alloy plate (thickness: 0.25 mm) with tin plating on the entire surface to have the same shape as the terminal fitting 10 Was made.

アルミニウム合金からなる導体と、絶縁層とを具えるアルミニウム基電線を用意した。この電線の端部において絶縁層を剥いで導体を露出させ、作製した各試料の端子金具のワイヤバレル部にこの導体を配置して圧縮し、端子付き電線(電線の端末接続構造)を作製した。   An aluminum-based electric wire having a conductor made of an aluminum alloy and an insulating layer was prepared. Stripped the insulating layer at the end of this wire to expose the conductor, placed this conductor on the wire barrel part of the terminal fitting of each sample produced and compressed it, and produced a wire with terminal (terminal connection structure of the wire) .

作製した各試料の端子付き電線について腐食試験を行った。ここでは、異種金属の接触腐食(電池腐食)による影響を把握し易いように、以下の条件で腐食試験を行った。NaClを超純水に溶かして、濃度が26質量%の中性水溶液を作製する。平均粒径が100μm程度のシリカ(SiO2)の粉末を濾紙上に載せ、用意した上記中性水溶液をシリカの粉末の上から滴下した後、150℃に加熱した恒温槽中に入れて乾燥し、NaClが付着した粉末を得る(Cl-の付着量:35000ppm程度)。得られた粉末を試料の一部が目視確認できる程度に、各試料に満遍なく振り掛けて(厚さ1mm以下)、60℃、95%RHに設定した恒温恒湿槽に入れ、6日間(144時間)保持する。6日後、恒温恒湿槽から試料を取り出し、ワイヤバレル部付近を切断し、この断面を観察して、導体の残存率を求めた。導体の残存率(%)は、{(残存している導体の断面積)/(試験前の電線の導体の断面積)}×100とする。この残存率により端子金具と導体との間における耐食性を評価する。 Corrosion tests were conducted on the electric wires with terminals of the prepared samples. Here, a corrosion test was performed under the following conditions so that the influence of the contact corrosion (battery corrosion) of different metals could be easily understood. NaCl is dissolved in ultrapure water to make a neutral aqueous solution with a concentration of 26% by mass. Place silica (SiO 2 ) powder with an average particle size of about 100 μm on the filter paper, drop the prepared neutral aqueous solution from above the silica powder, then place it in a constant temperature bath heated to 150 ° C. and dry it. to obtain a powder NaCl adheres (Cl - adhesion amount: about 35,000 ppm). Sprinkle the obtained powder evenly on each sample (thickness 1mm or less) so that a part of the sample can be visually confirmed, and place it in a constant temperature and humidity chamber set at 60 ° C and 95% RH for 6 days (144 hours) )Hold. Six days later, a sample was taken out from the thermo-hygrostat, the wire barrel portion was cut, and this cross section was observed to determine the remaining rate of the conductor. The residual ratio (%) of the conductor is {(cross-sectional area of the remaining conductor) / (cross-sectional area of the conductor of the wire before the test)} × 100. Corrosion resistance between the terminal fitting and the conductor is evaluated based on this remaining rate.

また、試料No.3-1では、箱部における弾性片との接合領域(チタン合金との接触箇所)を切断し、この断面を観察して、箱部の残存率を求めた。箱部の残存率(%)は、{(残存している箱部における接合領域の断面積)/(試験前の箱部における接合領域の断面積)}×100とする。この残存率により、箱部と弾性片との間における耐食性を評価する。試料No.3-2では、弾性片における接点領域(錫層の形成箇所)を切断し、この断面を観察して、弾性片の残存率を求めた。弾性片の残存率(%)は、{(残存している弾性片における接点領域の断面積)/(試験前の弾性片における接点領域の断面積)}×100とする。この残存率により、弾性片と錫層(接点層)との間における耐食性を評価する。   Further, in sample No. 3-1, the bonding area (contact portion with the titanium alloy) of the box portion with the elastic piece was cut, and this cross section was observed to obtain the residual ratio of the box portion. The residual ratio (%) of the box portion is {(cross-sectional area of the bonding region in the remaining box portion) / (cross-sectional area of the bonding region in the box portion before the test)} × 100. Corrosion resistance between the box portion and the elastic piece is evaluated based on the remaining rate. In sample No. 3-2, the contact region (the location where the tin layer was formed) in the elastic piece was cut, and this cross section was observed to determine the remaining rate of the elastic piece. The remaining rate (%) of the elastic piece is {(cross-sectional area of the contact region in the remaining elastic piece) / (cross-sectional area of the contact region in the elastic piece before the test)} × 100. Corrosion resistance between the elastic piece and the tin layer (contact layer) is evaluated based on the residual rate.

