JP2022012109A - Stabilization method and stabilization device for alkali metal - Google Patents

Stabilization method and stabilization device for alkali metal Download PDF

Info

Publication number
JP2022012109A
JP2022012109A JP2020113685A JP2020113685A JP2022012109A JP 2022012109 A JP2022012109 A JP 2022012109A JP 2020113685 A JP2020113685 A JP 2020113685A JP 2020113685 A JP2020113685 A JP 2020113685A JP 2022012109 A JP2022012109 A JP 2022012109A
Authority
JP
Japan
Prior art keywords
carbon dioxide
alkali metal
dioxide gas
pipe
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020113685A
Other languages
Japanese (ja)
Other versions
JP7399803B2 (en
Inventor
祥平 金村
Shohei Kanemura
孝 大森
Takashi Omori
国男 島野
Kunio Shimano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020113685A priority Critical patent/JP7399803B2/en
Publication of JP2022012109A publication Critical patent/JP2022012109A/en
Application granted granted Critical
Publication of JP7399803B2 publication Critical patent/JP7399803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To perform stabilization processing on alkali metal by maintaining a reaction speed between alkali metal sticking inside equipment or piping and wet carbon dioxide from the beginning of supply of the wet carbon dioxide without any decrease.SOLUTION: Piping 15 having metallic sodium 1 stuck inside is heated at 40°C or higher by a heating device 11 arranged outside the piping, and heated wet carbon dioxide 2 is further supplied into the piping from a gas supply system 12, so that the metallic sodium 1 is changed into sodium hydrogen carbonate, which is then thermally decomposed into solidum carbonate.SELECTED DRAWING: Figure 1

Description

本発明の実施形態はアルカリ金属の安定化方法、及びアルカリ金属の安定化装置に関する。 Embodiments of the present invention relate to a method for stabilizing an alkali metal and a device for stabilizing the alkali metal.

ナトリウム冷却高速炉では、冷却材として金属ナトリウムやナトリウムカリウム合金が用いられる。これらの金属は熱中性子吸収断面積が小さい、熱伝導性が高く除熱性能が高い等のメリットがあるが、酸素や水と激しく反応して発火または爆発する恐れがあるデメリットもある。これらの金属は、炉心冷却のために溶融した状態でループ内を移動するので、金属配管、バルブ、ストレーナ、タンク等のループ内の様々な機器に接触する。 In a sodium-cooled fast reactor, metallic sodium or sodium-potassium alloy is used as a coolant. These metals have advantages such as a small thermal neutron absorption cross section, high thermal conductivity, and high heat removal performance, but also have disadvantages that they may ignite or explode by violently reacting with oxygen or water. Since these metals move in the loop in a molten state for core cooling, they come into contact with various devices in the loop such as metal pipes, valves, strainers, and tanks.

一方、ナトリウム冷却高速炉を廃炉にする際は、ループ内に残った金属ナトリウムを取り出す必要があり、溶融金属ナトリウムをドレンラインから排出することが行われる。この操作により、大部分の金属ナトリウムをループ外に排出可能であるが、一部の金属ナトリウムは配管の内表面や機器の隙間などに残留する。ループ内に残留した金属ナトリウムは、配管や機器の切断または解体時に発熱もしくは発火する可能性がある。このため、ループ内に湿り炭酸ガスや湿り窒素ガスを導入し、金属ナトリウムを比較的安定で取り扱いがしやすい水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムに転換することが行われる。 On the other hand, when the sodium-cooled fast reactor is decommissioned, it is necessary to take out the metallic sodium remaining in the loop, and the molten metallic sodium is discharged from the drain line. By this operation, most of the metallic sodium can be discharged out of the loop, but some of the metallic sodium remains on the inner surface of the pipe or in the gap of the device. The metallic sodium remaining in the loop may generate heat or ignite when the piping or equipment is cut or disassembled. Therefore, wet carbonic acid gas or wet nitrogen gas is introduced into the loop to convert metallic sodium into sodium hydroxide, sodium carbonate, or sodium hydrogencarbonate, which are relatively stable and easy to handle.

湿り炭酸ガスの場合:2Na+2HO+2CO→2NaHCO+H
:2Na+HO+CO→NaCO+H
湿り窒素ガスの場合:2Na+2HO→2NaOH+H
For wet carbon dioxide: 2Na + 2H 2 O + 2CO 2 → 2NaHCO 3 + H 2
: 2Na + H 2 O + CO 2 → Na 2 CO 3 + H 2
For wet nitrogen gas: 2Na + 2H 2 O → 2 NaOH + H 2

特開昭62-75396号公報Japanese Unexamined Patent Publication No. 62-75396 特開2000-15215号公報Japanese Unexamined Patent Publication No. 2000-15215 特表2011-525979号公報Japanese Patent Publication No. 2011-525979

