JP2022008547A - Si-CONTAINING Fe-BASED ALLOY POWDER PROVIDED WITH SiO2-CONTAINING COATING FILM AND MANUFACTURING METHOD THEREOF - Google Patents

Si-CONTAINING Fe-BASED ALLOY POWDER PROVIDED WITH SiO2-CONTAINING COATING FILM AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
JP2022008547A
JP2022008547A JP2021156138A JP2021156138A JP2022008547A JP 2022008547 A JP2022008547 A JP 2022008547A JP 2021156138 A JP2021156138 A JP 2021156138A JP 2021156138 A JP2021156138 A JP 2021156138A JP 2022008547 A JP2022008547 A JP 2022008547A
Authority
JP
Japan
Prior art keywords
based alloy
alloy powder
sio
phosphoric acid
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021156138A
Other languages
Japanese (ja)
Inventor
敏郎 佐藤
Toshiro Sato
誠 曽根原
Makoto Sonehara
佳奈子 杉村
Kanako Sugimura
直希 藪
Naoki Yabu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2021156138A priority Critical patent/JP2022008547A/en
Publication of JP2022008547A publication Critical patent/JP2022008547A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a metal magnetic powder having an insulating film which is more stable in film thickness than conventional and has high insulation and is inexpensive.
SOLUTION: A manufacturing method of a Si-containing Fe-based alloy powder provided with a SiO2-containing coating includes preparing a Si-containing Fe-based alloy powder, obtaining a Si-containing Fe-based alloy powder including an Fe-O-Si-P based coating film by immersing the Si-containing Fe-based alloy powder in an aqueous phosphoric acid solution, and taking out the Si-containing Fe-based alloy powder from the aqueous phosphoric acid solution and drying the Si-containing Fe-based alloy powder, and obtaining a Si-containing Fe-based alloy powder provided with a SiO2-containing coating on the surface by immersing a Si-containing Fe-based alloy powder including an Fe-O-Si-P based coating film in an aqueous hydrochloric acid solution, and taking out the Si-containing Fe-based alloy powder from the hydrochloric acid aqueous solution and drying the Si-containing Fe-based alloy powder.
SELECTED DRAWING: Figure 8
COPYRIGHT: (C)2022,JPO&INPIT

Description

本開示は、SiO2含有被膜を備えたSi含有Fe基合金粉及びその製造方法に関する。 The present disclosure relates to a Si-containing Fe-based alloy powder having a SiO 2 -containing film and a method for producing the same.

従来、パワー半導体としてSi半導体が主に用いられているが、これに代えて、オン抵抗が低くスイッチング速度が速く且つ高温で動作可能なSiCまたはGaNパワー半導体の利用が検討されている。SiCまたはGaNパワー半導体を用いることで、ACアダプタ、VRM(電圧レギュレータモジュール)、サーバー電源等のDC-DCコンバータのスイッチング周波数を数MHz~数十MHzに高周波化することができる。DC-DCコンバータのスイッチング周波数の高周波化とともに、高周波数領域に対応可能なトランスやインダクタ等の受動部品の開発が進められているが、高周波数領域で低損失な磁性材料の開発は遅れているのが現状である。 Conventionally, Si semiconductors are mainly used as power semiconductors, but instead of these, the use of SiC or GaN power semiconductors having low on-resistance, high switching speed, and operation at high temperatures is being studied. By using SiC or GaN power semiconductors, the switching frequency of DC-DC converters such as AC adapters, VRMs (voltage regulator modules), and server power supplies can be increased to several MHz to several tens of MHz. With the increase in the switching frequency of DC-DC converters, the development of passive components such as transformers and inductors that can handle high frequency regions is underway, but the development of low-loss magnetic materials in the high frequency region has been delayed. is the current situation.

トランスやインダクタ等の磁気部品には軟磁性材料が用いられているが、図48に示すように、1MHzを超えるような高周波数領域で十分に対応可能な磁性材料がない。例えば、水アトマイズ法やガスアトマイズ法で作製される軟磁性金属粉末を用いたダストコアはハイブリッド自動車や電気自動車のパワートレーン系のDC-DCコンバータに用いられているが、数100kHz以下の周波数領域で用いられており、1MHz以上の高周波数領域には対応しない。Mn-Zn系フェライトは絶縁型DC-DCコンバータのメイントランスに用いられ、微結晶化や焼結条件の改良により2MHz程度まで利用できるように改良が進んでいるが、これ以上の周波数では残留損失の急増により使用は困難になる。また、Ni-Zn系フェライトは、1MHz以上の周波数領域に対応し通信用に多くの実績があるものの、大振幅励磁される高周波電力変換用としての性能は必ずしも十分ではない。そのため、現状では、Siパワー半導体を用いた数十kHz~数百kHzスイッチングのDC-DCコンバータが大半を占めており、SiCやGaNパワー半導体デバイスの特徴を活かした小型軽量で高効率の高周波スイッチングDC-DCコンバータを実現し、普及させるためには高周波低損失の軟磁性材料とそれを用いたインダクタやトランスの開発が急務となっている。 Soft magnetic materials are used for magnetic parts such as transformers and inductors, but as shown in FIG. 48, there is no magnetic material that can sufficiently cope with a high frequency region exceeding 1 MHz. For example, a dust core using a soft magnetic metal powder produced by a water atomization method or a gas atomization method is used in a power train DC-DC converter of a hybrid vehicle or an electric vehicle, but is used in a frequency range of several hundred kHz or less. It does not correspond to the high frequency region of 1 MHz or more. Mn-Zn-based ferrite is used in the main transformer of an isolated DC-DC converter, and is being improved so that it can be used up to about 2 MHz by microcrystallization and improvement of sintering conditions, but residual loss is progressing at frequencies higher than this. It becomes difficult to use due to the rapid increase in the number of. Further, although Ni—Zn-based ferrite corresponds to a frequency domain of 1 MHz or more and has many achievements for communication, its performance for high-frequency power conversion that is excited by a large amplitude is not always sufficient. Therefore, at present, most DC-DC converters that use Si power semiconductors for switching from several tens of kHz to several hundreds of kHz are compact, lightweight, and highly efficient high-frequency switching that takes advantage of the characteristics of SiC and GaN power semiconductor devices. In order to realize and popularize DC-DC converters, there is an urgent need to develop high-frequency, low-loss soft magnetic materials and inductors and transformers using them.

一方、金属軟磁性粉末をバインダとともに高圧プレス成型して作製されるダストコア技術をベースに10μm以下の微細な金属磁性粉末を用いて樹脂と複合化したコンポジット磁性材料の開発が進められており、超微細な金属磁性粉末を採用することで1MHz以上の周波数でも損失の少ない軟磁性材料を実現できる。この際、金属磁性粉末内部にうず電流を閉じ込めて微細粉末の効果を発揮させるには、粉末表面の絶縁皮膜処理が必要になる。 On the other hand, based on the dust core technology produced by high-pressure press molding of soft metallic powder with a binder, the development of a composite magnetic material that is composited with a resin using fine metallic magnetic powder of 10 μm or less is underway. By adopting fine metallic magnetic powder, it is possible to realize a soft magnetic material with little loss even at a frequency of 1 MHz or higher. At this time, in order to confine the eddy current inside the metallic magnetic powder and exert the effect of the fine powder, it is necessary to treat the insulating film on the surface of the powder.

絶縁皮膜によってうず電流を金属磁性粉末に閉じ込めた場合のコンポジット磁性材料のうず電流損は、下記の式(1):
e=K(πdBmf)2/20ρ(W/m3) (1)
(式中、Kは複合材料中の金属磁性粉末の充填率、dは、金属磁性粉末の粒子径、Bmは最大磁束密度、fは周波数、ρは金属磁性粉末の電気抵抗率である)で算出される。
The eddy current loss of the composite magnetic material when the eddy current is confined in the metallic magnetic powder by the insulating film is calculated by the following formula (1):
W e = K (π dB m f) 2 /20ρ (W / m 3 ) (1)
(In the formula, K is the filling rate of the metal magnetic powder in the composite material, d is the particle size of the metal magnetic powder, B m is the maximum magnetic flux density, f is the frequency, and ρ is the electrical resistivity of the metal magnetic powder). It is calculated by.

式(1)から分かるように、うず電流損は、粉末粒子径の二乗に比例し、磁性粉末の電気抵抗率ρに反比例する。そのため、10μm以下の範囲の粒径が小さい磁性粉末を用いること、及び電気抵抗率の高い磁性粉末の採用がコンポジット磁性材料のうず電流損の低減に有効である。 As can be seen from the equation (1), the eddy current loss is proportional to the square of the powder particle size and inversely proportional to the electrical resistivity ρ of the magnetic powder. Therefore, it is effective to use a magnetic powder having a small particle size in the range of 10 μm or less and to use a magnetic powder having a high electrical resistivity to reduce the vortex current loss of the composite magnetic material.

金属磁性粉末を用いた場合は、表面に絶縁皮膜を形成し、うず電流が磁性粒子内のみを流れるようにする必要がある。絶縁皮膜を形成する方法として、アンモニアを触媒として用いてTEOS(有機シラン)を加水分解して磁性金属粒子の表面にSiO2被膜を形成することが提案されている(非特許文献1)。また、酸素を含む雰囲気中で加熱することによって磁性金属粒子の表面を酸化して、磁性金属粒子の表面に酸化膜を形成する方法が提案されている(非特許文献2)。 When a metallic magnetic powder is used, it is necessary to form an insulating film on the surface so that the eddy current flows only in the magnetic particles. As a method for forming an insulating film, it has been proposed to hydrolyze TEOS (organic silane) using ammonia as a catalyst to form a SiO 2 film on the surface of magnetic metal particles (Non-Patent Document 1). Further, a method has been proposed in which the surface of magnetic metal particles is oxidized by heating in an atmosphere containing oxygen to form an oxide film on the surface of the magnetic metal particles (Non-Patent Document 2).

杉村佳奈子 他、鉄系メタルコンポジット鉄心材料用カルボニル鉄粉の高抵抗被膜形成に関する基礎検討、平成27年日本磁気学会学術講演会、11aB-2(2015)Kanako Sugimura et al., Basic study on formation of high resistance film formation of carbonyl iron powder for iron-based metal composite iron core material, 2015 Academic Lecture Meeting of the Magnetic Society of Japan, 11aB-2 (2015) 杉村佳奈子 他、鉄系メタルコンポジット鉄心材料用アモルファス合金粉の酸化被膜形成に関する基礎検討、平成28年日本電気学会A部門大会、5-B-p2-2、pp.28(2016)Kanako Sugimura et al., Basic study on forming an oxide film of amorphous alloy powder for iron-based metal composite iron core materials, 2016 IEEJ A Division Conference, 5-B-p2-2, pp. 28 (2016)

しかしながら、従来の水アトマイズ法やガスアトマイズ法で10μm以下、特にサブミクロン~数ミクロン範囲の粒径が小さい金属磁性体粒子を安定して製造することは難しい。また、粒径が小さい金属磁性体粒子を用いても、磁性粉末の充填率を高めるために金属磁性体粒子同士が接触すると磁性体粒子をまたぐうず電流が発生し、コンポジット磁性材料全体をうず電流が流れることによって大きなうず電流損が発生し、高周波特性が低下する。そのため、磁性体粒子の粒径が小さい意味がなくなってしまう。 However, it is difficult to stably produce metal magnetic particles having a small particle size of 10 μm or less, particularly in the submicron to several micron range, by the conventional water atomization method or gas atomization method. Even if metal magnetic particles with a small particle size are used, when the metal magnetic particles come into contact with each other in order to increase the filling rate of the magnetic powder, an eddy current is generated across the magnetic particles, and an eddy current is generated in the entire composite magnetic material. A large eddy current loss occurs due to the flow of magnetism, and the high frequency characteristics deteriorate. Therefore, it is meaningless that the particle size of the magnetic particles is small.

非特許文献1に開示の方法は、単に、金属磁性体粒子の表面に化学反応でSiO2被膜をコーティングするものであるが、高価なTEOS(有機シラン)を利用しなくてはならないこと、及び粉末表面に外部からSiO2被膜を形成するために粉末表面の凹凸に左右されて均一な厚みでコーティングすることが難しく、薄くコーティングすると金属磁性体粒子が露出する箇所が発生し、金属磁性体粒子の露出を防止しようとするとコーティングの平均厚みが大きくなってしまうという欠点を有する。非特許文献2に開示の方法では、酸化膜の抵抗が不十分であるため金属磁性粉末の高抵抗化が難しく、酸化膜の膜厚制御も難しい。 The method disclosed in Non-Patent Document 1 simply coats the surface of metallic magnetic particles with a SiO 2 film by a chemical reaction, but it must use expensive TEOS (organic silane), and Since a SiO 2 film is formed on the surface of the powder from the outside, it is difficult to coat it with a uniform thickness due to the unevenness of the surface of the powder. It has the disadvantage that the average thickness of the coating increases when trying to prevent the exposure of the particles. In the method disclosed in Non-Patent Document 2, since the resistance of the oxide film is insufficient, it is difficult to increase the resistance of the metal magnetic powder, and it is also difficult to control the film thickness of the oxide film.

そのため、従来よりも膜厚が安定しており絶縁性が高く安価な絶縁皮膜を有する金属磁性粉末が求められている。 Therefore, there is a demand for a metal magnetic powder having a stable film thickness, high insulating properties, and an inexpensive insulating film as compared with the conventional case.

本発明者は、金属磁性体粒子の表面に高抵抗被膜を形成する新規の方法を見出した。Si含有Fe基合金粒子の表面を化学反応で表面修飾を行い、表面にSiO2含有被膜を形成する方法である。 The present inventor has found a novel method for forming a high resistance film on the surface of metallic magnetic particles. This is a method in which the surface of Si-containing Fe-based alloy particles is surface-modified by a chemical reaction to form a SiO 2 -containing film on the surface.

本開示は、Si含有Fe基合金粉を準備すること、
前記Si含有Fe基合金粉をリン酸水溶液に浸漬し、前記リン酸水溶液から取り出して乾燥して、Fe-O-Si-P系被膜を備えたSi含有Fe基合金粉を得ること、及び
前記Fe-O-Si-P系被膜を備えたSi含有Fe基合金粉を塩酸水溶液に浸漬し、前記塩酸水溶液から取り出して乾燥して、表面にSiO2含有被膜を備えたSi含有Fe基合金粉を得ること、
を含む、SiO2含有被膜を備えたSi含有Fe基合金粉の製造方法を対象とする。
The present disclosure is to prepare Si-containing Fe-based alloy powder.
The Si-containing Fe-based alloy powder is immersed in a phosphoric acid aqueous solution, taken out from the phosphoric acid aqueous solution and dried to obtain a Si-containing Fe-based alloy powder having a Fe—O—Si—P-based coating, and the above. A Si-containing Fe-based alloy powder having a Fe—O—Si—P-based coating is immersed in an aqueous hydrochloric acid solution, taken out from the aqueous hydrochloric acid solution and dried, and the Si-containing Fe-based alloy powder having a SiO 2 -containing coating on the surface is removed. To get,
A method for producing a Si-containing Fe-based alloy powder having a SiO 2 -containing film, which comprises the above.