なお、導体の断面積、箱部の断面積、弾性片の断面積はいずれも、断面写真に画像処理などを施すことで容易に求められる。上述の残存率が高いほど、電池腐食し難く、耐食性が高いといえる。   The cross-sectional area of the conductor, the cross-sectional area of the box portion, and the cross-sectional area of the elastic piece are all easily obtained by performing image processing or the like on the cross-sectional photograph. It can be said that the higher the above-mentioned residual rate, the less corrosion of the battery and the higher the corrosion resistance.

試験の結果、導体接続部がアルミニウム合金からなる試料No.3-1,No.3-2はいずれも、導体の残存率が95%以上であり、耐食性に優れていた。この理由は、アルミニウム合金からなる導体と、端子金具における導体との接触箇所との間で実質的に電池腐食が生じなかったため、と考えられる。また、試料No.3-1,No.3-2はいずれも、箱部の残存率も高く、耐食性に優れていた。この理由は、試料No.3-1では、アルミニウム合金からなる部分とチタン又はチタン合金からなる部分との間で電池腐食が生じ難いため、と考えられる。試料No.3-2では、アルミニウム合金からなる部分と錫からなる部分との間で生じ得る電池腐食をチタン又はチタン合金からなる部分の介在によって低減できたため、と考えられる。   As a result of the test, both of the samples No. 3-1 and No. 3-2 in which the conductor connection portion was made of an aluminum alloy had a conductor residual ratio of 95% or more and was excellent in corrosion resistance. The reason for this is considered that battery corrosion did not substantially occur between the conductor made of the aluminum alloy and the contact portion of the terminal fitting with the conductor. Samples No. 3-1 and No. 3-2 both had a high residual rate in the box and were excellent in corrosion resistance. The reason for this is considered that, in sample No. 3-1, battery corrosion hardly occurs between a portion made of an aluminum alloy and a portion made of titanium or a titanium alloy. In sample No. 3-2, it is considered that the battery corrosion that may occur between the aluminum alloy portion and the tin alloy portion can be reduced by the intervention of the titanium or titanium alloy portion.

一方、比較として用意した、銅合金からなる端子金具を具える試料No.3-100は、導体の残存率が95%未満であった。この理由は、導体を構成するアルミニウム合金と、端子金具を構成する銅合金や錫との間で電池腐食が生じて、アルミニウム合金からなる導体が溶出したため、と考えられる。   On the other hand, Sample No. 3-100 having a terminal fitting made of a copper alloy prepared for comparison had a conductor remaining rate of less than 95%. The reason for this is considered that battery corrosion occurred between the aluminum alloy constituting the conductor and the copper alloy or tin constituting the terminal fitting, and the conductor made of the aluminum alloy was eluted.

試験例3の結果に示すように、端子金具の嵌合部を構成する箱部と弾性片とが別部材であり、少なくとも箱部及び導体接続部がアルミニウム合金から構成され、アルミニウム合金との接触箇所がチタン又はチタン合金によって構成される場合、導体や端子金具の一部を構成するアルミニウム合金との間での電池腐食を効果的に低減できるといえる。また、このようなアルミニウム基端子金具を利用することで、電池腐食を防止するための特別な防食処理が不要であるといえる。   As shown in the results of Test Example 3, the box part and the elastic piece constituting the fitting part of the terminal fitting are separate members, and at least the box part and the conductor connection part are made of an aluminum alloy, and contact with the aluminum alloy. When a location is comprised with titanium or a titanium alloy, it can be said that battery corrosion between the aluminum alloy which comprises a part of conductor and a terminal metal fitting can be reduced effectively. Moreover, it can be said that a special anticorrosion treatment for preventing battery corrosion is unnecessary by using such an aluminum base terminal fitting.

本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で、適宜変更することができる。例えば、アルミニウム合金の組成、チタン合金の組成、弾性片の材質、弾性片・箱部の形状、熱処理条件などを適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the composition of the aluminum alloy, the composition of the titanium alloy, the material of the elastic piece, the shape of the elastic piece / box, the heat treatment conditions, and the like can be appropriately changed.

本発明のアルミニウム基端子金具及び本発明の電線の端末接続構造は、例えば、自動車や飛行機などの移動用機器、ロボットなどの産業機器などの配線構造の構成部材に好適に利用することができる。特に、本発明のアルミニウム基端子金具及び本発明の電線の端末接続構造は、主成分がアルミニウムやチタンであり、軽量であることから、自動車の配線構造(代表的には自動車用ワイヤーハーネス)の構成部材に好適に利用することができる。   The aluminum base terminal fitting of the present invention and the terminal connection structure of the electric wire of the present invention can be suitably used for, for example, a component member of a wiring structure of a moving device such as an automobile or an airplane, or an industrial device such as a robot. In particular, the aluminum base terminal fitting of the present invention and the terminal connection structure of the electric wire of the present invention are mainly composed of aluminum and titanium, and are lightweight, so that the wiring structure of an automobile (typically an automobile wire harness) It can utilize suitably for a structural member.

