JP2022014641A - Element transfer member and manufacturing method therefor, and element transfer method and method for manufacturing element transfer article - Google Patents

Element transfer member and manufacturing method therefor, and element transfer method and method for manufacturing element transfer article Download PDF

Info

Publication number
JP2022014641A
JP2022014641A JP2020117083A JP2020117083A JP2022014641A JP 2022014641 A JP2022014641 A JP 2022014641A JP 2020117083 A JP2020117083 A JP 2020117083A JP 2020117083 A JP2020117083 A JP 2020117083A JP 2022014641 A JP2022014641 A JP 2022014641A
Authority
JP
Japan
Prior art keywords
element holding
transfer member
region
base material
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020117083A
Other languages
Japanese (ja)
Inventor
尚子 中田
Naoko Nakada
大輔 松浦
Daisuke Matsuura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2020117083A priority Critical patent/JP2022014641A/en
Publication of JP2022014641A publication Critical patent/JP2022014641A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Die Bonding (AREA)
  • Led Device Packages (AREA)

Abstract

To provide an element transfer member and a manufacturing method therefor, which can securely transfer a held element.SOLUTION: An element transfer member to be used to transfer a transfer target element includes: a base material having a first surface and a second surface located opposite to the first surface; and a plurality of element holding parts located on the first surface side of the base material. Each element holding part has an element holding surface to which the element can contact. The plurality of element holding parts are located on a plurality of divided regions of the first surface side of the base material side. Each of the plurality of regions at least includes a first region and a second region located inside the base material with respect to the first region. Each of the plurality of element holding parts at least includes a first element holding part located in the first region and a second element holding part located in the second region. The element holding surface of the first element holding part and the element holding surface of the second element holding part are configured such that an element held on the element holding surface of the first element holding part is transferred more easily than an element held on the element holding surface of the second element holding part.SELECTED DRAWING: Figure 1

Description

本開示は、素子転写用部材及びその製造方法、並びに素子転写方法及び素子転写物品の製造方法に関する。 The present disclosure relates to a device transfer member and a method for manufacturing the same, and a method for device transfer and a method for manufacturing the device transfer article.

回路基板に複数のマイクロ発光ダイオード(LED,Light Emitting Diode)を搭載した発光基板を有するマイクロLEDディスプレイの開発が進められている。マイクロLEDディスプレイは、液晶ディスプレイ等に比べて、輝度、消費電力、応答速度、信頼性等の面で優れており、次世代の軽量・薄型ディスプレイとして注目されている。 Development of a micro LED display having a light emitting board on which a plurality of micro light emitting diodes (LEDs, Light Emitting Diodes) are mounted on a circuit board is underway. Micro LED displays are superior to liquid crystal displays and the like in terms of brightness, power consumption, response speed, reliability, etc., and are attracting attention as next-generation lightweight and thin displays.

マイクロLEDディスプレイの製造にあたり、発光基板上における各サブピクセルに対応して青色マイクロLEDチップ、赤色マイクロLEDチップ及び緑色マイクロLEDチップを回路基板に搭載する必要がある。この各マイクロLEDチップを回路基板に搭載するために使用される部材として、従来、転写対象となるマイクロLEDチップに対応して複数の接着剤層が形成され、各接着剤層により保持されたマイクロLEDチップを回路基板上の所定の位置に転写可能な転写用部材が知られている(特許文献1参照)。 In manufacturing a micro LED display, it is necessary to mount a blue micro LED chip, a red micro LED chip, and a green micro LED chip on a circuit board corresponding to each subpixel on the light emitting substrate. As a member used for mounting each of the micro LED chips on a circuit board, a plurality of adhesive layers are conventionally formed corresponding to the micro LED chips to be transferred, and the micro is held by each adhesive layer. A transfer member capable of transferring an LED chip to a predetermined position on a circuit board is known (see Patent Document 1).

特開2002-314052号公報Japanese Unexamined Patent Publication No. 2002-314502

上記転写用部材を用い、複数の接着剤層により複数のマイクロLEDチップを回路基板に同時に転写することで、マイクロLEDディスプレイの生産性を向上させることができる。しかしながら、上記転写用部材の面内における接着剤層の位置によっては、接着剤層に保持されたマイクロLEDチップが回路基板に転写されない転写欠陥が生じることがある。本発明者らが鋭意検討した結果、上記転写用部材の面内の外縁部付近に位置する接着剤層に保持されたマイクロLEDチップが、当該面内の中央部付近に位置する接着剤層に保持されたマイクロLEDチップよりも転写され難いことが判明した。このような転写欠陥が生じてしまうと、マイクロLEDディスプレイの生産性を低下させてしまうという問題がある。 By using the transfer member and simultaneously transferring a plurality of micro LED chips to a circuit board by a plurality of adhesive layers, the productivity of the micro LED display can be improved. However, depending on the position of the adhesive layer in the plane of the transfer member, a transfer defect may occur in which the micro LED chip held by the adhesive layer is not transferred to the circuit board. As a result of diligent studies by the present inventors, the micro LED chip held by the adhesive layer located near the outer edge portion in the plane of the transfer member has become the adhesive layer located near the central portion in the plane. It turned out to be more difficult to transfer than the held micro LED chip. If such a transfer defect occurs, there is a problem that the productivity of the micro LED display is lowered.

上記課題に鑑みて、本開示は、保持した素子を確実に転写可能な素子転写用部材及びその製造方法、並びに当該素子転写用部材を用いた素子転写方法及び素子転写物品の製造方法を提供することを一目的とする。 In view of the above problems, the present disclosure provides a device transfer member capable of reliably transferring a held element and a method for manufacturing the same, and a device transfer method using the device transfer member and a method for manufacturing the device transfer article. One purpose is that.

上記課題を解決するために、本開示の一実施形態として、転写対象である素子を転写するために用いられる素子転写用部材であって、第1面及び前記第1面の反対側に位置する第2面を有する基材と、前記基材の前記第1面側に位置する複数の素子保持部とを備え、前記素子保持部は、前記素子が接触可能な素子保持面を有し、前記複数の素子保持部は、前記基材の前記第1面側を区分した複数の領域のそれぞれに位置し、前記複数の領域は、第1領域と、第2領域とを少なくとも含み、前記第2領域は、前記第1領域よりも前記基材の内側に位置する部分を含み、前記複数の素子保持部は、前記第1領域内に位置する第1素子保持部と、前記第2領域内に位置する第2素子保持部とを少なくとも含み、前記第1素子保持部の前記素子保持面と前記第2素子保持部の前記素子保持面とは、前記第1素子保持部の前記素子保持面に保持された前記素子が前記第2素子保持部の前記素子保持面に保持された前記素子よりも転写されやすいように構成されている素子転写用部材が提供される。 In order to solve the above problems, as one embodiment of the present disclosure, it is an element transfer member used for transferring an element to be transferred, and is located on the first surface and the opposite side of the first surface. A base material having a second surface and a plurality of element holding portions located on the first surface side of the base material are provided, and the element holding portion has an element holding surface with which the element can be contacted. The plurality of element holding portions are located in each of the plurality of regions that divide the first surface side of the base material, and the plurality of regions include at least a first region and a second region, and the second region is included. The region includes a portion located inside the base material with respect to the first region, and the plurality of element holding portions are in the first element holding portion located in the first region and in the second region. The element holding surface of the first element holding portion and the element holding surface of the second element holding portion include at least a second element holding portion located on the element holding surface of the first element holding portion. Provided is an element transfer member configured such that the held element is more easily transferred than the element held on the element holding surface of the second element holding portion.

前記複数の領域は、前記基材の前記第1面側を環状に区分した各領域であればよく、前記基材の前記第1面側を同心形状に区分した各領域であればよく、前記第1素子保持部の前記素子保持面の前記素子に対する接触面積が、前記第2素子保持部の前記素子保持面の前記素子に対する接触面積よりも小さければよい。 The plurality of regions may be any region in which the first surface side of the base material is divided into an annular shape, and may be any region in which the first surface side of the base material is divided into concentric shapes. The contact area of the element holding surface of the first element holding unit with respect to the element may be smaller than the contact area of the element holding surface of the second element holding unit with respect to the element.

前記素子保持部の前記素子保持面は、凹部及び凸部を有し、前記凸部は、前記素子に接触可能な頂部を有し、前記第1素子保持部の前記素子保持面が有する前記凸部の前記頂部の総面積が、前記第2素子保持部の前記素子保持面が有する前記凸部の前記頂部の総面積よりも小さければよく、前記凸部の前記頂部は、前記素子に接触可能な平面部を含んでいてもよく、凹状又は凸状の曲面を含んでいてもよい。 The element holding surface of the element holding portion has a concave portion and a convex portion, the convex portion has a top portion that can contact the element, and the convex portion of the element holding surface of the first element holding portion. The total area of the top of the convex portion may be smaller than the total area of the top of the convex portion of the element holding surface of the second element holding portion, and the top of the convex portion can come into contact with the element. It may include a flat surface portion, and may include a concave or convex curved surface.

前記素子保持面が有する前記凸部は、前記頂部に向けて先細形状をなしていてもよく、前記第1素子保持部の前記素子保持面が有する前記凸部の数は、前記第2素子保持部の前記素子保持面が有する前記凸部の数よりも少なくてもよい。 The convex portion of the element holding surface may have a tapered shape toward the top, and the number of the convex portions of the element holding surface of the first element holding portion is the number of the convex portions of the second element holding portion. It may be less than the number of the convex portions of the element holding surface of the portion.

前記素子保持面は、前記素子保持面の外周縁に位置する素子支持部と、前記素子支持部により囲まれる領域内に位置する前記凹部及び前記凸部とを有していればよく、前記素子保持部を構成する材料の硬度は、前記基材を構成する材料の硬度よりも低ければよく、前記素子保持部は、前記基材の前記第1面上に位置する基部から突出する凸構造であり、前記基部を構成する材料の硬度は、前記基材を構成する材料の硬度よりも低く、前記素子保持部を構成する材料の硬度以下であればよい。 The element holding surface may have an element support portion located on the outer peripheral edge of the element holding surface, and the concave portion and the convex portion located in the region surrounded by the element support portion, and the element may be provided. The hardness of the material constituting the holding portion may be lower than the hardness of the material constituting the base material, and the element holding portion has a convex structure protruding from the base portion located on the first surface of the base material. The hardness of the material constituting the base portion may be lower than the hardness of the material constituting the base material and may be equal to or lower than the hardness of the material constituting the element holding portion.

前記凸構造の高さは、前記素子保持部に保持される前記素子の厚さよりも大きければよく、前記素子保持面に設けられている粘着層をさらに備えていてもよい。 The height of the convex structure may be larger than the thickness of the element held by the element holding portion, and an adhesive layer provided on the element holding surface may be further provided.

本開示の一実施形態として、転写対象である素子を転写するために用いられる素子転写用部材を製造する方法であって、前記素子転写用部材は、第1面及び前記第1面の反対側に位置する第2面を有する基材と、前記基材の前記第1面側に位置する複数の素子保持部とを備え、前記素子保持部は、前記素子が接触可能な素子保持面を有し、前記複数の素子保持部は、前記基材の前記第1面側を区分した複数の領域のそれぞれに位置し、前記複数の領域は、第1領域と、第2領域とを少なくとも含み、前記第2領域は、前記第1領域よりも前記基材の内側に位置する部分を含み、前記複数の素子保持部は、前記第1領域内に位置する第1素子保持部と、前記第2領域内に位置する第2素子保持部とを少なくとも含み、前記素子保持部の前記素子保持面は、凹部及び凸部を有し、前記凸部は、前記素子に接触可能な頂部を有し、前記第1素子保持部の前記素子保持面が有する前記凸部の前記頂部の総面積が、前記第2素子保持部の前記素子保持面が有する前記凸部の前記頂部の総面積よりも小さく、前記素子転写用部材の製造方法は、前記複数の素子保持部に対応する凹凸構造を有するテンプレート及び前記基材を準備する工程と、前記基材の前記第1面上に硬化性材料を供給する工程と、前記硬化性材料に前記テンプレートを押し当てることで、前記凹凸構造に前記硬化性材料を充填させる工程と、前記凹凸構造に充填させた前記硬化性材料を硬化させる工程と、前記硬化した硬化性材料から、前記テンプレートを引き離す工程とを有する素子転写用部材の製造方法が提供される。 One embodiment of the present disclosure is a method of manufacturing an element transfer member used for transferring an element to be transferred, wherein the element transfer member is on the first surface and the opposite side of the first surface. A base material having a second surface located in the base material and a plurality of element holding portions located on the first surface side of the base material are provided, and the element holding portion has an element holding surface with which the element can be contacted. The plurality of element holding portions are located in each of the plurality of regions that divide the first surface side of the base material, and the plurality of regions include at least a first region and a second region. The second region includes a portion located inside the base material with respect to the first region, and the plurality of element holding portions include a first element holding portion located in the first region and the second element holding portion. The element holding surface of the element holding portion includes at least a second element holding portion located in the region, and the element holding portion has a concave portion and a convex portion, and the convex portion has a top portion that can contact the element. The total area of the top of the convex portion of the element holding surface of the first element holding portion is smaller than the total area of the top of the convex portion of the element holding surface of the second element holding portion. The method for manufacturing the element transfer member includes a step of preparing a template having a concavo-convex structure corresponding to the plurality of element holding portions and the base material, and supplying a curable material on the first surface of the base material. A step of filling the concave-convex structure with the curable material by pressing the template against the curable material, a step of curing the curable material filled in the concave-convex structure, and the curing. Provided is a method for manufacturing an element transfer member, which comprises a step of pulling the template away from a curable material.

前記凸部の前記頂部は、前記素子に接触可能な平面部を含んでいてもよいし、凹状又は凸状の曲面を含んでいてもよく、前記素子保持面が有する前記凸部は、前記頂部に向けて先細形状をなしていてもよく、前記第1素子保持部の前記素子保持面が有する前記凸部の数は、前記第2素子保持部の前記素子保持面が有する前記凸部の数よりも少なくてもよい。 The apex of the convex portion may include a flat surface portion that can come into contact with the element, or may include a concave or convex curved surface, and the convex portion of the element holding surface is the apex portion. The number of the convex portions of the element holding surface of the first element holding portion may be the number of the convex portions of the element holding surface of the second element holding portion. May be less than.

本開示の一実施形態として、上記素子転写用部材を用いて素子を転写する方法であって、前記素子転写用部材の前記複数の素子保持部のそれぞれに前記素子を保持させる工程と、前記複数の素子保持部のそれぞれに保持された前記素子を前記被転写基材の前記複数の転写領域のそれぞれに転写する工程とを有する素子転写方法が提供される。 One embodiment of the present disclosure is a method of transferring an element using the element transfer member, wherein the element is held by each of the plurality of element holding portions of the element transfer member. Provided is an element transfer method comprising a step of transferring the element held in each of the element holding portions of the element to each of the plurality of transfer regions of the substrate to be transferred.

本開示の一実施形態として、素子が転写される複数の転写領域を有する被転写基材と、前記被転写基材上に転写された素子とを有する素子転写物品を製造する方法であって、上記素子転写用部材の前記複数の素子保持部のそれぞれに前記素子を保持させる工程と、前記複数の素子保持部のそれぞれに保持された前記素子を前記被転写基材の前記複数の転写領域のそれぞれに転写する工程とを含む素子転写物の製造方法が提供される。 One embodiment of the present disclosure is a method for manufacturing an element transfer article having a transfer substrate having a plurality of transfer regions to which the element is transferred and an element transferred onto the transfer substrate. The step of holding the element in each of the plurality of element holding portions of the element transfer member, and the element held in each of the plurality of element holding portions of the plurality of transfer regions of the substrate to be transferred. A method for manufacturing a device transfer product including a step of transferring to each of them is provided.

本開示によれば、保持した素子を確実に転写可能な素子転写用部材及びその製造方法、並びに当該素子転写用部材を用いた素子転写方法及び素子転写物品の製造方法を提供することができる。 According to the present disclosure, it is possible to provide an element transfer member and a method for manufacturing the same, which can reliably transfer the held element, and an element transfer method and an element transfer article manufacturing method using the element transfer member.