本開示はまた、表面にSiO2含有被膜を備えたSi含有Fe基合金粒子を対象とする。 The present disclosure also covers Si-containing Fe-based alloy particles having a SiO 2 -containing coating on the surface.

本開示によれば、従来よりも膜厚が安定しており絶縁性が高く低コストの絶縁皮膜を有する金属磁性粉末を得ることができる。 According to the present disclosure, it is possible to obtain a metallic magnetic powder having a stable film thickness, high insulating properties, and a low-cost insulating film as compared with the conventional case.

図1は、Fe-Si合金粉の走査型電子顕微鏡写真である。FIG. 1 is a scanning electron micrograph of Fe—Si alloy powder. 図2は、Fe-Si-Al合金粉の走査型電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph of Fe—Si—Al alloy powder. 図3は、Fe-Si-B-Cr-C合金粉の走査型電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of Fe—Si—B—Cr—C alloy powder. 図4は、Fe-Si-B-P-C-Nb-Cr合金粉の走査型電子顕微鏡写真である。FIG. 4 is a scanning electron micrograph of Fe—Si—B—P—C—Nb—Cr alloy powder. 図5は、準備したSi含有Fe基合金粉の断面模式図である。FIG. 5 is a schematic cross-sectional view of the prepared Si-containing Fe-based alloy powder. 図6は、リン酸処理を行ったSi含有Fe基合金粉の断面模式図である。FIG. 6 is a schematic cross-sectional view of a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment. 図7は、リン酸処理後に塩酸処理を行ったSi含有Fe基合金粉12の断面模式図である。FIG. 7 is a schematic cross-sectional view of the Si-containing Fe-based alloy powder 12 that has been treated with hydrochloric acid after being treated with phosphoric acid. 図8は、準備したSi含有Fe基合金粒子、リン酸処理をしたSi含有Fe合粒子、及びリン酸処理後に塩酸処理をしたSi含有Fe基合金粒子の内部の一部を可視化した模式図である。FIG. 8 is a schematic diagram showing a part of the inside of the prepared Si-containing Fe-based alloy particles, the phosphoric acid-treated Si-containing Fe compound particles, and the phosphoric acid-treated Si-containing Fe-based alloy particles. be. 図9は、図3に記載のFe-Si-B-Cr-C合金粉をリン酸処理したSi含有Fe基合金粉の走査型電子顕微鏡写真である。FIG. 9 is a scanning electron micrograph of the Si-containing Fe-based alloy powder obtained by treating the Fe—Si—B—Cr—C alloy powder shown in FIG. 3 with phosphoric acid. 図10は、図3の準備したSi含有Fe基合金粉及び図9のリン酸処理を行ったSi含有Fe基合金粉について分析した粉末X線回折プロファイルである。FIG. 10 is a powder X-ray diffraction profile analyzed for the prepared Si-containing Fe-based alloy powder of FIG. 3 and the phosphoric acid-treated Si-containing Fe-based alloy powder of FIG. 図11は、準備したSi含有Fe基合金粉の断面の走査型電子顕微鏡(SEM)写真である。FIG. 11 is a scanning electron microscope (SEM) photograph of a cross section of the prepared Si-containing Fe-based alloy powder. 図12は、濃度0.00001wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡(SEM)写真である。FIG. 12 is a scanning electron microscope (SEM) photograph of a cross section of a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 6 hours using a phosphoric acid aqueous solution having a concentration of 0.00001 wt%. 図13は、濃度0.0001wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡(SEM)写真である。FIG. 13 is a scanning electron microscope (SEM) photograph of a cross section of a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 6 hours using a phosphoric acid aqueous solution having a concentration of 0.0001 wt%. 図14は、濃度0.001wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡(SEM)写真である。FIG. 14 is a scanning electron microscope (SEM) photograph of a cross section of a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 6 hours using a phosphoric acid aqueous solution having a concentration of 0.001 wt%. 図15は、濃度0.01wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡(SEM)写真である。FIG. 15 is a scanning electron microscope (SEM) photograph of a cross section of a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 6 hours using a phosphoric acid aqueous solution having a concentration of 0.01 wt%. 図16は、濃度0.1wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡(SEM)写真である。FIG. 16 is a scanning electron microscope (SEM) photograph of a cross section of a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 6 hours using a phosphoric acid aqueous solution having a concentration of 0.1 wt%. 図17は、濃度0.01wt%のリン酸水溶液を用いて20分間リン酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡(SEM)写真である。FIG. 17 is a scanning electron microscope (SEM) photograph of a cross section of a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 20 minutes using a phosphoric acid aqueous solution having a concentration of 0.01 wt%. 図18は、濃度0.1wt%のリン酸水溶液を用いて20分間リン酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡(SEM)写真である。FIG. 18 is a scanning electron microscope (SEM) photograph of a cross section of a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 20 minutes using a phosphoric acid aqueous solution having a concentration of 0.1 wt%. 図19は、準備したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 19 is a scanning electron micrograph of a cross section of the prepared Si-containing Fe-based alloy powder. 図20は、濃度1%でリン酸処理したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 20 is a scanning electron micrograph of a cross section of a Si-containing Fe-based alloy powder treated with phosphoric acid at a concentration of 1%. 図21は、濃度5%でリン酸処理したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 21 is a scanning electron micrograph of a cross section of a Si-containing Fe-based alloy powder treated with phosphoric acid at a concentration of 5%. 図22は、準備したSi含有Fe基合金粉のオージェ電子分光法による深さ方向分析の結果である。FIG. 22 shows the results of the depth direction analysis of the prepared Si-containing Fe-based alloy powder by Auger electron spectroscopy. 図23は、濃度1%でリン酸処理したSi含有Fe基合金粉のオージェ電子分光法による深さ方向分析の結果である。FIG. 23 shows the results of depth direction analysis of Si-containing Fe-based alloy powder treated with phosphoric acid at a concentration of 1% by Auger electron spectroscopy. 図24は、濃度2%でリン酸処理したSi含有Fe基合金粉のオージェ電子分光法による深さ方向分析の結果である。FIG. 24 is the result of the depth direction analysis of the Si-containing Fe-based alloy powder treated with phosphoric acid at a concentration of 2% by Auger electron spectroscopy. 図25は、0.00001~1wt%のリン酸水溶液の濃度と、リン酸処理を行ったSi含有Fe基合金粉のFe-O-Si-P系被膜の厚さとの関係を表すグラフである。FIG. 25 is a graph showing the relationship between the concentration of the phosphoric acid aqueous solution of 0.00001 to 1 wt% and the thickness of the Fe—O—Si—P-based coating film of the phosphoric acid-treated Si-containing Fe-based alloy powder. .. 図26は、リン酸水溶液の濃度と、リン酸処理を行ったSi含有Fe基合金粉の飽和磁化Ms及びFe-O-Si-P系被膜の厚さとの関係を表すグラフである。FIG. 26 is a graph showing the relationship between the concentration of the phosphoric acid aqueous solution, the saturation magnetization Ms of the phosphoric acid-treated Si-containing Fe-based alloy powder, and the thickness of the Fe—O—Si—P coating. 図27は、図9に示したリン酸処理を行ったSi含有Fe基合金粉を、濃度5%で2時間塩酸処理したSi含有Fe基合金粉の走査型電子顕微鏡写真である。FIG. 27 is a scanning electron micrograph of the Si-containing Fe-based alloy powder obtained by treating the phosphoric acid-treated Si-containing Fe-based alloy powder shown in FIG. 9 with hydrochloric acid at a concentration of 5% for 2 hours. 図28は、図9に示したリン酸処理を行ったSi含有Fe基合金粉を、濃度5%で4時間塩酸処理したSi含有Fe基合金粉の走査型電子顕微鏡写真である。FIG. 28 is a scanning electron micrograph of the Si-containing Fe-based alloy powder obtained by treating the phosphoric acid-treated Si-containing Fe-based alloy powder shown in FIG. 9 with hydrochloric acid at a concentration of 5% for 4 hours. 図29は、濃度0.01wt%のリン酸水溶液を用いて20分間リン酸処理を行ったSi含有Fe基合金粉を、濃度1wt%の塩酸水溶液に10分間浸漬したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 29 shows a Si-containing Fe-based alloy powder obtained by immersing a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 20 minutes using a phosphoric acid aqueous solution having a concentration of 0.01 wt% in a hydrochloric acid aqueous solution having a concentration of 1 wt% for 10 minutes. It is a scanning electron micrograph of a cross section. 図30は、濃度0.01wt%のリン酸水溶液を用いて20分間リン酸処理を行ったSi含有Fe基合金粉を、濃度1wt%の塩酸水溶液に30分間浸漬したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 30 shows a Si-containing Fe-based alloy powder obtained by immersing a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 20 minutes using a phosphoric acid aqueous solution having a concentration of 0.01 wt% in a hydrochloric acid aqueous solution having a concentration of 1 wt% for 30 minutes. It is a scanning electron micrograph of a cross section. 図31は、濃度0.01wt%のリン酸水溶液を用いて20分間リン酸処理を行ったSi含有Fe基合金粉を、濃度1wt%の塩酸水溶液に1時間浸漬したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 31 shows a Si-containing Fe-based alloy powder obtained by immersing a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 20 minutes using a phosphoric acid aqueous solution having a concentration of 0.01 wt% in a hydrochloric acid aqueous solution having a concentration of 1 wt% for 1 hour. It is a scanning electron micrograph of a cross section. 図32は、濃度0.1wt%のリン酸水溶液を用いて20分間リン酸処理を行ったSi含有Fe基合金粉を、濃度1wt%の塩酸水溶液に10分間浸漬したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 32 shows a Si-containing Fe-based alloy powder obtained by immersing a Si-containing Fe-based alloy powder that has been treated with a phosphoric acid solution having a concentration of 0.1 wt% for 20 minutes in a hydrochloric acid aqueous solution having a concentration of 1 wt% for 10 minutes. It is a scanning electron micrograph of a cross section. 図33は、濃度0.1wt%のリン酸水溶液を用いて20分間リン酸処理を行ったSi含有Fe基合金粉を、濃度1wt%の塩酸水溶液に30分間浸漬したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 33 shows a Si-containing Fe-based alloy powder obtained by immersing a Si-containing Fe-based alloy powder that has been treated with a phosphoric acid solution having a concentration of 0.1 wt% for 20 minutes in a hydrochloric acid aqueous solution having a concentration of 1 wt% for 30 minutes. It is a scanning electron micrograph of a cross section. 図34は、濃度0.1wt%のリン酸水溶液を用いて20分間リン酸処理を行ったSi含有Fe基合金粉を、濃度1wt%の塩酸水溶液に1時間浸漬したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 34 shows a Si-containing Fe-based alloy powder obtained by immersing a Si-containing Fe-based alloy powder that has been treated with a phosphoric acid solution having a concentration of 0.1 wt% for 20 minutes in a hydrochloric acid aqueous solution having a concentration of 1 wt% for 1 hour. It is a scanning electron micrograph of a cross section. 図35は、リン酸処理を行ったSi含有Fe基合金粉を、濃度5%で2時間塩酸処理したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 35 is a scanning electron micrograph of a cross section of a Si-containing Fe-based alloy powder treated with phosphoric acid and treated with hydrochloric acid at a concentration of 5% for 2 hours. 図36は、リン酸処理を行ったSi含有Fe基合金粉を、濃度5%で4時間塩酸処理したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 36 is a scanning electron micrograph of a cross section of a Si-containing Fe-based alloy powder treated with phosphoric acid and treated with hydrochloric acid at a concentration of 5% for 4 hours. 図37は、リン酸処理を行ったSi含有Fe基合金粉を、濃度5%で4時間塩酸処理したSi含有Fe基合金粉のオージェ電子分光法による深さ方向分析の結果である。FIG. 37 shows the results of a depth direction analysis of Si-containing Fe-based alloy powder treated with phosphoric acid at a concentration of 5% for 4 hours by Auger electron spectroscopy. 図38は、塩酸処理時間と飽和磁化Msとの関係を表すグラフである。FIG. 38 is a graph showing the relationship between the hydrochloric acid treatment time and the saturation magnetization Ms. 図39は、塩酸水溶液の濃度と、Fe-O-Si-P系被膜の厚み、SiO2含有被膜の厚み、及び被膜の全体厚みとの関係を表すグラフである。FIG. 39 is a graph showing the relationship between the concentration of the aqueous hydrochloric acid solution, the thickness of the Fe—O—Si—P coating, the thickness of the SiO 2 containing coating, and the total thickness of the coating. 図40は、塩酸処理時間と、Fe-O-Si-P系被膜の厚み、SiO2含有被膜の厚み、及び被膜の全体厚みとの関係を表すグラフである。FIG. 40 is a graph showing the relationship between the hydrochloric acid treatment time, the thickness of the Fe—O—Si—P coating, the thickness of the SiO 2 containing coating, and the total thickness of the coating. 図41は、準備したSi含有Fe基合金粉、6時間のリン酸処理をしたSi含有Fe基合金粉、次いで0.5時間、1.0時間、及び4.0時間の塩酸処理をしたSi含有Fe基合金粉の、X線光電子分光法(XPS)によるFe2pスペクトルである。FIG. 41 shows the prepared Si-containing Fe-based alloy powder, the Si-containing Fe-based alloy powder treated with phosphoric acid for 6 hours, and then the Si treated with hydrochloric acid for 0.5 hours, 1.0 hours, and 4.0 hours. It is Fe2p spectrum by X-ray photoelectron spectroscopy (XPS) of the contained Fe-based alloy powder. 図42は、準備したSi含有Fe基合金粉、6時間のリン酸処理をしたSi含有Fe基合金粉、次いで0.5時間、1.0時間、及び4.0時間の塩酸処理をしたSi含有Fe基合金粉の、X線光電子分光法(XPS)によるSi2pスペクトルである。FIG. 42 shows the prepared Si-containing Fe-based alloy powder, the Si-containing Fe-based alloy powder treated with phosphoric acid for 6 hours, and then the Si treated with hydrochloric acid for 0.5 hours, 1.0 hours, and 4.0 hours. It is a Si2p spectrum by X-ray photoelectron spectroscopy (XPS) of the contained Fe-based alloy powder. 図43は、フッ酸処理前のSiO2含有被膜を備えたSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 43 is a scanning electron micrograph of a cross section of a Si-containing Fe-based alloy powder having a SiO 2 -containing film before hydrofluoric acid treatment. 図44は、HF濃度が1%及びNH4F濃度が3.3%のバッファードフッ酸を用いてフッ酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 44 is a scanning electron micrograph of a cross section of a Si-containing Fe-based alloy powder subjected to hydrofluoric acid treatment using buffered hydrofluoric acid having an HF concentration of 1% and an NH 4F concentration of 3.3%. 図45は、HF濃度が5%及びNH4F濃度が16.5%のバッファードフッ酸を用いてフッ酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 45 is a scanning electron micrograph of a cross section of a Si-containing Fe-based alloy powder subjected to hydrofluoric acid treatment using buffered hydrofluoric acid having an HF concentration of 5 % and an NH 4F concentration of 16.5%. 図46は、HF濃度が10%及びNH4F濃度が33%のバッファードフッ酸を用いてフッ酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡写真である。FIG. 46 is a scanning electron micrograph of a cross section of a Si-containing Fe-based alloy powder treated with hydrofluoric acid using buffered hydrofluoric acid having an HF concentration of 10% and an NH 4F concentration of 33%. 図47は、準備したSi含有Fe基合金粉、フッ酸処理前のSiO2含有被膜を備えたSi含有Fe基合金粉、並びにHF濃度が1%及びNH4F濃度が3.3%のバッファードフッ酸、HF濃度が5%及びNH4F濃度が16.5%のバッファードフッ酸、及びHF濃度が10%及びNH4F濃度が33%のバッファードフッ酸を用いてフッ酸処理を行ったSi含有Fe基合金粉のエネルギー分散型X線分析(EDS)プロファイルである。FIG. 47 shows the prepared Si-containing Fe-based alloy powder, the Si-containing Fe-based alloy powder having a SiO 2 -containing film before hydrofluoric acid treatment, and a buffer having an HF concentration of 1% and an NH 4F concentration of 3.3%. Hydrofluoric acid treatment with hydrofluoric acid, buffered hydrofluoric acid with 5 % HF and 16.5% NH 4F, and buffered hydrofluoric acid with 10 % HF and 33% NH 4F. It is an energy dispersion type X-ray analysis (EDS) profile of the Si-containing Fe-based alloy powder which carried out. 図48は、各種磁性材料の対応周波数及び飽和磁束密度を示す図である。FIG. 48 is a diagram showing corresponding frequencies and saturation magnetic flux densities of various magnetic materials.

