JP2022013497A - X-ray analysis device - Google Patents

X-ray analysis device Download PDF

Info

Publication number
JP2022013497A
JP2022013497A JP2020127755A JP2020127755A JP2022013497A JP 2022013497 A JP2022013497 A JP 2022013497A JP 2020127755 A JP2020127755 A JP 2020127755A JP 2020127755 A JP2020127755 A JP 2020127755A JP 2022013497 A JP2022013497 A JP 2022013497A
Authority
JP
Japan
Prior art keywords
ray
sample
spectrum
analyzer
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020127755A
Other languages
Japanese (ja)
Inventor
春男 高橋
Haruo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to JP2020127755A priority Critical patent/JP2022013497A/en
Priority to KR1020210055033A priority patent/KR20220004545A/en
Priority to TW110120147A priority patent/TW202215000A/en
Priority to CN202110629795.2A priority patent/CN113884524A/en
Publication of JP2022013497A publication Critical patent/JP2022013497A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2204Specimen supports therefor; Sample conveying means therefore
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To demolish a position adjustment mechanism or position adjustment processing for putting a specimen in place in a primary X-ray X1 irradiation area in a fluorescence X-ray analysis device, and to achieve a method of consecutively measuring a plurality of tiny specimens with a simple structure.SOLUTION: A fluorescence X-ray analysis device is configured to include: an X-ray irradiation unit that can irradiate a specimen with an X-ray; an X-ray detection unit that detects a secondary X-ray generating from the specimen; a specimen conveyance part that conveys the specimen; and a data processing unit that processes intensity of the detected X-ray. Respective components are configured to function as follows. The specimen conveyance part is configured to move the specimen so as to pass through the X-ray irradiation position. The X-ray detection unit is configured to acquire an X-ray spectrum at time intervals shorter than time required for the specimen to pass through the X-ray irradiation unit. The data processing unit is configured to select a spectrum at a point of time when the specimen is present in the X-ray irradiation unit on the basis of a characteristic of the X-ray spectrum from an array of the consecutively acquired X-ray spectra.SELECTED DRAWING: Figure 1

Description

本発明は、試料の組成や被覆の膜厚を測定するための蛍光X線分析装置に関するものである。 The present invention relates to a fluorescent X-ray analyzer for measuring the composition of a sample and the film thickness of a coating.

蛍光X線分析は、試料にX線を照射することで試料に含まれる元素を励起し、その結果放出される元素に固有の特性X線を分析する手法である。得られた蛍光X線スペクトルはX線が照射された領域内に存在する元素の量の多い少ないに関連した情報を含むため、適切なモデルでスペクトルを解析することで試料の組成比や、多層構造の膜厚などを求めることができる。これらの分析の過程は非破壊非接触で行える場合も多いため、JIS H8501で定義されているめっきの膜厚試験など工業製品の品質管理に用いられることがある。 X-ray fluorescence analysis is a method of exciting an element contained in a sample by irradiating the sample with X-rays and analyzing characteristic X-rays peculiar to the element emitted as a result. Since the obtained fluorescent X-ray spectrum contains information related to the large amount and low amount of elements present in the region irradiated with X-rays, the composition ratio of the sample and the multilayer can be obtained by analyzing the spectrum with an appropriate model. The film thickness of the structure can be obtained. Since these analysis processes are often performed in a non-destructive and non-contact manner, they may be used for quality control of industrial products such as plating film thickness tests defined by JIS H8501.

蛍光X線分析はその原理から、X線が照射された部位が分析対象領域となる。そのため、照射するX線の照射径を測定領域の大きさに合わせて適切に制限することと、X線の照射領域に測定対象部位が正しく配置された状態で蛍光X線スペクトルを取得することが必要となる。 From the principle of fluorescent X-ray analysis, the area irradiated with X-rays is the analysis target area. Therefore, it is possible to appropriately limit the irradiation diameter of the X-ray to be irradiated according to the size of the measurement area and to acquire the fluorescent X-ray spectrum in a state where the measurement target site is correctly arranged in the X-ray irradiation area. You will need it.

対象領域に正しくX線が照射された状態での蛍光X線スペクトルを取得する蛍光X線分析装置として、測定対象の試料を直交2軸または3軸の駆動が可能な試料ステージに載せて、試料の測定部位がX線照射位置に配置されるよう、試料の位置を調節した後に試料が静止した状態で測定する。この際、X線照射位置を、視野中心と焦点を合わせて試料を光学的手段で観察する光学系を設け、これを用いて試料をX線照射位置に調節することも広く行われている。(特許文献1参照) As a fluorescent X-ray analyzer that acquires a fluorescent X-ray spectrum when the target area is correctly irradiated with X-rays, the sample to be measured is placed on a sample stage that can be driven in two or three orthogonal axes, and the sample is sampled. After adjusting the position of the sample so that the measurement site of the above is placed at the X-ray irradiation position, the measurement is performed with the sample stationary. At this time, it is also widely practiced to provide an optical system in which the X-ray irradiation position is focused on the center of the field of view and the sample is observed by optical means, and the sample is adjusted to the X-ray irradiation position by using the optical system. (See Patent Document 1)

また、長尺のシート状試料の表面に備えた被膜の厚さを測定する蛍光X線分析装置の場合、X線照射位置を通過するように試料を連続的に送りながら測定を行い、測定時間の間にX線照射位置と通過した線上の領域の平均的な情報として分析を行う方法をとることもある。前記の試料位置を調整して、静止した状態で測定する方法と比べると、試料位置調整の時間が不要となり効率よく多くの部位を検査することが可能である。 In the case of a fluorescent X-ray analyzer that measures the thickness of the coating on the surface of a long sheet-shaped sample, the measurement is performed while continuously feeding the sample so as to pass through the X-ray irradiation position, and the measurement time. In some cases, the analysis is performed as the average information of the X-ray irradiation position and the area on the passed line. Compared with the above-mentioned method of adjusting the sample position and measuring in a stationary state, it is possible to efficiently inspect many parts because the time for adjusting the sample position is not required.