図1は、本開示の一実施形態に係る素子転写用部材を用いて製造され得るマイクロLEDチップを搭載した発光基板の概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a light emitting substrate on which a micro LED chip that can be manufactured using the element transfer member according to the embodiment of the present disclosure is mounted. 図2Aは、本開示の一実施形態に係る素子転写用部材の一の態様の概略構成を示す平面図である。FIG. 2A is a plan view showing a schematic configuration of one aspect of the element transfer member according to the embodiment of the present disclosure. 図2Bは、本開示の一実施形態に係る素子転写用部材の他の態様の概略構成を示す平面図である。FIG. 2B is a plan view showing a schematic configuration of another aspect of the element transfer member according to the embodiment of the present disclosure. 図2Cは、本開示の一実施形態に係る素子転写用部材の他の態様の概略構成を示す平面図である。FIG. 2C is a plan view showing a schematic configuration of another aspect of the element transfer member according to the embodiment of the present disclosure. 図2Dは、本開示の一実施形態に係る素子転写用部材の他の態様の概略構成を示す平面図である。FIG. 2D is a plan view showing a schematic configuration of another aspect of the element transfer member according to the embodiment of the present disclosure. 図3は、本開示の一実施形態に係る素子転写用部材の一の態様の概略構成を示す、図2AにおけるA-A線切断端面図である。FIG. 3 is a cut end view taken along line AA in FIG. 2A, showing a schematic configuration of an aspect of an element transfer member according to an embodiment of the present disclosure. 図4は、本開示の一実施形態における基材の第1面を区分した各領域(第1~第3領域)に位置する素子保持部と、その素子保持面の構成に起因する易転写性(保持力)との関係を示すグラフである。FIG. 4 shows an element holding portion located in each region (first to third regions) in which the first surface of the base material is divided according to the embodiment of the present disclosure, and easy transferability due to the configuration of the element holding surface. It is a graph which shows the relationship with (holding power). 図5Aは、本開示の一実施形態における第1素子保持部の概略構成を示す切断端面図である。FIG. 5A is a cut end view showing a schematic configuration of a first element holding portion according to an embodiment of the present disclosure. 図5Bは、本開示の一実施形態における第2素子保持部の概略構成を示す切断端面図である。FIG. 5B is a cut end view showing a schematic configuration of a second element holding portion according to an embodiment of the present disclosure. 図5Cは、本開示の一実施形態における第3素子保持部の概略構成を示す切断端面図である。FIG. 5C is a cut end view showing a schematic configuration of a third element holding portion according to an embodiment of the present disclosure. 図6Aは、本開示の一実施形態における第1素子保持部の概略構成を示す切断端面図である。FIG. 6A is a cut end view showing a schematic configuration of a first element holding portion according to an embodiment of the present disclosure. 図6Bは、本開示の一実施形態における第2素子保持部の概略構成を示す切断端面図である。FIG. 6B is a cut end view showing a schematic configuration of a second element holding portion according to an embodiment of the present disclosure. 図6Cは、本開示の一実施形態における第3素子保持部の概略構成を示す切断端面図である。FIG. 6C is a cut end view showing a schematic configuration of a third element holding portion according to an embodiment of the present disclosure. 図7Aは、本開示の一実施形態における第1素子保持部の概略構成を示す切断端面図である。FIG. 7A is a cut end view showing a schematic configuration of a first element holding portion according to an embodiment of the present disclosure. 図7Bは、本開示の一実施形態における第2素子保持部の概略構成を示す切断端面図である。FIG. 7B is a cut end view showing a schematic configuration of a second element holding portion according to an embodiment of the present disclosure. 図7Cは、本開示の一実施形態における第3素子保持部の概略構成を示す切断端面図である。FIG. 7C is a cut end view showing a schematic configuration of a third element holding portion according to an embodiment of the present disclosure. 図8Aは、本開示の一実施形態における素子保持面の凸部の概略構成を示す切断端面図である。FIG. 8A is a cut end view showing a schematic configuration of a convex portion of an element holding surface according to an embodiment of the present disclosure. 図8Bは、本開示の一実施形態における素子保持面の凸部の概略構成を示す切断端面図である。FIG. 8B is a cut end view showing a schematic configuration of a convex portion of an element holding surface according to an embodiment of the present disclosure. 図8Cは、本開示の一実施形態における素子保持面の凸部の概略構成を示す切断端面図である。FIG. 8C is a cut end view showing a schematic configuration of a convex portion of an element holding surface according to an embodiment of the present disclosure. 図9Aは、本開示の一実施形態における素子保持面の凸部の概略構成を示す斜視図である。FIG. 9A is a perspective view showing a schematic configuration of a convex portion of an element holding surface according to an embodiment of the present disclosure. 図9Bは、本開示の一実施形態における素子保持面の凸部の概略構成を示す斜視図である。FIG. 9B is a perspective view showing a schematic configuration of a convex portion of an element holding surface according to an embodiment of the present disclosure. 図9Cは、本開示の一実施形態における素子保持面の凸部の概略構成を示す斜視図である。FIG. 9C is a perspective view showing a schematic configuration of a convex portion of the element holding surface according to the embodiment of the present disclosure. 図10Aは、本開示の一実施形態における素子保持面の凸部の概略構成を示す切断端面図である。FIG. 10A is a cut end view showing a schematic configuration of a convex portion of an element holding surface according to an embodiment of the present disclosure. 図10Bは、本開示の一実施形態における素子保持面の凸部の概略構成を示す切断端面図である。FIG. 10B is a cut end view showing a schematic configuration of a convex portion of an element holding surface according to an embodiment of the present disclosure. 図10Cは、本開示の一実施形態における素子保持面の凸部の概略構成を示す切断端面図である。FIG. 10C is a cut end view showing a schematic configuration of a convex portion of an element holding surface according to an embodiment of the present disclosure. 図11Aは、本開示の一実施形態における第1素子保持部の概略構成を示す斜視図である。FIG. 11A is a perspective view showing a schematic configuration of a first element holding portion according to an embodiment of the present disclosure. 図11Bは、本開示の一実施形態における第2素子保持部の概略構成を示す斜視図である。FIG. 11B is a perspective view showing a schematic configuration of a second element holding portion according to an embodiment of the present disclosure. 図11Cは、本開示の一実施形態における第3素子保持部の概略構成を示す斜視図である。FIG. 11C is a perspective view showing a schematic configuration of a third element holding portion according to an embodiment of the present disclosure. 図12Aは、本開示の一実施形態に係る素子転写用部材の製造方法の一工程を概略的に示す切断端面図である。FIG. 12A is a cut end view schematically showing one step of a method for manufacturing an element transfer member according to an embodiment of the present disclosure. 図12Bは、本開示の一実施形態に係る素子転写用部材の製造方法の一工程を概略的に示す切断端面図である。FIG. 12B is a cut end view schematically showing one step of a method for manufacturing an element transfer member according to an embodiment of the present disclosure. 図12Cは、本開示の一実施形態に係る素子転写用部材の製造方法の一工程を概略的に示す切断端面図である。FIG. 12C is a cut end view schematically showing one step of a method for manufacturing an element transfer member according to an embodiment of the present disclosure. 図13は、本開示の一実施形態に係る素子転写用部材の製造方法において用いられるテンプレートの概略構成を示す切断端面図である。FIG. 13 is a cut end view showing a schematic configuration of a template used in the method for manufacturing an element transfer member according to an embodiment of the present disclosure. 図14Aは、図13に示すテンプレートの第1凹部の第1態様の概略構成を示す切断端面図である。FIG. 14A is a cut end view showing a schematic configuration of a first aspect of the first recess of the template shown in FIG. 図14Bは、図13に示すテンプレートの第2凹部の第1態様の概略構成を示す切断端面図である。FIG. 14B is a cut end view showing a schematic configuration of a first aspect of the second recess of the template shown in FIG. 図14Cは、図13に示すテンプレートの第3凹部の第1態様の概略構成を示す切断端面図である。FIG. 14C is a cut end view showing a schematic configuration of a first aspect of the third recess of the template shown in FIG. 図15Aは、図13に示すテンプレートの第1凹部の第2態様の概略構成を示す切断端面図である。FIG. 15A is a cut end view showing a schematic configuration of a second aspect of the first recess of the template shown in FIG. 図15Bは、図13に示すテンプレートの第2凹部の第2態様の概略構成を示す切断端面図である。FIG. 15B is a cut end view showing a schematic configuration of a second aspect of the second recess of the template shown in FIG. 図15Cは、図13に示すテンプレートの第3凹部の第2態様の概略構成を示す切断端面図である。FIG. 15C is a cut end view showing a schematic configuration of a second aspect of the third recess of the template shown in FIG. 図16Aは、図13に示すテンプレートの第1凹部の第3態様の概略構成を示す切断端面図である。FIG. 16A is a cut end view showing a schematic configuration of a third aspect of the first recess of the template shown in FIG. 図16Bは、図13に示すテンプレートの第2凹部の第3態様の概略構成を示す切断端面図である。FIG. 16B is a cut end view showing a schematic configuration of a third aspect of the second recess of the template shown in FIG. 図16Cは、図13に示すテンプレートの第3凹部の第3態様の概略構成を示す切断端面図である。FIG. 16C is a cut end view showing a schematic configuration of a third aspect of the third recess of the template shown in FIG. 図17Aは、図13に示すテンプレートの凹部の底面に形成されている凹部の概略構成を示す切断端面図である。FIG. 17A is a cut end view showing a schematic configuration of a recess formed on the bottom surface of the recess of the template shown in FIG. 図17Bは、図13に示すテンプレートの凹部の底面に形成されている凹部の概略構成を示す切断端面図である。FIG. 17B is a cut end view showing a schematic configuration of the recess formed on the bottom surface of the recess of the template shown in FIG. 図17Cは、図13に示すテンプレートの凹部の底面に形成されている凹部の概略構成を示す切断端面図である。FIG. 17C is a cut end view showing a schematic configuration of the recess formed on the bottom surface of the recess of the template shown in FIG. 図18Aは、図13に示すテンプレートの凹部の底面に形成されている凹部の概略構成を示す斜視図である。FIG. 18A is a perspective view showing a schematic configuration of a recess formed on the bottom surface of the recess of the template shown in FIG. 図18Bは、図13に示すテンプレートの凹部の底面に形成されている凹部の概略構成を示す斜視図である。FIG. 18B is a perspective view showing a schematic configuration of the recess formed on the bottom surface of the recess of the template shown in FIG. 図18Cは、図13に示すテンプレートの凹部の底面に形成されている凹部の概略構成を示す斜視図である。FIG. 18C is a perspective view showing a schematic configuration of a recess formed on the bottom surface of the recess of the template shown in FIG. 図19Aは、図13に示すテンプレートの第1凹部の第4態様の概略構成を示す斜視図である。FIG. 19A is a perspective view showing a schematic configuration of a fourth aspect of the first recess of the template shown in FIG. 図19Bは、図13に示すテンプレートの第2凹部及び第3凹部の第4態様の概略構成を示す斜視図である。FIG. 19B is a perspective view showing a schematic configuration of a fourth aspect of the second recess and the third recess of the template shown in FIG. 図20は、本実施形態におけるチップ基板の概略構成を示す斜視図である。FIG. 20 is a perspective view showing a schematic configuration of a chip substrate in this embodiment. 図21Aは、本実施形態に係る素子転写用部材を用いた素子転写方法の一工程を概略的に示す切断端面図である。FIG. 21A is a cut end view schematically showing one step of the element transfer method using the element transfer member according to the present embodiment. 図21Bは、本実施形態に係る素子転写用部材を用いた素子転写方法の一工程を概略的に示す切断端面図である。FIG. 21B is a cut end view schematically showing one step of the element transfer method using the element transfer member according to the present embodiment. 図21Cは、本実施形態に係る素子転写用部材を用いた素子転写方法の一工程を概略的に示す切断端面図である。FIG. 21C is a cut end view schematically showing one step of the element transfer method using the element transfer member according to the present embodiment. 図21Dは、本実施形態に係る素子転写用部材を用いた素子転写方法の一工程を概略的に示す切断端面図である。FIG. 21D is a cut end view schematically showing one step of the element transfer method using the element transfer member according to the present embodiment. 図21Eは、本実施形態に係る素子転写用部材を用いた素子転写方法の一工程を概略的に示す切断端面図である。FIG. 21E is a cut end view schematically showing one step of the element transfer method using the element transfer member according to the present embodiment. 図21Fは、本実施形態に係る素子転写用部材を用いた素子転写方法の一工程を概略的に示す切断端面図である。FIG. 21F is a cut end view schematically showing one step of the element transfer method using the element transfer member according to the present embodiment. 図22は、本開示の一実施形態における第1素子保持部の他の態様の概略構成を示す斜視図である。FIG. 22 is a perspective view showing a schematic configuration of another aspect of the first element holding portion according to the embodiment of the present disclosure.

本開示の実施の形態について、図面を参照しながら説明する。
当該図面においては、理解を容易にするために、各部の形状、縮尺、縦横の寸法比等を、実物から変更したり、誇張したりして示している場合がある。本明細書等において「~」を用いて表される数値範囲は、「~」の前後に記載される数値のそれぞれを下限値及び上限値として含む範囲であることを意味する。本明細書等において、「フィルム」、「シート」、「板」等の用語は、呼称の相違に基づいて相互に区別されない。例えば、「板」は、「シート」、「フィルム」と一般に呼ばれ得るような部材をも含む概念である。
Embodiments of the present disclosure will be described with reference to the drawings.
In the drawings, in order to facilitate understanding, the shape, scale, aspect ratio, etc. of each part may be changed or exaggerated from the actual product. The numerical range represented by using "-" in the present specification and the like means a range including each of the numerical values described before and after "-" as a lower limit value and an upper limit value. In the present specification and the like, terms such as "film", "sheet", and "board" are not distinguished from each other based on the difference in designation. For example, "board" is a concept that includes members that can be generally called "sheet" or "film".

図1は、本実施形態に係る素子転写用部材を用いて製造され得るマイクロLEDチップを搭載した発光基板の概略構成を示す斜視図であり、図2A~2Dは、本実施形態に係る素子転写用部材の概略構成を示す平面図であり、図3は、図2AにおけるA-A線切断端面図である。 FIG. 1 is a perspective view showing a schematic configuration of a light emitting substrate on which a micro LED chip that can be manufactured using the element transfer member according to the present embodiment is mounted, and FIGS. 2A to 2D are element transfer according to the present embodiment. It is a plan view which shows the schematic structure of the member, and FIG. 3 is a cut end view of line AA in FIG. 2A.

本実施形態に係る素子転写用部材10は、マイクロLEDチップを搭載した発光基板を有する表示装置を製造するため、より具体的には当該発光基板にマイクロLEDチップを搭載するために用いられるものである。 The element transfer member 10 according to the present embodiment is used for manufacturing a display device having a light emitting substrate on which a micro LED chip is mounted, and more specifically for mounting the micro LED chip on the light emitting substrate. be.

本実施形態に係る素子転写用部材10を用いて製造される表示装置は、発光基板20と、発光基板20に対向して配置された拡散層と、拡散層の発光基板20に対向する側と逆側に位置する表示面とを有し、表示面に画像等を表示する。表示装置は、複数のLEDから発光された光を1つの画素として用いる、いわゆるマイクロLEDディスプレイである。本実施形態における表示装置は、発光基板20で発光した光を拡散層で拡散しているが、拡散層は省略されてもよい。 The display device manufactured by using the element transfer member 10 according to the present embodiment includes a light emitting substrate 20, a diffusion layer arranged to face the light emitting substrate 20, and a side of the diffusion layer facing the light emitting substrate 20. It has a display surface located on the opposite side, and displays an image or the like on the display surface. The display device is a so-called micro LED display that uses light emitted from a plurality of LEDs as one pixel. In the display device of the present embodiment, the light emitted by the light emitting substrate 20 is diffused by the diffusion layer, but the diffusion layer may be omitted.

発光基板20は、表示面に表示する画像を形成するための光を発光する基板である。発光基板20は、回路基板21と、回路基板21上に規則的に二次元配列された複数のマイクロLEDチップ22とを有する。回路基板21は、素子転写用部材10(図2A~2D、図3等を参照)を用いてマイクロLEDチップ22を転写する工程において、マイクロLEDチップ22を保持する素子転写用部材との間で位置決めするための位置決めマークを有する。回路基板21は、回路(図示を省略)を有し、各マイクロLEDチップ22が有する2つの電極を介して、各マイクロLEDチップ22と回路とが電気的に接続されている。回路に流れる電流を制御し、2つの電極の間に電圧を印加することで、任意のマイクロLEDチップ22を発光させることができる。マイクロLEDチップ22の発光の組み合わせにより、表示装置に表示される画像が形成される。 The light emitting substrate 20 is a substrate that emits light for forming an image to be displayed on the display surface. The light emitting board 20 has a circuit board 21 and a plurality of micro LED chips 22 regularly arranged two-dimensionally on the circuit board 21. The circuit board 21 is placed between the circuit board 21 and the element transfer member holding the micro LED chip 22 in the step of transferring the micro LED chip 22 using the element transfer member 10 (see FIGS. 2A to 2D, FIG. 3 and the like). It has a positioning mark for positioning. The circuit board 21 has a circuit (not shown), and each micro LED chip 22 and the circuit are electrically connected via two electrodes of each micro LED chip 22. By controlling the current flowing in the circuit and applying a voltage between the two electrodes, any micro LED chip 22 can emit light. The combination of light emission of the micro LED chip 22 forms an image displayed on the display device.

マイクロLEDチップ22から発光される光の波長は、マイクロLEDチップ22を構成する半導体材料等によって決定される。マイクロLEDチップ22は、例えば、GaAs系化合物半導体、InP系化合物半導体、GaN系化合物半導体等を含んでいればよい。平面視におけるマイクロLEDチップ22の寸法は、例えば、1辺が3μm~1000μm程度の矩形形状であればよく、マイクロLEDチップ22の厚さは、例えば、10μm~500μm程度であればよい。 The wavelength of the light emitted from the micro LED chip 22 is determined by the semiconductor material or the like constituting the micro LED chip 22. The micro LED chip 22 may include, for example, a GaAs-based compound semiconductor, an InP-based compound semiconductor, a GaN-based compound semiconductor, or the like. The dimensions of the micro LED chip 22 in a plan view may be, for example, a rectangular shape having a side of about 3 μm to 1000 μm, and the thickness of the micro LED chip 22 may be, for example, about 10 μm to 500 μm.

本実施形態において、マイクロLEDチップ22は、波長域620nm~680nmの赤色光を発光する第1LEDチップ221と、波長域530nm~570nmの緑色光を発光する第2LEDチップ222と、波長域440nm~480nmの青色光を発光する第3LEDチップ223とを含む。 In the present embodiment, the micro LED chip 22 includes a first LED chip 221 that emits red light having a wavelength range of 620 nm to 680 nm, a second LED chip 222 that emits green light having a wavelength range of 530 nm to 570 nm, and a wavelength range of 440 nm to 480 nm. Includes a third LED chip 223 that emits blue light.

一方向に隣接して並列された第1LEDチップ221、第2LEDチップ222及び第3LEDチップ223が、表示装置の一つの画素(ピクセル)を形成し、第1LEDチップ221、第2LEDチップ222及び第3LEDチップ223のそれぞれが、表示装置の一つの副画素(サブピクセル)を形成している。これにより、表示装置は、フルカラーで表示する画像を形成可能な光を発光することができる。 The first LED chip 221 and the second LED chip 222 and the third LED chip 223 arranged side by side in one direction form one pixel of the display device, and the first LED chip 221 and the second LED chip 222 and the third LED Each of the chips 223 forms one sub-pixel of the display device. As a result, the display device can emit light capable of forming an image to be displayed in full color.

発光基板20は、回路基板21の回路が形成された位置にマイクロLEDチップ22を配置することで製造され得る。後述する本実施形態に係る素子転写用部材10を用いることで、複数のマイクロLEDチップ22が配置された発光基板20を高い生産性で製造することができる。 The light emitting board 20 can be manufactured by arranging the micro LED chip 22 at a position where the circuit of the circuit board 21 is formed. By using the element transfer member 10 according to the present embodiment described later, it is possible to manufacture the light emitting substrate 20 in which a plurality of micro LED chips 22 are arranged with high productivity.

素子転写用部材10は、第1面11A及びそれの反対側に位置する第2面11Bを有する基材11と、基材11の第1面11A上に位置する基部12と、基部12から突出する凸構造として構成される複数の素子保持部13とを備える(図3参照)。各素子保持部13は、マイクロLEDチップ22が接触可能な素子保持面14を有する。本実施形態に係る素子転写用部材10によれば、複数の素子保持部13を備えることで、複数の素子保持部13の素子保持面14にそれぞれに保持されたマイクロLEDチップ22を同時に一括して発光基板20に転写することができる。 The element transfer member 10 has a base material 11 having a first surface 11A and a second surface 11B located on the opposite side thereof, a base portion 12 located on the first surface 11A of the base material 11, and a protrusion from the base portion 12. It is provided with a plurality of element holding portions 13 configured as a convex structure (see FIG. 3). Each element holding portion 13 has an element holding surface 14 to which the micro LED chip 22 can come into contact. According to the element transfer member 10 according to the present embodiment, by providing the plurality of element holding portions 13, the micro LED chips 22 held on the element holding surfaces 14 of the plurality of element holding units 13 are collectively collectively held at the same time. Can be transferred to the light emitting substrate 20.