本開示の方法においては、FeベースのSi含有Fe基合金粒子からなるSi含有Fe基合金粉を準備する。Si含有Fe基合金粉は、Fe及びSiと所望の磁気特性に応じた任意の添加元素とを含む合金粒子で構成される。以下、Si含有Fe基合金粉とSi含有Fe基合金粒子とをまとめて、Si含有Fe基合金粉とよぶことがある。 In the method of the present disclosure, a Si-containing Fe-based alloy powder composed of Fe-based Si-containing Fe-based alloy particles is prepared. The Si-containing Fe-based alloy powder is composed of alloy particles containing Fe and Si and arbitrary additive elements according to desired magnetic properties. Hereinafter, the Si-containing Fe-based alloy powder and the Si-containing Fe-based alloy particles may be collectively referred to as Si-containing Fe-based alloy powder.

Si含有Fe基合金粉のFe含有量は、SiO2含有被膜を備えたSi含有Fe基合金粉の全質量を基準にして、好ましくは82.0~97.0wt%であり、より好ましくは85.0~95.5wt%であり、さらに好ましくは87.0~93.5wt%である。Si含有Fe基合金粉のSi含有量は、SiO2含有被膜を備えたSi含有Fe基合金粉の全質量を基準にして、好ましくは3.0~18.0wt%、より好ましくは4.5~15.0wt%、さらに好ましくは6.5~13.0wt%である。上記範囲のFe含有量及びSi含有量を有するSi含有Fe基合金粉を用いることで、所望の磁気特性を有し且つ十分な厚みのSiO2含有被膜を有するSi含有Fe基合金粉を得ることができる。 The Fe content of the Si-containing Fe-based alloy powder is preferably 82.0 to 97.0 wt%, more preferably 85, based on the total mass of the Si-containing Fe-based alloy powder having the SiO 2 -containing coating. It is 9.0 to 95.5 wt%, more preferably 87.0 to 93.5 wt%. The Si content of the Si-containing Fe-based alloy powder is preferably 3.0 to 18.0 wt%, more preferably 4.5, based on the total mass of the Si-containing Fe-based alloy powder having the SiO 2 -containing coating. It is ~ 15.0 wt%, more preferably 6.5 ~ 13.0 wt%. By using a Si-containing Fe-based alloy powder having an Fe content and a Si content in the above range, a Si-containing Fe-based alloy powder having a desired magnetic property and having a SiO 2 -containing film having a sufficient thickness can be obtained. Can be done.

Si含有Fe基合金粉は、Fe含有量及びSi含有量が上記範囲内であれば、その他の元素を含んでもよい。Si含有Fe基合金粉は、所望の磁気特性等を得るためにFe及びSiに加えて、Al、B、Cr、C、Ni、Co、Nb等を含んでもよい。Si含有Fe基合金粉は、好ましくはBを含む3元系合金粉であり、より好ましくはB及びCを含む4元系合金粉であり、さらに好ましくはB、C、及びAlを含む5元系合金粉であり、さらにより好ましくは、B、C、Al、及びCrを含む6元系合金粉である。 The Si-containing Fe-based alloy powder may contain other elements as long as the Fe content and the Si content are within the above ranges. The Si-containing Fe-based alloy powder may contain Al, B, Cr, C, Ni, Co, Nb and the like in addition to Fe and Si in order to obtain desired magnetic properties and the like. The Si-containing Fe-based alloy powder is preferably a ternary alloy powder containing B, more preferably a quaternary alloy powder containing B and C, and further preferably 5 elements containing B, C, and Al. It is a system alloy powder, and even more preferably, it is a hex alloy powder containing B, C, Al, and Cr.

Si含有Fe基合金粉は、多結晶合金、アモルファス合金、または金属ガラスであることができ、好ましくはアモルファス合金または金属ガラスである。 The Si-containing Fe-based alloy powder can be a polycrystalline alloy, an amorphous alloy, or a metallic glass, preferably an amorphous alloy or a metallic glass.

Si含有Fe基合金粉が多結晶合金の場合でも、従来よりも膜厚が安定しており絶縁性が高く低コストの絶縁皮膜を有する粒径が小さい金属磁性粉末を得ることができる。ただし、多結晶合金はリン酸処理による溶解速度が速く、特に結晶粒界の溶解が速いために均一に溶解しにくく、Si含有Fe基合金粒子の表面が荒れやすく、SiO2含有被膜の厚みが比較的不均一になりやすい。アモルファス合金及び金属ガラスはリン酸処理による溶解速度が遅く、Si含有Fe基合金粒子の表面が均一に溶解して表面が滑らかになりやすい。そのため、比較的均一な厚みを有するSiO2含有被膜を形成することができる。 Even when the Si-containing Fe-based alloy powder is a polycrystalline alloy, it is possible to obtain a metal magnetic powder having a stable film thickness, high insulating properties, a low-cost insulating film, and a small particle size. However, the polycrystalline alloy has a high dissolution rate due to the phosphoric acid treatment, and in particular, it is difficult to dissolve uniformly because the crystal grain boundaries are dissolved quickly, the surface of the Si-containing Fe-based alloy particles is easily roughened, and the thickness of the SiO 2 -containing film is thick. It tends to be relatively non-uniform. Amorphous alloys and metallic glasses have a slow dissolution rate due to phosphoric acid treatment, and the surface of Si-containing Fe-based alloy particles is likely to be uniformly dissolved and the surface tends to be smooth. Therefore, it is possible to form a SiO 2 -containing film having a relatively uniform thickness.

Si含有Fe基合金であれば、多結晶合金、アモルファス合金、または金属ガラスの組成は特に限定されないが、例えば、多結晶合金としてはFeSi合金及びFeSiAl合金、アモルファス合金としてはFeSiBCrC合金、金属ガラスとしてはFeSiBPCNbCr合金が挙げられる。 The composition of the polycrystalline alloy, the amorphous alloy, or the metallic glass is not particularly limited as long as it is a Si-containing Fe-based alloy. Examples include FeSiBPCNbCr alloy.

図1にFe-Si合金粉、図2にFe-Si-Al合金粉、図3にFe-Si-B-Cr-C合金粉、図4にFe-Si-B-P-C-Nb-Cr合金粉の走査型電子顕微鏡(SEM)写真を示す。 1 is Fe—Si alloy powder, FIG. 2 is Fe—Si—Al alloy powder, FIG. 3 is Fe—Si—B—Cr—C alloy powder, and FIG. 4 is Fe—Si—B—P—C—Nb—. A scanning electron microscope (SEM) photograph of Cr alloy powder is shown.

Si含有Fe基合金粉は、図1~4に示すような略球形状でもよいし、略扁平形状でもよい。 The Si-containing Fe-based alloy powder may have a substantially spherical shape as shown in FIGS. 1 to 4 or a substantially flat shape.

Si含有Fe基合金粉は、好ましくは1~50μm、より好ましくは3~20μm、さらに好ましくは5~10μmの平均メジアン径(D50)を有する。Si含有Fe基合金粉の粒径は、レーザー回折散乱式粒度分布計で測定される。 The Si-containing Fe-based alloy powder has an average median diameter (D50) of preferably 1 to 50 μm, more preferably 3 to 20 μm, and even more preferably 5 to 10 μm. The particle size of the Si-containing Fe-based alloy powder is measured by a laser diffraction / scattering type particle size distribution meter.

本開示の方法においては、Si含有Fe基合金粉をリン酸水溶液に浸漬し、リン酸水溶液から取り出して乾燥して、Fe-O-Si-P系被膜を備えたSi含有Fe基合金粉が得られる。以下、この工程をリン酸処理またはリン酸処理工程ともいう。 In the method of the present disclosure, the Si-containing Fe-based alloy powder is immersed in a phosphoric acid aqueous solution, taken out from the phosphoric acid aqueous solution and dried to obtain a Si-containing Fe-based alloy powder having a Fe—O—Si—P coating. can get. Hereinafter, this step is also referred to as a phosphoric acid treatment or a phosphoric acid treatment step.

リン酸処理工程では、Si含有Fe基合金粉をリン酸水溶液に浸漬することにより、Si含有Fe基合金粉の表面からFeが溶出しつつ、Si含有Fe基合金粉の表面に残留したFeがSi含有Fe基合金粉の表面にFe-O-Si-P系被膜を形成することができる。 In the phosphoric acid treatment step, by immersing the Si-containing Fe-based alloy powder in the phosphoric acid aqueous solution, Fe is eluted from the surface of the Si-containing Fe-based alloy powder, while the Fe remaining on the surface of the Si-containing Fe-based alloy powder is left. A Fe—O—Si—P-based film can be formed on the surface of the Si-containing Fe-based alloy powder.

図5及び6に、準備したSi含有Fe基合金粉10及びリン酸処理を行ったSi含有Fe基合金粉12の断面模式図を示す。リン酸処理を行ったSi含有Fe基合金粉12は、表面にFe-O-Si-P系被膜20を有する。 5 and 6 show schematic cross-sectional views of the prepared Si-containing Fe-based alloy powder 10 and the phosphoric acid-treated Si-containing Fe-based alloy powder 12. The phosphoric acid-treated Si-containing Fe-based alloy powder 12 has a Fe—O—Si—P-based coating 20 on its surface.

Fe-O-Si-P系被膜20は、Fe、O、Si、及びPを含有する被膜である。Fe-O-Si-P系被膜20のFe及びSiは、Si含有Fe基合金粉10由来であり、Pはリン酸水溶液由来であり、OはSi含有Fe基合金粉がリン酸水溶液で酸化されることにより形成された酸化膜及び自然酸化膜に含まれる。したがって、Si含有Fe基合金粉10がFe及びSiに加えて、B、Cr、C等を含む場合は、Fe-O-Si-P系被膜20にはそれらの元素も含まれ得る。 The Fe—O—Si—P-based coating 20 is a coating containing Fe, O, Si, and P. Fe and Si of the Fe—O—Si—P coating 20 are derived from the Si-containing Fe-based alloy powder 10, P is derived from the phosphoric acid aqueous solution, and O is the Si-containing Fe-based alloy powder oxidized by the phosphoric acid aqueous solution. It is contained in the oxide film and the natural oxide film formed by the phosphoric acid. Therefore, when the Si-containing Fe-based alloy powder 10 contains B, Cr, C and the like in addition to Fe and Si, the Fe—O—Si—P-based coating 20 may also contain those elements.

Fe-O-Si-P系被膜20は、リン酸処理によりSi含有Fe基合金粉10の表面層が変化して形成される。準備したSi含有Fe基合金粉10とFe-O-Si-P系被膜20との外径は実質的に同じであり、リン酸処理を行ったSi含有Fe基合金粉12の外径は準備したSi含有Fe基合金粉10の外径よりも小さい。Si含有Fe基合金粉の本体の外径が減少する分、表面に形成されるFe-O-Si-P系被膜の厚みが大きくなる。Fe-O-Si-P系被膜20の厚みは、最終的に得られるSiO2含有被膜の厚みの上限になる。 The Fe—O—Si—P-based coating 20 is formed by changing the surface layer of the Si-containing Fe-based alloy powder 10 by the phosphoric acid treatment. The outer diameters of the prepared Si-containing Fe-based alloy powder 10 and the Fe—O—Si—P-based coating 20 are substantially the same, and the outer diameter of the phosphoric acid-treated Si-containing Fe-based alloy powder 12 is prepared. It is smaller than the outer diameter of the Si-containing Fe-based alloy powder 10. As the outer diameter of the main body of the Si-containing Fe-based alloy powder decreases, the thickness of the Fe—O—Si—P-based coating formed on the surface increases. The thickness of the Fe—O—Si—P coating 20 is the upper limit of the thickness of the finally obtained SiO 2 containing coating.

リン酸処理工程におけるリン酸水溶液の濃度、時間、及び温度は、最終的に必要なSiO2含有被膜の厚みに応じて調整することができる。 The concentration, time, and temperature of the aqueous phosphoric acid solution in the phosphoric acid treatment step can be adjusted according to the thickness of the SiO 2 -containing film finally required.