10 端子金具 11 ワイヤバレル部 12 インシュレーションバレル部
13 嵌合部 14 箱部 15,15A,15B,15C,152,153 弾性片
154 箱部との接合領域 157 接点領域 17 接点層
20 接点介在層 30 接合介在層
100F メス型端子金具 100M オス型端子金具 110 ワイヤバレル部
120 インシュレーションバレル部 130 メス型嵌合部 131 箱部
132,133 弾性片 140 オス型嵌合部 200 電線 210 導体 220 絶縁層
10 Terminal bracket 11 Wire barrel 12 Insulation barrel
13 Fitting part 14 Box part 15,15A, 15B, 15C, 152,153 Elastic piece
154 Bonding area with box 157 Contact area 17 Contact layer
20 Contact layer 30 Joint layer
100F Female terminal fitting 100M Male terminal fitting 110 Wire barrel
120 Insulation barrel part 130 Female fitting part 131 Box part
132,133 Elastic piece 140 Male fitting part 200 Electric wire 210 Conductor 220 Insulating layer

Claims (10)

電線の導体が接続される導体接続部と、別の端子金具の一部が接続される嵌合部とを具えるアルミニウム基端子金具であって、
前記導体は、アルミニウム又はアルミニウム合金から構成されるものであり、
前記嵌合部は、前記導体接続部に延設されて塑性加工によって成形された筒状の箱部と、前記箱部の内側に配置され、付勢力によって前記別の端子金具の一部に接触する弾性片とを具え、
前記弾性片は、前記箱部に接合されており、
前記導体接続部及び前記箱部は、アルミニウム合金から構成されており、
前記箱部から前記弾性片を経て前記別の端子金具に至る導電経路に、アルミニウム合金から構成されるAl系部材と、チタン又はチタン合金から構成されるTi系部材との接触部を具えるアルミニウム基端子金具。
An aluminum base terminal fitting comprising a conductor connecting portion to which a conductor of an electric wire is connected and a fitting portion to which a part of another terminal fitting is connected,
The conductor is composed of aluminum or an aluminum alloy,
The fitting portion is disposed on the inner side of the cylindrical box portion that is extended by the plastic connection and formed by plastic working, and contacts a part of the other terminal fitting by an urging force. With elastic pieces to
The elastic piece is joined to the box part,
The conductor connection part and the box part are made of an aluminum alloy,
Aluminum having a contact portion between an Al-based member composed of an aluminum alloy and a Ti-based member composed of titanium or a titanium alloy in a conductive path from the box portion through the elastic piece to the other terminal fitting. Base terminal bracket.
前記弾性片の構成材料の引張強さは、前記箱部を構成するアルミニウム合金の引張強さよりも高い請求項1に記載のアルミニウム基端子金具。   2. The aluminum base terminal fitting according to claim 1, wherein a tensile strength of a constituent material of the elastic piece is higher than a tensile strength of an aluminum alloy constituting the box portion. 前記弾性片は、前記箱部を構成するアルミニウム合金の引張強さよりも高い引張強さを有するアルミニウム合金から構成されており、
前記弾性片における前記別の端子金具との接点領域に設けられ、錫又は錫合金から構成された接点層を具え、
前記Al系部材は、前記弾性片であり、
前記Ti系部材は、前記弾性片と前記接点層と間に設けられた接点介在層である請求項1又は2に記載のアルミニウム基端子金具。
The elastic piece is made of an aluminum alloy having a tensile strength higher than the tensile strength of the aluminum alloy constituting the box portion,
Provided in the contact area with the other terminal fitting in the elastic piece, comprising a contact layer made of tin or tin alloy,
The Al-based member is the elastic piece,
3. The aluminum base terminal fitting according to claim 1, wherein the Ti-based member is a contact intervening layer provided between the elastic piece and the contact layer.
前記導体接続部、前記箱部、及び前記弾性片のいずれもが、6000系合金から構成されている請求項3に記載のアルミニウム基端子金具。   4. The aluminum base terminal fitting according to claim 3, wherein all of the conductor connecting portion, the box portion, and the elastic piece are made of a 6000 series alloy. 前記Ti系部材は、前記弾性片であり、
前記弾性片における前記別の端子金具との接点領域に設けられ、錫又は錫合金から構成された接点層を具える請求項1又は2に記載のアルミニウム基端子金具。
The Ti-based member is the elastic piece,
3. The aluminum-based terminal fitting according to claim 1 or 2, further comprising a contact layer provided in a contact region of the elastic piece with the other terminal fitting and made of tin or a tin alloy.
前記Ti系部材は、β相組織から構成されている請求項1〜5のいずれか1項に記載のアルミニウム基端子金具。   6. The aluminum-based terminal metal fitting according to claim 1, wherein the Ti-based member is composed of a β-phase structure. 前記導体接続部及び前記箱部は、6000系合金からなる板材に塑性加工が施されて形成されている請求項1〜6のいずれか1項に記載のアルミニウム基端子金具。   The aluminum base terminal fitting according to any one of claims 1 to 6, wherein the conductor connecting portion and the box portion are formed by subjecting a plate made of a 6000 series alloy to plastic working. 前記導体接続部は、前記導体を圧着する圧着片を具える請求項1〜7のいずれか1項に記載のアルミニウム基端子金具。   The aluminum base terminal metal fitting according to any one of claims 1 to 7, wherein the conductor connecting portion includes a crimping piece for crimping the conductor. 導体を具える電線と、前記導体の端部に取り付けられた端子金具とを具える電線の端末接続構造であって、
前記導体は、アルミニウム又はアルミニウム合金から構成されており、
前記端子金具は、請求項1〜8のいずれか1項に記載のアルミニウム基端子金具である電線の端末接続構造。
A terminal connection structure for an electric wire comprising an electric wire comprising a conductor and a terminal fitting attached to an end of the conductor,
The conductor is made of aluminum or aluminum alloy,
9. The terminal connection structure for an electric wire, wherein the terminal fitting is the aluminum base terminal fitting according to any one of claims 1 to 8.
自動車の配線構造に用いられる請求項9に記載の電線の端末接続構造。   10. The wire terminal connection structure according to claim 9, which is used for a wiring structure of an automobile.
JP2012131416A 2012-06-08 2012-06-08 Aluminum base terminal fitting, and terminal connection structure of wire Pending JP2013257944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012131416A JP2013257944A (en) 2012-06-08 2012-06-08 Aluminum base terminal fitting, and terminal connection structure of wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012131416A JP2013257944A (en) 2012-06-08 2012-06-08 Aluminum base terminal fitting, and terminal connection structure of wire