基材11は、基部12及び複数の素子保持部13を支持可能な部材であって、例えば、石英ガラス基板、ソーダガラス基板、蛍石基板、フッ化カルシウム基板、フッ化マグネシウム基板、バリウムホウケイ酸ガラス、アミノホウケイ酸ガラス、アルミノケイ酸ガラス等の無アルカリガラス基板等のガラス基板;ポリカーボネート基板、ポリプロピレン基板、ポリエチレン基板、ポリメチルメタクリレート基板、ポリエチレンテレフタレート基板等の樹脂基板;これらのうちから任意に選択された2以上の基板を積層してなる積層基板等の透明基板等により構成されていればよい。基材11が透明であることで、素子転写用部材10がマイクロLEDチップ22を保持するときにおける素子転写用部材10とチップ基板40(図20参照)との位置合わせや、素子転写用部材10が保持したマイクロLEDチップ22を回路基板21に転写するときにおける素子転写用部材10と回路基板21との位置合わせなどを容易に行うことができる。なお、本実施形態において「透明」とは、基材11の一方側(例えば第1面11A側)から他方側(例えば第2面11B側)を透視し得る程度の透明性を有していることを意味し、例えば、可視光線の透過率(可視光透過率)が30%以上、好ましくは70%以上である。可視光透過率は、JIS-K-0115に準拠する分光光度計(株式会社島津製作所製社製,製品名:UV-3100PC)を用いて測定波長380nm~780nmの範囲内で測定したときの、各波長における透過率の平均値として求められ得る。後述するように、基部12及び素子保持部13は、相対的に柔らかい(硬度の低い)材料により構成される。基材11を構成する材料の硬度は、基部12及び素子保持部13の構成材料の硬度よりも高いのが好ましい。 The base material 11 is a member capable of supporting the base portion 12 and the plurality of element holding portions 13, and is, for example, a quartz glass substrate, a soda glass substrate, a fluorite substrate, a calcium fluoride substrate, a magnesium fluoride substrate, and barium borosilicate. Glass substrate such as non-alkali glass substrate such as glass, aminoborosilicate glass, aluminosilicate glass; resin substrate such as polycarbonate substrate, polypropylene substrate, polyethylene substrate, polymethylmethacrylate substrate, polyethylene terephthalate substrate; arbitrarily selected from these It may be composed of a transparent substrate such as a laminated substrate obtained by laminating two or more of the above substrates. Since the base material 11 is transparent, the element transfer member 10 can be aligned with the chip substrate 40 (see FIG. 20) when the element transfer member 10 holds the micro LED chip 22, and the element transfer member 10 can be aligned. It is possible to easily align the element transfer member 10 and the circuit board 21 when transferring the micro LED chip 22 held by the circuit board 21 to the circuit board 21. In addition, in this embodiment, "transparent" has transparency to the extent that one side (for example, the first surface 11A side) of the base material 11 can be seen through the other side (for example, the second surface 11B side). That is, for example, the transmittance of visible light (visible light transmittance) is 30% or more, preferably 70% or more. The visible light transmittance was measured within the measurement wavelength range of 380 nm to 780 nm using a spectrophotometer (manufactured by Shimadzu Corporation, product name: UV-3100PC) compliant with JIS-K-0115. It can be obtained as the average value of the transmittance at each wavelength. As will be described later, the base portion 12 and the element holding portion 13 are made of a relatively soft (low hardness) material. The hardness of the material constituting the base material 11 is preferably higher than the hardness of the constituent materials of the base portion 12 and the element holding portion 13.

基材11の平面視における大きさは、特に限定されるものではないが、例えば、マイクロLEDチップ22が転写・搭載される回路基板21の大きさよりも小さくてもよいし、当該回路基板21の大きさ以上であってもよく、複数のマイクロLEDチップ22を有するチップ基板40(図20参照)よりも小さくてもよいし、大きくてもよい。基材11の大きさが相対的に大きいことで、回路基板21へのマイクロLEDチップ22の転写回数を少なくすることができ、回路基板21やマイクロLEDディスプレイの生産性を高めることができる。基材11の厚さは、強度、取り扱い適性等を考慮し、例えば、0.2mm~3.0mm程度の範囲で適宜設定され得る。 The size of the base material 11 in a plan view is not particularly limited, but may be smaller than the size of the circuit board 21 on which the micro LED chip 22 is transferred and mounted, or the circuit board 21 may be smaller. It may be larger than the size, and may be smaller or larger than the chip substrate 40 (see FIG. 20) having a plurality of micro LED chips 22. Since the size of the base material 11 is relatively large, the number of times the micro LED chip 22 is transferred to the circuit board 21 can be reduced, and the productivity of the circuit board 21 and the micro LED display can be increased. The thickness of the base material 11 can be appropriately set in the range of, for example, about 0.2 mm to 3.0 mm in consideration of strength, handling suitability, and the like.

素子保持部13は、基材11の第1面11A上において、回路基板21におけるマイクロLEDチップ22が配列されるべき位置に対応するように、規則的に二次元配列されている。素子保持部13の配列間隔及び配列パターンは、回路基板21上において配列されるべき複数のマイクロLEDチップ22の配列間隔及び配列パターンに対応している。素子保持部13は、第1方向D1に沿って第1ピッチP1で、第1方向D1に交差する方向(図示例においては直交方向)である第2方向D2に沿って第2ピッチP2で配列されている。第1ピッチP1は、回路基板21の第1方向D1におけるマイクロLEDチップ22のピッチ(隣接するマイクロLEDチップ22の中心間の距離)の整数倍であればよい。第2ピッチP2は、回路基板21の第2方向D2におけるマイクロLEDチップ22のピッチの整数倍であればよい。 The element holding portions 13 are regularly arranged two-dimensionally on the first surface 11A of the base material 11 so as to correspond to the positions where the micro LED chips 22 on the circuit board 21 should be arranged. The arrangement spacing and arrangement pattern of the element holding unit 13 correspond to the arrangement spacing and arrangement pattern of the plurality of micro LED chips 22 to be arranged on the circuit board 21. The element holding portions 13 are arranged at the first pitch P1 along the first direction D1 and at the second pitch P2 along the second direction D2 which is the direction intersecting the first direction D1 (orthogonal direction in the illustrated example). Has been done. The first pitch P1 may be an integral multiple of the pitch of the micro LED chips 22 (distance between the centers of the adjacent micro LED chips 22) in the first direction D1 of the circuit board 21. The second pitch P2 may be an integral multiple of the pitch of the micro LED chip 22 in the second direction D2 of the circuit board 21.

複数の素子保持部13は、基材11の第1面11A側を区分した複数の領域のそれぞれに位置している。例えば、図2Aに示すように、複数の領域は、基材11の第1面11A側を同心形状(同心矩形状)で区分した複数の領域であって、基材11の最外縁に位置する矩形環状の第1領域A1と、第1領域A1の内側に位置する矩形環状の第2領域A2と、基材11の中心に位置する矩形状の第3領域A3とを含むものであってもよい。第1~第3領域A1~A3のそれぞれに少なくとも一つの素子保持部13が位置していればよい。本実施形態において、第1領域A1には複数の第1素子保持部131が位置し、第2領域A2には複数の第2素子保持部132が位置し、第3領域A3には複数の第3素子保持部133が位置している。なお、上記領域の数は特に限定されるものではない。 The plurality of element holding portions 13 are located in each of the plurality of regions that divide the first surface 11A side of the base material 11. For example, as shown in FIG. 2A, the plurality of regions are a plurality of regions in which the first surface 11A side of the base material 11 is divided into concentric shapes (concentric rectangular shapes), and are located at the outermost edge of the base material 11. Even if it includes a rectangular annular first region A1, a rectangular annular second region A2 located inside the first region A1, and a rectangular third region A3 located in the center of the substrate 11. good. It is sufficient that at least one element holding portion 13 is located in each of the first to third regions A1 to A3. In the present embodiment, a plurality of first element holding portions 131 are located in the first region A1, a plurality of second element holding portions 132 are located in the second region A2, and a plurality of second elements are located in the third region A3. The three-element holding unit 133 is located. The number of the above areas is not particularly limited.

本実施形態において、複数の領域は、同心形状でなくてもよい。例えば、図2Bに示すように、複数の領域は、基材11の最外縁に位置するコの字状の第1領域A1と、第1領域A1の内側に位置するコの字状の第2領域A2と、第2領域A2の内側に位置する矩形状の第3領域A3とを含んでいてもよい。また、図2Cに示すように、複数の領域は、基材11の最外縁に位置するL字状の第1領域A1と、第1領域A1の内側に位置するL字状の第2領域A2と、第2領域A2の内側に位置する矩形状の第3領域A3とを含んでいてもよい。図2B及び図2Cに示す態様において、図2Aに示す態様と同様に、第1領域A1に複数の第1素子保持部131が位置し、第2領域A2に複数の第2素子保持部132が位置し、第3領域A3に複数の第3素子保持部133が位置していればよい。図2Aに示す態様において、第1領域A1は基材11の第1面11Aの最外縁に位置する領域であり、第2領域A2は第1領域A1に囲まれ、第1領域A1の内側に位置する領域であり、第3領域A3は第2領域A2に囲まれ、第2領域A2の内側に位置する領域であるが、この態様に限定されるものではない。図2B及び図2Cに示すように、第1領域A1は基材11の第1面11Aの最外縁に位置する領域であるが、第2領域A2の一部分や第3領域A3の一部分も基材11の第1面11Aの最外縁に位置し、第2領域A2の他の部分は第1領域A1よりも内側に位置し、第3領域A3の他の部分は第2領域A2よりも内側に位置していてもよい。 In this embodiment, the plurality of regions do not have to be concentric. For example, as shown in FIG. 2B, the plurality of regions are a U-shaped first region A1 located at the outermost edge of the base material 11 and a U-shaped second region located inside the first region A1. A region A2 and a rectangular third region A3 located inside the second region A2 may be included. Further, as shown in FIG. 2C, the plurality of regions include an L-shaped first region A1 located at the outermost edge of the base material 11 and an L-shaped second region A2 located inside the first region A1. And a rectangular third region A3 located inside the second region A2 may be included. In the embodiment shown in FIGS. 2B and 2C, similarly to the embodiment shown in FIG. 2A, a plurality of first element holding portions 131 are located in the first region A1, and a plurality of second element holding portions 132 are located in the second region A2. It suffices that a plurality of third element holding portions 133 are located in the third region A3. In the embodiment shown in FIG. 2A, the first region A1 is a region located on the outermost edge of the first surface 11A of the base material 11, and the second region A2 is surrounded by the first region A1 and inside the first region A1. It is a region to be located, and the third region A3 is a region surrounded by the second region A2 and located inside the second region A2, but is not limited to this embodiment. As shown in FIGS. 2B and 2C, the first region A1 is a region located on the outermost edge of the first surface 11A of the base material 11, but a part of the second region A2 and a part of the third region A3 are also base materials. Located on the outermost edge of the first surface 11A of 11, the other portion of the second region A2 is located inside the first region A1 and the other portion of the third region A3 is inside the second region A2. It may be located.

さらに、図2Dに示すように、複数の領域は、基材11の中心に位置する矩形状の第5領域A5と、第5領域A5の周囲を囲む矩形環状の第1~第4領域A1~A4とを含み、複数の領域のうちの一の領域と他の領域とが互いに非同心形状であってもよい。例えば、第4領域A4及び第5領域A5は同心形状であるが、第2領域A2及び第3領域A3は第4領域A4及び第5領域A5と非同心形状である。図2Dに示す態様において、第1領域A1に複数の第1素子保持部131が位置し、第2領域A2に複数の第2素子保持部132が位置し、第3領域A3に複数の第3素子保持部133が位置し、第4領域A4に複数の第4素子保持部134が位置し、第5領域A5に複数の第5素子保持部135が位置していればよい。 Further, as shown in FIG. 2D, the plurality of regions are a rectangular fifth region A5 located at the center of the base material 11 and a rectangular annular first to fourth regions A1 to surrounding the fifth region A5. Including A4, one region of a plurality of regions and the other region may have a non-concentric shape with each other. For example, the fourth region A4 and the fifth region A5 are concentric, but the second region A2 and the third region A3 are non-concentric with the fourth region A4 and the fifth region A5. In the embodiment shown in FIG. 2D, a plurality of first element holding portions 131 are located in the first region A1, a plurality of second element holding portions 132 are located in the second region A2, and a plurality of third elements are located in the third region A3. It suffices that the element holding portion 133 is located, the plurality of fourth element holding portions 134 are located in the fourth region A4, and the plurality of fifth element holding portions 135 are located in the fifth region A5.

本実施形態において、第1領域A1に位置する第1素子保持部131の素子保持面14と、第1領域A1よりも基材11の内側に位置する第2領域A2に位置する第2素子保持部132の素子保持面14とを比較したときに、第1素子保持部131の素子保持面14は、第2素子保持部132の素子保持面14よりも、素子保持面14に保持されたマイクロLEDチップ22が転写されやすいように構成されている。また、第2領域A2に位置する第2素子保持部132の素子保持面14と、第2領域A2よりも基材11の内側に位置する第3領域A3に位置する第3素子保持部133の素子保持面14とを比較したときに、第2素子保持部132の素子保持面14は、第3素子保持部133の素子保持面14よりも、素子保持面14に保持されたマイクロLEDチップ22が転写されやすいように構成されている。図2Dに示す態様においてはさらに、第3素子保持部133の素子保持面14は、第4素子保持部134の素子保持面14よりもマイクロLEDチップ22が転写されやすいように構成され、第4素子保持部134の素子保持面14は、第5素子保持部135の素子保持面14よりもマイクロLEDチップ22が転写されやすいように構成されている。すなわち、基材11の第1面11Aの平面視において、外側に位置する素子保持部13の素子保持面14が、それよりも内側に位置する素子保持部13の素子保持面14よりも、保持したマイクロLEDチップ22が離れやすいように構成されている。これにより、本実施形態に係る素子転写用部材10を用いてマイクロLEDチップ22を回路基板21に転写する際に、素子転写用部材10からマイクロLEDチップ22が回路基板21に転写されないという転写欠陥が発生するのを抑制することができる。 In the present embodiment, the element holding surface 14 of the first element holding portion 131 located in the first region A1 and the second element holding located in the second region A2 located inside the base material 11 with respect to the first region A1. When compared with the element holding surface 14 of the unit 132, the element holding surface 14 of the first element holding unit 131 is held by the element holding surface 14 rather than the element holding surface 14 of the second element holding unit 132. The LED chip 22 is configured to be easily transferred. Further, the element holding surface 14 of the second element holding portion 132 located in the second region A2 and the third element holding portion 133 located in the third region A3 located inside the base material 11 from the second region A2. When compared with the element holding surface 14, the element holding surface 14 of the second element holding unit 132 is held by the element holding surface 14 rather than the element holding surface 14 of the third element holding unit 133. Is configured to be easily transferred. Further, in the embodiment shown in FIG. 2D, the element holding surface 14 of the third element holding unit 133 is configured so that the micro LED chip 22 is more easily transferred than the element holding surface 14 of the fourth element holding unit 134. The element holding surface 14 of the element holding unit 134 is configured so that the micro LED chip 22 is more easily transferred than the element holding surface 14 of the fifth element holding unit 135. That is, in the plan view of the first surface 11A of the base material 11, the element holding surface 14 of the element holding portion 13 located on the outside is held more than the element holding surface 14 of the element holding portion 13 located on the inner side. The micro LED chip 22 is configured so that it can be easily separated. As a result, when the micro LED chip 22 is transferred to the circuit board 21 using the element transfer member 10 according to the present embodiment, the micro LED chip 22 is not transferred from the element transfer member 10 to the circuit board 21. Can be suppressed from occurring.

このように、複数の領域のそれぞれに位置する素子保持部13は、素子保持面14に保持されたマイクロLEDチップ22の転写されやすさ(易転写性)が異なるように構成されている。素子転写用部材10を用いてマイクロLEDチップ22を回路基板21に転写する際、例えば、基材11の第2面11Bに対する鉛直方向に沿って素子転写用部材10を引っ張って回路基板21から引き離す。このように素子転写用部材10を引っ張ると、基材11の中心が下方に撓むように変形する。これにより、基材11の第1面11Aの最外縁の第1領域A1に位置する第1素子保持部131に保持されているマイクロLEDチップ22が最初に転写され、基材11の第1面11Aの中心に向かってマイクロLEDチップ22が順に転写され、第3領域A3に位置する第3素子保持部133に保持されているマイクロLEDチップ22が最後に転写される。その結果として、転写欠陥の発生を抑制することができる。 As described above, the element holding portions 13 located in each of the plurality of regions are configured so that the ease of transfer (easy transferability) of the micro LED chip 22 held on the element holding surface 14 is different. When the micro LED chip 22 is transferred to the circuit board 21 using the element transfer member 10, for example, the element transfer member 10 is pulled away from the circuit board 21 along the vertical direction with respect to the second surface 11B of the base material 11. .. When the element transfer member 10 is pulled in this way, the center of the base material 11 is deformed so as to bend downward. As a result, the micro LED chip 22 held by the first element holding portion 131 located in the first region A1 on the outermost edge of the first surface 11A of the base material 11 is first transferred, and the first surface of the base material 11 is transferred. The micro LED chips 22 are sequentially transferred toward the center of 11A, and the micro LED chips 22 held by the third element holding unit 133 located in the third region A3 are finally transferred. As a result, the occurrence of transfer defects can be suppressed.