しかし、この方式は長尺の試料に連続的に測定対象が分布する場合に適用可能であり、断続的に多数の小片の試料が送られてくる場合には適用できない。
そこで、位置調整の自動化により試料ステージ上に配置した多数の試料を自動で検知することで測定の効率化を行ってきた。
However, this method can be applied when the measurement target is continuously distributed over a long sample, and cannot be applied when a large number of small pieces of sample are sent intermittently.
Therefore, we have improved the efficiency of measurement by automatically detecting a large number of samples placed on the sample stage by automating the position adjustment.

試料位置の自動調節には、いくつかのアプローチがあり、その一つは、光学的な試料観察像によるものである。前述のように光学的な試料観察手段を設け、そこで得られた試料画像でパターンマッチングをはじめとした画像処理技術を用いて照射位置と試料のずれを検知し、そのずれ量に従って試料ステージを制御し、試料をX線照射位置に配置するものである。 There are several approaches to automatic sample position adjustment, one of which is based on an optical sample observation image. As described above, an optical sample observation means is provided, and the deviation between the irradiation position and the sample is detected by using image processing technology such as pattern matching on the sample image obtained there, and the sample stage is controlled according to the deviation amount. The sample is placed at the X-ray irradiation position.

この第一のアプローチは、光学的な試料観察手段の画像と、X線照射位置が一致しているまたは、相互の軸の相対位置が正確にわかっていることを前提としている。しかし、これらの相対的な位置関係は、経時変化や熱膨張などのさまざまな要因でずれる場合がある。測定対象が小さくなるほどこの、観察光軸とX線照射軸のずれの影響が無視できなくなってくる。 This first approach assumes that the image of the optical sample observation means coincides with the X-ray irradiation position or that the relative positions of the axes are known accurately. However, these relative positional relationships may shift due to various factors such as changes over time and thermal expansion. The smaller the measurement target, the more the influence of the deviation between the observation optical axis and the X-ray irradiation axis cannot be ignored.

このような場合、第2のアプローチとしてステージ座標とX線強度の関係を用いて試料位置を補正する方法が特許文献2に開示されている。 In such a case, as a second approach, a method of correcting the sample position using the relationship between the stage coordinates and the X-ray intensity is disclosed in Patent Document 2.

特開平06-273147号公報Japanese Unexamined Patent Publication No. 06-273147 特開平06-273146号公報Japanese Unexamined Patent Publication No. 06-273146

上記の従来持術では、試料の位置を調整して試料を静止した状態で測定する工程であり、試料の位置調整に要する時間があるため多数の試料を短時間で検査するためには課題があった。また、高精細な試料観察光学系や高精度の多軸試料ステージが必要となり、測定システムが高価になるという課題もあった。 In the above-mentioned conventional technique, the position of the sample is adjusted and the sample is measured in a stationary state, and since there is time required for adjusting the position of the sample, there is a problem in inspecting a large number of samples in a short time. there were. In addition, a high-definition sample observation optical system and a high-precision multi-axis sample stage are required, which causes a problem that the measurement system becomes expensive.

本発明は、前述の課題を鑑みてなされるもので、小片の試料を静止させずに連続的に多数測定することが可能なX線分析装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an X-ray analyzer capable of continuously measuring a large number of small samples without stopping them.

上記課題を解決するために、本発明では、試料にX線を照射するX線照射部と、試料から発生した二次X線を検出するX線検出部と、試料を搬送する試料搬送部と、X線検出部で検出した二次X線のX線強度を試料がX線照射部を通過するのに要する時間よりも短い時間間隔でX線スペクトルを連続的に取得する分析器と、分析器で得られたスペクトルの特定の元素のエネルギーの二次X線強度と設定したX線強度の閾値とから試料搬送部で移動している試料がX線の照射位置を通過しているか否かを判断することを特徴とするX線分析装置である。 In order to solve the above problems, in the present invention, an X-ray irradiation unit that irradiates a sample with X-rays, an X-ray detection unit that detects secondary X-rays generated from the sample, and a sample transport unit that transports the sample. , An analyzer that continuously acquires the X-ray spectrum of the secondary X-rays detected by the X-ray detector at intervals shorter than the time required for the sample to pass through the X-ray irradiation unit. Whether or not the sample moving in the sample carrier has passed the X-ray irradiation position from the secondary X-ray intensity of the energy of a specific element in the spectrum obtained by the instrument and the set X-ray intensity threshold. It is an X-ray analyzer characterized by determining.

本発明のX線分析装置は、前記データ処理部が試料の特定の元素のエネルギーのX線強度が設定したX線強度の閾値を比較して、試料がX線照射部にあるか否かを判断することを特徴とする。 In the X-ray analyzer of the present invention, the data processing unit compares the threshold value of the X-ray intensity set by the X-ray intensity of the energy of a specific element of the sample, and determines whether or not the sample is in the X-ray irradiation unit. It is characterized by making a judgment.

本発明のX線分析装置は、前記データ処理部が試料搬送部表面の材質の特定の元素のエネルギーのX線強度が設定したX線強度の閾値を比較して、試料がX線照射部にあるか否かを判断することを特徴とする。 In the X-ray analyzer of the present invention, the data processing unit compares the X-ray intensity threshold set by the X-ray intensity of the energy of a specific element of the material of the surface of the sample transporting unit, and the sample becomes the X-ray irradiation unit. It is characterized by determining whether or not it exists.