大型ナトリウム機器の解体・洗浄手法の開発(核燃料サイクル開発機構;2002)Development of dismantling / cleaning method for large sodium equipment (Japan Nuclear Cycle Development Institute; 2002) 湿り空気および湿り炭酸ガス環境における金属ナトリウムの反応進展速度評価(核燃料サイクル開発機構;1999)Evaluation of reaction progress rate of metallic sodium in moist air and moist carbon dioxide environment (Japan Nuclear Cycle Development Institute; 1999)

図7に示すように、湿り炭酸ガス102により金属ナトリウム101を比較的安定なナトリウム炭酸塩に転換する反応は既に行われており、報告もされている。本反応は、最初期では金属ナトリウム101と湿り炭酸ガス102とが直接触れるため反応が進行するが、反応が進行するにつれて、生成した炭酸ナトリウムまたは炭酸水素ナトリウムからなる生成物層103を介して金属ナトリウム101と湿り炭酸ガス102とが反応することになるため、反応速度が低下してしまうという課題がある。 As shown in FIG. 7, the reaction of converting metallic sodium 101 to relatively stable sodium carbonate by the wet carbon dioxide gas 102 has already been carried out and has been reported. In the initial stage, the reaction proceeds because the metallic sodium 101 and the wet carbon dioxide gas 102 come into direct contact with each other, but as the reaction progresses, the metal is formed through the product layer 103 made of sodium carbonate or sodium hydrogen carbonate. Since the sodium 101 and the wet carbon dioxide gas 102 react with each other, there is a problem that the reaction rate is lowered.

非特許文献1には、湿り炭酸ガス(相対湿度40~80%RH)を、金属ナトリウムが付着した機器に導入し、処理開始2日目で、厚さ2~3mmの白色生成物が得られたと報告されている。また、非特許文献2には、CO濃度が95vol%以上で且つ相対湿度が39~98%RHの湿り炭酸ガスを用いて、室温で金属ナトリウムの安定化処理を行ったところ、この安定化処理の進行に伴い、金属ナトリウムと湿り炭酸ガスとの反応速度が低下する傾向があることが報告されている。 In Non-Patent Document 1, a moist carbon dioxide gas (relative humidity 40 to 80% RH) was introduced into a device to which metallic sodium was attached, and a white product having a thickness of 2 to 3 mm was obtained on the second day after the start of treatment. It is reported that it was. Further, in Non-Patent Document 2, when a moist carbon dioxide gas having a CO 2 concentration of 95 vol% or more and a relative humidity of 39 to 98% RH was used to stabilize metallic sodium at room temperature, this stabilization was performed. It has been reported that the reaction rate between metallic sodium and wet carbon dioxide tends to decrease as the treatment progresses.

本発明の実施形態は、上述の事情を考慮してなされたものであり、機器または配管の内部に付着したアルカリ金属と湿り炭酸ガスとの反応速度を、湿り炭酸ガスの供給初期から低下させることなく保持させて、アルカリ金属の安定化処理を実施できるアルカリ金属の安定化方法及び安定化装置を提供することを目的とする。 The embodiment of the present invention has been made in consideration of the above circumstances, and reduces the reaction rate between the alkali metal adhering to the inside of the device or the pipe and the wet carbon dioxide gas from the initial supply of the wet carbon dioxide gas. It is an object of the present invention to provide an alkali metal stabilizing method and a stabilizing device capable of carrying out a stabilizing treatment for an alkali metal while retaining the carbon dioxide.

本発明の実施形態におけるアルカリ金属の安定化方法は、アルカリ金属が内部に付着した機器または配管を、この機器または配管の外部に配置された加熱装置により40℃以上に加熱し、更に加熱した湿り炭酸ガスを前記機器または前記配管の内部に供給することで、前記アルカリ金属を炭酸水素塩に転換させた後に、この炭酸水素塩を炭酸塩に熱分解させることを特徴とするものである。 In the method for stabilizing an alkali metal in the embodiment of the present invention, a device or a pipe to which the alkali metal is adhered is heated to 40 ° C. or higher by a heating device arranged outside the device or the pipe, and further heated and moistened. It is characterized in that, by supplying a carbon dioxide gas to the inside of the device or the pipe, the alkali metal is converted into a hydrogen carbonate, and then the hydrogen carbonate is thermally decomposed into a carbonate.

また、本発明の実施形態におけるアルカリ金属の安定化装置は、機器または配管の外部に配置され、前記機器または前記配管の内部に付着したアルカリ金属を40℃以上に加熱する加熱装置と、前記機器または前記配管の内部に、加熱した湿り炭酸ガスを供給するガス供給系と、を有し、前記加熱装置にて40℃以上に加熱した前記アルカリ金属に、前記ガス供給系から加熱した湿り炭酸ガスを供給することで、前記アルカリ金属を炭酸水素塩に転換した後に、この炭酸水素塩を炭酸塩に熱分解するよう構成されたことを特徴とするものである。 Further, the alkali metal stabilizing device according to the embodiment of the present invention is a heating device which is arranged outside the device or the pipe and heats the alkali metal adhering to the inside of the device or the pipe to 40 ° C. or higher, and the device. Alternatively, the inside of the pipe has a gas supply system for supplying heated wet carbon dioxide gas, and the alkali metal heated to 40 ° C. or higher by the heating device is heated from the gas supply system. The alkali metal is converted into a hydrogen carbonate, and then the hydrogen carbonate is thermally decomposed into a carbonate.