リン酸水溶液の濃度は、好ましくは0.00001~10.00wt%、より好ましくは0.25~5.00wt%、さらに好ましくは0.50~3.00wt%である。リン酸水溶液の温度は、好ましくは30~80℃、より好ましくは45~65℃、さらに好ましくは50~60℃である。Si含有Fe基合金粉をリン酸水溶液に浸漬する時間は、好ましくは20分間~10時間、より好ましくは1~8時間、さらに好ましくは2~6時間である。 The concentration of the aqueous phosphoric acid solution is preferably 0.00001 to 10.00 wt%, more preferably 0.25 to 5.00 wt%, still more preferably 0.50 to 3.00 wt%. The temperature of the aqueous phosphoric acid solution is preferably 30 to 80 ° C, more preferably 45 to 65 ° C, and even more preferably 50 to 60 ° C. The time for immersing the Si-containing Fe-based alloy powder in the aqueous phosphoric acid solution is preferably 20 minutes to 10 hours, more preferably 1 to 8 hours, and even more preferably 2 to 6 hours.

リン酸水溶液の濃度、温度、及び浸漬時間を上記範囲内にすることにより、Si含有Fe基合金粉の表面に所望の厚みを有するFe-O-Si-P系被膜をより効率良く形成することができる。例えば、リン酸水溶液の濃度が高いほどFe-O-Si-P系被膜の厚みは増加する。 By keeping the concentration, temperature, and immersion time of the phosphoric acid aqueous solution within the above ranges, a Fe—O—Si—P-based film having a desired thickness can be more efficiently formed on the surface of the Si-containing Fe-based alloy powder. Can be done. For example, the higher the concentration of the aqueous phosphoric acid solution, the thicker the Fe—O—Si—P coating.

リン酸処理では溶出したFeがリン酸鉄を形成し、Fe-O-Si-P系被膜を備えたSi含有Fe基合金の表面にも付着し得るが、リン酸鉄は塩酸処理工程で実質的に除去することができる。 In the phosphate treatment, the eluted Fe forms iron phosphate and can adhere to the surface of the Si-containing Fe-based alloy having the Fe—O—Si—P-based coating, but the iron phosphate is substantially in the hydrochloric acid treatment step. Can be removed.

準備したSi含有Fe基合金粉は、表面領域で酸化膜を有する。Si含有Fe基合金粉をリン酸処理することにより、Si含有Fe基合金粉の表面から所定の深さ範囲でFe-Si-P-O系被膜が形成される。Fe-Si-P-O系被膜には、Fe、Si、P、及びOに加えてCr、C等が含まれ得る。 The prepared Si-containing Fe-based alloy powder has an oxide film in the surface region. By treating the Si-containing Fe-based alloy powder with phosphoric acid, a Fe—Si—PO-based film is formed within a predetermined depth range from the surface of the Si-containing Fe-based alloy powder. The Fe—Si—P—O-based coating may contain Cr, C, etc. in addition to Fe, Si, P, and O.

Si含有Fe基合金粉のリン酸水溶液への浸漬は、好ましくは超音波洗浄機にかけながら行う。超音波洗浄機内で浸漬することによりSi含有Fe基合金粉の凝集を防ぐことができる。 Immersion of the Si-containing Fe-based alloy powder in the phosphoric acid aqueous solution is preferably carried out while being subjected to an ultrasonic cleaner. By immersing in an ultrasonic cleaner, aggregation of Si-containing Fe-based alloy powder can be prevented.

リン酸処理工程における乾燥方法は、Si含有Fe基合金粉を乾燥することができれば特にされないが、例えば100℃の大気中で行うことができる。 The drying method in the phosphoric acid treatment step is not particularly limited as long as the Si-containing Fe-based alloy powder can be dried, but it can be carried out in the air at, for example, 100 ° C.

本開示の方法においては、リン酸処理後のSi含有Fe基合金粉を、塩酸水溶液に浸漬し、塩酸水溶液から取り出して乾燥して、表面にSiO2含有被膜を備えたSi含有Fe基合金粉が得られる。以下、この工程を塩酸処理または塩酸処理工程ともいう。 In the method of the present disclosure, the Si-containing Fe-based alloy powder after the phosphoric acid treatment is immersed in a hydrochloric acid aqueous solution, taken out from the hydrochloric acid aqueous solution and dried, and the Si-containing Fe-based alloy powder having a SiO 2 -containing film on the surface is provided. Is obtained. Hereinafter, this step is also referred to as a hydrochloric acid treatment or a hydrochloric acid treatment step.

塩酸処理工程では、リン酸処理をしたSi含有Fe基合金粉を塩酸水溶液に浸漬することにより、リン酸鉄を溶解させ、且つFe-O-Si-P系被膜からFe、P等の元素を溶出させてSiO2含有被膜を形成することができる。 In the hydrochloric acid treatment step, iron phosphate is dissolved by immersing the phosphoric acid-treated Si-containing Fe-based alloy powder in an aqueous hydrochloric acid solution, and elements such as Fe and P are removed from the Fe—O—Si—P-based coating film. It can be eluted to form a SiO 2 -containing film.

SiO2含有被膜は、実質的にSiO2単相であることが好ましいが、所望の抵抗が得られる限り、SiO2以外にCr、B、P、C等の元素が含まれてもよい。 The SiO 2 -containing film is preferably substantially a SiO 2 single-phase, but may contain elements such as Cr, B, P, and C in addition to SiO 2 as long as a desired resistance can be obtained.

図7に、リン酸処理後に塩酸処理を行ったSi含有Fe基合金粉12の断面模式図を示す。塩酸処理を行ったSi含有Fe基合金粉14は、表面にSiO2含有被膜30を有する。塩酸処理を行ったSi含有Fe基合金粉14は、Si含有Fe基合金粉14とSiO2含有被膜30との間にFe-O-Si-P系被膜22を有してもよい。 FIG. 7 shows a schematic cross-sectional view of the Si-containing Fe-based alloy powder 12 that has been treated with hydrochloric acid after being treated with phosphoric acid. The Si-containing Fe-based alloy powder 14 that has been treated with hydrochloric acid has a SiO 2 -containing film 30 on its surface. The Si-containing Fe-based alloy powder 14 that has been treated with hydrochloric acid may have an Fe—O—Si—P-based coating 22 between the Si-containing Fe-based alloy powder 14 and the SiO 2 -containing coating 30.

SiO2含有被膜30は、Fe-O-Si-P系被膜20の少なくとも一部が塩酸処理で変化して形成される。そのため、Fe-O-Si-P系被膜22は、Fe-O-Si-P系被膜20の厚みよりも小さく、塩酸処理を十分に行った場合は、Fe-O-Si-P系被膜20が全てSiO2含有被膜30に変化し、Fe-O-Si-P系被膜22は存在しない。 The SiO 2 -containing film 30 is formed by changing at least a part of the Fe—O—Si—P-based film 20 by hydrochloric acid treatment. Therefore, the Fe—O—Si—P coating 22 is smaller than the thickness of the Fe—O—Si—P coating 20, and when the hydrochloric acid treatment is sufficiently performed, the Fe—O—Si—P coating 20 Is all changed to the SiO 2 containing film 30, and the Fe—O—Si—P film 22 does not exist.

図8に、準備したSi含有Fe基合金粒子、リン酸処理をしたSi含有Fe合粒子、及びリン酸処理後に塩酸処理をしたSi含有Fe基合金粒子の内部の一部を可視化した模式図を示す。 FIG. 8 is a schematic diagram showing a part of the inside of the prepared Si-containing Fe-based alloy particles, the phosphoric acid-treated Si-containing Fe compound particles, and the phosphoric acid-treated Si-containing Fe-based alloy particles. show.

塩酸処理工程における塩酸水溶液の濃度、時間、及び温度は、リン酸処理工程で生成してSi含有Fe基合金粉の周囲に付着しているリン酸鉄を所望の程度に溶解することができる範囲で、Fe-O-Si-P系被膜の厚みのうちSiO2含有被膜に変える所望の厚みに応じて調整することができる。 The concentration, time, and temperature of the aqueous hydrochloric acid solution in the hydrochloric acid treatment step are within the range in which the iron phosphate generated in the phosphoric acid treatment step and adhering to the periphery of the Si-containing Fe-based alloy powder can be dissolved to a desired degree. Therefore, the thickness of the Fe—O—Si—P-based coating can be adjusted according to the desired thickness to be changed to the SiO 2 -containing coating.

リン酸鉄が付着しているとその体積分磁気特性が低下するため、リン酸鉄を溶解することによりSi含有Fe基合金粉の磁気特性を向上することができる。SiO2含有被膜を備えたSi含有Fe基合金粉を回収するために、リン酸鉄を全て溶解することが好ましいが、リン酸鉄が残っていても、磁石等を用いてSiO2含有被膜を備えたSi含有Fe基合金粉のみを回収してもよい。 Since the volume integral magnetic property thereof is deteriorated when iron phosphate is attached, the magnetic property of the Si-containing Fe-based alloy powder can be improved by dissolving iron phosphate. In order to recover the Si-containing Fe-based alloy powder having the SiO 2 -containing film, it is preferable to dissolve all the iron phosphate. However, even if iron phosphate remains, the SiO 2 -containing film is formed by using a magnet or the like. Only the provided Si-containing Fe-based alloy powder may be recovered.

塩酸水溶液の濃度は、好ましくは0.50~10.00wt%、より好ましくは1.00~8.00wt%である、さらに好ましくは2.00~6.00wt%である。塩酸水溶液の温度は、好ましくは30~80℃、より好ましくは45~65℃、さらに好ましくは50~60℃である。塩酸水溶液に浸漬する時間は、好ましくは10分~10.0時間、より好ましくは1.0~7.0時間、さらに好ましくは1.5~4.0時間である。 The concentration of the aqueous hydrochloric acid solution is preferably 0.50 to 10.00 wt%, more preferably 1.00 to 8.00 wt%, still more preferably 2.00 to 6.00 wt%. The temperature of the aqueous hydrochloric acid solution is preferably 30 to 80 ° C, more preferably 45 to 65 ° C, and even more preferably 50 to 60 ° C. The time for soaking in the aqueous hydrochloric acid solution is preferably 10 minutes to 10.0 hours, more preferably 1.0 to 7.0 hours, and even more preferably 1.5 to 4.0 hours.

塩酸水溶液の濃度、温度、及び浸漬時間を上記範囲内にすることにより、より効率的に、SiO2含有被膜を単相のSiO2に近づけ且つ所望の厚みを有するSiO2含有被膜を形成することができる。例えば、塩酸処理の時間が短いとリン酸鉄が残留し、磁性粉末の飽和磁化が小さくなる。塩酸処理の時間が長くなるにつれて、リン酸鉄の占める体積割合が少なくなり磁性粉末の飽和磁化の減少が抑制され、且つFe-O-Si-P系被膜がSiO2含有被膜に変化してSiO2含有被膜の厚みを増加することができる。 By keeping the concentration, temperature, and immersion time of the aqueous hydrochloric acid solution within the above ranges, the SiO 2 -containing film can be brought closer to the single-phase SiO 2 and a SiO 2 -containing film having a desired thickness can be formed more efficiently. Can be done. For example, if the hydrochloric acid treatment time is short, iron phosphate remains and the saturation magnetization of the magnetic powder becomes small. As the hydrochloric acid treatment time becomes longer, the volume ratio occupied by iron phosphate decreases, the decrease in saturation magnetization of the magnetic powder is suppressed, and the Fe—O—Si—P-based coating changes to a SiO 2 -containing coating, and SiO 2 is contained. 2 The thickness of the contained film can be increased.

Si含有Fe基合金粉の塩酸水溶液への浸漬は、好ましくは超音波洗浄機にかけながら行う。超音波洗浄機内で浸漬することによりSi含有Fe基合金粉の凝集を防ぐことができる。 Immersion of the Si-containing Fe-based alloy powder in an aqueous hydrochloric acid solution is preferably carried out while being subjected to an ultrasonic cleaner. By immersing in an ultrasonic cleaner, aggregation of Si-containing Fe-based alloy powder can be prevented.

塩酸処理工程における乾燥方法は、Si含有Fe基合金粉を乾燥することができれば特にされないが、例えば100℃の大気中で行うことができる。 The drying method in the hydrochloric acid treatment step is not particularly limited as long as the Si-containing Fe-based alloy powder can be dried, but can be carried out, for example, in the air at 100 ° C.

上記の方法によれば、従来よりも膜厚が安定しており絶縁性が高く安価な、SiO含有被膜を備えたSi含有Fe基合金粉を高収率で得ることができる。SiOのSiは準備した本体のSi含有Fe基合金粉由来であり、従来技術のような外部から形成するものではないためSiO含有被膜は膜厚が安定している。また、SiO含有被膜は、上記のようにリン酸水溶液及び塩酸水溶液に浸漬するだけで形成することができるため、コストも小さい。Si含有Fe基合金粉の表面に形成されたSiO2含有被膜は高抵抗であり、少なくとも最表面は実質的に単相のSiO2被膜でありさらに高抵抗であるため、これらの磁性粉末を用いて作製されるコンポジット磁性材料では渦電流損が低減され、1MHz以上の高周波数領域に対応可能となる。また、上記のようにSiO2含有被膜は高抵抗であるため膜厚が比較的薄くてもよく、その分、本体のSi含有Fe基合金粉の体積を大きくすることができ、粉末同士の静磁結合を強くできるため、コンポジット磁性材料の透磁率の向上に寄与するなど優れた磁気特性を得ることができる。 According to the above method, it is possible to obtain a Si-containing Fe-based alloy powder having a SiO 2 -containing coating, which has a stable film thickness, high insulating properties, and is inexpensive, in a high yield. Since Si of SiO 2 is derived from the prepared Si-containing Fe-based alloy powder of the main body and is not formed from the outside as in the prior art, the film thickness of the SiO 2 -containing film is stable. Further, since the SiO 2 -containing film can be formed only by immersing it in the phosphoric acid aqueous solution and the hydrochloric acid aqueous solution as described above, the cost is low. Since the SiO 2 -containing film formed on the surface of the Si-containing Fe-based alloy powder has high resistance, and at least the outermost surface is substantially a single-phase SiO 2 film and has high resistance, these magnetic powders are used. The eddy current loss is reduced in the composite magnetic material produced in the above-mentioned method, and it becomes possible to cope with a high frequency region of 1 MHz or more. Further, as described above, since the SiO 2 -containing film has high resistance, the film thickness may be relatively thin, and the volume of the Si-containing Fe-based alloy powder of the main body can be increased by that amount, so that the powders are static. Since the magnetic bond can be strengthened, excellent magnetic properties such as contributing to the improvement of the magnetic permeability of the composite magnetic material can be obtained.