本発明のX線分析装置は、前記データ処理部が一次X線の散乱線のX線強度と設定したX線強度の閾値を比較して、試料がX線照射部にあるか否かを判断することを特徴とする。 The X-ray analyzer of the present invention compares the X-ray intensity of the scattered radiation of the primary X-ray with the threshold value of the X-ray intensity set by the data processing unit, and determines whether or not the sample is in the X-ray irradiation unit. It is characterized by doing.

上記課題を解決するための本発明の第5の様態は第1の様態において、前記データ処理部は機械学習により得られたスペクトルの特徴量から、試料が前記X線照射部にある時点のスペクトルを選択することである。 The fifth aspect of the present invention for solving the above-mentioned problems is the first aspect, in which the data processing unit uses the spectral features obtained by machine learning to determine the spectrum at the time when the sample is in the X-ray irradiation unit. Is to select.

上記課題を解決するための本発明の第6の様態は第1から第5の様態において、連続したエネルギーまたは波長の範囲を等間隔に区切ったX線計数のヒストグラムによるX線スペクトルを用いることである。 The sixth aspect of the present invention for solving the above-mentioned problems is to use the X-ray spectrum obtained by the histogram of the X-ray count in which the range of continuous energy or wavelength is divided at equal intervals in the first to fifth aspects. be.

上記課題を解決するための本発明の第7の様態は第1から第5の様態において、特定のエネルギー範囲の計数、またはその複数の組合によるX線スペクトルを用いることである。 A seventh aspect of the present invention for solving the above problems is to use a count of a specific energy range or an X-ray spectrum formed by a plurality of unions thereof in the first to fifth aspects.

本発明により、試料にX線を照射可能なX線照射部と、試料から発生した二次X線を検出するX線検出部と、試料を搬送する試料搬送部、および検出したX線強度を処理するデータ処理部により蛍光X線分析装置を校正でき、一次X線照射領域に試料を配置するための位置調整機構や位置調整プロセスを廃し、簡単な構成で実現できる。 According to the present invention, an X-ray irradiation unit capable of irradiating a sample with X-rays, an X-ray detection unit for detecting secondary X-rays generated from the sample, a sample transfer unit for transporting the sample, and the detected X-ray intensity can be determined. The fluorescent X-ray analyzer can be calibrated by the data processing unit to be processed, and the position adjustment mechanism and the position adjustment process for arranging the sample in the primary X-ray irradiation region can be eliminated, and a simple configuration can be realized.

本発明に係る蛍光X線装置の実施例において、一次X線が試料に照射していない状態のX線装置を示す概略的な全体構成図である。In the embodiment of the fluorescent X-ray apparatus according to the present invention, it is the schematic whole block diagram which shows the X-ray apparatus in the state which the primary X-ray is not irradiating a sample. 一次X線が試料に照射していない状態のスペクトルを示す図である。It is a figure which shows the spectrum in the state which the primary X-ray is not irradiating a sample. 本発明に係る蛍光X線装置の実施例において、一次X線が試料に照射している状態のX線装置を示す概略的な全体構成図である。In the embodiment of the fluorescent X-ray apparatus according to the present invention, it is the schematic whole block diagram which shows the X-ray apparatus in the state which the primary X-ray irradiates a sample. 一次X線が試料に照射している状態のスペクトルを示す図である。It is a figure which shows the spectrum of the state which the primary X-ray irradiates a sample. 試料を搬送しながら所定の時間間隔で連続して測定したスペクトルを示す図である。It is a figure which shows the spectrum measured continuously at a predetermined time interval while transporting a sample. 試料搬送部がプラスチックの場合のスペクトルを示す図である。It is a figure which shows the spectrum when the sample transport part is plastic. エネルギーを等間隔ΔE毎に区切ったチャンネルで示すスペクトル図である。It is a spectral diagram which shows the energy by the channel which divided by the equal interval ΔE.

以下、本発明に係るX線分析装置の実施形態を、図を参照しながら説明する。 Hereinafter, embodiments of the X-ray analyzer according to the present invention will be described with reference to the drawings.

本実施形態のX線分析装置は、試料Sを載置して搬送方向Dに移動可能な試料搬送部3と、試料Sに対して一次X線X1を照射するX線照射部1と、試料に照射する一次X線X1の照射径を成形する一次X線調整手段4と、一次X線X1を照射された試料Sから発生した散乱X線や蛍光X線などの二次X線を検出するX線検出部2と、X線検出器2に接続されこの二次X線のエネルギー情報の信号を分析する分析器5と、分析器5に接続されたデータ処理部7とを備え、試料Sが照射位置6にない場合を図1に示す。
また、試料Sが照射位置6にある場合を図3に示す。
The X-ray analyzer of the present embodiment includes a sample transport unit 3 on which the sample S is placed and can be moved in the transport direction D, an X-ray irradiation unit 1 that irradiates the sample S with primary X-rays X1, and a sample. Detects secondary X-rays such as scattered X-rays and fluorescent X-rays generated from the sample S irradiated with the primary X-ray X1 and the primary X-ray adjusting means 4 for forming the irradiation diameter of the primary X-ray X1 to be irradiated to. The sample S includes an X-ray detection unit 2, an analyzer 5 connected to the X-ray detector 2 to analyze the signal of energy information of the secondary X-rays, and a data processing unit 7 connected to the analyzer 5. Is not at the irradiation position 6, which is shown in FIG.
Further, the case where the sample S is at the irradiation position 6 is shown in FIG.