また、基材11の一辺からそれに対向する辺に向かって素子転写用部材10を回路基板21から引き離すようにしてもよい。例えば、図2Bに示す態様において、図2Bの紙面上における基材11の上側の辺を最初に引き離し、基材11の下側の辺に向かって引き離していくと、第1領域A1のうちの上側に位置する第1素子保持部131に保持されているマイクロLEDチップ22が最初に転写され、第3領域A3に位置する第3素子保持部133に保持されているマイクロLEDチップ22が最後に転写される。この場合において、基材11の第1面11Aが、素子転写用部材10から最初に転写されるコの字状の第1領域A1と、第1領域A1の次に転写されるコの字状の第2領域A2と、最後に転写される矩形状の第3領域A3との複数の領域に区分され(図2B参照)、マイクロLEDチップ22が転写される順に易転写性が異なっていることによって、転写欠陥の発生を抑制することができる。 Further, the element transfer member 10 may be separated from the circuit board 21 from one side of the base material 11 toward the side facing the base material 11. For example, in the embodiment shown in FIG. 2B, when the upper side of the base material 11 on the paper surface of FIG. 2B is first separated and then separated toward the lower side of the base material 11, the first region A1 is separated. The micro LED chip 22 held in the first element holding portion 131 located on the upper side is transferred first, and the micro LED chip 22 held in the third element holding portion 133 located in the third region A3 is finally transferred. Transferred. In this case, the first surface 11A of the base material 11 has a U-shaped first region A1 first transferred from the element transfer member 10, and a U-shaped region A1 transferred next to the first region A1. The second region A2 and the rectangular third region A3 to be transferred last are divided into a plurality of regions (see FIG. 2B), and the easy transferability is different in the order in which the micro LED chip 22 is transferred. Therefore, the occurrence of transfer defects can be suppressed.

さらに、基材11の一つの角から、それに対向する角に向かって素子転写用部材10を回路基板21から引き離すようにしてもよい。例えば、図2Cに示す態様において、図2Cの紙面上における基材11の左上の角から最初に引き離し、基材11の右下の角に向かって引き離していくと、第1領域A1に位置する第1素子保持部131に保持されているマイクロLEDチップ22が最初に転写され、第3領域A3に位置する第3素子保持部133に保持されているマイクロLEDチップ22が最後に転写される。この場合において、基材11の第1面11Aが、素子転写用部材10から最初に転写されるL字状の第1領域A1と、第1領域A1の次に転写されるL字状の第2領域A2と、最後に転写される矩形状の第3領域A3との複数の領域に区分され(図2C参照)、マイクロLEDチップ22が転写される順に易転写性が異なっていることによって、転写欠陥の発生を抑制することができる。 Further, the element transfer member 10 may be separated from the circuit board 21 from one corner of the base material 11 toward the angle facing the corner. For example, in the embodiment shown in FIG. 2C, when the base material 11 is first pulled away from the upper left corner of the base material 11 on the paper surface of FIG. 2C and then pulled away toward the lower right corner of the base material 11, it is located in the first region A1. The micro LED chip 22 held in the first element holding portion 131 is transferred first, and the micro LED chip 22 held in the third element holding portion 133 located in the third region A3 is finally transferred. In this case, the first surface 11A of the base material 11 is the L-shaped first region A1 first transferred from the element transfer member 10, and the L-shaped first region A1 transferred next to the first region A1. The two regions A2 and the rectangular third region A3 to be transferred last are divided into a plurality of regions (see FIG. 2C), and the easy transferability is different in the order in which the micro LED chip 22 is transferred. The occurrence of transfer defects can be suppressed.

なお、基材11の第2面11Bに対する鉛直方向に沿って素子転写用部材10を引っ張って回路基板21から引き離したとしても、素子転写用部材10を引っ張る方向のずれや、各素子保持部13の素子保持面14における保持力の相違によって、必ずしも基材11の第1面11Aの最外縁から中心に向かって順にマイクロLEDチップ22が転写されるとは限らない。例えば、最後に転写されるマイクロLEDチップ22が、基材11の第1面11Aの中心よりも外側に位置する素子保持部13の素子保持面14に保持されているものである場合もある。このような場合において、図2Dに示す態様のように、矩形状の第5領域A5を基材11の中心から偏心させ、その周囲に位置する矩形環状の各領域(第1~第4領域A1~A4)を、実際にマイクロLEDチップ22が転写される順に則して設定することで、転写欠陥の発生を抑制することができる。 Even if the element transfer member 10 is pulled away from the circuit board 21 by pulling the element transfer member 10 along the vertical direction with respect to the second surface 11B of the base material 11, the element transfer member 10 is displaced in the pulling direction and each element holding portion 13 is used. The micro LED chip 22 is not always transferred in order from the outermost edge of the first surface 11A of the base material 11 toward the center due to the difference in the holding force of the element holding surface 14. For example, the micro LED chip 22 to be transferred last may be held on the element holding surface 14 of the element holding portion 13 located outside the center of the first surface 11A of the base material 11. In such a case, as shown in FIG. 2D, the rectangular fifth region A5 is eccentric from the center of the base material 11, and each rectangular annular region (first to fourth regions A1) located around the center of the base material 11 is eccentric. By setting ~ A4) according to the order in which the micro LED chips 22 are actually transferred, the occurrence of transfer defects can be suppressed.

素子保持部13の素子保持面14の構成と、保持されたマイクロLEDチップ22の転写されやすさ(易転写性)との関係について説明する。図4は、基材11の第1面11Aを区分した各領域(第1~第3領域A1~A3)に位置する素子保持部13と、その素子保持面14の構成に起因する上記易転写性との関係を示すグラフであって、縦軸が「素子保持部13の素子保持面14によるマイクロLEDチップ22の保持力(N)」を表し、横軸が「各領域」を表す。 The relationship between the configuration of the element holding surface 14 of the element holding unit 13 and the ease of transfer (easy transferability) of the held micro LED chip 22 will be described. FIG. 4 shows the easy transfer due to the configuration of the element holding portion 13 located in each region (first to third regions A1 to A3) in which the first surface 11A of the base material 11 is divided and the element holding surface 14 thereof. In the graph showing the relationship with the property, the vertical axis represents "holding force (N) of the micro LED chip 22 by the element holding surface 14 of the element holding portion 13", and the horizontal axis represents "each region".

図4のグラフに示されるように、基材11の第1面11Aにおける外側の領域(例えば第1領域A1)に位置する素子保持部13(第1素子保持部131)の素子保持面14は、それよりも内側の領域(例えば第2領域A2)に位置する素子保持部13(第2素子保持部132)の素子保持面14よりも、保持されたマイクロLEDチップ22が転写されやすい構成、すなわち低い保持力を有する。しかしながら、当該外側の領域(例えば第1領域A1)に位置するすべての素子保持部13(第1素子保持部131)の素子保持面14は、互いに異なる保持力を有する場合がある。この場合において、当該外側の領域(例えば第1領域A1)に位置するすべての素子保持部13(第1素子保持部131)の素子保持面14の保持力のうちの最大値が、その内側の領域(例えば第1領域A1)に位置するすべての素子保持部13(第2素子保持部132)の素子保持面14の保持力のうちの最小値以下であることが好ましく、当該最小値よりも小さいことが特に好ましい。 As shown in the graph of FIG. 4, the element holding surface 14 of the element holding portion 13 (first element holding portion 131) located in the outer region (for example, the first region A1) of the first surface 11A of the base material 11 is The structure is such that the held micro LED chip 22 is more easily transferred than the element holding surface 14 of the element holding portion 13 (second element holding portion 132) located in the inner region (for example, the second region A2). That is, it has a low holding power. However, the element holding surfaces 14 of all the element holding portions 13 (first element holding portions 131) located in the outer region (for example, the first region A1) may have different holding forces from each other. In this case, the maximum value of the holding force of the element holding surface 14 of all the element holding portions 13 (first element holding portion 131) located in the outer region (for example, the first region A1) is the inner one. It is preferably equal to or less than the minimum value of the holding force of the element holding surface 14 of all the element holding portions 13 (second element holding unit 132) located in the region (for example, the first region A1), and is higher than the minimum value. Small is especially preferred.

一方で、図4のグラフにおいて第1領域A1の黒塗りされたプロット(●)と第2領域A2の黒塗りされたプロット(◆)とで示されるように、例えば、基材11の第1面11Aにおける外側の領域(例えば第1領域A1)に位置する一部の素子保持部13の素子保持面14は、それよりも内側の領域(例えば第2領域)に位置する一部の素子保持部13の素子保持面14よりも、保持されたマイクロLEDチップ22が転写され難い構成、すなわち高い保持力を有していてもよい。このような場合であったとしても、本実施形態に係る素子転写用部材10の全体としては、基材11の第1面11Aの中心の領域から外側の領域に向かって、素子保持部13の素子保持面14が、保持したマイクロLEDチップ22が転写されやすい傾向を有していればよい。具体的には、図4に示すグラフにおいて、各領域に位置する素子保持部13の素子保持面14の易転写性をプロットし、このプロットを最小二乗法で近似したときに求められる回帰直線が、最も外側の領域(例えば第1領域A1)から最も内側の領域(例えば第3領域A3)に向かって正の傾きを有していればよい。 On the other hand, as shown by the black-painted plot (●) of the first region A1 and the black-painted plot (◆) of the second region A2 in the graph of FIG. 4, for example, the first base material 11. The element holding surface 14 of a part of the element holding portion 13 located in the outer region (for example, the first region A1) of the surface 11A is a part of the element holding located in the inner region (for example, the second region). The micro LED chip 22 held may be more difficult to transfer than the element holding surface 14 of the unit 13, that is, it may have a higher holding force. Even in such a case, as a whole of the element transfer member 10 according to the present embodiment, the element holding portion 13 of the element holding portion 13 is directed from the central region of the first surface 11A of the base material 11 toward the outer region. It suffices that the element holding surface 14 has a tendency for the held micro LED chip 22 to be easily transferred. Specifically, in the graph shown in FIG. 4, the regression line obtained when the easy transferability of the element holding surface 14 of the element holding unit 13 located in each region is plotted and this plot is approximated by the least squares method is obtained. , It suffices to have a positive slope from the outermost region (eg, first region A1) to the innermost region (eg, third region A3).

なお、上記外側領域(例えば第1領域A1)の素子保持部13(例えば第1素子保持部131)の素子保持面14の保持力がそれよりも内側の領域(例えば第2領域A2)の素子保持部13(例えば第2素子保持部132)の素子保持面14の保持力以上である場合において、それらの保持力の比は、1:1~2:1程度であればよい。 It should be noted that the holding force of the element holding surface 14 of the element holding portion 13 (for example, the first element holding portion 131) of the outer region (for example, the first region A1) is an element in the region inside the element holding portion (for example, the second region A2). When the holding force of the element holding surface 14 of the holding portion 13 (for example, the second element holding portion 132) is equal to or higher than that of the holding force, the ratio of the holding forces thereof may be about 1: 1 to 2: 1.

素子保持部13の素子保持面14の構成について説明する。なお、本実施形態においては、第1領域A1に位置する第1素子保持部131の素子保持面14の保持力が最小であり、第3領域A3に位置する第3素子保持部133の素子保持面14の保持力が最大であり、第2領域A2に位置する第2素子保持部132の素子保持面14の保持力が、それらの中間の値であるものとして説明する。 The configuration of the element holding surface 14 of the element holding unit 13 will be described. In this embodiment, the holding force of the element holding surface 14 of the first element holding portion 131 located in the first region A1 is the minimum, and the element holding of the third element holding portion 133 located in the third region A3 is held. It is assumed that the holding force of the surface 14 is the maximum, and the holding force of the element holding surface 14 of the second element holding portion 132 located in the second region A2 is an intermediate value between them.

図5A~5Cに示すように、第1~第3素子保持部131~133の素子保持面14は、凹部151及び凸部152を含む凹凸構造15を有する。各素子保持面14が有する凸部152の頂部153が、保持されるマイクロLEDチップ22に接触する部位である。第1素子保持部131の素子保持面14に位置する凸部152の頂部153の総面積S1と、第2素子保持部132の素子保持面14に位置する凸部152の頂部153の総面積S2と、第3素子保持部133の素子保持面14に位置する凸部152の頂部153の総面積S3とは、下記式(1)~(3)に示す関係を有しているのが好ましい。なお、凸部152の頂部153の面積とは、素子保持部13の素子保持面14の上にマイクロLEDチップ22が保持された状態において、凸部152の頂部153がマイクロLEDチップ22に接触する面積を意味し、凸部152の頂部153の総面積S1~S3は、素子保持面14の凸部152の頂部153のうちマイクロLEDチップ22に接触する頂部153の面積の合計である。凸部152の頂部153の面積は、例えば光学顕微鏡やSEM等を用いて直接計測されてもよい。また、凸部152の頂部153の総面積S1~S3は、光学顕微鏡やSEM等を用いて素子保持部13の画像を取得し、当該画像における所定の閾値以上又は以下の明るさの画素数の計測により求められてもよい。
S1<S3 ・・・(1)
S1≦S2 ・・・(2)
S2≦S3 ・・・(3)
As shown in FIGS. 5A to 5C, the element holding surfaces 14 of the first to third element holding portions 131 to 133 have a concave-convex structure 15 including a concave portion 151 and a convex portion 152. The top portion 153 of the convex portion 152 of each element holding surface 14 is a portion that comes into contact with the held micro LED chip 22. The total area S1 of the top portion 153 of the convex portion 152 located on the element holding surface 14 of the first element holding portion 131 and the total area S2 of the top portion 153 of the convex portion 152 located on the element holding surface 14 of the second element holding portion 132. And, it is preferable that the total area S3 of the top portion 153 of the convex portion 152 located on the element holding surface 14 of the third element holding portion 133 has the relationship shown in the following formulas (1) to (3). The area of the top portion 153 of the convex portion 152 means that the top portion 153 of the convex portion 152 comes into contact with the micro LED chip 22 in a state where the micro LED chip 22 is held on the element holding surface 14 of the element holding portion 13. The area is meant, and the total area S1 to S3 of the top 153 of the convex portion 152 is the total area of the top 153 of the top 153 of the convex portion 152 of the element holding surface 14 that comes into contact with the micro LED chip 22. The area of the top portion 153 of the convex portion 152 may be directly measured using, for example, an optical microscope or an SEM. Further, for the total area S1 to S3 of the top portion 153 of the convex portion 152, an image of the element holding portion 13 is acquired by using an optical microscope, SEM, or the like, and the number of pixels having a brightness equal to or lower than a predetermined threshold value in the image is obtained. It may be obtained by measurement.
S1 <S3 ... (1)
S1 ≤ S2 ... (2)
S2 ≤ S3 ... (3)

素子保持部13の素子保持面14におけるマイクロLEDチップ22の保持力は、素子保持面14とマイクロLEDチップ22との接触面積と相関関係を有する。そのため、総面積S1が最小値であり、総面積S3が最大値であり、総面積S2がそれらの間の値であることで、第1素子保持部131の素子保持面14に保持されたマイクロLEDチップ22が最も転写されやすく、第3素子保持部133の素子保持面14に保持されたマイクロLEDチップ22が最も転写され難いという関係にすることができる。 The holding force of the micro LED chip 22 on the element holding surface 14 of the element holding portion 13 has a correlation with the contact area between the element holding surface 14 and the micro LED chip 22. Therefore, the total area S1 is the minimum value, the total area S3 is the maximum value, and the total area S2 is a value between them, so that the micro is held on the element holding surface 14 of the first element holding portion 131. The LED chip 22 is most easily transferred, and the micro LED chip 22 held on the element holding surface 14 of the third element holding unit 133 can be most difficult to be transferred.

第1~第3素子保持部131~133の素子保持面14の凸部152の数や凸部152の頂部153の面積を調整することにより、上記関係を成立させればよい。例えば、図5A~5Cに示すように、第1~第3素子保持部131~133の素子保持面14の各凸部152の頂部153の面積を同一とし、各素子保持部13が有する凸部152の数を異ならせればよい。具体的には、第1素子保持部131の素子保持面14が有する凸部152の数を最も少なくし(図5A参照)、第3素子保持部133の素子保持面14が有する凸部152の数を最も多くすればよい(図5C参照)。第2素子保持部132の素子保持面14が有する凸部152の数は、第1素子保持部131の素子保持面14が有する凸部152の数又は第3素子保持部133の素子保持面14が有する凸部152の数と同一であってもよいが、第1素子保持部131の素子保持面14が有する凸部152の数よりも多く、第3素子保持部133の素子保持面14が有する凸部152の数よりも少ないのが好ましい(図5B参照)。 The above relationship may be established by adjusting the number of the convex portions 152 of the element holding surfaces 14 of the first to third element holding portions 131 to 133 and the area of the top portion 153 of the convex portions 152. For example, as shown in FIGS. 5A to 5C, the area of the top portion 153 of each convex portion 152 of the element holding surfaces 14 of the first to third element holding portions 131 to 133 is made the same, and the convex portion possessed by each element holding portion 13. The number of 152 may be different. Specifically, the number of convex portions 152 possessed by the element holding surface 14 of the first element holding portion 131 is minimized (see FIG. 5A), and the convex portions 152 possessed by the element holding surface 14 of the third element holding portion 133. The number should be the largest (see FIG. 5C). The number of convex portions 152 possessed by the element holding surface 14 of the second element holding portion 132 is the number of convex portions 152 possessed by the element holding surface 14 of the first element holding portion 131 or the element holding surface 14 of the third element holding portion 133. The number of the convex portions 152 may be the same as the number of the convex portions 152, but the number of the convex portions 152 of the element holding surface 14 of the first element holding portion 131 is larger than the number of the convex portions 152 of the third element holding portion 133. It is preferably less than the number of protrusions 152 having (see FIG. 5B).

また、例えば、図6A~6Cに示すように、第1~第3素子保持部131~133の素子保持面14の凸部152の数を同一とし、各素子保持部13が有する凸部152の頂部153の面積を異ならせてもよい。具体的には、第1素子保持部131の素子保持面14が有する凸部152の頂部153の面積を最も小さくし(図6A参照)、第3素子保持部133の素子保持面14が有する凸部152の頂部153の面積を最も大きくすればよい(図6C参照)。第2素子保持部132の素子保持面14が有する凸部152の頂部153の面積は、第1素子保持部131の素子保持面14が有する凸部152の頂部153の面積又は第3素子保持部133の素子保持面14が有する凸部152の頂部153の面積と同一であってもよいが、第1素子保持部131の素子保持面14が有する凸部152の頂部153の面積よりも大きく、第3素子保持部133の素子保持面14が有する凸部152の頂部153の面積よりも小さいのが好ましい(図6B参照)。 Further, for example, as shown in FIGS. 6A to 6C, the number of convex portions 152 of the element holding surfaces 14 of the first to third element holding portions 131 to 133 is the same, and the convex portions 152 of each element holding portion 13 have the same number. The area of the top 153 may be different. Specifically, the area of the top portion 153 of the convex portion 152 included in the element holding surface 14 of the first element holding portion 131 is minimized (see FIG. 6A), and the convex portion possessed by the element holding surface 14 of the third element holding portion 133. The area of the top portion 153 of the portion 152 may be maximized (see FIG. 6C). The area of the top portion 153 of the convex portion 152 of the element holding surface 14 of the second element holding portion 132 is the area of the top portion 153 of the convex portion 152 of the element holding surface 14 of the first element holding portion 131 or the third element holding portion. It may be the same as the area of the top portion 153 of the convex portion 152 of the element holding surface 14 of 133, but is larger than the area of the top portion 153 of the convex portion 152 of the element holding surface 14 of the first element holding portion 131. It is preferably smaller than the area of the top portion 153 of the convex portion 152 of the element holding surface 14 of the third element holding portion 133 (see FIG. 6B).