本発明の実施形態によれば、機器または配管の内部に付着したアルカリ金属と湿り炭酸ガスとの反応速度を、湿り炭酸ガスの供給初期から低下させることなく保持させて、アルカリ金属の安定化処理を実施できる。 According to the embodiment of the present invention, the reaction rate between the alkali metal adhering to the inside of the device or the pipe and the wet carbon dioxide gas is maintained without being lowered from the initial supply of the wet carbon dioxide gas, and the alkali metal stabilization treatment is performed. Can be carried out.

本実施形態に係るアルカリ金属の安定化方法を実施するアルカリ金属の安定化装置を概略して示す構成図。The block diagram which shows schematic the alkali metal stabilization apparatus which carries out the alkali metal stabilization method which concerns on this embodiment. 図1のアルカリ金属の安定化装置が実施するアルカリ金属の安定化方法を説明する説明図。The explanatory view explaining the alkali metal stabilization method carried out by the alkali metal stabilization apparatus of FIG. 図2におけるアルカリ金属の安定化方法によりガラスシャーレ内で生成される生成物等のサンプルを示し、ガラスシャーレの内部及び周囲並びに湿り炭酸ガスの温度が(A)では25℃、(B)では40℃、(C)では60℃の各場合を示す断面図。A sample of a product or the like produced in a glass petri dish by the method for stabilizing an alkali metal in FIG. 2 is shown. A cross-sectional view showing each case of ° C. and 60 ° C. at (C). 生成物層の厚さと金属ナトリウム及び湿り炭酸ガスの温度との関係を示すグラフ。The graph which shows the relationship between the thickness of a product layer and the temperature of metallic sodium and wet carbon dioxide gas. 図2におけるアルカリ金属の安定化方法によりガラスシャーレ内で生成される生成物等のサンプルを示し、ガラスシャーレ内に供給される湿り炭酸ガスの炭酸ガス濃度が(A)では100vol%、(B)では80vol%、(C)では10vol%の各場合を示す断面図。A sample of a product or the like produced in a glass petri dish by the method for stabilizing an alkali metal in FIG. 2 is shown, and the carbon dioxide concentration of the wet carbon dioxide gas supplied in the glass petri dish is 100 vol% in (A) and (B). It is a cross-sectional view which shows each case of 80 vol% in (C), and 10 vol% in (C). 生成物層の厚さと湿り炭酸ガスの炭酸ガス濃度との関係を示すグラフ。The graph which shows the relationship between the thickness of a product layer and the carbon dioxide concentration of a wet carbon dioxide gas. 従来のアルカリ金属の安定化方法を説明する説明図。Explanatory drawing explaining the conventional method of stabilizing alkali metal.

以下、本発明を実施するための形態を、図面に基づき説明する。
図1は、本実施形態に係るアルカリ金属の安定化方法を実施するアルカリ金属の安定化装置を概略して示す構成図である。このアルカリ金属の安定化装置10は、アルカリ金属としての例えば金属ナトリウム1を湿り炭酸ガス2と反応させて、比較的安定で取り扱いの容易な炭酸ナトリウム(NaCO)及び炭酸水素ナトリウム(NaHCO)に転換させるものであり、加熱装置11及びガス供給系12を有して構成される。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram schematically showing an alkali metal stabilizing device that implements the alkali metal stabilizing method according to the present embodiment. In this alkali metal stabilizing device 10, for example, metallic sodium 1 as an alkali metal is reacted with wet carbon dioxide gas 2, and sodium carbonate (Na 2 CO 3 ) and sodium hydrogen carbonate (NaHCO), which are relatively stable and easy to handle, are reacted. It is converted to 3 ) and includes a heating device 11 and a gas supply system 12.

ここで、アルカリ金属としては、ナトリウムのほか、リチウム、カリウム、ルビジウム、セシウムであってもよく、またはこれらの金属の組み合わせたもの(例えばナトリウムカリウム合金)であってもよい。また、アルカリ金属の安定化装置10が処理対象とする金属ナトリウム1は、例えばナトリウム冷却高速炉における金属容器を含む機器または配管、図1では配管15の内部(例えば内面)に付着して残留したものである。 Here, the alkali metal may be lithium, potassium, rubidium, cesium, or a combination of these metals (for example, a sodium-potassium alloy), in addition to sodium. Further, the metallic sodium 1 to be treated by the alkali metal stabilizing device 10 adheres to and remains on the equipment or piping including the metal container in a sodium-cooled fast reactor, for example, the inside (for example, the inner surface) of the piping 15 in FIG. It is a thing.