SiO2含有被膜の膜厚は、好ましくは3~1000nm、より好ましくは4~500nm、さらに好ましくは5~100nm、さらにより好ましくは6~20nmである。SiO2含有被膜を備えたSi含有Fe基合金粉を100kHz~10MHzの周波数領域で用いる場合は、SiO2含有被膜の膜厚は10nm以下、例えば3~10nm、4~10nm、5~10nm、6~10nm、または7~10nmが好ましく、10MHz超の周波数領域で用いる場合はSiO2含有被膜の膜厚は10nm超、例えば10nm超~1000nm、10nm超~100nm、または10nm超~20nmが好ましい。 The film thickness of the SiO 2 -containing film is preferably 3 to 1000 nm, more preferably 4 to 500 nm, still more preferably 5 to 100 nm, and even more preferably 6 to 20 nm. When a Si-containing Fe-based alloy powder having a SiO 2 -containing film is used in the frequency region of 100 kHz to 10 MHz, the film thickness of the SiO 2 -containing film is 10 nm or less, for example, 3 to 10 nm, 4 to 10 nm, 5 to 10 nm, 6 The thickness of the SiO 2 -containing film is preferably more than 10 nm, for example, more than 10 nm to 1000 nm, more than 10 nm to 100 nm, or more than 10 nm to 20 nm when used in a frequency region of more than 10 MHz, preferably to 10 nm or 7 to 10 nm.

被膜内側の残留Fe-O-Si-P系被膜の膜厚は、好ましくは0~10nm、より好ましくは0~5nmである。 The film thickness of the residual Fe—O—Si—P-based film on the inside of the film is preferably 0 to 10 nm, more preferably 0 to 5 nm.

本開示の方法で得られるSiO2含有被膜を備えたSi含有Fe基合金粉は、本体のSi含有Fe基合金部分の寸法を小さくすることができるので、DC-DCコンバータの鉄心以外に電波吸収体等にも好適に用いることができる。 Since the Si-containing Fe-based alloy powder having the SiO 2 -containing film obtained by the method of the present disclosure can reduce the size of the Si-containing Fe-based alloy portion of the main body, it absorbs radio waves in addition to the iron core of the DC-DC converter. It can also be suitably used for the body and the like.

上記リン酸処理及び塩酸処理を行ったSi含有Fe基合金粉を、フッ酸処理してSiO2含有被膜を取り除くことによって、準備したSi含有Fe基合金粉よりも寸法が小さい第2のSi含有Fe基合金粉を得ることができる。 The Si-containing Fe-based alloy powder that has been subjected to the phosphoric acid treatment and the hydrochloric acid treatment is treated with a hydrofluoric acid to remove the SiO 2 -containing film, whereby the second Si-containing powder having a smaller size than the prepared Si-containing Fe-based alloy powder is contained. Fe-based alloy powder can be obtained.

SiO2含有被膜はフッ酸に溶解するため、フッ酸処理を行うことによって、Si含有Fe基合金粉からSiO2含有被膜を取り除くことができる。取り除かれたSiO2含有被膜部分は、準備したSi含有Fe基合金粉の表面をFe-O-Si-P系被膜に変えた部分の少なくとも一部であるため、第2のSi含有Fe基合金粉の寸法は、準備したSi含有Fe基合金粉よりも小さくなる。また、フッ酸処理時間を調整すれば、SiO2含有被膜を残留させることができる。これによって、準備したSi含有Fe基合金粉よりも全体の直径が小さいSiO2含有被膜を備えたSi含有Fe基合金粉を得ることができる。 Since the SiO 2 -containing film dissolves in hydrofluoric acid, the SiO 2 -containing film can be removed from the Si-containing Fe-based alloy powder by performing hydrofluoric acid treatment. Since the removed SiO 2 -containing coating portion is at least a part of the portion where the surface of the prepared Si-containing Fe-based alloy powder is changed to the Fe—O—Si—P-based coating, the second Si-containing Fe-based alloy is formed. The size of the powder is smaller than that of the prepared Si-containing Fe-based alloy powder. Further, by adjusting the hydrofluoric acid treatment time, the SiO 2 containing film can be left. As a result, it is possible to obtain a Si-containing Fe-based alloy powder having a SiO 2 -containing film having a smaller overall diameter than the prepared Si-containing Fe-based alloy powder.

フッ酸処理は、フッ酸水溶液を用いた溶液処理であることができる。 The hydrofluoric acid treatment can be a solution treatment using a hydrofluoric acid aqueous solution.

フッ酸水溶液としては、HF濃度が1~10%及びNH4F濃度が3.3~33%のNH4FとHFとの混合物であるバッファードフッ酸が挙げられる。 Examples of the hydrofluoric acid aqueous solution include buffered hydrofluoric acid, which is a mixture of NH 4 F and HF having an HF concentration of 1 to 10% and an NH 4 F concentration of 3.3 to 33%.

溶液処理は、室温のフッ酸水溶液中に例えば5~20分間浸漬することにより行われる。 The solution treatment is carried out by immersing in a hydrofluoric acid aqueous solution at room temperature for, for example, 5 to 20 minutes.

第2のSi含有Fe基合金粉の直径は、好ましくは0.1~5.0μm、より好ましくは0.3~2.0μm、さらに好ましくは0.5~1.0μmの平均メジアン径(D50)を有する。第2のSi含有Fe基合金粉の粒径は、レーザー回折散乱式粒度分布計で測定される。上記のように、サブミクロン~数ミクロン範囲の粒径が小さい金属磁性粉末を安定的に得ることができるので、さらに高周波の領域でうず電流損の小さいコンポジット磁性材料を提供できる。 The diameter of the second Si-containing Fe-based alloy powder is preferably 0.1 to 5.0 μm, more preferably 0.3 to 2.0 μm, and even more preferably 0.5 to 1.0 μm, with an average median diameter (D50). ). The particle size of the second Si-containing Fe-based alloy powder is measured by a laser diffraction / scattering type particle size distribution meter. As described above, since a metal magnetic powder having a small particle size in the submicron to several micron range can be stably obtained, it is possible to provide a composite magnetic material having a small eddy current loss in a higher frequency region.

第2のSi含有Fe基合金粉に、上記のリン酸処理及び塩酸処理を行ってもよい。第2のSi含有Fe基合金粉は、出発材料として最初に準備したSi含有Fe基合金粉よりも寸法が小さいので、より高周波領域に対応可能な、第2のSiO2含有被膜を備えたSi含有Fe基合金粉を得ることができる。 The above-mentioned phosphoric acid treatment and hydrochloric acid treatment may be performed on the second Si-containing Fe-based alloy powder. Since the second Si-containing Fe-based alloy powder has a smaller size than the Si-containing Fe-based alloy powder initially prepared as a starting material, Si having a second SiO 2 -containing coating capable of supporting a higher frequency region is provided. The contained Fe-based alloy powder can be obtained.

第2のSiO2含有被膜を備えたSi含有Fe基合金をさらに、フッ酸処理を行い、さらに小さい粒径のSi含有Fe基合金粉を得ることができる。さらに、リン酸処理、塩酸処理、及びフッ酸処理を繰り返して、さらにより小さい粒径のSi含有Fe基合金粉を得ることができる。リン酸処理、塩酸処理、及びフッ酸処理を繰り返す際に、塩酸処理で終われば粒径が小さいSiO2含有被膜を備えたSi含有Fe基合金を得ることができ、フッ酸処理で終われば、粒径が小さいSi含有Fe基合金を得ることができる。 The Si-containing Fe-based alloy provided with the second SiO 2 -containing film can be further treated with hydrofluoric acid to obtain a Si-containing Fe-based alloy powder having a smaller particle size. Further, the phosphoric acid treatment, the hydrochloric acid treatment, and the hydrofluoric acid treatment can be repeated to obtain a Si-containing Fe-based alloy powder having a smaller particle size. When the phosphoric acid treatment, the hydrochloric acid treatment, and the hydrofluoric acid treatment are repeated, a Si-containing Fe-based alloy having a SiO 2 -containing film having a small particle size can be obtained if the hydrochloric acid treatment is completed, and if the hydrofluoric acid treatment is completed, the Si-containing Fe-based alloy can be obtained. A Si-containing Fe-based alloy having a small particle size can be obtained.

本開示の方法で得られたSiO2含有被膜を備えたSi含有Fe基合金粉を利用して、表面にSiO2含有被膜を備えたSi含有Fe基合金粒子からなるSi含有Fe基合金粉を含むコンポジット磁性材料及びコンポジット磁性材料コアを作製することができる。Si含有Fe基合金粉を含むコンポジット磁性材料及びコンポジット磁性材料コアは、1MHz以上の高周波数領域でも損失が少なく、高周波特性に優れたインダクタやトランスを得ることができる。SiO2含有被膜を備えたSi含有Fe基合金粉と、エポキシまたはシリコーンゴムの前駆体の溶液とを混合してスラリーを調製し、スラリーを鋳型に流し込み鋳造することによって、コンポジット磁性材料及びコンポジット磁性材料コアを作製することができる。直径が5μm以下のSi含有Fe基合金粉を用いる場合、上記鋳造プロセスで作製したコンポジット磁性材料コアと、ダストコアの作製と同様にプレスする方法で作製したトロイダルコアは特性がほぼ同じであり、上記鋳造プロセスは、高圧プレスを用いないのでコスト面で有利である。 Using the Si-containing Fe-based alloy powder having a SiO 2 -containing coating obtained by the method of the present disclosure, a Si-containing Fe-based alloy powder composed of Si-containing Fe-based alloy particles having a SiO 2 -containing coating on the surface can be obtained. A composite magnetic material containing and a composite magnetic material core can be manufactured. The composite magnetic material and the composite magnetic material core containing Si-containing Fe-based alloy powder have little loss even in a high frequency region of 1 MHz or more, and an inductor or a transformer having excellent high frequency characteristics can be obtained. A composite magnetic material and composite magnetism are prepared by mixing a Si-containing Fe-based alloy powder having a SiO 2 -containing coating and a solution of an epoxy or silicone rubber precursor to prepare a slurry, and casting the slurry into a mold. Material cores can be made. When a Si-containing Fe-based alloy powder having a diameter of 5 μm or less is used, the characteristics of the composite magnetic material core produced by the casting process and the toroidal core produced by the same pressing method as in the production of the dust core are almost the same. The casting process is cost advantageous because it does not use a high pressure press.

(実施例1)
Fe-Si-B-Cr-C系のSi含有Fe基合金粉(EPSON ATMIX社製の水アトマイズ法で作製された鉄系アモルファス合金粉)を準備した。図3に、準備したFe-Si-B-Cr-C系合金粉の走査型電子顕微鏡(SEM)写真を示す。準備したSi含有Fe基合金粉は、87.83Fe-6.59Si-2.54B-2.53Cr-0.51C(wt%)の組成を有し、メジアン平均径(D50)は2.57μmであり、VSMで測定した飽和磁化は141.7emu/gであり、保磁力測定器で測定した保磁力は1.69Oeであった。
(Example 1)
Fe—Si—B—Cr—C-based Si-containing Fe-based alloy powder (iron-based amorphous alloy powder manufactured by EPSON ATMIX by the water atomization method) was prepared. FIG. 3 shows a scanning electron microscope (SEM) photograph of the prepared Fe—Si—B—Cr—C based alloy powder. The prepared Si-containing Fe-based alloy powder has a composition of 87.83Fe-6.59Si-2.54B-2.53Cr-0.51C (wt%) and has a median average diameter (D50) of 2.57 μm. The saturation magnetization measured by VSM was 141.7 emu / g, and the coercive force measured by the coercive force measuring instrument was 1.69 Oe.

準備したSi含有Fe基合金粉を、濃度が0.00001wt%~5wt%で60℃のリン酸水溶液に20分間~6時間浸漬し、リン酸水溶液から取り出して乾燥して、Fe-O-Si-P系被膜を備えたSi含有Fe基合金粉を得た。 The prepared Si-containing Fe-based alloy powder is immersed in a phosphoric acid aqueous solution at a concentration of 0.00001 wt% to 5 wt% at 60 ° C. for 20 minutes to 6 hours, taken out from the phosphoric acid aqueous solution, dried, and Fe—O—Si. A Si-containing Fe-based alloy powder having a −P-based coating was obtained.

次いで、リン酸処理で得られたFe-O-Si-P系被膜を備えたSi含有Fe基合金粉を、濃度が1~6wt%で60℃の塩酸水溶液に10分~4時間浸漬し、塩酸水溶液から取り出して乾燥して、表面にSiO2含有被膜を備えたSi含有Fe基合金粉を得た。 Next, the Si-containing Fe-based alloy powder having the Fe—O—Si—P-based coating obtained by the phosphoric acid treatment was immersed in a hydrochloric acid aqueous solution at a concentration of 1 to 6 wt% at 60 ° C. for 10 minutes to 4 hours. It was taken out from the aqueous hydrochloric acid solution and dried to obtain a Si-containing Fe-based alloy powder having a SiO 2 -containing film on the surface.

図9に、濃度5wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉の走査型電子顕微鏡(SEM)写真を示す。図10に、準備したSi含有Fe基合金粉及び濃度5wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉について分析した粉末X線回折プロファイルを示す。 FIG. 9 shows a scanning electron microscope (SEM) photograph of a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 6 hours using a phosphoric acid aqueous solution having a concentration of 5 wt%. FIG. 10 shows a powder X-ray diffraction profile analyzed for a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 6 hours using the prepared Si-containing Fe-based alloy powder and a phosphoric acid aqueous solution having a concentration of 5 wt%.

リン酸処理を行ったSi含有Fe基合金粉の写真には不定形の物質がみられるが、これは、粉末X線回折プロファイルに示されるように、リン酸処理で形成されたリン酸鉄である。リン酸鉄は、Si含有Fe基合金の表面にも付着し得る。 Atypical substances can be seen in the photographs of the phosphoric acid-treated Si-containing Fe-based alloy powder, which are iron phosphate formed by the phosphoric acid treatment, as shown in the powder X-ray diffraction profile. be. Iron phosphate may also adhere to the surface of the Si-containing Fe-based alloy.