さらに、例えば、図7A~7Cに示すように、第1~第3素子保持部131~133の素子保持面14の凸部152の数及び頂部153の面積を異ならせてもよい。具体的には、第1素子保持部131の素子保持面14が有する凸部152の数を最も少なく、かつ凸部152の頂部153の面積を最も小さくし(図7A参照)、第3素子保持部133の素子保持面14が有する凸部152の数を最も多く、かつ凸部152の頂部153の面積を最も大きくすればよい(図7C参照)。第2素子保持部132の素子保持面14が有する凸部152の数及び凸部152の頂部153の面積は、第1素子保持部131の素子保持面14が有する凸部152の数及び凸部152の頂部153の面積又は第3素子保持部133の素子保持面14が有する凸部152の数及び凸部152の頂部153の面積と同一であってもよいが、第1素子保持部131の素子保持面14が有する凸部152の数よりも多く、かつ凸部152の頂部153の面積よりも大きく、第3素子保持部133の素子保持面14が有する凸部152の数よりも少なく、かつ凸部152の頂部153の面積よりも小さいのが好ましい(図7B参照)。 Further, for example, as shown in FIGS. 7A to 7C, the number of convex portions 152 and the area of the top portion 153 of the element holding surfaces 14 of the first to third element holding portions 131 to 133 may be different. Specifically, the number of convex portions 152 possessed by the element holding surface 14 of the first element holding portion 131 is the smallest, and the area of the top portion 153 of the convex portion 152 is minimized (see FIG. 7A) to hold the third element. The number of the convex portions 152 included in the element holding surface 14 of the portion 133 may be the largest, and the area of the top portion 153 of the convex portion 152 may be the largest (see FIG. 7C). The number of convex portions 152 possessed by the element holding surface 14 of the second element holding portion 132 and the area of the top portion 153 of the convex portion 152 are the number of convex portions 152 possessed by the element holding surface 14 of the first element holding portion 131 and the convex portions. The area of the top portion 153 of the 152 or the number of the convex portions 152 on the element holding surface 14 of the third element holding portion 133 and the area of the top portion 153 of the convex portion 152 may be the same, but the area of the first element holding portion 131 may be the same. It is larger than the number of convex portions 152 possessed by the element holding surface 14, larger than the area of the top portion 153 of the convex portion 152, and smaller than the number of convex portions 152 possessed by the element holding surface 14 of the third element holding portion 133. Moreover, it is preferably smaller than the area of the top portion 153 of the convex portion 152 (see FIG. 7B).

第1~第3素子保持部131~133の素子保持面14の凸部152の頂部153は、マイクロLEDチップ22に接触可能な平面部1531を有する(図8A~図8C参照)。平面部1531は、基材11の第1面11Aに対して実質的に平行な平面である。実質的に平行とは、平面部1531を含む平面と基材11の第1面11Aを含む平面とにより形成される角度が5°以内であることを意味するものとする。凸部152の頂部153は、上記平面部1531のみにより構成されていてもよいし(図8A参照)、凸曲面1532をさらに有してもよいし(図8B参照)、凹曲面1533をさらに有していてもよい(図8C参照)。頂部153が凸曲面1532や凹曲面1533を有する場合(図8B及び図8C参照)には、頂部153の最も高い領域に平面部1531が位置していることが好ましい。頂部153が凸曲面1532又は凹曲面1533を有することで、チップ基板40からマイクロLEDチップ22をピックアップする際にマイクロLEDチップ22に頂部153を押し付けると、凸部152(特に、頂部153近傍)が押圧変形し、凸曲面1532の一部又は凹曲面1533の一部が平面部1531とともにマイクロLEDチップ22に接触する。すなわち、マイクロLEDチップ22に対する頂部153の接触面積が平面部1531のみが接触する場合よりも大きくなり(実質的に平面部1531が広がり)、マイクロLEDチップ22に対する素子保持面14の保持力が増大する。これにより、素子転写用部材10がマイクロLEDチップ22を保持し損ねることを抑制することができる。また、第1~第3素子保持部131~133により保持されたマイクロLEDチップ22を回路基板21に転写する際(図21E、図21F参照)、素子転写用部材10を回路基板21に押圧する力を、マイクロLEDチップ22に接触する頂部153の面積が大きくならない(実質的に平面部1531が広がらない)程度に調整することで、マイクロLEDチップ22を回路基板21に転写することがより容易になる。このように、頂部153が凸曲面1532又は凹曲面1533を含むことで、第1~第3素子保持部13の素子保持面14におけるマイクロLEDチップ22の保持力がマイクロLEDチップ22のピックアップ時に相対的に大きく、転写時に相対的に小さくなるように、素子転写用部材10の押圧力を調整すれば、マイクロLEDチップ22の転写性能を向上させることができる。なお、頂部153が凸曲面1532や凹曲面1533を有する場合(図8B及び図8C参照)、凸部152の頂部153の面積は、平面部1531の面積であればよい。 The top portion 153 of the convex portion 152 of the element holding surface 14 of the first to third element holding portions 131 to 133 has a flat surface portion 1531 that can come into contact with the micro LED chip 22 (see FIGS. 8A to 8C). The flat surface portion 1531 is a flat surface substantially parallel to the first surface 11A of the base material 11. Substantially parallel means that the angle formed by the plane including the plane portion 1531 and the plane including the first surface 11A of the base material 11 is within 5 °. The top portion 153 of the convex portion 152 may be composed of only the flat surface portion 1531 (see FIG. 8A), may further have a convex curved surface 1532 (see FIG. 8B), and further has a concave curved surface 1533. It may be done (see FIG. 8C). When the top portion 153 has a convex curved surface 1532 or a concave curved surface 1533 (see FIGS. 8B and 8C), it is preferable that the flat surface portion 1531 is located in the highest region of the top portion 153. Since the top portion 153 has a convex curved surface 1532 or a concave curved surface 1533, when the top portion 153 is pressed against the micro LED chip 22 when the micro LED chip 22 is picked up from the chip substrate 40, the convex portion 152 (particularly near the top portion 153) is generated. It is pressed and deformed, and a part of the convex curved surface 1532 or a part of the concave curved surface 1533 comes into contact with the micro LED chip 22 together with the flat surface portion 1531. That is, the contact area of the top portion 153 with respect to the micro LED chip 22 becomes larger than that when only the flat surface portion 1531 contacts (substantially the flat surface portion 1531 expands), and the holding force of the element holding surface 14 with respect to the micro LED chip 22 increases. do. As a result, it is possible to prevent the element transfer member 10 from failing to hold the micro LED chip 22. Further, when the micro LED chips 22 held by the first to third element holding portions 131 to 133 are transferred to the circuit board 21 (see FIGS. 21E and 21F), the element transfer member 10 is pressed against the circuit board 21. By adjusting the force so that the area of the top portion 153 in contact with the micro LED chip 22 does not increase (substantially the flat surface portion 1531 does not expand), it is easier to transfer the micro LED chip 22 to the circuit board 21. become. As described above, since the top portion 153 includes the convex curved surface 1532 or the concave curved surface 1533, the holding force of the micro LED chip 22 on the element holding surface 14 of the first to third element holding portions 13 is relative to the pick-up of the micro LED chip 22. The transfer performance of the micro LED chip 22 can be improved by adjusting the pressing force of the element transfer member 10 so as to be large and relatively small at the time of transfer. When the top portion 153 has a convex curved surface 1532 or a concave curved surface 1533 (see FIGS. 8B and 8C), the area of the top portion 153 of the convex portion 152 may be the area of the flat surface portion 1531.

また、第1~第3素子保持部133の素子保持面14に位置する凸部152は、頂部153に向かって先細形状、換言すると側面視においてテーパー状をなしていてもよい(図9A~9C参照)。凸部152を頂部153に向かって先細形状にすると、第1~第3素子保持部133間における保持力の差、すなわち頂部153(平面部1531)の面積の差を相対的に大きくしにくくなる傾向にある。この場合には、第1素子保持部131の素子保持面14が有する凸部152の数を最も少なくし(図10A参照)、第3素子保持部133の素子保持面14が有する凸部152の数を最も多くすればよい(図10C参照)。これにより、第1素子保持部131の素子保持面14に保持されたマイクロLEDチップ22が最も転写されやすく、第3素子保持部133の素子保持面14に保持されたマイクロLEDチップ22が最も転写され難いという関係にすることができる。第2素子保持部132の素子保持面14が有する凸部152の数は、第1素子保持部131の素子保持面14が有する凸部152の数又は第3素子保持部133の素子保持面14が有する凸部152の数と同一であってもよいが、第1素子保持部131の素子保持面14が有する凸部152の数よりも多く、第3素子保持部133の素子保持面14が有する凸部152の数よりも少ないのが好ましい(図10B参照)。 Further, the convex portion 152 located on the element holding surface 14 of the first to third element holding portions 133 may have a tapered shape toward the top portion 153, in other words, a tapered shape in the side view (FIGS. 9A to 9C). reference). When the convex portion 152 is tapered toward the top portion 153, it becomes difficult to relatively increase the difference in holding force between the first to third element holding portions 133, that is, the difference in the area of the top portion 153 (flat surface portion 1531). There is a tendency. In this case, the number of the convex portions 152 possessed by the element holding surface 14 of the first element holding portion 131 is minimized (see FIG. 10A), and the convex portions 152 possessed by the element holding surface 14 of the third element holding portion 133. The number should be the largest (see FIG. 10C). As a result, the micro LED chip 22 held on the element holding surface 14 of the first element holding unit 131 is most easily transferred, and the micro LED chip 22 held on the element holding surface 14 of the third element holding unit 133 is most transferred. It can be a relationship that is difficult to do. The number of convex portions 152 possessed by the element holding surface 14 of the second element holding portion 132 is the number of convex portions 152 possessed by the element holding surface 14 of the first element holding portion 131 or the element holding surface 14 of the third element holding portion 133. The number of the convex portions 152 may be the same as the number of the convex portions 152, but the number of the convex portions 152 of the element holding surface 14 of the first element holding portion 131 is larger than the number of the convex portions 152 of the third element holding portion 133. It is preferably less than the number of protrusions 152 having (see FIG. 10B).

図11A~11Cに示すように、本実施形態において、素子保持部13の素子保持面14は、素子保持面14の外周縁を取り囲む支持部16と、支持部16によって囲まれる領域内に位置する凸部152及び凹部151とを有していてもよい。素子保持面14の外周縁を取り囲む支持部16を有することで、マイクロLEDチップ22が素子保持面14に安定的に保持されるようになる。支持部16の頂部153と凸部152の頂部153とは、両方の頂部153がマイクロLEDチップ22に接し、マイクロLEDチップ22を安定的に保持可能なように、同一平面上に位置しているのが好ましい。 As shown in FIGS. 11A to 11C, in the present embodiment, the element holding surface 14 of the element holding portion 13 is located in a support portion 16 surrounding the outer peripheral edge of the element holding surface 14 and a region surrounded by the support portion 16. It may have a convex portion 152 and a concave portion 151. By having the support portion 16 surrounding the outer peripheral edge of the element holding surface 14, the micro LED chip 22 is stably held by the element holding surface 14. The top portion 153 of the support portion 16 and the top portion 153 of the convex portion 152 are located on the same plane so that both top portions 153 are in contact with the micro LED chip 22 and can stably hold the micro LED chip 22. Is preferable.

素子保持部13を構成する材料としては、例えば、アクリル系樹脂、エポキシ系樹脂、ポリカーボネート樹脂、シリコーン樹脂等の紫外線硬化性樹脂や熱硬化性樹脂等のインプリント樹脂として一般的に用いられている樹脂材料等が挙げられる。このような樹脂材料等により構成される素子保持部13の当該構成材料の硬度は、基材11の構成材料の硬度よりも低いのが好ましい。具体的には、素子保持部13の構成材料のヤング率が10GPa以下であればよく、5GPa以下であるのが好ましい。後述するように、本実施形態に係る素子転写用部材10を用いてマイクロLEDチップ22を回路基板21に転写する際、素子転写用部材10の素子保持部13の素子保持面14をマイクロLEDチップ22に接触させることで当該素子保持部13にマイクロLEDチップ22が保持される。素子保持部13の素子保持面14をマイクロLEDチップ22に接触させるときに、素子転写用部材10と複数のマイクロLEDチップ22を有するチップ基板40(図20参照)とが完全に平行でなくても、マイクロLEDチップ22に接触させた素子保持部13が鉛直方向に変形し得る。その結果、各マイクロLEDチップ22に素子保持部13が接触する圧力が、素子保持部13が接触する各マイクロLEDチップ22に均一にかかり、一部のマイクロLEDチップ22のみに高い圧力がかかることによる当該マイクロLEDチップ22の破壊等を抑制することができる。 As a material constituting the element holding portion 13, for example, it is generally used as an ultraviolet curable resin such as an acrylic resin, an epoxy resin, a polycarbonate resin or a silicone resin, or an imprint resin such as a thermosetting resin. Examples include resin materials. The hardness of the constituent material of the element holding portion 13 made of such a resin material or the like is preferably lower than the hardness of the constituent material of the base material 11. Specifically, the Young's modulus of the constituent material of the element holding portion 13 may be 10 GPa or less, and preferably 5 GPa or less. As will be described later, when the micro LED chip 22 is transferred to the circuit board 21 by using the element transfer member 10 according to the present embodiment, the element holding surface 14 of the element holding portion 13 of the element transfer member 10 is formed by the micro LED chip. The micro LED chip 22 is held by the element holding portion 13 by bringing it into contact with the 22. When the element holding surface 14 of the element holding portion 13 is brought into contact with the micro LED chip 22, the element transfer member 10 and the chip substrate 40 (see FIG. 20) having a plurality of micro LED chips 22 are not completely parallel. However, the element holding portion 13 in contact with the micro LED chip 22 may be deformed in the vertical direction. As a result, the pressure at which the element holding portion 13 contacts each micro LED chip 22 is uniformly applied to each micro LED chip 22 with which the element holding portion 13 contacts, and a high pressure is applied only to a part of the micro LED chips 22. It is possible to suppress the destruction of the micro LED chip 22 due to the above.

素子保持部13の突出高さT13(基部12から突出する高さ)は、素子保持部13により保持されるマイクロLEDチップ22の厚さよりも大きければよく、例えば、30μm~600μm程度であればよい。マイクロLEDチップ22に含まれる第1LEDチップ221、第2LEDチップ222及び第3LEDチップ223が互いに異なる厚さを有する場合、素子保持部13の突出高さT13は、第1LEDチップ221、第2LEDチップ222及び第3LEDチップ223のうちの最大厚さよりも大きければよい。 The protruding height T13 (height protruding from the base 12) of the element holding portion 13 may be larger than the thickness of the micro LED chip 22 held by the element holding portion 13, and may be, for example, about 30 μm to 600 μm. .. When the first LED chip 221 and the second LED chip 222 and the third LED chip 223 included in the micro LED chip 22 have different thicknesses, the protruding height T13 of the element holding portion 13 is the first LED chip 221 and the second LED chip 222. And it may be larger than the maximum thickness of the third LED chip 223.

素子保持面14の大きさは、特に限定されるものではないが、当該素子保持面14に保持されるマイクロLEDチップ22の大きさよりも小さいのが好ましい。すなわち、素子保持面14とマイクロLEDチップ22との大きさの関係は、素子保持面14に保持されたマイクロLEDチップ22の一部が素子保持面14の外周縁から飛び出すような関係であるのが好ましい。素子保持面14の大きさがマイクロLEDチップ22の大きさよりも小さいことで、素子保持面14に保持されたマイクロLEDチップ22を回路基板21に転写した際に、素子保持面14からマイクロLEDチップ22が剥離し易くなる。 The size of the element holding surface 14 is not particularly limited, but is preferably smaller than the size of the micro LED chip 22 held on the element holding surface 14. That is, the size relationship between the element holding surface 14 and the micro LED chip 22 is such that a part of the micro LED chip 22 held on the element holding surface 14 protrudes from the outer peripheral edge of the element holding surface 14. Is preferable. Since the size of the element holding surface 14 is smaller than the size of the micro LED chip 22, when the micro LED chip 22 held on the element holding surface 14 is transferred to the circuit board 21, the micro LED chip is transferred from the element holding surface 14 to the micro LED chip 22. 22 is easily peeled off.

素子保持面14の形状は、マイクロLEDチップ22における素子保持面14に保持される面の形状と同種形状であってもよいし、異なる形状であってもよい。通常、マイクロLEDチップ22において、素子保持面14に保持される面の形状は、長方形状、正方形状等であるため、素子保持面14の形状は、略長方形状、略正方形状等の略矩形状であってもよいし、略N角形状(Nは5以上の整数、好ましくは6以上の偶数である。)であってもよいし、略円形状であってもよい。略長方形状、略正方形状、略矩形状とは、4つの角が90°±5°の範囲内である四角形や、4つの角が丸められた角丸四角形も含まれる趣旨であり、略N角形状とは、N個の角が丸められた角丸N角形も含まれる趣旨であり、略円形状とは、短径が長径に対する95%以内の長円形状も含まれる趣旨である。 The shape of the element holding surface 14 may be the same as or different from the shape of the surface held on the element holding surface 14 of the micro LED chip 22. Normally, in the micro LED chip 22, the shape of the surface held by the element holding surface 14 is a rectangle, a square, or the like, so that the shape of the element holding surface 14 is a substantially rectangular shape, a substantially square shape, or the like. It may be a shape, a substantially N-square shape (N is an integer of 5 or more, preferably an even number of 6 or more), or a substantially circular shape. Approximately rectangular, approximately square, and approximately rectangular means that a quadrangle having four corners within a range of 90 ° ± 5 ° and a quadrangle with rounded four corners are also included, and are approximately N. The square shape means that a rounded N-square shape with N rounded corners is also included, and the substantially circular shape means that an oval shape whose minor axis is within 95% of the major axis is also included.