加熱装置11は、機器または配管(例えば配管15)のを外部に接して配置されて、この機器または配管(例えば配管15)の内部(例えば内面)に付着した金属ナトリウム1を40℃以上に加熱する。この加熱装置11は、上記金属ナトリウム1を加熱すると共に、この金属ナトリウム1が転換されて生成された炭酸水素ナトリウム及び炭酸ナトリウムからなる生成物層3(図2)を加熱する。また、加熱装置11は、機器または配管(例えば配管15)内の金属ナトリウム1を溶融させるために上記高速炉に設置された既存の加熱装置であってもよいが、新たに設置された加熱装置であってもよい。 The heating device 11 is arranged so that the device or the pipe (for example, the pipe 15) is in contact with the outside, and heats the metallic sodium 1 adhering to the inside (for example, the inner surface) of the device or the pipe (for example, the pipe 15) to 40 ° C. or higher. do. The heating device 11 heats the metallic sodium 1 and also heats the product layer 3 (FIG. 2) composed of sodium hydrogen carbonate and sodium carbonate produced by converting the metallic sodium 1. Further, the heating device 11 may be an existing heating device installed in the fast reactor for melting the metallic sodium 1 in the equipment or the pipe (for example, the pipe 15), but the heating device 11 is newly installed. May be.

ガス供給系12は、機器または配管(例えば配管15)の内部に、加熱した湿り炭酸ガス2を供給するものであり、濃度・湿度調整器13及びガス加熱設備14を有して構成される。 The gas supply system 12 supplies heated moist carbon dioxide gas 2 to the inside of an apparatus or a pipe (for example, a pipe 15), and includes a concentration / humidity regulator 13 and a gas heating facility 14.

濃度・湿度調整器13は、まず、炭酸ガスの濃度を調整する。つまり、濃度・湿度調整器13は、炭酸ガス(CO)のみを用いて炭酸ガス濃度を100vol%にするほか、炭酸ガスに不活性ガス(例えばArガス)を混合し、混合ガスとして炭酸ガス濃度を調整する。この炭酸ガス濃度は、0.04vol%以上が好ましい。濃度・湿度調整器13は、更に、濃度が調整された炭酸ガスに水蒸気を付加して湿り炭酸ガス2とする。従って、湿り炭酸ガス2は、炭酸ガスと水蒸気とからなるガス(気体)である。 The concentration / humidity regulator 13 first adjusts the concentration of carbon dioxide gas. That is, the concentration / humidity regulator 13 adjusts the carbon dioxide gas concentration to 100 vol% by using only carbon dioxide gas (CO 2 ), and also mixes the carbon dioxide gas with an inert gas (for example, Ar gas) to form the carbon dioxide gas as the mixed gas. Adjust the concentration. The carbon dioxide concentration is preferably 0.04 vol% or more. The concentration / humidity regulator 13 further adds water vapor to the carbon dioxide gas whose concentration has been adjusted to obtain wet carbon dioxide gas 2. Therefore, the wet carbon dioxide gas 2 is a gas (gas) composed of carbon dioxide gas and water vapor.

ガス加熱設備14は、濃度・湿度調整器13により炭酸ガス濃度及び湿度が調整された湿り炭酸ガス2を、機器または配管(例えば配管15)へ供給する前に加熱するものである。このガス加熱設備14により加熱される湿り炭酸ガス2の加熱温度は、加熱装置11による機器または配管(例えば配管15)の加熱温度に対応した温度(例えば略一致した温度)に設定され、40℃以上の温度である。 The gas heating equipment 14 heats the wet carbon dioxide gas 2 whose carbon dioxide concentration and humidity have been adjusted by the concentration / humidity regulator 13 before supplying the equipment or the pipe (for example, the pipe 15). The heating temperature of the wet carbon dioxide gas 2 heated by the gas heating facility 14 is set to a temperature corresponding to the heating temperature of the equipment or the pipe (for example, the pipe 15) by the heating device 11 (for example, a substantially matching temperature), and is set to 40 ° C. It is the above temperature.

本実施形態のアルカリ金属の安定化方法は、上述のようにして濃度・湿度調整器13により炭酸ガス濃度及び湿度が調整されると共にガス加熱設備14により加熱された湿り炭酸ガス2を、加熱装置11により40℃以上に加熱された機器または配管(例えば配管15)内に供給することで、機器または配管(例えば配管15)の内部(例えば内面)に付着した金属ナトリウム1を炭酸水素塩である炭酸水素ナトリウム(NaHCO)に転換し、その後この炭酸水素ナトリウムを炭酸塩である炭酸ナトリウム(NaCO)に熱分解する。 In the method for stabilizing the alkali metal of the present embodiment, the wet carbon dioxide gas 2 whose carbon dioxide concentration and humidity are adjusted by the concentration / humidity regulator 13 and heated by the gas heating facility 14 as described above is heated by the heating device. The metallic sodium 1 adhering to the inside (for example, the inner surface) of the equipment or the pipe (for example, the pipe 15) by supplying it into the equipment or the pipe (for example, the pipe 15) heated to 40 ° C. or higher by 11 is a bicarbonate. It is converted to sodium hydrogen carbonate (NaHCO 3 ), and then this sodium hydrogen carbonate is thermally decomposed into sodium carbonate (Na 2 CO 3 ) which is a carbonate.