試料Sに一次X線X1を照射するX線照射部1は、X線管球を用いる。X線管球は印加する高電圧の適切な絶縁、発生する熱を排出するための冷却機構および安全のために不要な方向へのX線の遮蔽を備えたハウジングに収められる。一次X線調整手段4は、例えばX線遮蔽能力十分に大きなタングステンや真鍮などの材質に細孔を設けたコリメータや、中空ガラス管内面の全反射現象を利用したポリキャピラリやモノキャピラリなどのX線集光素子を使用することができる。一次X線調整手段4で成形された照射径は、試料Sの大きさ及び、試料Sを載置して搬送方向Dに移動可能な試料搬送部3の搬送速度に基づいて決定される。試料Sが搬送方向Dと直交する方向の配置が試料の大きさに対して無視できない場合は、そのずれ量も加味して照射径を決定する。一例としては、試料の大きさから、想定される配置ずれ量を減じた程度の照射径を設定する。これにより、試料が照射位置にあるときは発生する蛍光X線は実用的には全て試料からのものと見なせるようになる。 An X-ray tube is used as the X-ray irradiation unit 1 for irradiating the sample S with the primary X-ray X1. The X-ray tube is housed in a housing with proper insulation of the high voltage applied, a cooling mechanism to dissipate the heat generated, and a shield of X-rays in unnecessary directions for safety. The primary X-ray adjusting means 4 is, for example, a collimator having pores in a material such as tungsten or brass having a sufficiently large X-ray shielding ability, or an X such as a polycapillary or a monocapillary that utilizes the total reflection phenomenon of the inner surface of a hollow glass tube. A line condensing element can be used. The irradiation diameter formed by the primary X-ray adjusting means 4 is determined based on the size of the sample S and the transport speed of the sample transport unit 3 on which the sample S is placed and can be moved in the transport direction D. If the arrangement of the sample S in the direction orthogonal to the transport direction D cannot be ignored with respect to the size of the sample, the irradiation diameter is determined in consideration of the deviation amount. As an example, the irradiation diameter is set to the extent that the expected amount of misalignment is subtracted from the size of the sample. As a result, all the fluorescent X-rays generated when the sample is in the irradiation position can be practically regarded as being from the sample.

試料搬送部3は、無端状のベルトが一対のローラに巻回されたベルトコンベヤーであって、試料Sを載置して所定の走査方向に相対移動可動で試料Sを連続的に搬送できる。試料Sを載せる試料搬送部3の表面材料は、試料Sから発生する二次X線のエネルギーに対して、試料搬送部3の表面から発生する二次X線のエネルギーと干渉しないものを選ぶ。例えば、試料Sは銅(Cu)やニッケル(Ni)で構成された場合、試料搬送部3の表面の材料はアルミニウム(Al)を用いる。なお、試料搬送部3は搭載した試料Sの移動の軌跡は一次X線X1が照射される照射位置6を通過するように配置される。 The sample transport unit 3 is a belt conveyor in which an endless belt is wound around a pair of rollers, and the sample S can be continuously transported by placing the sample S and moving it relative to a predetermined scanning direction. The surface material of the sample transport unit 3 on which the sample S is placed is selected so that the energy of the secondary X-rays generated from the sample S does not interfere with the energy of the secondary X-rays generated from the surface of the sample transport unit 3. For example, when the sample S is composed of copper (Cu) or nickel (Ni), aluminum (Al) is used as the surface material of the sample transport unit 3. The sample transport unit 3 is arranged so that the locus of movement of the mounted sample S passes through the irradiation position 6 where the primary X-ray X1 is irradiated.

ここで、試料の搬送方向Dに直交する方向には試料の配置は一次X線X1の照射径を考慮して規制されるが、試料の搬送方向Dに対する配置、すなわち個々の試料Sが搬送される間隔は連続した2つの試料間に少なくとも1点試料が存在しない状態の測定が挟まれる状態を最低限度とし、その間隔より大きければ制限はなく、等間隔である必要もない。試料搬送部3の形状はベルトコンベヤー以外にも、円盤状など限定されるものではく、試料が搬送される軌跡が一次X線X1と交差することである。
なお、搬送される試料は1つであってもよい。
Here, the arrangement of the sample is regulated in consideration of the irradiation diameter of the primary X-ray X1 in the direction orthogonal to the transport direction D of the sample, but the arrangement of the sample with respect to the transport direction D, that is, the individual sample S is transported. The minimum interval is such that the measurement in the absence of at least one sample is sandwiched between two consecutive samples, and if the interval is larger than the interval, there is no limitation and the interval does not have to be equal. The shape of the sample transfer unit 3 is not limited to a disk shape or the like other than the belt conveyor, and the trajectory of the sample transfer intersects with the primary X-ray X1.
It should be noted that the number of samples to be transported may be one.

X線検出部2は、半導体検出器あるいは比例計数管などのエネルギー分散型X線検出器を用いる。これは、入射した1個のX線光子が持つエネルギーに比例した電荷を発生するものであり、この電荷量に比例した電圧信号に変換し、さらにこれをAD変換してデジタル値として出力する。
なお、X線検出部は、波長分散型X線検出器を用いてもよい。
The X-ray detector 2 uses an energy-dispersed X-ray detector such as a semiconductor detector or a proportional counter. This generates an electric charge proportional to the energy of one incident X-ray photon, converts it into a voltage signal proportional to the amount of the electric charge, further AD-converts it, and outputs it as a digital value.
A wavelength dispersive X-ray detector may be used as the X-ray detector.

分析器5は、X線検出部2に接続されて上記信号を分析する。分析器5は例えば、上記信号から電圧パルスの波高を得てエネルギースペクトルを生成する波高分析器(マルチチャンネルアナライザー)である。分析器5は、X線検出部2から出力されたX線光子の信号をエネルギー毎に弁別しエネルギー毎に入射回数を計数してX線強度としてスペクトルを得る。 The analyzer 5 is connected to the X-ray detector 2 to analyze the signal. The analyzer 5 is, for example, a wave height analyzer (multi-channel analyzer) that obtains the wave height of a voltage pulse from the above signal and generates an energy spectrum. The analyzer 5 discriminates the X-ray photon signal output from the X-ray detector 2 for each energy, counts the number of incidents for each energy, and obtains a spectrum as the X-ray intensity.