素子保持部13を側面から見たときに、素子保持部13の側面と素子保持面14とにより形成される角度は、90°以上であるのが好ましい。当該角度が90°以上であることで、素子保持面14に保持されたマイクロLEDチップ22を回路基板21に転写した際に、素子保持面14からマイクロLEDチップ22が剥離し易くなる。また、当該角度が90°以上であることで、後述する素子転写用部材10の製造方法において素子保持部13を高い精度で形成することができる。 When the element holding portion 13 is viewed from the side surface, the angle formed by the side surface of the element holding portion 13 and the element holding surface 14 is preferably 90 ° or more. When the angle is 90 ° or more, the micro LED chip 22 is easily peeled off from the element holding surface 14 when the micro LED chip 22 held on the element holding surface 14 is transferred to the circuit board 21. Further, when the angle is 90 ° or more, the element holding portion 13 can be formed with high accuracy in the method for manufacturing the element transfer member 10 described later.

基部12は、基材11の第1面11Aと同一の大きさを有し、基材11の第1面11Aの全面を被覆していてもよいし、基材11の第1面11Aにおけるアライメントマーク(図示を省略)の形成されている領域を少なくとも除くように、基材11の第1面11Aを被覆していてもよい。基部12の厚さT12は、特に限定されるものではなく、例えば、5μm~50μm程度であればよい。 The base portion 12 has the same size as the first surface 11A of the base material 11 and may cover the entire surface of the first surface 11A of the base material 11, or may be aligned on the first surface 11A of the base material 11. The first surface 11A of the base material 11 may be covered so as to exclude at least the region where the mark (not shown) is formed. The thickness T12 of the base 12 is not particularly limited, and may be, for example, about 5 μm to 50 μm.

基部12を構成する材料は、素子保持部13の構成材料と同一の樹脂材料であってもよいし、素子保持部13の構成材料と異なる樹脂材料であってもよい。基部12の構成材料が、素子保持部13の構成材料と同一であれば、後述する素子転写用部材10の製造方法の一工程として、基部12と素子保持部13とを同時に作製することができる。基部12の構成材料が、素子保持部13の構成材料と異なる場合、基部12の構成材料の硬度は、素子保持部13の構成材料の硬度以下であるのが好ましい。具体的には、基部12の構成材料のヤング率は、10GPa以下であればよく、5GPa以下であるのが好ましい。基部12の構成材料の硬度が素子保持部13の構成材料の硬度以下であることで、素子転写用部材10がチップ基板40に押圧される際に、素子保持部13(第1~第3素子保持部131~133)にかかる圧力を均一化することができるため、一部の素子保持部13に高い圧力がかることによって当該素子保持部13が破損してしまったり、一部の素子保持部13に充分な押圧力が加わらずに、マイクロLEDチップ22が保持されなくなったり、転写されなくなったりする等を抑制することができる。 The material constituting the base portion 12 may be the same resin material as the constituent material of the element holding portion 13, or may be a resin material different from the constituent material of the element holding portion 13. If the constituent material of the base portion 12 is the same as the constituent material of the element holding portion 13, the base portion 12 and the element holding portion 13 can be simultaneously manufactured as one step of the manufacturing method of the element transfer member 10 described later. .. When the constituent material of the base portion 12 is different from the constituent material of the element holding portion 13, the hardness of the constituent material of the base portion 12 is preferably equal to or less than the hardness of the constituent material of the element holding portion 13. Specifically, the Young's modulus of the constituent material of the base 12 may be 10 GPa or less, and preferably 5 GPa or less. Since the hardness of the constituent material of the base portion 12 is equal to or lower than the hardness of the constituent material of the element holding portion 13, when the element transfer member 10 is pressed against the chip substrate 40, the element holding portion 13 (first to third elements) Since the pressure applied to the holding portions 131 to 133) can be made uniform, the element holding portion 13 may be damaged due to a high pressure applied to some of the element holding portions 13, or some of the element holding portions 13 may be damaged. It is possible to suppress that the micro LED chip 22 is not held or transferred without a sufficient pressing force being applied to the micro LED chip 22.

素子保持部13の素子保持面14には、粘着剤により構成される粘着層17が設けられている。粘着層17が設けられていることで、マイクロLEDチップ22が素子保持面14に容易に保持される。粘着剤は、例えば、加熱、冷却、エネルギー線(紫外線)照射等によって粘着性を発現したり、粘着性を低下させたりすることのできる材料を含むのが好ましく、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等であればよい。粘着層17の厚さは、素子保持面14に保持されたマイクロLEDチップ22が自重により剥離しない程度の粘着性を発現可能な厚さであればよく、例えば、0.1μm~2.0μm程度であればよい。なお、素子保持部13の素子保持面14に粘着層17が設けられていなくてもよく、その場合において、素子保持部13が上記粘着剤により構成されているのが好ましい。 An adhesive layer 17 made of an adhesive is provided on the element holding surface 14 of the element holding portion 13. By providing the adhesive layer 17, the micro LED chip 22 is easily held on the element holding surface 14. The adhesive preferably contains, for example, a material capable of exhibiting adhesiveness or reducing adhesiveness by heating, cooling, irradiation with energy rays (ultraviolet rays), or the like, and for example, an acrylic adhesive or rubber. Any adhesive, silicone adhesive, etc. may be used. The thickness of the adhesive layer 17 may be such that the micro LED chip 22 held on the element holding surface 14 can exhibit adhesiveness to the extent that it does not peel off due to its own weight, and is, for example, about 0.1 μm to 2.0 μm. It should be. The adhesive layer 17 may not be provided on the element holding surface 14 of the element holding portion 13, and in that case, it is preferable that the element holding portion 13 is made of the above-mentioned adhesive.

上述した本実施形態に係る素子転写用部材10の製造方法について、図2Aに示す態様の素子転写用部材10の製造方法を例に挙げて説明する。
図12A~12Cは、本実施形態に係る素子転写用部材10の製造方法の各工程を示す切断端面図であり、図13は、本実施形態に係る素子転写用部材10の製造方法において用いられるテンプレートの概略構成を示す切断端面図である。
The method for manufacturing the element transfer member 10 according to the present embodiment described above will be described by exemplifying the method for manufacturing the element transfer member 10 according to the embodiment shown in FIG. 2A.
12A to 12C are cut end views showing each step of the method for manufacturing the element transfer member 10 according to the present embodiment, and FIG. 13 is used in the method for manufacturing the element transfer member 10 according to the present embodiment. It is a cut end view which shows the schematic structure of a template.

本実施形態に係る素子転写用部材10の製造方法は、素子転写用部材10の各素子保持部13に対応する凹凸構造32を有するテンプレート30を準備する工程と、素子転写用部材10の基材11を準備する工程と、基材11の第1面11A上に硬化性樹脂材料を供給して樹脂層36を形成する工程と、樹脂層36にテンプレート30を押し当てることで、テンプレート30の凹凸構造32に硬化性樹脂材料を充填させる工程と、凹凸構造32に充填させた硬化性樹脂材料を硬化させる工程と、硬化した硬化性樹脂材料からテンプレート30を引き離す工程とを含む。 The method for manufacturing the element transfer member 10 according to the present embodiment includes a step of preparing a template 30 having a concavo-convex structure 32 corresponding to each element holding portion 13 of the element transfer member 10, and a base material of the element transfer member 10. The step of preparing the 11 and the step of supplying the curable resin material on the first surface 11A of the base material 11 to form the resin layer 36, and the step of pressing the template 30 against the resin layer 36, the unevenness of the template 30 The structure 32 includes a step of filling the curable resin material, a step of curing the curable resin material filled in the uneven structure 32, and a step of pulling the template 30 away from the cured curable resin material.

素子転写用部材10を製造するために用いられるテンプレート30は、図13に示すように、第1面31A及び第1面31Aの反対側に位置する第2面31Bを有するテンプレート基材31と、テンプレート基材31の第1面31Aに形成されている凹凸構造32とを有する。 As shown in FIG. 13, the template 30 used for manufacturing the element transfer member 10 includes a template base material 31 having a first surface 31A and a second surface 31B located on the opposite side of the first surface 31A. It has an uneven structure 32 formed on the first surface 31A of the template base material 31.

テンプレート基材31は、インプリント処理に用いられるテンプレート基板として一般的なもの、例えば、石英ガラス基板、ソーダガラス基板、蛍石基板、フッ化カルシウム基板、フッ化マグネシウム基板、バリウムホウケイ酸ガラス、アミノホウケイ酸ガラス、アルミノケイ酸ガラス等の無アルカリガラス基板等のガラス基板;ポリカーボネート基板、ポリプロピレン基板、ポリエチレン基板、ポリメチルメタクリレート基板、ポリエチレンテレフタレート基板等の樹脂基板;少なくとも一部分に金属がドープされた上記基板;これらのうちから任意に選択された2以上の基板を積層してなる積層基板等の光透過性基板等により構成され得る。なお、本実施形態において「光透過性」とは、硬化性樹脂材料を硬化させ得る波長の光を透過可能であることを意味し、波長150nm~400nmの光線の透過率が60%以上であることを意味し、好ましくは90%以上、特に好ましくは95%以上である。 The template base material 31 is a general template substrate used for imprint processing, for example, quartz glass substrate, soda glass substrate, fluorite substrate, calcium fluoride substrate, magnesium fluoride substrate, barium borosilicate glass, amino. Glass substrates such as non-alkali glass substrates such as borosilicate glass and aluminosilicate glass; resin substrates such as polycarbonate substrates, polypropylene substrates, polyethylene substrates, polymethylmethacrylate substrates, and polyethylene terephthalate substrates; It can be composed of a light-transmitting substrate such as a laminated substrate obtained by laminating two or more substrates arbitrarily selected from these. In the present embodiment, "light transmittance" means that light having a wavelength capable of curing the curable resin material can be transmitted, and the transmittance of light having a wavelength of 150 nm to 400 nm is 60% or more. This means that it is preferably 90% or more, and particularly preferably 95% or more.

テンプレート基材31の大きさ(平面視における大きさ)は、製造予定の素子転写用部材10の大きさに応じて適宜設定され得るものであって、特に限定されるものではない。テンプレート基材31は、例えば、50mm×50mm程度の矩形状であればよい。また、テンプレート基材31の厚さは、強度、取り扱い適性等を考慮し、例えば、300μm~10mm程度の範囲で適宜設定され得る。 The size (size in a plan view) of the template base material 31 can be appropriately set according to the size of the element transfer member 10 to be manufactured, and is not particularly limited. The template base material 31 may have a rectangular shape of, for example, about 50 mm × 50 mm. Further, the thickness of the template base material 31 can be appropriately set in the range of, for example, about 300 μm to 10 mm in consideration of strength, handling suitability, and the like.

凹凸構造32の形状、寸法等は、テンプレート30を用いて製造される素子転写用部材10の素子保持部13及び素子保持面14に要求される形状、寸法等に応じて適宜設定され得る。本実施形態に係る素子転写用部材10を製造する場合、凹凸構造32の形状は、当該素子保持部13及び素子保持面14の鏡面形状であればよい。例えば、凹凸構造32は、図5A~5Cに示す素子保持部13に対応する凹部33を有する。凹部33の底面には、素子保持面14の凹部151及び凸部152に対応する凸部341及び凹部342が形成されている。凹部33は、第1素子保持部131に対応する第1凹部331と、第2素子保持部132に対応する第2凹部332と、第3素子保持部133に対応する第3凹部333とを含む。例えば、第1凹部331の底面に形成されている凹部342の底面の総面積S1’と、第2凹部332の底面に形成されている凹部342の底面の総面積S2’と、第3凹部333の底面に形成されている凹部342の底面の総面積S3’とは、下記式(4)~(6)に示す関係を有しているのが好ましい。
S1’<S3’ ・・・(4)
S1’≦S2’ ・・・(5)
S2’≦S3’ ・・・(6)
The shape, dimensions, and the like of the concave-convex structure 32 can be appropriately set according to the shape, dimensions, and the like required for the element holding portion 13 and the element holding surface 14 of the element transfer member 10 manufactured by using the template 30. When the element transfer member 10 according to the present embodiment is manufactured, the shape of the concave-convex structure 32 may be a mirror surface shape of the element holding portion 13 and the element holding surface 14. For example, the concave-convex structure 32 has a recess 33 corresponding to the element holding portion 13 shown in FIGS. 5A to 5C. On the bottom surface of the concave portion 33, a convex portion 341 and a concave portion 342 corresponding to the concave portion 151 and the convex portion 152 of the element holding surface 14 are formed. The recess 33 includes a first recess 331 corresponding to the first element holding portion 131, a second recess 332 corresponding to the second element holding portion 132, and a third recess 333 corresponding to the third element holding portion 133. .. For example, the total area S1'of the bottom surface of the recess 342 formed on the bottom surface of the first recess 331, the total area S2'of the bottom surface of the recess 342 formed on the bottom surface of the second recess 332, and the third recess 333. It is preferable that the total area S3'of the bottom surface of the recess 342 formed on the bottom surface of the above has a relationship represented by the following formulas (4) to (6).
S1'<S3'... (4)
S1'≤S2' ... (5)
S2'≤S3' ... (6)

上記式(4)~(6)に示す関係を有することで、製造される素子転写用部材10において、第1素子保持部131の素子保持面14に位置する凸部152の頂部153の総面積S1と、第2素子保持部132の素子保持面14に位置する凸部152の頂部153の総面積S2と、第3素子保持部133の素子保持面14に位置する凸部152の頂部153の総面積S3とが、下記式(1)~(3)に示す関係を有することになる。
S1<S3 ・・・(1)
S1≦S2 ・・・(2)
S2≦S3 ・・・(3)
By having the relationship shown in the above formulas (4) to (6), the total area of the top portion 153 of the convex portion 152 located on the element holding surface 14 of the first element holding portion 131 in the element transfer member 10 manufactured. S1, the total area S2 of the top portion 153 of the convex portion 152 located on the element holding surface 14 of the second element holding portion 132, and the top portion 153 of the convex portion 152 located on the element holding surface 14 of the third element holding portion 133. The total area S3 has a relationship represented by the following formulas (1) to (3).
S1 <S3 ... (1)
S1 ≤ S2 ... (2)
S2 ≤ S3 ... (3)

第1~第3凹部331~333の凹部342の数や凹部342の底面の面積を調整することにより、上記式(4)~(6)に示す関係を成立させればよい。例えば、図14A~14Cに示すように、第1~第3凹部331~333の各凹部342の底面の面積を同一とし、各凹部33の底面に形成されている凹部342の数を異ならせればよい。具体的には、第1凹部331の底面に形成されている凹部342の数を最も少なくし(図14A参照)、第3凹部333の底面に形成されている凹部342の数を最も多くすればよい(図14B参照)。第2凹部332の底面に形成されている凹部342の数は、第1凹部331の凹部342の数又は第3凹部333の凹部342の数と同一であってもよいが、第1凹部331の凹部342の数よりも多く、第3凹部333の凹部342の数よりも少ないのが好ましい(図14B参照)。 By adjusting the number of the recesses 342 of the first to third recesses 331 to 333 and the area of the bottom surface of the recesses 342, the relationship shown in the above equations (4) to (6) may be established. For example, as shown in FIGS. 14A to 14C, if the area of the bottom surface of each recess 342 of the first to third recesses 331 to 333 is the same, and the number of recesses 342 formed on the bottom surface of each recess 33 is different. good. Specifically, if the number of recesses 342 formed on the bottom surface of the first recess 331 is minimized (see FIG. 14A) and the number of recesses 342 formed on the bottom surface of the third recess 333 is maximized. Good (see Figure 14B). The number of recesses 342 formed on the bottom surface of the second recess 332 may be the same as the number of recesses 342 of the first recess 331 or the number of recesses 342 of the third recess 333, but the number of recesses 331 of the first recess 331 may be the same. It is preferably more than the number of recesses 342 and less than the number of recesses 342 of the third recess 333 (see FIG. 14B).

また、例えば、図15A~15Cに示すように、第1~第3凹部331~333の底面に形成されている凹部342の数を同一とし、各凹部33の底面に形成されている凹部342の底面の面積を異ならせてもよい。具体的には、第1凹部331の凹部342の底面の面積を最も小さくし(図15A参照)、第3凹部333の凹部342の底面の面積を最も大きくすればよい(図15C参照)。第2凹部332の凹部342の底面の面積は、第1凹部331の凹部342の底面の面積又は第3凹部333の凹部342の底面の面積と同一であってもよいが、第1凹部331の凹部342の底面の面積よりも大きく、第3凹部333の凹部342の底面の面積よりも小さいのが好ましい(図15B参照)。 Further, for example, as shown in FIGS. 15A to 15C, the number of recesses 342 formed on the bottom surfaces of the first to third recesses 331 to 333 is the same, and the recesses 342 formed on the bottom surfaces of the recesses 33 are the same. The area of the bottom surface may be different. Specifically, the area of the bottom surface of the recess 342 of the first recess 331 may be the smallest (see FIG. 15A), and the area of the bottom surface of the recess 342 of the third recess 333 may be the largest (see FIG. 15C). The area of the bottom surface of the recess 342 of the second recess 332 may be the same as the area of the bottom surface of the recess 342 of the first recess 331 or the area of the bottom surface of the recess 342 of the third recess 333, but the area of the first recess 331 It is preferably larger than the area of the bottom surface of the recess 342 and smaller than the area of the bottom surface of the recess 342 of the third recess 333 (see FIG. 15B).

さらに、例えば、図16A~16Cに示すように、第1~第3凹部331~333の底面に形成されている凹部342の数及び凹部342の底面の面積を異ならせてもよい。具体的には、第1凹部331の凹部342の数を最も少なく、かつ凹部342の底面の面積を最も小さくし(図16A参照)、第3凹部333の凹部342の数を最も多く、かつ凹部342の底面の面積を最も大きくすればよい(図16C参照)。第2凹部332の凹部342の数及び凹部342の底面の面積は、第1凹部331の凹部342の数及び凹部342の底面の面積又は第3凹部333の凹部342の数及び凹部342の底面の面積と同一であってもよいが、第1凹部331の凹部342の数よりも多く、かつ凹部342の底面の面積よりも大きく、第3凹部333の凹部342の数よりも少なく、かつ凹部342の底面の面積よりも小さいのが好ましい(図16B参照)。 Further, for example, as shown in FIGS. 16A to 16C, the number of the recesses 342 formed on the bottom surfaces of the first to third recesses 331 to 333 and the area of the bottom surface of the recesses 342 may be different. Specifically, the number of the recesses 342 of the first recess 331 is the smallest and the area of the bottom surface of the recess 342 is the smallest (see FIG. 16A), and the number of the recesses 342 of the third recess 333 is the largest and the recesses. The area of the bottom surface of 342 may be maximized (see FIG. 16C). The number of recesses 342 of the second recess 332 and the area of the bottom surface of the recess 342 are the number of recesses 342 of the first recess 331 and the area of the bottom surface of the recess 342 or the number of recesses 342 of the third recess 333 and the area of the bottom surface of the recess 342. It may be the same as the area, but it is larger than the number of recesses 342 of the first recess 331 and larger than the area of the bottom surface of the recess 342, less than the number of recesses 342 of the third recess 333, and the recess 342. It is preferably smaller than the area of the bottom surface of the (see FIG. 16B).