加熱装置11及びガス加熱設備14により炭酸水素ナトリウムが炭酸ナトリウムに熱分解する際に炭酸ガス(CO)が発生し、この炭酸ガスが、炭酸水素ナトリウム及び炭酸ナトリウムからなる生成物層3を膨張させて、この生成物層3に空隙を形成する。ガス供給系12からの湿り炭酸ガス2が生成物層3内の空隙内を通過することで、この湿り炭酸ガス2と金属ナトリウム1との接触が促進されて、金属ナトリウム1と湿り炭酸ガス2との反応速度が上昇する。 When sodium hydrogen carbonate is thermally decomposed into sodium carbonate by the heating device 11 and the gas heating facility 14, carbon dioxide gas (CO 2 ) is generated, and this carbon dioxide gas expands the product layer 3 composed of sodium hydrogen carbonate and sodium carbonate. To form voids in the product layer 3. When the wet carbon dioxide gas 2 from the gas supply system 12 passes through the voids in the product layer 3, the contact between the wet carbon dioxide gas 2 and the metallic sodium 1 is promoted, and the metallic sodium 1 and the wet carbon dioxide gas 2 are promoted. The reaction speed with and increases.

上述の炭酸水素ナトリウムの熱分解により炭酸ガスが発生する熱分解反応は、
2NaHCO →NaCO+HO+CO …(1)
と表記される。この熱分解反応式(1)からも分かるように、ガス供給系12から供給される湿り炭酸ガス2の炭酸ガス濃度が低いほど、上記熱分解反応式の平衡反応が右に傾いて炭酸水素ナトリウムの熱分解が促進され、炭酸ガス(CO)の発生量が増加して生成物層3が膨張し、この生成物層3中に多数の空隙が生ずる。
The above-mentioned pyrolysis reaction in which carbon dioxide gas is generated by the thermal decomposition of sodium hydrogen carbonate is
2NaHCO 3 → Na 2CO 3 + H 2 O + CO 2 … ( 1 )
It is written as. As can be seen from this thermal decomposition reaction formula (1), the lower the carbon dioxide gas concentration of the wet carbon dioxide gas 2 supplied from the gas supply system 12, the more the equilibrium reaction of the thermal decomposition reaction formula tilts to the right and sodium hydrogencarbonate. The thermal decomposition of the product layer 3 is promoted, the amount of carbon dioxide gas (CO 2 ) generated increases, the product layer 3 expands, and a large number of voids are generated in the product layer 3.

図3に示すように、金属ナトリウム1をガラスシャーレ16に充填し、絶対湿度12.5g/mの湿り炭酸ガス2を用い、ガラスシャーレ16の内部及び周囲と湿り炭酸ガス2の温度を25℃、40℃、60℃としてそれぞれ金属ナトリウムの安定化処理試験を行った。図3(A)に示す25℃で処理したサンプルでは、図4にも示すように、生成物層3の厚さTaが2.4mmであり、生成物層3に膨張を確認できなかった。 As shown in FIG. 3, a glass petri dish 1 is filled with metallic sodium 1, and a wet carbon dioxide gas 2 having an absolute humidity of 12.5 g / m 3 is used to set the temperature of the wet carbon dioxide gas 2 inside and around the glass petri dish 16 to 25. Stabilization treatment tests of metallic sodium were carried out at ° C., 40 ° C. and 60 ° C., respectively. In the sample treated at 25 ° C. shown in FIG. 3 (A), as shown in FIG. 4, the thickness Ta of the product layer 3 was 2.4 mm, and expansion could not be confirmed in the product layer 3.

図3(B)に示す40℃で処理したサンプルでは、図4にも示すように、生成物層3の厚さTbが3.7mmとなり、生成物層3に膨張による浮き上がりを確認できた。また、図3(C)に示す60℃で処理したサンプルでは、図4にも示すように、生成物層3の厚さTcが9.8mmとなり、生成物層3の膨張が促進されてこの膨張による浮き上がりが顕著になっていることが分かった。 In the sample treated at 40 ° C. shown in FIG. 3 (B), as shown in FIG. 4, the thickness Tb of the product layer 3 was 3.7 mm, and it was confirmed that the product layer 3 was lifted by expansion. Further, in the sample treated at 60 ° C. shown in FIG. 3C, as shown in FIG. 4, the thickness Tc of the product layer 3 became 9.8 mm, and the expansion of the product layer 3 was promoted. It was found that the uplift due to expansion became remarkable.