図11~16に、準備したSi含有Fe基合金粉の断面、並びに濃度0.00001wt%、0.0001wt%、0.001wt%、0.01wt%、及び0.1wt%のリン酸水溶液を用いてそれぞれ6時間リン酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡(SEM)写真を示す。図17及び18に、濃度0.01wt%及び0.1wt%のリン酸水溶液をそれぞれ用いて20分間リン酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡(SEM)写真を示す。図19~21に、準備したSi含有Fe基合金粉の断面、濃度1wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉の断面、及び濃度5wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡(SEM)写真を示す。Si含有Fe基合金粉の断面の走査型電子顕微鏡写真は、樹脂中にSi含有Fe基合金粉を固めて研磨及びイオンミリングにより断面をだして、走査型電子顕微鏡で観察することにより得られる。 11 to 16 show the cross section of the prepared Si-containing Fe-based alloy powder, and phosphoric acid aqueous solutions having concentrations of 0.00001 wt%, 0.0001 wt%, 0.001 wt%, 0.01 wt%, and 0.1 wt%. The scanning electron microscope (SEM) photograph of the cross section of the Si-containing Fe-based alloy powder which was treated with phosphoric acid for 6 hours is shown. FIGS. 17 and 18 show scanning electron microscope (SEM) photographs of cross sections of Si-containing Fe-based alloy powders that have been subjected to phosphoric acid treatment for 20 minutes using phosphoric acid aqueous solutions having concentrations of 0.01 wt% and 0.1 wt%, respectively. show. 19 to 21 show a cross section of the prepared Si-containing Fe-based alloy powder, a cross section of the Si-containing Fe-based alloy powder treated with phosphoric acid for 6 hours using a phosphoric acid aqueous solution having a concentration of 1 wt%, and phosphorus having a concentration of 5 wt%. FIG. 3 shows a scanning electron microscope (SEM) photograph of a cross section of a Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment using an acid aqueous solution for 6 hours. A scanning electron micrograph of a cross section of a Si-containing Fe-based alloy powder can be obtained by solidifying the Si-containing Fe-based alloy powder in a resin, polishing and ion milling to obtain a cross section, and observing with a scanning electron microscope.

濃度0.00001wt%、0.0001wt%、0.001wt%、0.01wt%、及び0.1wt%のリン酸水溶液を用いてそれぞれ6時間リン酸処理を行って得られたSi含有Fe基合金粉の表面にはFe-O-Si-P系被膜が形成されており、図12~16の断面SEM観察で測定したFe-O-Si-P系被膜の厚みはそれぞれ、7.0nm、9.0nm、15.5nm、19.0nm、27.0nmであった。濃度0.01wt%及び0.1wt%のリン酸水溶液をそれぞれ用いて20分間リン酸処理を行ったSi含有Fe基合金粉の表面にもFe-O-Si-P系被膜が形成されており、図17及び18の断面SEM観察で測定したFe-O-Si-P系被膜の厚みはそれぞれ、18nm及び31nmであった。図20及び21に示す濃度1%及び5%のリン酸処理を行って得られたSi含有Fe基合金粉断面において中心部の白い箇所は、図19に示す準備したSi含有Fe基合金粉と同じ組成を有し、その周囲の灰色の箇所はFe-O-Si-P系被膜である。図21において、Fe-O-Si-P系被膜の外部に小片がみられるが、この小片はリン酸鉄である。 Si-containing Fe-based alloy obtained by performing phosphoric acid treatment for 6 hours using phosphoric acid aqueous solutions having concentrations of 0.00001 wt%, 0.0001 wt%, 0.001 wt%, 0.01 wt%, and 0.1 wt%, respectively. A Fe—O—Si—P coating is formed on the surface of the powder, and the thicknesses of the Fe—O—Si—P coating measured by SEM observation of the cross sections of FIGS. 12 to 16 are 7.0 nm and 9, respectively. It was 9.0 nm, 15.5 nm, 19.0 nm, and 27.0 nm. A Fe—O—Si—P-based film is also formed on the surface of the Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment for 20 minutes using phosphoric acid aqueous solutions having concentrations of 0.01 wt% and 0.1 wt%, respectively. The thicknesses of the Fe—O—Si—P-based coatings measured by the cross-sectional SEM observations of FIGS. 17 and 18 were 18 nm and 31 nm, respectively. In the cross section of the Si-containing Fe-based alloy powder obtained by performing the phosphoric acid treatment at concentrations of 1% and 5% shown in FIGS. 20 and 21, the white portion in the center is the Si-containing Fe-based alloy powder prepared as shown in FIG. It has the same composition, and the gray part around it is a Fe—O—Si—P based film. In FIG. 21, small pieces are found outside the Fe—O—Si—P-based coating, and these small pieces are iron phosphate.

図22~24に、準備したSi含有Fe基合金粉、濃度1wt%のリン酸水溶液を用いてリン酸処理を行ったSi含有Fe基合金粉、及び濃度2wt%のリン酸水溶液を用いてリン酸処理を行ったSi含有Fe基合金粉のオージェ電子分光法による深さ方向分析の結果を示す。 FIGS. 22 to 24 show phosphorus using the prepared Si-containing Fe-based alloy powder, the Si-containing Fe-based alloy powder treated with phosphoric acid using a phosphoric acid aqueous solution having a concentration of 1 wt%, and the phosphoric acid aqueous solution having a concentration of 2 wt%. The results of the depth direction analysis of the acid-treated Si-containing Fe-based alloy powder by Auger electron spectroscopy are shown.

準備したSi含有Fe基合金粉は、表面から8nmの深さ範囲で酸素量が多く酸化膜が形成されていることが分かる。濃度1wt%のリン酸水溶液を用いたリン酸処理により、表面から42nmの深さの範囲でFe、Si、P、Cr、C、及びOが検出され、Cr及びCを含むFe-Si-P-O系被膜が形成されていることが分かる。濃度2wt%のリン酸水溶液を用いたリン酸処理により、表面から69nmの深さの範囲でFe、Si、P、Cr、C、及びOが検出され、Cr及びCを含むFe-O-Si-P系被膜が形成されていることが分かる。検出されたFe、Si、Cr、及びCは、準備した本体のSi含有Fe基合金粉由来であり、Pはリン酸水溶液由来である。OはSi含有Fe基合金粉がリン酸水溶液で酸化されることにより形成された酸化膜及び自然酸化膜に含まれる。 It can be seen that the prepared Si-containing Fe-based alloy powder has a large amount of oxygen and an oxide film is formed in a depth range of 8 nm from the surface. Fe, Si, P, Cr, C, and O were detected in a depth range of 42 nm from the surface by phosphoric acid treatment using a phosphoric acid aqueous solution having a concentration of 1 wt%, and Fe-Si-P containing Cr and C was detected. It can be seen that an O-based film is formed. Fe, Si, P, Cr, C, and O were detected in a depth range of 69 nm from the surface by phosphoric acid treatment using a phosphoric acid aqueous solution having a concentration of 2 wt%, and Fe—O—Si containing Cr and C was detected. -It can be seen that a P-based film is formed. The detected Fe, Si, Cr, and C are derived from the prepared Si-containing Fe-based alloy powder of the main body, and P is derived from the phosphoric acid aqueous solution. O is contained in an oxide film and a natural oxide film formed by oxidizing Si-containing Fe-based alloy powder with an aqueous phosphoric acid solution.

図25に、0.00001~1wt%のリン酸水溶液の濃度と、リン酸処理を行ったSi含有Fe基合金粉のFe-O-Si-P系被膜の厚さとの関係を表すグラフを示す。0.00001~1%のリン酸水溶液を用いて3nm~49nmの厚みのFe-O-Si-P系被膜が得られた。図26に、0.25wt%~5wt%のリン酸水溶液の濃度と、リン酸処理を行ったSi含有Fe基合金粉の飽和磁化Ms及びFe-O-Si-P系被膜の厚さとの関係を表すグラフを示す。リン酸水溶液の濃度が高いほどFe-O-Si-P系被膜の厚みが増加し、その分飽和磁化が低下することが分かる。 FIG. 25 shows a graph showing the relationship between the concentration of the phosphoric acid aqueous solution of 0.00001 to 1 wt% and the thickness of the Fe—O—Si—P-based coating film of the phosphoric acid-treated Si-containing Fe-based alloy powder. .. A Fe—O—Si—P-based film having a thickness of 3 nm to 49 nm was obtained using a 0.00001 to 1% aqueous phosphoric acid solution. FIG. 26 shows the relationship between the concentration of the phosphoric acid aqueous solution of 0.25 wt% to 5 wt%, the saturation magnetization Ms of the phosphoric acid-treated Si-containing Fe-based alloy powder, and the thickness of the Fe—O—Si—P coating. The graph showing is shown. It can be seen that the higher the concentration of the phosphoric acid aqueous solution, the thicker the Fe—O—Si—P coating, and the lower the saturation magnetization.

図27及び28に、濃度5wt%のリン酸水溶液を用いてリン酸処理を行ったSi含有Fe基合金粉を、濃度5wt%の塩酸水溶液に2.0時間浸漬したSi含有Fe基合金粉、及び濃度5wt%の塩酸水溶液に4.0時間浸漬したSi含有Fe基合金粉の走査型電子顕微鏡写真を示す。 FIGS. 27 and 28 show Si-containing Fe-based alloy powder obtained by immersing a Si-containing Fe-based alloy powder treated with a phosphoric acid solution having a concentration of 5 wt% in a hydrochloric acid aqueous solution having a concentration of 5 wt% for 2.0 hours. And a scanning electron micrograph of a Si-containing Fe-based alloy powder immersed in a hydrochloric acid aqueous solution having a concentration of 5 wt% for 4.0 hours is shown.

図9に示すように濃度5wt%のリン酸水溶液を用いてリン酸処理を行ったSi含有Fe基合金粉の周囲には、不定形のリン酸鉄がみられるが、図27及び28に示すように、塩酸処理によりリン酸鉄は除去された。 As shown in FIG. 9, atypical iron phosphate is found around the Si-containing Fe-based alloy powder that has been subjected to phosphoric acid treatment using a phosphoric acid aqueous solution having a concentration of 5 wt%, which are shown in FIGS. 27 and 28. As described above, iron phosphate was removed by the hydrochloric acid treatment.

図29~31に、濃度0.01wt%のリン酸水溶液を用いて20分間リン酸処理を行ったSi含有Fe基合金粉を、濃度1wt%の塩酸水溶液に10分間、30分間、及び1時間浸漬したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真を示す。図32~34に、濃度0.1wt%のリン酸水溶液を用いて20分間リン酸処理を行ったSi含有Fe基合金粉を、濃度1wt%の塩酸水溶液に10分間、30分間、及び1時間浸漬したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真を示す。図35及び36に、濃度5wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉を、濃度5wt%の塩酸水溶液に2.0時間及び4.0時間浸漬したSi含有Fe基合金粉の断面の走査型電子顕微鏡写真を示す。 In FIGS. 29 to 31, the Si-containing Fe-based alloy powder subjected to phosphoric acid treatment using a phosphoric acid aqueous solution having a concentration of 0.01 wt% for 20 minutes was put into a hydrochloric acid aqueous solution having a concentration of 1 wt% for 10 minutes, 30 minutes, and 1 hour. A scanning electron micrograph of a cross section of the soaked Si-containing Fe-based alloy powder is shown. In FIGS. 32 to 34, the Si-containing Fe-based alloy powder obtained by phosphoric acid treatment with a phosphoric acid aqueous solution having a concentration of 0.1 wt% for 20 minutes was put into a hydrochloric acid aqueous solution having a concentration of 1 wt% for 10 minutes, 30 minutes, and 1 hour. A scanning electron micrograph of a cross section of the soaked Si-containing Fe-based alloy powder is shown. In FIGS. 35 and 36, the Si-containing Fe-based alloy powder that had been subjected to phosphoric acid treatment for 6 hours using a 5 wt% phosphoric acid aqueous solution was immersed in a 5 wt% hydrochloric acid aqueous solution for 2.0 hours and 4.0 hours. A scanning electron micrograph of a cross section of a Si-containing Fe-based alloy powder is shown.

リン酸処理及び塩酸処理を行って得られたSi含有Fe基合金粉の表面にはSiO含有被膜が形成されており、図29~34の断面SEM観察で測定したSiO含有被膜の厚みはそれぞれ、14nm、9nm、13nm、23nm、13nm、20nmであった。図35及び36において、中心部の白い箇所が、準備したSi含有Fe基合金粉と実質的に同じ組成を有し、その周囲に二層の被膜が形成されている。二層の被膜のうち外側の比較的黒い層がSiO2含有被膜であり、内側の比較的白い層がFe-O-Si-P系被膜である。 A SiO 2 -containing film is formed on the surface of the Si-containing Fe-based alloy powder obtained by the phosphoric acid treatment and the hydrochloric acid treatment, and the thickness of the SiO 2 -containing film measured by observing the cross section SEM of FIGS. 29 to 34 is It was 14 nm, 9 nm, 13 nm, 23 nm, 13 nm, and 20 nm, respectively. In FIGS. 35 and 36, the white portion in the center has substantially the same composition as the prepared Si-containing Fe-based alloy powder, and a two-layer film is formed around the white portion. Of the two layers, the outer relatively black layer is the SiO 2 -containing film, and the inner relatively white layer is the Fe—O—Si—P-based film.

図37に、濃度5wt%のリン酸水溶液を用いてリン酸処理を行ったSi含有Fe基合金粉を、濃度5wt%の塩酸水溶液に4.0時間浸漬したSi含有Fe基合金粉のオージェ電子分光法による深さ方向分析の結果を示す。 FIG. 37 shows Auger electrons of a Si-containing Fe-based alloy powder obtained by immersing a Si-containing Fe-based alloy powder treated with a phosphoric acid solution having a concentration of 5 wt% in a hydrochloric acid aqueous solution having a concentration of 5 wt% for 4.0 hours. The result of the depth direction analysis by the spectroscopy is shown.

濃度5wt%の塩酸水溶液を用いた塩酸処理により、表面から350nmの深さ範囲でFe、Si、Cr、C、及びOが検出され、Cr及びCを含むSiO2含有被膜が形成されていることが分かる。350~490nmの深さ範囲では、酸素量が大きく減少しており、Fe、Si、P、B、Cr、及びOが検出され、この範囲にB及びCrを含むFe-O-Si-P系被膜が残存している。 Fe, Si, Cr, C, and O are detected in a depth range of 350 nm from the surface by hydrochloric acid treatment using a hydrochloric acid aqueous solution having a concentration of 5 wt%, and a SiO 2 containing film containing Cr and C is formed. I understand. In the depth range of 350 to 490 nm, the amount of oxygen is greatly reduced, Fe, Si, P, B, Cr, and O are detected, and Fe-O-Si-P system containing B and Cr in this range. The coating remains.