第1~第3凹部331~333の底面に形成されている凹部342の底面は、テンプレート基材31の第1面31Aに対して実質的に平行な平面のみで構成されていてもよいし(図17A参照)、凹曲面を含んでいてもよいし(図17B参照)、凸曲面を含んでいてもよい(図17C参照)。実質的に平行とは、凹部342の底面を含む平面とテンプレート基材31の第1面31Aを含む平面とにより形成される角度が5°以内であることを意味する。 The bottom surface of the recesses 342 formed on the bottom surfaces of the first to third recesses 331 to 333 may be composed of only a plane substantially parallel to the first surface 31A of the template base material 31 (). It may include a concave curved surface (see FIG. 17B) or a convex curved surface (see FIG. 17C). Substantially parallel means that the angle formed by the plane including the bottom surface of the recess 342 and the plane including the first surface 31A of the template base material 31 is within 5 °.

また、図18A~18Cに示すように、第1~第3凹部331~333の底面に形成されている凹部342は、先細形状、すなわちテーパー状を有していてもよい。例えば、凹部342は、底面方向に向かって先細形状である角錐又は円錐等の略錐状であってもよいし(図18A,18B参照)、底面方向に向かって先細形状である断面視三角形状であってもよい(図18C参照)。 Further, as shown in FIGS. 18A to 18C, the recesses 342 formed on the bottom surfaces of the first to third recesses 331 to 333 may have a tapered shape, that is, a tapered shape. For example, the concave portion 342 may have a substantially pyramid shape such as a pyramid or a cone having a tapered shape toward the bottom surface (see FIGS. 18A and 18B), or a triangular shape in a cross-sectional view having a tapered shape toward the bottom surface direction. It may be (see FIG. 18C).

本実施形態において、凹部33は、製造される素子転写用部材10の素子保持部13の素子保持面14が有する支持部16(図11A~11C参照)に対応する凹部35と、凹部35によって囲まれる領域内に位置する凸部341及び凹部342とを有していてもよい(図19A~19B参照)。 In the present embodiment, the recess 33 is surrounded by the recess 35 corresponding to the support portion 16 (see FIGS. 11A to 11C) of the element holding surface 14 of the element holding portion 13 of the manufactured element transfer member 10 and the recess 35. It may have a convex portion 341 and a concave portion 342 located in the region (see FIGS. 19A to 19B).

次に、素子転写用部材10の基材11を準備し、基材11の第1面11Aに硬化性樹脂材料を供給して、第1面11A上に樹脂層36を形成する(図12A参照)。硬化性樹脂材料としては、特に限定されるものではなく、インプリント法に一般的に用いられる樹脂材料(例えば、紫外線硬化性樹脂、熱硬化性樹脂等)を用いることができる。硬化性樹脂材料には、テンプレート30の引き離しを容易にするための離型剤や、基材11の第1面11Aに対する基部12の密着性を向上させるための密着剤等が含まれていてもよい。 Next, the base material 11 of the element transfer member 10 is prepared, a curable resin material is supplied to the first surface 11A of the base material 11, and the resin layer 36 is formed on the first surface 11A (see FIG. 12A). ). The curable resin material is not particularly limited, and a resin material generally used in the imprint method (for example, an ultraviolet curable resin, a thermosetting resin, etc.) can be used. Even if the curable resin material contains a mold release agent for facilitating the separation of the template 30, an adhesive for improving the adhesion of the base 12 to the first surface 11A of the base material 11, and the like. good.

基材11の第1面11A上に形成された樹脂層36に、テンプレート30を押し当てることで、テンプレート30の凹凸構造32に硬化性樹脂材料を充填させ、凹凸構造32に充填させた硬化性樹脂材料を硬化させる(図12B参照)。樹脂層36にテンプレート30を押し当てる際に、基材11の第1面11Aとテンプレート基材31の第1面31Aとの間に、所定の間隙を設けるようにし、その状態で硬化性樹脂材料を硬化させる。これにより、基部12及び基部12から突出する素子保持部13を形成することができる。硬化性樹脂材料を硬化させる方法としては、硬化性樹脂材料の硬化タイプに応じて適宜選択されればよく、例えば、硬化性樹脂材料が紫外線硬化性樹脂であれば、テンプレート30を介して紫外線を硬化性樹脂材料に照射することで、当該硬化性樹脂材料を硬化させればよい。 By pressing the template 30 against the resin layer 36 formed on the first surface 11A of the base material 11, the concave-convex structure 32 of the template 30 is filled with the curable resin material, and the concave-convex structure 32 is filled with the curable property. The resin material is cured (see FIG. 12B). When the template 30 is pressed against the resin layer 36, a predetermined gap is provided between the first surface 11A of the base material 11 and the first surface 31A of the template base material 31, and the curable resin material is in that state. To cure. As a result, the base portion 12 and the element holding portion 13 protruding from the base portion 12 can be formed. The method for curing the curable resin material may be appropriately selected according to the curing type of the curable resin material. For example, if the curable resin material is an ultraviolet curable resin, ultraviolet rays are emitted via the template 30. The curable resin material may be cured by irradiating the curable resin material.

続いて、硬化した樹脂層36からテンプレート30を引き離す(図12C参照)。これにより、テンプレート30の凹凸構造32が転写され、素子保持部13を形成することができる。このようにして、本実施形態に係る素子転写用部材10が製造される。 Subsequently, the template 30 is pulled away from the cured resin layer 36 (see FIG. 12C). As a result, the concave-convex structure 32 of the template 30 is transferred, and the element holding portion 13 can be formed. In this way, the element transfer member 10 according to the present embodiment is manufactured.

続いて、本実施形態に係る素子転写用部材10(図2Aに示す態様の素子転写用部材10)を用いて、マイクロLEDチップ22を転写する方法について説明する。図20は、本実施形態において転写されるマイクロLEDチップ22を有するチップ基板の概略構成を示す斜視図であり、図21A~21Fは、本実施形態に係る素子転写用部材10を用いてマイクロLEDチップ22を転写する方法の各工程を概略的に示す切断端面図である。 Subsequently, a method of transferring the micro LED chip 22 by using the element transfer member 10 (element transfer member 10 of the embodiment shown in FIG. 2A) according to the present embodiment will be described. 20 is a perspective view showing a schematic configuration of a chip substrate having a micro LED chip 22 to be transferred in the present embodiment, and FIGS. 21A to 21F are micro LEDs using the element transfer member 10 according to the present embodiment. It is a cut end view which shows each step of the method of transferring a chip 22 schematically.

複数のマイクロLEDチップ22を有するチップ基板40(図20参照)を準備する。図示例において、チップ基板40は、複数のマイクロLEDチップ22を有する。チップ基板40は、本実施形態に係る素子転写用部材10の各素子保持部13が各マイクロLEDチップ22を個別に保持可能なように個片化された基板であってもよいし、当該個片化された基板から全マイクロLEDチップ22を他の基板に仮転写したものであってもよい。個片化とは、例えば、ダイシング、エッチング等により、チップ基板40を所望の大きさの複数のマイクロLEDチップ22に分割することを意味する。 A chip substrate 40 (see FIG. 20) having a plurality of micro LED chips 22 is prepared. In the illustrated example, the chip substrate 40 has a plurality of micro LED chips 22. The chip substrate 40 may be an individualized substrate so that each element holding portion 13 of the element transfer member 10 according to the present embodiment can individually hold each micro LED chip 22. The entire micro LED chip 22 may be temporarily transferred from the fragmented substrate to another substrate. Individualization means that the chip substrate 40 is divided into a plurality of micro LED chips 22 having a desired size by, for example, dicing, etching, or the like.

チップ基板40において、複数のマイクロLEDチップ22は、第1方向D1に沿って第1ピッチP1’で配列され、第1方向D1に交差する方向(図示例においては直交方向)である第2方向D2に沿って第2ピッチP2’で配列されている。第1ピッチP1’及び第2ピッチP2’は、例えば、3μm~1000μm程度であればよい。本実施形態に係る素子転写用部材10の素子保持部13の第1方向D1に沿った第1ピッチP1が、チップ基板40の第1方向D1に沿った第1ピッチP1’の整数倍であり、素子保持部13の第2方向D2に沿った第2ピッチP2が、チップ基板40の第2方向D2に沿った第2ピッチP2’の整数倍である。 In the chip substrate 40, the plurality of micro LED chips 22 are arranged at the first pitch P1'along the first direction D1 and are in the second direction (orthogonal direction in the illustrated example) intersecting the first direction D1. It is arranged along D2 at the second pitch P2'. The first pitch P1'and the second pitch P2' may be, for example, about 3 μm to 1000 μm. The first pitch P1 along the first direction D1 of the element holding portion 13 of the element transfer member 10 according to the present embodiment is an integral multiple of the first pitch P1'along the first direction D1 of the chip substrate 40. The second pitch P2 along the second direction D2 of the element holding portion 13 is an integral multiple of the second pitch P2'along the second direction D2 of the chip substrate 40.

図21Aに示すように、チップ基板40のマイクロLEDチップ22と素子転写用部材10の素子保持部13とを対面させ、チップ基板40と素子転写用部材10との位置合わせを行う。そして、図21Bに示すように、チップ基板40と素子転写用部材10とを接近させて、マイクロLEDチップ22を素子保持部13の素子保持面14に接触させる。素子保持面14には粘着層17が形成されているため、素子保持面14に接触したマイクロLEDチップ22は、素子転写用部材10の素子保持部13に保持される(図21C参照)。 As shown in FIG. 21A, the micro LED chip 22 of the chip substrate 40 and the element holding portion 13 of the element transfer member 10 are made to face each other, and the chip substrate 40 and the element transfer member 10 are aligned. Then, as shown in FIG. 21B, the chip substrate 40 and the element transfer member 10 are brought close to each other, and the micro LED chip 22 is brought into contact with the element holding surface 14 of the element holding portion 13. Since the adhesive layer 17 is formed on the element holding surface 14, the micro LED chip 22 in contact with the element holding surface 14 is held by the element holding portion 13 of the element transfer member 10 (see FIG. 21C).

素子保持部13の構成材料の硬度は、基材11の構成材料の硬度よりも低く、具体的には、素子保持部13の構成材料のヤング率が10GPa以下、好ましくは5GPa以下であることで、素子保持面14がマイクロLEDチップ22に接触すると、素子保持部13がチップ基板40と垂直な方向に変形し得る。素子転写用部材10とチップ基板40とが完全に平行でなくても、マイクロLEDチップ22に接触した素子保持部13が変形することで、各マイクロLEDチップ22に素子保持部13が接触する圧力が均一となり、一部のマイクロLEDチップ22のみに高い圧力がかかることによる当該マイクロLEDチップ22の破壊等を抑制することができる。 The hardness of the constituent material of the element holding portion 13 is lower than the hardness of the constituent material of the base material 11. Specifically, the Young's modulus of the constituent material of the element holding portion 13 is 10 GPa or less, preferably 5 GPa or less. When the element holding surface 14 comes into contact with the micro LED chip 22, the element holding portion 13 may be deformed in a direction perpendicular to the chip substrate 40. Even if the element transfer member 10 and the chip substrate 40 are not completely parallel, the pressure at which the element holding portion 13 comes into contact with each micro LED chip 22 due to the deformation of the element holding portion 13 in contact with the micro LED chip 22. Is uniform, and it is possible to suppress the destruction of the micro LED chip 22 due to the high pressure applied only to a part of the micro LED chips 22.

図21Dに示すように、上記のようにしてマイクロLEDチップ22が素子保持部13に保持された素子転写用部材10と、回路基板21とを対面させ、素子転写用部材10と回路基板21との位置合わせを行う。そして、図21Eに示すように、素子転写用部材10を回路基板21に対して押圧し、回路基板21の回路とマイクロLEDチップ22とを接着する。回路基板21の回路とマイクロLEDチップ22との接着は、導電性接着剤等を用いて行われ得る。 As shown in FIG. 21D, the element transfer member 10 in which the micro LED chip 22 is held by the element holding portion 13 and the circuit board 21 face each other as described above, and the element transfer member 10 and the circuit board 21 Align. Then, as shown in FIG. 21E, the element transfer member 10 is pressed against the circuit board 21 to bond the circuit of the circuit board 21 and the micro LED chip 22. Adhesion between the circuit of the circuit board 21 and the micro LED chip 22 can be performed by using a conductive adhesive or the like.

また、素子保持面14に設けられている粘着層17を構成する粘着剤が、例えば、加熱、冷却、エネルギー線(紫外線)照射等によって粘着性を低下させ得る材料である場合、回路基板21の回路とマイクロLEDチップ22とを接着するとともに、粘着層17にエネルギー線(紫外線)を照射すること等により、粘着層17の粘着性を低下させてもよい。 Further, when the adhesive constituting the adhesive layer 17 provided on the element holding surface 14 is a material that can reduce the adhesiveness by, for example, heating, cooling, irradiation with energy rays (ultraviolet rays), or the like, the circuit board 21 The adhesiveness of the adhesive layer 17 may be reduced by adhering the circuit and the micro LED chip 22 and irradiating the adhesive layer 17 with energy rays (ultraviolet rays).

その後、図21Fに示すように、素子転写用部材10を回路基板21から引き離す。素子転写用部材10を回路基板21から引き離す際、素子転写用部材10の基材11の第2面11Bに対する鉛直方向に沿って当該素子転写用部材10を引張すればよい。これにより、素子転写用部材10の基材11の中心が下方に撓むように当該基材11が変形することで、素子転写用部材10の基材11の第1面11Aの外周縁(例えば第1領域A1)に位置する素子保持部13から、第1面11Aの中心(例えば第3領域A3)に位置する素子保持部13に向かって、マイクロLEDチップ22が順に離れていく。本実施形態に係る素子転写用部材10において、基材11の第1面11Aの外周縁(例えば第1領域A1)に位置する素子保持部13の素子保持面14が、それよりも内側(例えば第2領域A2)に位置する素子保持部13の素子保持面14よりも、保持したマイクロLEDチップ22が離れやすいように構成されている。その結果、素子転写用部材10からマイクロLEDチップ22が回路基板21に転写されないという転写欠陥が発生するのを抑制することができ、保持したマイクロLEDチップ22を確実に転写することができる。 After that, as shown in FIG. 21F, the element transfer member 10 is separated from the circuit board 21. When the element transfer member 10 is separated from the circuit board 21, the element transfer member 10 may be pulled along the vertical direction with respect to the second surface 11B of the base material 11 of the element transfer member 10. As a result, the base material 11 is deformed so that the center of the base material 11 of the element transfer member 10 bends downward, so that the outer peripheral edge of the first surface 11A of the base material 11 of the element transfer member 10 (for example, the first one). The micro LED chips 22 are sequentially separated from the element holding portion 13 located in the region A1) toward the element holding portion 13 located in the center of the first surface 11A (for example, the third region A3). In the element transfer member 10 according to the present embodiment, the element holding surface 14 of the element holding portion 13 located on the outer peripheral edge (for example, the first region A1) of the first surface 11A of the base material 11 is inside (for example, for example). The micro LED chip 22 held is configured to be easier to separate from the element holding surface 14 of the element holding portion 13 located in the second region A2). As a result, it is possible to suppress the occurrence of a transfer defect that the micro LED chip 22 is not transferred from the element transfer member 10 to the circuit board 21, and the held micro LED chip 22 can be reliably transferred.

上述した例では、マイクロLEDチップ22として第1LEDチップ221を回路基板21に転写する方法を挙げたが、これと同様の工程により、第2LEDチップ222及び第3LEDチップ223も回路基板21に転写することができる。これにより、3種のマイクロLEDチップ22が配置された発光基板20を製造することができる。なお、本実施形態に係る素子転写用部材10において、素子保持部13の突出高さT13は、マイクロLEDチップ22の厚さよりも大きい。そのため、すでに第1LEDチップ221が転写されている回路基板21に対して、当該第1LEDチップ221が第2LEDチップ222や第3LEDチップ223の転写の阻害を防止することができる。 In the above-mentioned example, the method of transferring the first LED chip 221 to the circuit board 21 as the micro LED chip 22 is mentioned, but the second LED chip 222 and the third LED chip 223 are also transferred to the circuit board 21 by the same process. be able to. As a result, the light emitting substrate 20 in which the three types of micro LED chips 22 are arranged can be manufactured. In the element transfer member 10 according to the present embodiment, the protruding height T13 of the element holding portion 13 is larger than the thickness of the micro LED chip 22. Therefore, the first LED chip 221 can prevent the transfer of the second LED chip 222 and the third LED chip 223 from being hindered by the circuit board 21 on which the first LED chip 221 is already transferred.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

上述した実施形態において、素子転写用部材10の素子保持部13は、基部12から突出する凸構造として構成されている態様を例に挙げて説明したが、この態様に限定されるものではない。例えば、素子転写用部材10は、基部12を有さず、複数の素子保持部13は、素子転写用部材10の基材11の第1面11A上に点在していてもよい。すなわち、基材11の第1面11A側から見たときに、素子保持部13の設けられていない部分から基材11の第1面11Aが露出していてもよい。このような素子転写用部材10は、上述したテンプレート30を用いて基部12を形成しないようにインプリント処理を行うことで製造され得るが、複数の素子保持部13に対応するマスクパターンを有するフォトマスクを用いたフォトリソグラフィー処理を通じて製造されてもよい。 In the above-described embodiment, the element holding portion 13 of the element transfer member 10 has been described by exemplifying an embodiment in which the element holding portion 13 is configured as a convex structure protruding from the base portion 12, but the present invention is not limited to this embodiment. For example, the element transfer member 10 does not have the base portion 12, and the plurality of element holding portions 13 may be scattered on the first surface 11A of the base material 11 of the element transfer member 10. That is, when viewed from the first surface 11A side of the base material 11, the first surface 11A of the base material 11 may be exposed from the portion where the element holding portion 13 is not provided. Such an element transfer member 10 can be manufactured by performing an imprint process using the above-mentioned template 30 so as not to form the base 12, but a photo having a mask pattern corresponding to a plurality of element holding portions 13. It may be manufactured through a photolithography process using a mask.