図3における各金属ナトリウムの安定化処理試験における金属ナトリウム1の深さ方向の平均処理速度は、8時間後において、25℃では0.19mm/h、40℃では0.21mm/h、60℃では0.39mm/hとなり、生成物層3の膨張に伴い処理速度が上昇していることを確認できた。 The average treatment rate of metallic sodium 1 in the depth direction in the stabilization treatment test of each metallic sodium in FIG. 3 was 0.19 mm / h at 25 ° C, 0.21 mm / h at 40 ° C, and 60 ° C after 8 hours. At 0.39 mm / h, it was confirmed that the processing speed increased with the expansion of the product layer 3.

図5に示すように、金属ナトリウム1をガラスシャーレ16に充填し、この金属ナトリウム1の内部及び周囲温度を40℃とし、絶対湿度29g/mで且つ温度40℃の湿り炭酸ガス2を用い、この湿り炭酸ガス2の炭酸ガス濃度を100vol%、80vol%、10vol%として、それぞれ金属ナトリウム1の安定化処理試験を行った。 As shown in FIG. 5, a glass petri dish 16 is filled with metallic sodium 1, the internal and ambient temperatures of the metallic sodium 1 are set to 40 ° C., and wet carbon dioxide gas 2 having an absolute humidity of 29 g / m 3 and a temperature of 40 ° C. is used. The stabilization treatment test of metallic sodium 1 was carried out with the carbon dioxide gas concentrations of the wet carbon dioxide gas 2 set to 100 vol%, 80 vol% and 10 vol%, respectively.

図5(A)に示すように、湿り炭酸ガス2の炭酸ガス濃度が100vol%で金属ナトリウム1の安定化処理を行った場合の生成物層3の膨張量(生成物層3の厚さLaが5mm)に比べ、図5(B)及び(C)に示すように、湿り炭酸ガス2の炭酸ガス濃度が低くなるほど生成物層3の膨張度合いが増加していることを確認できた。即ち、炭酸ガス濃度が80vol%、10vol%のそれぞれで金属ナトリウム1の安定化処理を行った場合の生成物層3の膨張量(生成物層3の厚さ)は、図6に示すように、80vol%の場合に生成物層3の厚さLbが11.6mmであり、10vol%の場合の生成物層3の厚さLcが15.3mmであった。これは、湿り炭酸ガス2の炭酸ガス濃度が低いほど、式(1)に示す炭酸水素ナトリウムの熱分解反応が促進されるからである。 As shown in FIG. 5A, the amount of expansion of the product layer 3 (thickness La of the product layer 3) when the metal sodium 1 is stabilized when the carbon dioxide concentration of the wet carbon dioxide gas 2 is 100 vol%. As shown in FIGS. 5 (B) and 5 (C), it was confirmed that the degree of expansion of the product layer 3 increased as the carbon dioxide concentration of the wet carbon dioxide gas 2 decreased. That is, the amount of expansion of the product layer 3 (thickness of the product layer 3) when the metal sodium 1 is stabilized at a carbon dioxide concentration of 80 vol% and 10 vol%, respectively, is as shown in FIG. In the case of 80 vol%, the thickness Lb of the product layer 3 was 11.6 mm, and in the case of 10 vol%, the thickness Lc of the product layer 3 was 15.3 mm. This is because the lower the carbon dioxide concentration of the wet carbon dioxide gas 2, the more the thermal decomposition reaction of sodium hydrogencarbonate represented by the formula (1) is promoted.

図5における各金属ナトリウムの安定化処理試験における金属ナトリウム1の深さ方向の平均処理速度は、8時間後において、炭酸ガス濃度100vol%では0.27mm/h、80vol%では0.40mm/h、10vol%では0.66mm/hとなり、生成物層3の膨張に伴い処理速度が上昇していることを確認できた。 The average treatment rate of metallic sodium 1 in the depth direction in the stabilization treatment test of each metallic sodium in FIG. 5 was 0.27 mm / h at a carbon dioxide concentration of 100 vol% and 0.40 mm / h at 80 vol% after 8 hours. At 10 vol%, it was 0.66 mm / h, and it was confirmed that the processing speed increased with the expansion of the product layer 3.