図38に、濃度5wt%のリン酸水溶液を用いてリン酸処理を行ったSi含有Fe基合金粉を、濃度5wt%の塩酸水溶液に1.0~4.0時間浸漬した場合の浸漬時間と飽和磁化Msとの関係を表すグラフを示す。飽和磁化Msは、Si含有Fe基合金粉をエポキシ樹脂と混合して鋳造し、焼成して得られたトロイダルコアについて測定して得られた値である。塩酸処理の時間が短いとトロイダルコア中のリン酸鉄の占める体積割合が多くなり飽和磁化が小さくなる。塩酸処理の時間が長くなるにつれて、トロイダルコア中のリン酸鉄の占める体積割合が少なくなり飽和磁化が大きくなった。 FIG. 38 shows the immersion time when the Si-containing Fe-based alloy powder subjected to the phosphoric acid treatment using the phosphoric acid aqueous solution having a concentration of 5 wt% was immersed in the hydrochloric acid aqueous solution having a concentration of 5 wt% for 1.0 to 4.0 hours. The graph showing the relationship with the saturation magnetization Ms is shown. The saturation magnetization Ms is a value obtained by measuring the toroidal core obtained by mixing Si-containing Fe-based alloy powder with an epoxy resin, casting, and firing. When the hydrochloric acid treatment time is short, the volume ratio of iron phosphate in the toroidal core increases and the saturation magnetization decreases. As the hydrochloric acid treatment time became longer, the volume ratio of iron phosphate in the toroidal core decreased and the saturation magnetization increased.

図39に、濃度5wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉を、濃度3~6wt%の塩酸水溶液に3.0時間浸漬した場合の、塩酸水溶液の濃度と、Fe-O-Si-P系被膜の厚み、SiO2含有被膜の厚み、及び被膜の全体厚みとの関係を表すグラフを示す。塩酸水溶液の濃度が高くなるにつれて、Fe-O-Si-P系被膜がSiO2含有被膜に変化した。 FIG. 39 shows a hydrochloric acid aqueous solution obtained by immersing a Si-containing Fe-based alloy powder that has been subjected to a phosphoric acid treatment for 6 hours using a phosphoric acid aqueous solution having a concentration of 5 wt% in a hydrochloric acid aqueous solution having a concentration of 3 to 6 wt% for 3.0 hours. A graph showing the relationship between the concentration of Fe—O—Si—P-based coating, the thickness of the SiO 2 -containing coating, and the total thickness of the coating is shown. As the concentration of the aqueous hydrochloric acid solution increased, the Fe—O—Si—P-based coating changed to a SiO 2 -containing coating.

図40に、濃度5wt%のリン酸水溶液を用いて6時間リン酸処理を行ったSi含有Fe基合金粉を、濃度5wt%の塩酸水溶液に1.0~4.0時間浸漬した場合の、浸漬時間と、Fe-O-Si-P系被膜の厚み、SiO2含有被膜の厚み、及び被膜の全体厚みとの関係を表すグラフを示す。塩酸処理の時間が長くなるにつれて、Fe-O-Si-P系被膜がSiO2含有被膜に変化した。 FIG. 40 shows a case where a Si-containing Fe-based alloy powder that had been subjected to phosphoric acid treatment for 6 hours using a 5 wt% phosphoric acid aqueous solution was immersed in a 5 wt% hydrochloric acid aqueous solution for 1.0 to 4.0 hours. The graph which shows the relationship between the immersion time, the thickness of a Fe—O—Si—P coating film, the thickness of a SiO 2 containing film, and the total thickness of a film is shown. As the hydrochloric acid treatment time became longer, the Fe—O—Si—P-based coating changed to a SiO 2 -containing coating.

図41及び42に、準備したSi含有Fe基合金粉、濃度5wt%のリン酸水溶液を用いてリン酸処理を行ったSi含有Fe基合金粉、次いで濃度5wt%の塩酸水溶液に0.5時間、1.0時間、及び4.0時間浸漬して塩酸処理をしたSi含有Fe基合金粉の、X線光電子分光法(XPS)によるFe2pスペクトル及びSi2pスペクトルを示す。 In FIGS. 41 and 42, the prepared Si-containing Fe-based alloy powder, the Si-containing Fe-based alloy powder subjected to the phosphoric acid treatment using the phosphoric acid aqueous solution having a concentration of 5 wt%, and then the hydrochloric acid aqueous solution having a concentration of 5 wt% were added for 0.5 hours. The Fe2p spectrum and the Si2p spectrum of the Si-containing Fe-based alloy powder which has been immersed in hydrochloric acid for 1.0 hour and 4.0 hours and treated with hydrochloric acid by X-ray photoelectron spectroscopy (XPS) are shown.

Fe2pスペクトルから、準備したSi含有Fe基合金粉の表面には金属Feが存在していることが分かる。準備したSi含有Fe基合金粉に濃度5wt%のリン酸水溶液を用いてリン酸処理を行うと金属Feのピークがなくなり、表面は鉄酸化物の状態になる。次いで濃度5wt%の塩酸水溶液を用いて0.5時間、1.0時間、及び4.0時間の塩酸処理を行うと、705~740eVの結合エネルギー範囲でピークがなくなる。このXPSの分析結果から、リン酸処理を行うと金属Feの表面は鉄酸化物となり、塩酸処理を行うと鉄酸化物は除去されることが分かる。 From the Fe2p spectrum, it can be seen that the metal Fe is present on the surface of the prepared Si-containing Fe-based alloy powder. When the prepared Si-containing Fe-based alloy powder is subjected to phosphoric acid treatment using a phosphoric acid aqueous solution having a concentration of 5 wt%, the peak of metal Fe disappears and the surface becomes an iron oxide state. Then, when hydrochloric acid treatment is performed for 0.5 hours, 1.0 hours, and 4.0 hours using a hydrochloric acid aqueous solution having a concentration of 5 wt%, the peak disappears in the binding energy range of 705 to 740 eV. From the results of this XPS analysis, it can be seen that the surface of the metal Fe becomes iron oxide when the phosphoric acid treatment is performed, and the iron oxide is removed when the hydrochloric acid treatment is performed.

Si2pスペクトルから、準備したSi含有Fe基合金粉の表面にはSi23またはそれに近い構造のSi酸化物が存在していることが分かる。準備したSi含有Fe基合金粉に濃度5wt%のリン酸水溶液を用いてリン酸処理を行うと、SiO2またはそれに近い構造のSi酸化物になり、次いで濃度5wt%の塩酸水溶液を用いて0.5時間、1.0時間、及び4.0時間の塩酸処理を行うと、塩酸処理時間が長くなるとともにSiO2のピークが大きくなり、SiO2相が増加することが分かる。 From the Si2p spectrum, it can be seen that Si 2O 3 or a Si oxide having a structure similar to that is present on the surface of the prepared Si-containing Fe-based alloy powder. When the prepared Si-containing Fe-based alloy powder is subjected to phosphoric acid treatment using a phosphoric acid aqueous solution having a concentration of 5 wt%, it becomes Si oxide having a structure similar to SiO 2 , and then 0 using a hydrochloric acid aqueous solution having a concentration of 5 wt%. It can be seen that when the hydrochloric acid treatment for 5.5 hours, 1.0 hour, and 4.0 hours is performed, the hydrochloric acid treatment time becomes longer, the peak of SiO 2 becomes larger, and the SiO 2 phase increases.

このようにSi含有Fe基合金粉をリン酸処理し、次いで塩酸処理することによって、Si含有Fe基合金粉は、図8に模式的に示すように、表面にSiO2含有被膜を形成する。Si含有Fe基合金粉は、Si含有Fe基合金粉と表面のSiO2含有被膜との間にFe-O-Si-P系被膜を有してもよい。 By treating the Si-containing Fe-based alloy powder with phosphoric acid and then with hydrochloric acid in this way, the Si-containing Fe-based alloy powder forms a SiO 2 -containing film on the surface as schematically shown in FIG. The Si-containing Fe-based alloy powder may have an Fe—O—Si—P-based coating between the Si-containing Fe-based alloy powder and the SiO 2 -containing coating on the surface.

(実施例2)
実施例1において、濃度5wt%で60℃のリン酸水溶液を用いて6時間リン酸処理を行い、次いで、濃度5wt%で60℃の塩酸水溶液を用いて4.0時間塩酸処理をして得られたSiO2含有被膜を備えたSi含有Fe基合金粉に、フッ酸処理として、フッ酸水溶液を用いた溶液処理を行った。
(Example 2)
In Example 1, a phosphoric acid treatment was carried out for 6 hours using a phosphoric acid aqueous solution at a concentration of 5 wt% and 60 ° C., and then a hydrochloric acid treatment was carried out for 4.0 hours using a hydrochloric acid aqueous solution at a concentration of 5 wt% and 60 ° C. The Si-containing Fe-based alloy powder having the obtained SiO 2 -containing film was treated with a solution using an aqueous solution of hydrofluoric acid as a hydrofluoric acid treatment.

フッ酸水溶液として、HF濃度が1~10%及びNH4F濃度が3.3~33%のNH4FとHFとの混合物であるバッファードフッ酸を用いた。室温のバッファードフッ酸中にSiO2含有被膜を備えたSi含有Fe基合金粉を10分間浸漬し、取り出して乾燥した。 As the aqueous hydrofluoric acid solution, buffered hydrofluoric acid, which is a mixture of NH 4 F and HF having an HF concentration of 1 to 10% and an NH 4 F concentration of 3.3 to 33%, was used. A Si-containing Fe-based alloy powder having a SiO 2 -containing film was immersed in buffered hydrofluoric acid at room temperature for 10 minutes, taken out, and dried.

図43~46に、フッ酸処理前のSiO2含有被膜を備えたSi含有Fe基合金粉の断面、並びにHF濃度が1%及びNH4F濃度が3.3%のバッファードフッ酸、HF濃度が5%及びNH4F濃度が16.5%のバッファードフッ酸、及びHF濃度が10%及びNH4F濃度が33%のバッファードフッ酸を用いてフッ酸処理を行ったSi含有Fe基合金粉の断面の走査型電子顕微鏡写真を示す。 FIGS. 43-46 show the cross section of the Si-containing Fe-based alloy powder having the SiO 2 -containing film before the hydrofluoric acid treatment, and the buffered hydrofluoric acid and HF having an HF concentration of 1% and an NH 4F concentration of 3.3%. Si-containing hydrofluoric acid treated with buffered hydrofluoric acid having a concentration of 5% and NH 4 F concentration of 16.5%, and buffered hydrofluoric acid having an HF concentration of 10% and an NH 4 F concentration of 33%. A scanning electron micrograph of a cross section of Fe-based alloy powder is shown.

図47に、準備したSi含有Fe基合金粉、フッ酸処理前のSiO2含有被膜を備えたSi含有Fe基合金粉、並びにHF濃度が1%及びNH4F濃度が3.3%のバッファードフッ酸、HF濃度が5%及びNH4F濃度が16.5%のバッファードフッ酸、及びHF濃度が10%及びNH4F濃度が33%のバッファードフッ酸を用いてフッ酸処理を行ったSi含有Fe基合金粉のエネルギー分散型X線分析(EDS)プロファイルを示す。図44~47から、フッ酸処理を行うことにより、SiO2含有被膜が除去されることが分かる。 FIG. 47 shows the prepared Si-containing Fe-based alloy powder, the Si-containing Fe-based alloy powder having a SiO 2 -containing film before hydrofluoric acid treatment, and a buffer having an HF concentration of 1% and an NH 4F concentration of 3.3%. Hydrofluoric acid treatment with hydrofluoric acid, buffered hydrofluoric acid with 5 % HF and 16.5% NH 4F, and buffered hydrofluoric acid with 10 % HF and 33% NH 4F. The energy-dispersed X-ray analysis (EDS) profile of the Si-containing Fe-based alloy powder obtained in the above-mentioned method is shown. From FIGS. 44 to 47, it can be seen that the SiO 2 -containing film is removed by performing the hydrofluoric acid treatment.

10 準備したSi含有Fe基合金粉
12 リン酸処理を行ったSi含有Fe基合金粉
20 Fe-O-Si-P系被膜
22 塩酸処理を行ったFe-O-Si-P系被膜
30 SiO2含有被膜
10 Prepared Si-containing Fe-based alloy powder 12 Phosphate-treated Si-containing Fe-based alloy powder 20 Fe-O-Si-P-based coating 22 Hydrochloric acid-treated Fe-O-Si-P-based coating 30 SiO 2 Containing film

Claims (18)