上述した実施形態において、素子転写用部材10の素子保持部13の素子保持面14に粘着層17が設けられている態様を例に挙げて説明したが、この態様に限定されるものではない。例えば、素子保持部13の全体や、素子保持部13のうちの素子保持面14を含む部分が、加熱や冷却、エネルギー(光エネルギー等)付与等により粘着性を発現させる又は粘着性を低下させる材料により構成されている場合には、粘着層17が設けられていなくてもよい。 In the above-described embodiment, the embodiment in which the adhesive layer 17 is provided on the element holding surface 14 of the element holding portion 13 of the element transfer member 10 has been described as an example, but the present invention is not limited to this embodiment. For example, the entire element holding portion 13 or the portion of the element holding portion 13 including the element holding surface 14 develops adhesiveness or reduces adhesiveness by heating, cooling, applying energy (light energy, etc.), or the like. When it is made of a material, the adhesive layer 17 may not be provided.

上述した実施形態において、素子転写用部材10の素子保持部13は、第1領域A1、第2領域A2及び第3領域A3の3つの領域のそれぞれに位置する第1素子保持部131、第2素子保持部132及び第3素子保持部133を含むものであるが、この態様に限定されるものではない。例えば、基材11の第1面11A側をN個(Nは4以上の整数である。)の領域に区分し、各領域に素子保持部13が位置していればよい。 In the above-described embodiment, the element holding portion 13 of the element transfer member 10 has a first element holding portion 131 and a second element holding portion 131 located in each of the three regions of the first region A1, the second region A2, and the third region A3. It includes, but is not limited to, the element holding unit 132 and the third element holding unit 133. For example, the first surface 11A side of the base material 11 may be divided into N regions (N is an integer of 4 or more), and the element holding portions 13 may be located in each region.

上述した実施形態において、素子保持部13の素子保持面14が、当該素子保持面14の外周縁を取り囲む支持部16を有する態様を例に挙げて説明したが、この態様に限定されるものではない。例えば、図22に示すように、素子保持面14は、上記支持部16を有していなくてもよい。 In the above-described embodiment, the embodiment in which the element holding surface 14 of the element holding portion 13 has the support portion 16 surrounding the outer peripheral edge of the element holding surface 14 has been described as an example, but the embodiment is not limited to this embodiment. do not have. For example, as shown in FIG. 22, the element holding surface 14 does not have to have the support portion 16.

10…素子転写用部材
11…基材
13…素子保持部
131…第1素子保持部
132…第2素子保持部
133…第3素子保持部
14…素子保持面
15…凹凸構造
151…凹部
152…凸部
16…支持部(素子支持部)
20…発光基板
22…マイクロLEDチップ
221…第1LEDチップ
222…第2LEDチップ
223…第3LEDチップ
30…テンプレート
40…チップ基板
10 ... Element transfer member 11 ... Base material 13 ... Element holding part 131 ... First element holding part 132 ... Second element holding part 133 ... Third element holding part 14 ... Element holding surface 15 ... Concavo-convex structure 151 ... Recessed portion 152 ... Convex portion 16 ... Support portion (element support portion)
20 ... Light emitting board 22 ... Micro LED chip 221 ... 1st LED chip 222 ... 2nd LED chip 223 ... 3rd LED chip 30 ... Template 40 ... Chip board

Claims (21)

転写対象である素子を転写するために用いられる素子転写用部材であって、
第1面及び前記第1面の反対側に位置する第2面を有する基材と、
前記基材の前記第1面側に位置する複数の素子保持部と
を備え、
前記素子保持部は、前記素子が接触可能な素子保持面を有し、
前記複数の素子保持部は、前記基材の前記第1面側を区分した複数の領域のそれぞれに位置し、
前記複数の領域は、第1領域と、第2領域とを少なくとも含み、
前記第2領域は、前記第1領域よりも前記基材の内側に位置する部分を含み、
前記複数の素子保持部は、前記第1領域内に位置する第1素子保持部と、前記第2領域内に位置する第2素子保持部とを少なくとも含み、
前記第1素子保持部の前記素子保持面と前記第2素子保持部の前記素子保持面とは、前記第1素子保持部の前記素子保持面に保持された前記素子が前記第2素子保持部の前記素子保持面に保持された前記素子よりも転写されやすいように構成されている素子転写用部材。
An element transfer member used for transferring an element to be transferred.
A base material having a first surface and a second surface located on the opposite side of the first surface,
A plurality of element holding portions located on the first surface side of the base material are provided.
The element holding portion has an element holding surface with which the element can come into contact.
The plurality of element holding portions are located in each of the plurality of regions that divide the first surface side of the base material.
The plurality of regions include at least a first region and a second region.
The second region includes a portion located inside the base material with respect to the first region.
The plurality of element holding portions include at least a first element holding portion located in the first region and a second element holding portion located in the second region.
The element holding surface of the first element holding portion and the element holding surface of the second element holding portion are such that the element held on the element holding surface of the first element holding portion is the second element holding portion. An element transfer member configured to be more easily transferred than the element held on the element holding surface of the device.
前記複数の領域は、前記基材の前記第1面側を環状に区分した各領域である請求項1に記載の素子転写用部材。 The element transfer member according to claim 1, wherein the plurality of regions are regions in which the first surface side of the base material is divided into an annular shape. 前記複数の領域は、前記基材の前記第1面側を同心形状に区分した各領域である請求項1又は2に記載の素子転写用部材。 The element transfer member according to claim 1 or 2, wherein the plurality of regions are regions in which the first surface side of the base material is divided into concentric shapes. 前記第1素子保持部の前記素子保持面の前記素子に対する接触面積が、前記第2素子保持部の前記素子保持面の前記素子に対する接触面積よりも小さい請求項1~3のいずれかに記載の素子転写用部材。 The invention according to any one of claims 1 to 3, wherein the contact area of the element holding surface of the first element holding portion with respect to the element is smaller than the contact area of the element holding surface of the second element holding portion with respect to the element. Element transfer member. 前記素子保持部の前記素子保持面は、凹部及び凸部を有し、
前記凸部は、前記素子に接触可能な頂部を有し、
前記第1素子保持部の前記素子保持面が有する前記凸部の前記頂部の総面積が、前記第2素子保持部の前記素子保持面が有する前記凸部の前記頂部の総面積よりも小さい請求項1~4のいずれかに記載の素子転写用部材。
The element holding surface of the element holding portion has a concave portion and a convex portion, and has a concave portion and a convex portion.
The convex portion has a top that can be contacted with the element.
A claim that the total area of the top of the convex portion of the element holding surface of the first element holding portion is smaller than the total area of the top of the convex portion of the element holding surface of the second element holding portion. Item 6. The element transfer member according to any one of Items 1 to 4.
前記凸部の前記頂部は、前記素子に接触可能な平面部を含む請求項5に記載の素子転写用部材。 The element transfer member according to claim 5, wherein the top of the convex portion includes a flat surface portion that can come into contact with the element. 前記凸部の前記頂部は、凹状又は凸状の曲面を含む請求項6に記載の素子転写用部材。 The element transfer member according to claim 6, wherein the top of the convex portion includes a concave or convex curved surface. 前記素子保持面が有する前記凸部は、前記頂部に向けて先細形状をなしている請求項6又は7に記載の素子転写用部材。 The element transfer member according to claim 6 or 7, wherein the convex portion of the element holding surface has a tapered shape toward the top. 前記第1素子保持部の前記素子保持面が有する前記凸部の数は、前記第2素子保持部の前記素子保持面が有する前記凸部の数よりも少ない請求項5~8のいずれかに記載の素子転写用部材。 The number of the convex portions of the element holding surface of the first element holding portion is smaller than the number of the convex portions of the element holding surface of the second element holding portion according to any one of claims 5 to 8. The element transfer member described. 前記素子保持面は、前記素子保持面の外周縁に位置する素子支持部と、前記素子支持部により囲まれる領域内に位置する前記凹部及び前記凸部とを有する請求項5~9のいずれかに記載の素子転写用部材。 One of claims 5 to 9, wherein the element holding surface has an element support portion located on the outer peripheral edge of the element holding surface, and a concave portion and a convex portion located in a region surrounded by the element support portion. The element transfer member according to. 前記素子保持部を構成する材料の硬度は、前記基材を構成する材料の硬度よりも低い請求項1~10のいずれかに記載の素子転写用部材。 The element transfer member according to any one of claims 1 to 10, wherein the hardness of the material constituting the element holding portion is lower than the hardness of the material constituting the base material. 前記素子保持部は、前記基材の前記第1面上に位置する基部から突出する凸構造であり、
前記基部を構成する材料の硬度は、前記基材を構成する材料の硬度よりも低く、前記素子保持部を構成する材料の硬度以下である請求項11に記載の素子転写用部材。
The element holding portion has a convex structure protruding from a base portion located on the first surface of the base material.
The element transfer member according to claim 11, wherein the hardness of the material constituting the base portion is lower than the hardness of the material constituting the base material, and is equal to or less than the hardness of the material constituting the element holding portion.
前記凸構造の高さは、前記素子保持部に保持される前記素子の厚さよりも大きい請求項12に記載の素子転写用部材。 The element transfer member according to claim 12, wherein the height of the convex structure is larger than the thickness of the element held by the element holding portion. 前記素子保持面に設けられている粘着層をさらに備える請求項1~13のいずれかに記載の素子転写用部材。 The element transfer member according to any one of claims 1 to 13, further comprising an adhesive layer provided on the element holding surface. 転写対象である素子を転写するために用いられる素子転写用部材を製造する方法であって、
前記素子転写用部材は、第1面及び前記第1面の反対側に位置する第2面を有する基材と、前記基材の前記第1面側に位置する複数の素子保持部とを備え、
前記素子保持部は、前記素子が接触可能な素子保持面を有し、
前記複数の素子保持部は、前記基材の前記第1面側を区分した複数の領域のそれぞれに位置し、
前記複数の領域は、第1領域と、第2領域とを少なくとも含み、
前記第2領域は、前記第1領域よりも前記基材の内側に位置する部分を含み、
前記複数の素子保持部は、前記第1領域内に位置する第1素子保持部と、前記第2領域内に位置する第2素子保持部とを少なくとも含み、
前記素子保持部の前記素子保持面は、凹部及び凸部を有し、
前記凸部は、前記素子に接触可能な頂部を有し、
前記第1素子保持部の前記素子保持面が有する前記凸部の前記頂部の総面積が、前記第2素子保持部の前記素子保持面が有する前記凸部の前記頂部の総面積よりも小さく、
前記素子転写用部材の製造方法は、
前記複数の素子保持部に対応する凹凸構造を有するテンプレート及び前記基材を準備する工程と、
前記基材の前記第1面上に硬化性材料を供給する工程と、
前記硬化性材料に前記テンプレートを押し当てることで、前記凹凸構造に前記硬化性材料を充填させる工程と、
前記凹凸構造に充填させた前記硬化性材料を硬化させる工程と、
前記硬化した硬化性材料から、前記テンプレートを引き離す工程と
を有する素子転写用部材の製造方法。
A method for manufacturing an element transfer member used for transferring an element to be transferred.
The element transfer member includes a base material having a first surface and a second surface located on the opposite side of the first surface, and a plurality of element holding portions located on the first surface side of the base material. ,
The element holding portion has an element holding surface with which the element can come into contact.
The plurality of element holding portions are located in each of the plurality of regions that divide the first surface side of the base material.
The plurality of regions include at least a first region and a second region.
The second region includes a portion located inside the base material with respect to the first region.
The plurality of element holding portions include at least a first element holding portion located in the first region and a second element holding portion located in the second region.
The element holding surface of the element holding portion has a concave portion and a convex portion, and has a concave portion and a convex portion.
The convex portion has a top that can be contacted with the element.
The total area of the top of the convex portion of the element holding surface of the first element holding portion is smaller than the total area of the top of the convex portion of the element holding surface of the second element holding portion.
The method for manufacturing the element transfer member is as follows.
A step of preparing a template having a concavo-convex structure corresponding to the plurality of element holding portions and the base material, and
A step of supplying a curable material onto the first surface of the substrate,
A step of filling the uneven structure with the curable material by pressing the template against the curable material.
The step of curing the curable material filled in the uneven structure and
A method for manufacturing an element transfer member, which comprises a step of separating the template from the cured curable material.
前記凸部の前記頂部は、前記素子に接触可能な平面部を含む請求項15に記載の素子転写用部材の製造方法。 The method for manufacturing an element transfer member according to claim 15, wherein the top of the convex portion includes a flat surface portion that can come into contact with the element. 前記凸部の前記頂部は、凹状又は凸状の曲面を含む請求項16に記載の素子転写用部材の製造方法。 The method for manufacturing an element transfer member according to claim 16, wherein the top of the convex portion includes a concave or convex curved surface. 前記素子保持面が有する前記凸部は、前記頂部に向けて先細形状をなす請求項16又は17に記載の素子転写用部材の製造方法。 The method for manufacturing an element transfer member according to claim 16 or 17, wherein the convex portion of the element holding surface has a tapered shape toward the top. 前記第1素子保持部の前記素子保持面が有する前記凸部の数は、前記第2素子保持部の前記素子保持面が有する前記凸部の数よりも少ない請求項15~18のいずれかに記載の素子転写用部材の製造方法。 The number of the convex portions of the element holding surface of the first element holding portion is smaller than the number of the convex portions of the element holding surface of the second element holding portion according to any one of claims 15 to 18. The method for manufacturing the element transfer member according to the description. 請求項1~14のいずれかに記載の素子転写用部材を用いて素子を転写する方法であって、
前記素子転写用部材の前記複数の素子保持部のそれぞれに前記素子を保持させる工程と、
前記複数の素子保持部のそれぞれに保持された前記素子を前記被転写基材の前記複数の転写領域のそれぞれに転写する工程と
を有する素子転写方法。
A method of transferring an element using the element transfer member according to any one of claims 1 to 14.
A step of holding the element in each of the plurality of element holding portions of the element transfer member, and
An element transfer method comprising a step of transferring the element held by each of the plurality of element holding portions to each of the plurality of transfer regions of the substrate to be transferred.
素子が転写される複数の転写領域を有する被転写基材と、前記被転写基材上に転写された素子とを有する素子転写物品を製造する方法であって、
請求項1~14のいずれかに記載の素子転写用部材の前記複数の素子保持部のそれぞれに前記素子を保持させる工程と、
前記複数の素子保持部のそれぞれに保持された前記素子を前記被転写基材の前記複数の転写領域のそれぞれに転写する工程と
を含む素子転写物の製造方法。
A method for manufacturing an element transfer article having a transfer base material having a plurality of transfer regions to which the element is transferred and an element transferred onto the transfer base material.
A step of causing each of the plurality of element holding portions of the element transfer member according to any one of claims 1 to 14 to hold the element.
A method for producing an element transfer product, which comprises a step of transferring the element held by each of the plurality of element holding portions to each of the plurality of transfer regions of the transfer base material.
JP2020117083A 2020-07-07 2020-07-07 Element transfer member and manufacturing method therefor, and element transfer method and method for manufacturing element transfer article Pending JP2022014641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020117083A JP2022014641A (en) 2020-07-07 2020-07-07 Element transfer member and manufacturing method therefor, and element transfer method and method for manufacturing element transfer article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020117083A JP2022014641A (en) 2020-07-07 2020-07-07 Element transfer member and manufacturing method therefor, and element transfer method and method for manufacturing element transfer article

Publications (1)

Publication Number Publication Date
JP2022014641A true JP2022014641A (en) 2022-01-20

Family

ID=80120424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020117083A Pending JP2022014641A (en) 2020-07-07 2020-07-07 Element transfer member and manufacturing method therefor, and element transfer method and method for manufacturing element transfer article

Country Status (1)

Country Link
JP (1) JP2022014641A (en)

Similar Documents

Publication Publication Date Title
TWI489656B (en) Light emitting diode, manufacturing method thereof, light emitting diode module, and manufacturing method thereof
EP2983021B1 (en) Pattern structure and method of manufacturing the pattern structure, and liquid crystal display device
TWI751000B (en) Display apparatus and method of fabricating the same
JP4397728B2 (en) Direct type backlight
JP7252032B2 (en) Transfer substrate, mounting method using same, and method for manufacturing image display device
US11521887B2 (en) Method of transferring micro LED and micro LED transferring apparatus
KR20140089014A (en) Display device and manufacturing method thereof
EP2995995B1 (en) Pattern structure and method of manufacturing the pattern structure
KR20180018890A (en) Imprint master template and method of manufacturing the same
JP7223318B2 (en) Holding member, positioning sheet, transfer member with positioned light emitting diode chip, method for manufacturing transfer member with positioned light emitting diode chip, method for manufacturing light emitting substrate, and light emitting substrate
KR20120083082A (en) Apparatus and method of fabricating white light emitting device
CN114600257A (en) Donor substrate and LED transfer method using the same
JP2012248672A (en) Semiconductor light-emitting element manufacturing method
JP7228130B2 (en) Holding member, transfer member, method for manufacturing transfer member, and method for manufacturing light-emitting substrate
JP2022014641A (en) Element transfer member and manufacturing method therefor, and element transfer method and method for manufacturing element transfer article
JP2022014690A (en) Holding member, transfer member, transfer member manufacturing method, and light emitting substrate manufacturing method
JP2020194089A (en) Transfer member, method for manufacturing transfer member, and method for manufacturing light-emitting substrate
JP7223310B2 (en) Holding member, transfer member, method for manufacturing transfer member, and method for manufacturing light-emitting substrate
TW201921634A (en) Pattern film for transferring display pixel and method for manufacturing display using the same
JP2020181910A (en) Manufacturing method and manufacturing device of transfer member, chip substrate, and manufacturing method of light emitting substrate
WO2012086623A1 (en) Light emitting element
JP2022014693A (en) Holding member, transfer member, transfer member manufacturing method, and light emitting substrate manufacturing method
JP7269548B2 (en) Holding member, transfer member, chip substrate, transfer member manufacturing method and manufacturing apparatus, light emitting substrate manufacturing method
JP6500885B2 (en) Method of manufacturing light emitting device
JP2020191423A (en) Holding member, transfer member and method for manufacturing transfer member and light emitting substrate