以上のように構成されたことから、本実施形態によれば、次の効果を奏する。
金属ナトリウム1が内部に付着した配管15を加熱装置11により40℃以上に加熱した状態で、配管15の内部にガス供給系12から加熱した湿り炭酸ガス2を供給することで、配管15内に付着した金属ナトリウム1を炭酸水素ナトリウムに転換した後に、この炭酸水素ナトリウムを炭酸ナトリウムに積極的に熱分解している。この炭酸水素ナトリウムが炭酸ナトリウムに熱分解する際に発生する炭酸ガスによって、炭酸ナトリウム及び炭酸水素ナトリウムからなる生成物層3が膨張し、この生成物層3中に空隙が生ずる。この空隙内を湿り炭酸ガス2が通過することで、湿り炭酸ガス2と金属ナトリウム1との接触が促進される。従って、配管15の内部に付着した金属ナトリウム1と湿り炭酸ガス2との反応速度を、湿り炭酸ガス2の供給初期から低下させることなく保持させて、金属ナトリウム1の安定化処理を実施できる。
Since it is configured as described above, according to the present embodiment, the following effects are obtained.
In a state where the pipe 15 to which the metallic sodium 1 is attached is heated to 40 ° C. or higher by the heating device 11, the wet carbonic acid gas 2 heated from the gas supply system 12 is supplied to the inside of the pipe 15 to the inside of the pipe 15. After converting the attached metallic sodium 1 to sodium hydrogen carbonate, this sodium hydrogen carbonate is positively thermally decomposed into sodium carbonate. The carbon dioxide gas generated when the sodium hydrogen carbonate is thermally decomposed into sodium carbonate causes the product layer 3 composed of sodium carbonate and sodium hydrogen carbonate to expand, and voids are formed in the product layer 3. By passing the wet carbon dioxide gas 2 through the voids, the contact between the wet carbon dioxide gas 2 and the metallic sodium 1 is promoted. Therefore, the reaction rate between the metallic sodium 1 adhering to the inside of the pipe 15 and the wet carbon dioxide gas 2 can be maintained without decreasing from the initial supply of the wet carbon dioxide gas 2, and the stabilization treatment of the metallic sodium 1 can be carried out.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention, and the replacements and changes thereof can be made. , It is included in the scope and gist of the invention, and is also included in the scope of the invention described in the claims and the equivalent scope thereof.

1…金属ナトリウム、2…湿り炭酸ガス、3…生成物層、10…アルカリ金属の安定化装置、11…加熱装置、12…ガス供給系、13…濃度・湿度調整器、14…ガス加熱設備 1 ... Metallic sodium, 2 ... Wet carbon dioxide gas, 3 ... Product layer, 10 ... Alkali metal stabilizer, 11 ... Heating device, 12 ... Gas supply system, 13 ... Concentration / humidity regulator, 14 ... Gas heating equipment

Claims (5)

アルカリ金属が内部に付着した機器または配管を、この機器または配管の外部に配置された加熱装置により40℃以上に加熱し、更に加熱した湿り炭酸ガスを前記機器または前記配管の内部に供給することで、
前記アルカリ金属を炭酸水素塩に転換させた後に、この炭酸水素塩を炭酸塩に熱分解させることを特徴とするアルカリ金属の安定化方法。
A device or pipe with alkali metal attached to the inside is heated to 40 ° C or higher by a heating device arranged outside the device or pipe, and further heated moist carbon dioxide gas is supplied to the inside of the device or the pipe. and,
A method for stabilizing an alkali metal, which comprises converting the alkali metal into a hydrogen carbonate and then thermally decomposing the hydrogen carbonate into a carbonate.
前記機器または前記配管の内部に供給される湿り炭酸ガスを、その供給前にガス加熱設備により40℃以上に加熱することを特徴とする請求項1に記載のアルカリ金属の安定化方法。 The method for stabilizing an alkali metal according to claim 1, wherein the wet carbon dioxide gas supplied to the inside of the device or the pipe is heated to 40 ° C. or higher by a gas heating facility before the supply thereof. 前記機器または前記配管の内部に供給される湿り炭酸ガスが炭酸ガス、または炭酸ガスと不活性ガスとの混合ガスであることを特徴とする請求項1または2に記載のアルカリ金属の安定化方法。 The method for stabilizing an alkali metal according to claim 1 or 2, wherein the wet carbon dioxide gas supplied to the inside of the device or the pipe is a carbon dioxide gas or a mixed gas of the carbon dioxide gas and an inert gas. .. 前記機器または前記配管の内部に供給される湿り炭酸ガスの炭酸ガス濃度が、0.04vol%以上であることを特徴とする請求項3に記載のアルカリ金属の安定化方法。 The method for stabilizing an alkali metal according to claim 3, wherein the carbon dioxide concentration of the wet carbon dioxide gas supplied to the inside of the device or the pipe is 0.04 vol% or more. 機器または配管の外部に配置され、前記機器または前記配管の内部に付着したアルカリ金属を40℃以上に加熱する加熱装置と、
前記機器または前記配管の内部に、加熱した湿り炭酸ガスを供給するガス供給系と、を有し、
前記加熱装置にて40℃以上に加熱した前記アルカリ金属に、前記ガス供給系から加熱した湿り炭酸ガスを供給することで、前記アルカリ金属を炭酸水素塩に転換した後に、この炭酸水素塩を炭酸塩に熱分解するよう構成されたことを特徴とするアルカリ金属の安定化装置。
A heating device that is placed outside the equipment or piping and heats the alkali metal adhering to the inside of the equipment or piping to 40 ° C or higher.
A gas supply system for supplying heated moist carbon dioxide gas is provided inside the device or the piping.
By supplying the wet carbon dioxide gas heated from the gas supply system to the alkali metal heated to 40 ° C. or higher by the heating device, the alkali metal is converted into hydrogen carbonate, and then the hydrogen carbonate is carbonated. An alkali metal stabilizer characterized by being configured to thermally decompose into salts.
JP2020113685A 2020-07-01 2020-07-01 Alkali metal stabilization method and stabilization device Active JP7399803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020113685A JP7399803B2 (en) 2020-07-01 2020-07-01 Alkali metal stabilization method and stabilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020113685A JP7399803B2 (en) 2020-07-01 2020-07-01 Alkali metal stabilization method and stabilization device