図7は、分析器5でエネルギー毎に弁別しエネルギー毎に入射回数を計数してX線強度としてスペクトルのエネルギーを等間隔ΔE毎に区切ったチャンネル42を複数並べ、それぞれのチャンネル42ごとの計数の配列として表したものである。この入射計数を積算する時間Tmを、下記の数式1になるように設定する。

Figure 2022013497000002
In FIG. 7, the analyzer 5 discriminates for each energy, counts the number of incidents for each energy, arranges a plurality of channels 42 in which the energy of the spectrum is divided into equal intervals ΔE as X-ray intensity, and counts for each channel 42. It is expressed as an array of. The time Tm for accumulating the incident count is set so as to be the following mathematical formula 1.
Figure 2022013497000002

ここでLは試料S上の測定対象部分の搬送方向Dの長さ、Vは試料Sの搬送速度である。ここでは例としてTmをL/Vの1/10に設定する。
なお、入射計数を積算する時間Tmは、試料が前記X線照射部を通過するのに要する時間よりも短いのが望ましい。
Here, L is the length of the measurement target portion on the sample S in the transport direction D, and V is the transport speed of the sample S. Here, as an example, Tm is set to 1/10 of L / V.
It is desirable that the time Tm for accumulating the incident count is shorter than the time required for the sample to pass through the X-ray irradiation unit.

このスペクトルの積算動作を連続的に実施し、得られたスペクトルはスペクトルの配列としてデータ処理部7のメモリに蓄えられる。データ処理部7は、得られたスペクトルと設定した閾値から、試料搬送部3で移動している試料Sが照射位置6を通過しているか否かを判断する。
また、データ処理部7のメモリに保存したスペクトルは、古い順に上書きすることで記憶領域が飽和しないようにするが、一度に書き込めるスペクトルの個数が十分多くなるようにメモリを実装することで、後の処理に必要な時間内に次のスペクトルに上書きされないようにする。
This spectrum integration operation is continuously performed, and the obtained spectrum is stored in the memory of the data processing unit 7 as an array of spectra. From the obtained spectrum and the set threshold value, the data processing unit 7 determines whether or not the sample S moving in the sample transport unit 3 has passed through the irradiation position 6.
Further, the spectra stored in the memory of the data processing unit 7 are overwritten in the order of oldest to prevent the storage area from being saturated, but by mounting the memory so that the number of spectra that can be written at one time is sufficiently large, later To prevent the next spectrum from being overwritten within the time required for processing.

上記分析器5は、X線検出部2からの信号から電圧パルスの波高を得てエネルギースペクトルを生成する波高分析器(マルチチャンネルパルスハイトアナライザー)である。
データ処理部7では、逐次取得されていくスペクトルを監視し、試料Sの有無によるスペクトルの変化を検出する。
The analyzer 5 is a wave height analyzer (multi-channel pulse height analyzer) that obtains the wave height of a voltage pulse from a signal from the X-ray detection unit 2 and generates an energy spectrum.
The data processing unit 7 monitors the spectra acquired sequentially and detects changes in the spectra due to the presence or absence of the sample S.

試料搬送部3の材質の主成分が元素A、試料Sが主要成分として元素Bを含む場合で説明する。図1のように試料Sが照射位置6にない場合で、横軸にエネルギー、縦軸にX線強度としたときのスペクトル10を図2に示す。試料搬送部3の表面が照射位置6にあるので、スペクトル10は試料搬送部3の材質の主成分が元素Aの蛍光X線のエネルギー11にX線強度のピークを持つ。次に、図3のように試料Sが照射位置6にあるときのスペクトル12を図4に示す。試料Sが照射位置6にあるので、試料Sの主要成分である元素Bの蛍光X線のエネルギー13にX線強度のピークを持つ。このとき、図4の元素Aの蛍光X線のエネルギー11のX線強度は、図2のときより小さくなる。
この性質を利用し、所定のX線強度の閾値14を設け、試料Sが主要成分の元素Bの蛍光X線のエネルギー13のX線強度が、閾値14を上回っているとき、試料Sが照射位置6に存在すると判定する。
The case where the main component of the material of the sample transport unit 3 contains the element A and the sample S contains the element B as the main component will be described. FIG. 2 shows the spectrum 10 when the sample S is not at the irradiation position 6 as shown in FIG. 1 and the horizontal axis is energy and the vertical axis is X-ray intensity. Since the surface of the sample transport unit 3 is located at the irradiation position 6, the spectrum 10 has an X-ray intensity peak at the energy 11 of the fluorescent X-ray of the element A, which is the main component of the material of the sample transport unit 3. Next, FIG. 4 shows the spectrum 12 when the sample S is at the irradiation position 6 as shown in FIG. Since the sample S is at the irradiation position 6, the energy 13 of the fluorescent X-ray of the element B, which is the main component of the sample S, has a peak of X-ray intensity. At this time, the X-ray intensity of the energy 11 of the fluorescent X-ray of the element A in FIG. 4 is smaller than that in FIG.
Utilizing this property, a predetermined X-ray intensity threshold value 14 is provided, and when the X-ray intensity of the fluorescent X-ray energy 13 of the element B, which is the main component of the sample S, exceeds the threshold value 14, the sample S is irradiated. It is determined that it exists at the position 6.