Si含有Fe基合金粉を準備すること、
前記Si含有Fe基合金粉をリン酸水溶液に浸漬し、前記リン酸水溶液から取り出して乾燥して、Fe-O-Si-P系被膜を備えたSi含有Fe基合金粉を得ること、及び
前記Fe-O-Si-P系被膜を備えたSi含有Fe基合金粉を塩酸水溶液に浸漬し、前記塩酸水溶液から取り出して乾燥して、表面にSiO2含有被膜を備えたSi含有Fe基合金粉を得ること、
を含む、SiO2含有被膜を備えたSi含有Fe基合金粉の製造方法。
Preparing Si-containing Fe-based alloy powder,
The Si-containing Fe-based alloy powder is immersed in a phosphoric acid aqueous solution, taken out from the phosphoric acid aqueous solution and dried to obtain a Si-containing Fe-based alloy powder having a Fe—O—Si—P-based coating, and the above. A Si-containing Fe-based alloy powder having a Fe—O—Si—P-based coating is immersed in an aqueous hydrochloric acid solution, taken out from the aqueous hydrochloric acid solution and dried, and the Si-containing Fe-based alloy powder having a SiO 2 -containing coating on the surface is removed. To get,
A method for producing a Si-containing Fe-based alloy powder having a SiO 2 -containing coating.
前記SiO2含有被膜を備えたSi含有Fe基合金粉が、前記Si含有Fe基合金粉の本体と前記SiO2含有被膜との間に、Fe-O-Si-P系被膜を有する、請求項1に記載のSi含有Fe基合金粉の製造方法。 The claim that the Si-containing Fe-based alloy powder provided with the SiO 2 -containing coating has an Fe—O—Si—P-based coating between the main body of the Si-containing Fe-based alloy powder and the SiO 2 -containing coating. The method for producing a Si-containing Fe-based alloy powder according to 1. 前記SiO2含有被膜を備えたSi含有Fe基合金粉は、前記SiO2含有被膜を備えたSi含有Fe基合金粉の全質量を基準にして、3.0~18.0wt%のSiを含む、請求項1または2に記載のSi含有Fe基合金粉の製造方法。 The Si-containing Fe-based alloy powder having the SiO 2 -containing coating contains 3.0 to 18.0 wt% of Si based on the total mass of the Si-containing Fe-based alloy powder having the SiO 2 -containing coating. The method for producing a Si-containing Fe-based alloy powder according to claim 1 or 2. 前記Si含有Fe基合金は、多結晶合金、アモルファス合金、または金属ガラスである、請求項1~3のいずれか一項に記載のSi含有Fe基合金粉の製造方法。 The method for producing a Si-containing Fe-based alloy powder according to any one of claims 1 to 3, wherein the Si-containing Fe-based alloy is a polycrystalline alloy, an amorphous alloy, or a metallic glass. 前記Si含有Fe基合金は、アモルファス合金粉または金属ガラス粉である、請求項1~4のいずれか一項に記載のSi含有Fe基合金粉の製造方法。 The method for producing a Si-containing Fe-based alloy powder according to any one of claims 1 to 4, wherein the Si-containing Fe-based alloy is an amorphous alloy powder or a metallic glass powder. 前記リン酸水溶液は0.00001~10.00wt%の濃度を有する、請求項1~5のいずれか一項に記載のSi含有Fe基合金粉の製造方法。 The method for producing a Si-containing Fe-based alloy powder according to any one of claims 1 to 5, wherein the phosphoric acid aqueous solution has a concentration of 0.00001 to 10.00 wt%. 前記塩酸水溶液は0.50~10.00wt%の濃度を有する、請求項1~6のいずれか一項に記載のSi含有Fe基合金粉の製造方法。 The method for producing a Si-containing Fe-based alloy powder according to any one of claims 1 to 6, wherein the aqueous hydrochloric acid solution has a concentration of 0.50 to 10.00 wt%. (A)前記SiO2含有被膜を備えたSi含有Fe基合金粉をフッ酸処理して前記SiO2含有被膜を取り除き、前記準備したSi含有Fe基合金粉よりも寸法が小さい第2のSi含有Fe基合金粉を得ること、
(B)前記第2のSi含有Fe基合金粉を、リン酸水溶液に浸漬し、前記リン酸水溶液から取り出して乾燥して、Fe-O-Si-P系被膜を備えた第2のSi含有Fe基合金粉を得ること、及び
(C)前記Fe-O-Si-P系被膜を備えた第2のSi含有Fe基合金粉を塩酸水溶液に浸漬し、前記塩酸水溶液から取り出して乾燥して、表面にSiO2含有被膜を備えた第2のSi含有Fe基合金粉を得ること、
を含む、請求項1~7のいずれか一項に記載のSi含有Fe基合金粉の製造方法。
(A) The Si-containing Fe-based alloy powder having the SiO 2 -containing film is treated with hydrofluoric acid to remove the SiO 2 -containing film, and the second Si-containing powder having a smaller size than the prepared Si-containing Fe-based alloy powder is contained. Obtaining Fe-based alloy powder,
(B) The second Si-containing Fe-based alloy powder is immersed in a phosphoric acid aqueous solution, taken out from the phosphoric acid aqueous solution and dried to contain a second Si-containing film having an Fe—O—Si—P-based coating film. The Fe-based alloy powder is obtained, and (C) the second Si-containing Fe-based alloy powder having the Fe—O—Si—P-based coating is immersed in a hydrochloric acid aqueous solution, taken out from the hydrochloric acid aqueous solution, and dried. To obtain a second Si-containing Fe-based alloy powder having a SiO 2 -containing film on the surface,
The method for producing a Si-containing Fe-based alloy powder according to any one of claims 1 to 7, which comprises.
前記フッ酸処理、リン酸水溶液への浸漬及び乾燥、及び塩酸水溶液への浸漬及び乾燥をさらに繰り返すことを含む、請求項8に記載のSi含有Fe基合金粉の製造方法。 The method for producing a Si-containing Fe-based alloy powder according to claim 8, further comprising repeating the hydrofluoric acid treatment, immersion and drying in a phosphoric acid aqueous solution, and immersion and drying in a hydrochloric acid aqueous solution. 請求項1~7のいずれか一項に記載のSi含有Fe基合金粉の製造方法で得られたSiO2含有被膜を備えたSi含有Fe基合金粉をフッ酸処理して前記SiO2含有被膜を取り除き、前記準備したSi含有Fe基合金粉よりも粒子の寸法が小さい第2のSi含有Fe基合金粉を得ることを含む、Si含有Fe基合金粉の製造方法。 The Si-containing Fe-based alloy powder provided with the SiO 2 -containing film obtained by the method for producing the Si-containing Fe-based alloy powder according to any one of claims 1 to 7 is treated with hydrofluoric acid to treat the SiO 2 -containing film. A method for producing a Si-containing Fe-based alloy powder, which comprises removing the above-mentioned material to obtain a second Si-containing Fe-based alloy powder having a particle size smaller than that of the prepared Si-containing Fe-based alloy powder. 請求項10に記載の製造方法で得られた第2のSi含有Fe基合金粉を、リン酸水溶液に浸漬し、前記リン酸水溶液から取り出して乾燥して、Fe-O-Si-P系被膜を備えた第3のSi含有Fe基合金粉を得ること、
前記Fe-O-Si-P系被膜を備えた第3のSi含有Fe基合金粉を塩酸水溶液に浸漬し、前記塩酸水溶液から取り出して乾燥して、表面にSiO2含有被膜を備えた第3のSi含有Fe基合金粉を得ること、及び
前記第3のSi含有Fe基合金粉をフッ酸処理して前記SiO2含有被膜を取り除き、前記第2のSi含有Fe基合金粉よりも粒子の寸法が小さい第3のSi含有Fe基合金粉を得ることを含む、Si含有Fe基合金粉の製造方法。
The second Si-containing Fe-based alloy powder obtained by the production method according to claim 10 is immersed in a phosphoric acid aqueous solution, taken out from the phosphoric acid aqueous solution and dried to obtain an Fe—O—Si—P-based coating film. To obtain a third Si-containing Fe-based alloy powder comprising
The third Si-containing Fe-based alloy powder having the Fe—O—Si—P-based coating was immersed in a hydrochloric acid aqueous solution, taken out from the hydrochloric acid aqueous solution and dried, and the surface was provided with a SiO 2 containing coating. Si-containing Fe-based alloy powder is obtained, and the third Si-containing Fe-based alloy powder is treated with hydrofluoric acid to remove the SiO 2 -containing film, and the particles are more particles than the second Si-containing Fe-based alloy powder. A method for producing a Si-containing Fe-based alloy powder, which comprises obtaining a third Si-containing Fe-based alloy powder having a small size.
表面にSiO2含有被膜を備えたSi含有Fe基合金粒子からなるSi含有Fe基合金粉。 Si-containing Fe-based alloy powder composed of Si-containing Fe-based alloy particles having a SiO 2 -containing film on the surface. 前記Si含有Fe基合金粒子が、前記Si含有Fe基合金粒子と前記SiO2含有被膜との間に、Fe-O-Si-P系被膜を有する、請求項12に記載のSi含有Fe基合金粉。 The Si-containing Fe-based alloy according to claim 12, wherein the Si-containing Fe-based alloy particles have a Fe—O—Si—P-based film between the Si-containing Fe-based alloy particles and the SiO 2 -containing film. powder. 前記Si含有Fe基合金粒子は、前記SiO2含有被膜を備えたSi含有Fe基合金粉の全質量を基準にして3.0~18.0wt%のSiを含む、請求項12または13に記載のSi含有Fe基合金粉。 The Si-containing Fe-based alloy particles according to claim 12 or 13, wherein the Si-containing Fe-based alloy particles contain 3.0 to 18.0 wt% of Si based on the total mass of the Si-containing Fe-based alloy powder having the SiO 2 -containing coating. Si-containing Fe-based alloy powder. 前記Si含有Fe基合金は、多結晶合金、アモルファス合金、または金属ガラスである、請求項12~14のいずれか一項に記載のSi含有Fe基合金粉。 The Si-containing Fe-based alloy powder according to any one of claims 12 to 14, wherein the Si-containing Fe-based alloy is a polycrystalline alloy, an amorphous alloy, or a metallic glass. 前記Si含有Fe基合金は、アモルファス合金または金属ガラスである、請求項12~15のいずれか一項に記載のSi含有Fe基合金粉。 The Si-containing Fe-based alloy powder according to any one of claims 12 to 15, wherein the Si-containing Fe-based alloy is an amorphous alloy or a metallic glass. 請求項12~16のいずれか一項に記載のSi含有Fe基合金粉を含むコンポジット磁性材料。 A composite magnetic material containing the Si-containing Fe-based alloy powder according to any one of claims 12 to 16. 請求項12~16のいずれか一項に記載のSi含有Fe基合金粉を含むコンポジット磁性材料コア。 A composite magnetic material core containing the Si-containing Fe-based alloy powder according to any one of claims 12 to 16.
JP2021156138A 2017-08-04 2021-09-24 Si-CONTAINING Fe-BASED ALLOY POWDER PROVIDED WITH SiO2-CONTAINING COATING FILM AND MANUFACTURING METHOD THEREOF Pending JP2022008547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021156138A JP2022008547A (en) 2017-08-04 2021-09-24 Si-CONTAINING Fe-BASED ALLOY POWDER PROVIDED WITH SiO2-CONTAINING COATING FILM AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017151599A JP6978040B2 (en) 2017-08-04 2017-08-04 Si-containing Fe-based alloy powder having a SiO2-containing film and a method for producing the same.
JP2021156138A JP2022008547A (en) 2017-08-04 2021-09-24 Si-CONTAINING Fe-BASED ALLOY POWDER PROVIDED WITH SiO2-CONTAINING COATING FILM AND MANUFACTURING METHOD THEREOF

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017151599A Division JP6978040B2 (en) 2017-08-04 2017-08-04 Si-containing Fe-based alloy powder having a SiO2-containing film and a method for producing the same.

Publications (1)

Publication Number Publication Date
JP2022008547A true JP2022008547A (en) 2022-01-13

Family

ID=65524393

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017151599A Active JP6978040B2 (en) 2017-08-04 2017-08-04 Si-containing Fe-based alloy powder having a SiO2-containing film and a method for producing the same.
JP2021156138A Pending JP2022008547A (en) 2017-08-04 2021-09-24 Si-CONTAINING Fe-BASED ALLOY POWDER PROVIDED WITH SiO2-CONTAINING COATING FILM AND MANUFACTURING METHOD THEREOF

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017151599A Active JP6978040B2 (en) 2017-08-04 2017-08-04 Si-containing Fe-based alloy powder having a SiO2-containing film and a method for producing the same.

Country Status (1)

Country Link
JP (2) JP6978040B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7268520B2 (en) * 2019-07-25 2023-05-08 セイコーエプソン株式会社 Magnetic powder, manufacturing method of magnetic powder, dust core and coil parts
KR102438455B1 (en) * 2021-07-01 2022-09-01 (주)영빔 Method for manufacturing magnetic metal powder absorbing electromagnetic wave

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328805A (en) * 1991-04-30 1992-11-17 Tokin Corp Anisotropic configuration soft magnet alloy powder and manufacture thereof
JP2003197416A (en) * 2001-12-26 2003-07-11 Daido Steel Co Ltd Method of manufacturing powder magnetic core, and powder magnetic core manufactured by the method
JP2007254768A (en) * 2006-03-20 2007-10-04 Aisin Seiki Co Ltd Soft magnetic powder material, its production method, soft magnetic compact and its production method
JP2009158802A (en) * 2007-12-27 2009-07-16 Fuji Electric Device Technology Co Ltd Manufacturing method of dust core
JP2017183681A (en) * 2016-03-31 2017-10-05 三菱マテリアル株式会社 Silica-based, insulator-coated soft magnetic powder and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294804A (en) * 1988-02-25 1989-11-28 Tdk Corp Ferromagnetic powder for dust core and dust core
JPH0533053A (en) * 1991-07-25 1993-02-09 Nippon Steel Corp Production of mirror face grain-oriented silicon steel strip
JP6443269B2 (en) * 2015-09-01 2018-12-26 株式会社村田製作所 Magnetic core and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328805A (en) * 1991-04-30 1992-11-17 Tokin Corp Anisotropic configuration soft magnet alloy powder and manufacture thereof
JP2003197416A (en) * 2001-12-26 2003-07-11 Daido Steel Co Ltd Method of manufacturing powder magnetic core, and powder magnetic core manufactured by the method
JP2007254768A (en) * 2006-03-20 2007-10-04 Aisin Seiki Co Ltd Soft magnetic powder material, its production method, soft magnetic compact and its production method
JP2009158802A (en) * 2007-12-27 2009-07-16 Fuji Electric Device Technology Co Ltd Manufacturing method of dust core
JP2017183681A (en) * 2016-03-31 2017-10-05 三菱マテリアル株式会社 Silica-based, insulator-coated soft magnetic powder and method for manufacturing the same

Also Published As

Publication number Publication date
JP6978040B2 (en) 2021-12-08
JP2019033114A (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP5710427B2 (en) Magnetic material, method for manufacturing magnetic material, and inductor element using magnetic material
JP4710485B2 (en) Method for producing soft magnetic material and method for producing dust core
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
CN105448450A (en) Method for producing composite magnetic material
JP2007088156A (en) Soft magnetic material, manufacturing method thereof, powder magnetic core, and manufacturing method thereof
JP2006202956A (en) Soft magnetic material and powder magnetic core
JP6471260B2 (en) Soft magnetic materials, dust cores using soft magnetic materials, reactors using dust cores
JPWO2012132783A1 (en) COMPOSITE SOFT MAGNETIC POWDER, PROCESS FOR PRODUCING THE SAME, AND DUST CORE WITH THE SAME
JP2022008547A (en) Si-CONTAINING Fe-BASED ALLOY POWDER PROVIDED WITH SiO2-CONTAINING COATING FILM AND MANUFACTURING METHOD THEREOF
US20180137960A1 (en) Method for manufacturing magnetic particles, magnetic particles, and magnetic body
JP2003133122A (en) Dust core
JP2013209693A (en) Composite magnetic metal powder, method for manufacturing the same, and magnetic core compact
US20200258667A1 (en) Silica-based insulator-coated soft magnetic powder and method for producing same
Wang et al. Reduction of core loss for FeSi soft magnetic composites prepared using atomic layer deposition-based coating and high-temperature annealing
KR101963265B1 (en) Inductor component
JP2019075566A (en) Powder magnetic core, powder for magnetic core and method for manufacturing the same
JP2005303006A (en) Method of manufacturing dust core and dust core
US9431159B2 (en) Iron cobalt ternary alloy nanoparticles with silica shells and metal silicate interface
JP4328885B2 (en) Ferrite-plated sendust fine particles and method for producing the same
JP7251468B2 (en) Composite magnetic materials, magnetic cores and electronic components
JP2008143720A (en) Magnetite-iron composite powder, its manufacturing method and dust core
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2008297622A (en) Soft magnetic material, dust core, method for manufacturing soft magnetic material and method for manufacturing dust core
JP6407252B2 (en) Magnetic materials and devices
JP7405817B2 (en) Soft magnetic powder and dust core

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221115