Publications (2)

Publication Number Publication Date
JP2022012109A true JP2022012109A (en) 2022-01-17
JP7399803B2 JP7399803B2 (en) 2023-12-18

Family

ID=80148549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020113685A Active JP7399803B2 (en) 2020-07-01 2020-07-01 Alkali metal stabilization method and stabilization device

Country Status (1)

Country Link
JP (1) JP7399803B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593096A (en) * 1979-01-08 1980-07-15 Mitsubishi Heavy Ind Ltd Method of cleaning liquid sodium handling instrument
JPS5593097A (en) * 1979-01-08 1980-07-15 Mitsubishi Heavy Ind Ltd Method of processing metal sodium deposited on instrument surface
JPS6275396A (en) * 1985-09-30 1987-04-07 三菱重工業株式会社 Method of processing metallic sodium adhering and remaining on surface of apparatus
JPH08304585A (en) * 1995-05-09 1996-11-22 Hitachi Ltd Method and device for repairing in liquid metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852985B2 (en) 2009-03-13 2010-12-14 General Electric Company Digital image detector with removable battery
US20130293683A1 (en) 2012-05-03 2013-11-07 Harman International (Shanghai) Management Co., Ltd. System and method of interactively controlling a virtual camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593096A (en) * 1979-01-08 1980-07-15 Mitsubishi Heavy Ind Ltd Method of cleaning liquid sodium handling instrument
JPS5593097A (en) * 1979-01-08 1980-07-15 Mitsubishi Heavy Ind Ltd Method of processing metal sodium deposited on instrument surface
JPS608760B2 (en) * 1979-01-08 1985-03-05 三菱重工業株式会社 Treatment method for metallic sodium remaining on the surface of equipment
JPS6275396A (en) * 1985-09-30 1987-04-07 三菱重工業株式会社 Method of processing metallic sodium adhering and remaining on surface of apparatus
JPH08304585A (en) * 1995-05-09 1996-11-22 Hitachi Ltd Method and device for repairing in liquid metal

Also Published As

Publication number Publication date
JP7399803B2 (en) 2023-12-18

Similar Documents

Publication Publication Date Title
WO2022153718A1 (en) Ammonia decomposition apparatus
RU2008132328A (en) METHOD FOR DIRECT REMOVAL OF IRON OXIDES TO METAL IRON USING GAS OF COKE FURNACES OR SIMILAR GAS
SG120299A1 (en) Process and apparatus for the production of phosgene
RU2009123209A (en) METHOD AND DEVICE FOR THERMAL PROCESSING OF METAL MATERIALS
JP6538281B2 (en) Method of decomposing and recycling carbon dioxide using a hot blast furnace
JP4581721B2 (en) Microwave heating apparatus and carbon dioxide decomposition method using the same
JP2022012109A (en) Stabilization method and stabilization device for alkali metal
RU2007115409A (en) METHOD FOR PRODUCING CHLORINE DIOXIDE
CN106338591A (en) Apparatus for detecting reactivity of alkali metal on coke and intensity influence after reaction
EP0209954A2 (en) Melt consolidation of silicon powder
JP6427455B2 (en) Ozone hydrate manufacturing apparatus and ozone hydrate manufacturing method
FR2933227B1 (en) PROCESS FOR TREATING A STRUCTURE CONTAINING SODIUM AND A RADIOACTIVE MATERIAL
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
JP6480247B2 (en) Gas hydrate production apparatus and gas hydrate production method
JP2001048504A (en) Production of lithium nitride
JP6106453B2 (en) Glass base material manufacturing equipment
JP5838108B2 (en) Manufacturing method of glass base material
JP5950160B2 (en) Method for producing lithium oxide
JP4823670B2 (en) Carburizing atmosphere gas generation method
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
JP2008239651A (en) Method for collecting gas from gas hydrate sedimentary layer, and apparatus therefor
ES2703803T3 (en) Process for generating a gas mixture containing carbon monoxide and hydrogen in substantially equal proportions
TWI338052B (en) A control method of a bright annealing furnace
JP5863175B2 (en) Manufacturing method of glass base material
JP2004002134A (en) Method for producing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220106

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220905

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221004

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221011

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221021

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231206

R150 Certificate of patent or registration of utility model

Ref document number: 7399803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150