本実施例では、前述の通りTmをL/Vの1/10に設定しているので、図5に示したように、試料Sを搬送しながら所定の時間間隔で連続して測定したスペクトルT1からT21を示す。
図5の場合、スペクトルT2からT20では、元素Bの蛍光X線のエネルギー13のX線強度が閾値14より大きくなっているので、試料Sが照射位置6にあると判定される。判定されたエネルギー13のX線強度は、試料の測定スペクトルとして分析する。この連続した測定スペクトルは、全て個別のスペクトルとして扱う。または、スペクトルT2やT20のように最初と最後の測定スペクトルを排除しT3からT29を積算または平均化して一つのスペクトルとして扱ってもよい。または、連続した測定スペクトルの中心や重心を試料のスペクトルとして選択するなどしてもよい。
In this embodiment, since Tm is set to 1/10 of L / V as described above, as shown in FIG. 5, the spectrum T1 is continuously measured at predetermined time intervals while transporting the sample S. T21 is shown from.
In the case of FIG. 5, in the spectra T2 to T20, since the X-ray intensity of the fluorescent X-ray energy 13 of the element B is larger than the threshold value 14, it is determined that the sample S is at the irradiation position 6. The determined X-ray intensity of energy 13 is analyzed as the measurement spectrum of the sample. All of these continuous measurement spectra are treated as individual spectra. Alternatively, the first and last measurement spectra such as the spectra T2 and T20 may be excluded, and T3 to T29 may be integrated or averaged and treated as one spectrum. Alternatively, the center or center of gravity of the continuous measurement spectrum may be selected as the spectrum of the sample.

前記の本実施形態のX線分析装置は、試料Sが照射位置6に存在するか否かは、試料Sの主要成分の元素Bの蛍光X線のエネルギー13のX線強度で判定したが、試料搬送部の材質の主成分が元素Aの蛍光X線のエネルギーにX線強度と特定の閾値を用いて試料の有無を判断してもよい。
なお、このときの閾値は前記の本実施形態の閾値と異なっていてもよい。
図2と図4で示すように、試料搬送部3の材質である元素Aの蛍光X線のエネルギー11のX線強度も試料Sの位置に応じて変化する。試料Sが照射位置6にあることで、一次X線X1が試料搬送部3に照射される量が減衰し、元素Aの蛍光X線のエネルギー11のX線強度は大幅に減衰する。元素Aの特定の閾値を設定することで、元素Aの蛍光X線のエネルギー11のX線強度がこの閾値を比較して、試料Sが照射位置6にあるか否かを判定してもよい。
In the X-ray analyzer of the present embodiment, whether or not the sample S is present at the irradiation position 6 is determined by the X-ray intensity of the fluorescent X-ray energy 13 of the element B, which is the main component of the sample S. The presence or absence of a sample may be determined by using the X-ray intensity and a specific threshold value for the energy of fluorescent X-rays whose main component of the material of the sample carrier is element A.
The threshold value at this time may be different from the threshold value of the present embodiment.
As shown in FIGS. 2 and 4, the X-ray intensity of the fluorescent X-ray energy 11 of the element A, which is the material of the sample transport unit 3, also changes depending on the position of the sample S. When the sample S is located at the irradiation position 6, the amount of the primary X-ray X1 irradiated to the sample transport unit 3 is attenuated, and the X-ray intensity of the energy 11 of the fluorescent X-ray of the element A is significantly attenuated. By setting a specific threshold value of the element A, the X-ray intensity of the energy 11 of the fluorescent X-ray of the element A may be compared with this threshold value to determine whether or not the sample S is at the irradiation position 6. ..

また、別の本実施形態のX線分析装置は、試料搬送部3の表面がプラスチック材料である場合、プラスチックは一次X線の散乱の効率が高く、加えてプラスチックの主成分である炭素や酸素の蛍光X線ピークはほとんど検出されない。そのため、試料Sが照射位置6にない場合は図6のスペクトル15に示したように、X線管球からの連続X線成分を反映した、蛍光X線ピークと比較して顕著に幅広な散乱線のスペクトルとなる。この性質を利用し、試料Sの主要成分の元素Bのエネルギー13と干渉しない、散乱線の強度が顕著なエネルギー領域16のX線強度が、閾値17を下回ったことで、試料Sが照射位置6にある場合のスペクトルであるか否かを判定してもよい。 Further, in another X-ray analyzer of the present embodiment, when the surface of the sample transport unit 3 is a plastic material, the plastic has a high efficiency of scattering primary X-rays, and in addition, carbon and oxygen which are the main components of the plastic are used. Fluorescent X-ray peaks are rarely detected. Therefore, when the sample S is not at the irradiation position 6, as shown in the spectrum 15 of FIG. 6, the scattering is remarkably wider than the fluorescent X-ray peak, which reflects the continuous X-ray component from the X-ray tube. It becomes a spectrum of lines. Utilizing this property, the X-ray intensity of the energy region 16 in which the intensity of scattered rays is remarkable and does not interfere with the energy 13 of the element B, which is the main component of the sample S, falls below the threshold value 17, so that the sample S is placed at the irradiation position. It may be determined whether or not it is the spectrum in the case of 6.