Publications (1)

Publication Number Publication Date
JP2013257944A true JP2013257944A (en) 2013-12-26

Family

ID=49954246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012131416A Pending JP2013257944A (en) 2012-06-08 2012-06-08 Aluminum base terminal fitting, and terminal connection structure of wire

Country Status (1)

Country Link
JP (1) JP2013257944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3611800B1 (en) * 2018-08-13 2022-02-16 Hitachi Metals, Ltd. Terminal-equipped electric wire
JP7488151B2 (en) 2020-08-06 2024-05-21 古河電気工業株式会社 Wire with crimp terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3611800B1 (en) * 2018-08-13 2022-02-16 Hitachi Metals, Ltd. Terminal-equipped electric wire
JP7488151B2 (en) 2020-08-06 2024-05-21 古河電気工業株式会社 Wire with crimp terminal

Similar Documents

Publication Publication Date Title
KR101276496B1 (en) Aluminum copper clad material
EP3064604A1 (en) Copper alloy wire, copper alloy stranded wire, coated electric wire, wire harness and manufacturing method of copper alloy wire
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
JP6535019B2 (en) Terminal Wire
US9859031B2 (en) Cu—Ni—Si based copper alloy
US9490550B2 (en) Aluminum-based terminal fitting
EP3363025B1 (en) Cables and wires having conductive elements formed from improved aluminum-zirconium alloys
JP6432619B2 (en) Aluminum alloy conductor, insulated wire using the conductor, and method for producing the insulated wire
WO2013065803A1 (en) Aluminum matrix terminal fitting and electric wire terminal connection structure
JP6090167B2 (en) Aluminum alloy plate for terminals, terminal fittings, and terminal connection structure for electric wires
US20200021044A1 (en) Connection structure
JP5365998B2 (en) Electric wire with terminal and terminal member
JP7126359B2 (en) Copper alloy materials and terminals with excellent contact corrosion resistance to aluminum
JP2013257944A (en) Aluminum base terminal fitting, and terminal connection structure of wire
JP4762701B2 (en) Electric wire conductor for wiring and electric wire for wiring using the same
JP2006019164A (en) Aluminum conductive wire
JP6845999B2 (en) Covered wires, wires with terminals, and stranded wires
JP4728604B2 (en) Aluminum conductive wire for automobile wiring and electric wire for automobile wiring
WO2014091632A1 (en) Electrode material for thermal fuse and production method therefor
JP5928778B2 (en) Aluminum terminal fittings and wire terminal connection structure
JP2021144805A (en) Connection structure
JP2022100544A (en) Aluminum wire with aluminum crimp terminal
JP2019169364A (en) Terminal and electric wire including the same
JP2006004752A (en) Aluminum conductive wire
JP2019196514A (en) Copper alloy material for terminal of aluminum wire harness, and terminal