また、別の本実施形態のX線分析装置は、試料搬送部3の材質が試料Sの材質と蛍光X線が干渉しないように選べない場合や、試料Sの成分が安定せず適切な閾値の設定が難しい場合を述べる。準備段階として、試料Sを載せない状態で多数のスペクトルを取得し、次に試料を照射位置またはその近辺に配置したスペクトルを取得する。
試料の成分や被膜の厚さのばらつきなど、測定系のばらつき以外の試料個体差による試料間のスペクトルの差異が予測される場合は試料間の個体差のばらつきを適切に反映した多数の試料のスペクトルが含まれるように留意する。これらの2つのグループのスペクトルの差異をディープラーニングにより学習させる。ここまでの準備段階で得られた学習結果を用いて、試料Sが照射位置6にある場合のスペクトルであるかどうかを判定する。
Further, in another X-ray analyzer of the present embodiment, the material of the sample transport unit 3 cannot be selected so that the material of the sample S and the fluorescent X-ray do not interfere with each other, or the component of the sample S is not stable and an appropriate threshold value is obtained. The case where it is difficult to set is described. As a preparatory step, a large number of spectra are acquired without mounting the sample S, and then a spectrum in which the sample is placed at or near the irradiation position is acquired.
If spectral differences between samples are predicted due to individual differences in samples other than variations in the measurement system, such as variations in sample components and coating thickness, a large number of samples that appropriately reflect variations in individual differences between samples. Care should be taken to include the spectrum. The difference between the spectra of these two groups is learned by deep learning. Using the learning results obtained in the preparatory steps up to this point, it is determined whether or not the sample S has a spectrum when it is at the irradiation position 6.

図7で示したように、X線検出部2が生成するスペクトルは等間隔に区切られたエネルギー範囲毎の計数の配列であった。この場合、試料搬送部の材質の主成分が元素Aの蛍光X線のエネルギー11のX線強度は、エネルギーEA0からEA1の間のチャンネルの計数を合計したものとして与えられた。同様に試料Sの主成分が元素BのX線のエネルギー13のX線強度もエネルギーEB0からEB1の間のチャンネルの計数を合計したものとして与えられた。後のデータ処理でスペクトルのピーク形状が重要な場合にはこの手法は理にかなっているが、後のデータ処理においてそれぞれの元素の蛍光X線強度が、EA0からEA1の間およびEB0からEB1の間のそれぞれの計数の和のみで事足りるような場合は、等間隔でチャンネルを区切りスペクトルを生成する必要がない。このような場合は、チャンネルを等間隔で区切らず、必要な元素のエネルギーのピークを含むエネルギー領域をいくつかのチャンネルとして設定し、複数のシングルチャンネルアナライザーとして動作させることでも本発明の目的を達成できる。As shown in FIG. 7, the spectrum generated by the X-ray detector 2 was an array of counts for each energy range divided at equal intervals. In this case, the X-ray intensity of the energy 11 of the fluorescent X-ray whose main component of the material of the sample carrier is element A is given as the sum of the counts of the channels between the energies EA0 and EA1. Similarly, the X-ray intensity of the X-ray energy 13 of the element B whose main component is the sample S is also given as the sum of the counts of the channels between the energies EB0 and EB1 . This technique makes sense when the peak shape of the spectrum is important in later data processing, but in later data processing the fluorescent X-ray intensity of each element is between EA0 and EA1 and EB0 . If only the sum of the counts between 1 and EB1 is sufficient, it is not necessary to divide the channels at equal intervals and generate a spectrum. In such a case, the object of the present invention is achieved by setting the energy region containing the energy peak of the required element as several channels and operating as a plurality of single channel analyzers without dividing the channels at equal intervals. can.

1 X線照射部
2 X検出部
3 試料搬送部
4 一次X線調整手段
5 分析器
6 照射位置
7 データ処理部
X1 一次X線
X2 二次X線
D 試料の搬送方向
1 X-ray irradiation unit 2 X-ray detection unit 3 Sample transfer unit 4 Primary X-ray adjustment means 5 Analyzer 6 Irradiation position 7 Data processing unit X1 Primary X-ray X2 Secondary X-ray D Sample transfer direction

Claims (8)

試料にX線を照射可能なX線源と、
前記試料から発生した二次X線を検出するX線検出部と、
前記試料を搬送する試料搬送部と
前記X線検出部から出力された信号をエネルギー毎に弁別しエネルギー毎に入射回数を計数してX線強度としてスペクトルを得る分析器と、
前記分析器で得られたスペクトルの特定の元素のエネルギーの二次X線強度と設定したX線強度の閾値とから前記試料搬送部で移動している前記試料が前記X線の照射位置を通過しているか否かを判断することを特徴とするX線分析装置。
An X-ray source that can irradiate the sample with X-rays,
An X-ray detector that detects secondary X-rays generated from the sample,
An analyzer that discriminates the signal output from the sample transport unit that transports the sample and the X-ray detection unit for each energy, counts the number of incidents for each energy, and obtains a spectrum as the X-ray intensity.
The sample moving in the sample transport section passes through the X-ray irradiation position from the secondary X-ray intensity of the energy of a specific element in the spectrum obtained by the analyzer and the set X-ray intensity threshold. An X-ray analyzer characterized in determining whether or not it is being used.
請求項1に記載のX線分析装置において、前記データ処理部が前記試料の特定の元素のエネルギーのX線強度と設定したX線強度の前記閾値とを比較して、前記試料がX線の前記照射位置にあるか否かを判断することを特徴とするX線分析装置。In the X-ray analyzer according to claim 1, the data processing unit compares the X-ray intensity of the energy of a specific element of the sample with the threshold value of the X-ray intensity set, and the sample is X-ray. An X-ray analyzer characterized by determining whether or not it is at the irradiation position. 請求項1に記載のX線分析装置において、前記データ処理部が前記試料搬送部の表面の材質の特定の元素のエネルギーのX線強度と設定したX線強度の前記閾値とを比較して、試料がX線照射部にあるか否かを判断することを特徴とするX線分析装置。In the X-ray analyzer according to claim 1, the data processing unit compares the X-ray intensity of the energy of a specific element of the surface material of the sample transfer unit with the threshold value of the set X-ray intensity. An X-ray analyzer characterized in determining whether or not a sample is in an X-ray irradiation unit. 請求項1に記載のX線分析装置において、前記データ処理部が一次X線の散乱線のX線強度と設定したX線強度の閾値を比較して、試料がX線照射部にあるか否かを判断することを特徴とするX線分析装置。In the X-ray analyzer according to claim 1, the data processing unit compares the X-ray intensity of the scattered rays of the primary X-ray with the threshold value of the X-ray intensity set, and whether or not the sample is in the X-ray irradiation unit. An X-ray analyzer characterized by determining whether or not. 請求項1に記載のX線分析装置において、前記分析器は前記X線検出部で検出した二次X線のX線強度を前記試料が前記X線照射位置を通過するのに要する時間よりも短い時間間隔でスペクトルを連続的に取得することを特徴とするX線分析装置。In the X-ray analyzer according to claim 1, the analyzer makes the X-ray intensity of the secondary X-ray detected by the X-ray detector more than the time required for the sample to pass through the X-ray irradiation position. An X-ray analyzer characterized by continuously acquiring spectra at short time intervals. 請求項1に記載のX線分析装置において、前記データ処理部は機械学習により得られたスペクトルの特徴量から、試料が前記X線照射部にある時点のスペクトルを選択することができることを特徴とするX線分析装置。The X-ray analyzer according to claim 1 is characterized in that the data processing unit can select a spectrum at a time when a sample is in the X-ray irradiation unit from a feature amount of a spectrum obtained by machine learning. X-ray analyzer. 請求項1から6に記載の蛍光X線分析装置において、X線スペクトルは連続したエネルギーまたは波長の範囲を等間隔に区切ったX線計数のヒストグラムによるものであることを特徴とするX線分析装置。In the fluorescent X-ray analyzer according to any one of claims 1 to 6, the X-ray spectrum is based on a histogram of X-ray counts in which a range of continuous energy or wavelength is divided at equal intervals. .. 請求項1から5に記載の蛍光X線分析装置において、X線スペクトルは特定のエネルギー範囲の計数、またはその複数の組合せであることを特徴とするX線分析装置。The X-ray analyzer according to claim 1 to 5, wherein the X-ray spectrum is a count of a specific energy range or a combination thereof.
JP2020127755A 2020-07-03 2020-07-03 X-ray analysis device Pending JP2022013497A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020127755A JP2022013497A (en) 2020-07-03 2020-07-03 X-ray analysis device
KR1020210055033A KR20220004545A (en) 2020-07-03 2021-04-28 Apparatus for x-ray analysis
TW110120147A TW202215000A (en) 2020-07-03 2021-06-03 X-ray analysis apparatus
CN202110629795.2A CN113884524A (en) 2020-07-03 2021-06-07 X-ray analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020127755A JP2022013497A (en) 2020-07-03 2020-07-03 X-ray analysis device

Publications (1)

Publication Number Publication Date
JP2022013497A true JP2022013497A (en) 2022-01-18

Family

ID=79010192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020127755A Pending JP2022013497A (en) 2020-07-03 2020-07-03 X-ray analysis device

Country Status (4)

Country Link
JP (1) JP2022013497A (en)
KR (1) KR20220004545A (en)
CN (1) CN113884524A (en)
TW (1) TW202215000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240037830A (en) 2022-09-15 2024-03-22 가부시키가이샤 히다치 하이테크 사이언스 X-ray analyzing apparatus and x-ray analyzing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258118B2 (en) 1993-03-19 2002-02-18 セイコーインスツルメンツ株式会社 How to detect the center of a strip sample
JP3051907B2 (en) 1993-03-19 2000-06-12 セイコーインスツルメンツ株式会社 X-ray fluorescence micrometer thickness meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240037830A (en) 2022-09-15 2024-03-22 가부시키가이샤 히다치 하이테크 사이언스 X-ray analyzing apparatus and x-ray analyzing method

Also Published As

Publication number Publication date
TW202215000A (en) 2022-04-16
KR20220004545A (en) 2022-01-11
CN113884524A (en) 2022-01-04

Similar Documents

Publication Publication Date Title
US10180404B2 (en) X-ray analysis device
US11112371B2 (en) X-ray spectrometer
JP4768377B2 (en) Combined X-ray reflectometer and diffractometer
US20020191747A1 (en) Combined X-ray analysis apparatus
US20130034204A1 (en) X-ray analyzer and x-ray analysis method
US20160041110A1 (en) X-ray transmission inspection apparatus and extraneous substance detecting method
US9213007B2 (en) Foreign matter detector
US9829448B2 (en) Measurement of small features using XRF
JP2022013497A (en) X-ray analysis device
US11703464B2 (en) Small-angle x-ray scatterometry
Udod et al. State-of-the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: a review
US11442031B2 (en) Apparatus for selecting products on the basis of their composition by X ray fluorescent spectroscopy and corresponding selection method
JP7510463B2 (en) Apparatus and method for short wavelength feature x-ray diffraction with array detection
KR20190071111A (en) An apparatus for x-ray inspection, and a method for manufacturing a semiconductor device using the same
JPH0288952A (en) Method and device for analyzing tissue
JPH03202760A (en) Total-reflection fluorescent x-ray analyzer
JP6395275B2 (en) X-ray imaging apparatus and method of using the same
WO2023189135A1 (en) Inspection device and inspection method
KR20240037830A (en) X-ray analyzing apparatus and x-ray analyzing method
JP2014196925A (en) Fluorescent x-ray analyzer, and depth direction analysis method used for the same
JP2006189281A (en) Surface inspection device and surface inspection method
EP1016863A1 (en) High vacuum xafs measuring instrument
CN116507945A (en) Imaging unit, radiation image acquisition system, and radiation image acquisition method
JP2019128307A (en) Stress measuring device for conveyed object
CN116868048A (en) Total reflection fluorescent X-ray analysis device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240605