JP2021187917A - Composite resin composition and fiber-reinforced composite material and method for producing the same - Google Patents

Composite resin composition and fiber-reinforced composite material and method for producing the same Download PDF

Info

Publication number
JP2021187917A
JP2021187917A JP2020092921A JP2020092921A JP2021187917A JP 2021187917 A JP2021187917 A JP 2021187917A JP 2020092921 A JP2020092921 A JP 2020092921A JP 2020092921 A JP2020092921 A JP 2020092921A JP 2021187917 A JP2021187917 A JP 2021187917A
Authority
JP
Japan
Prior art keywords
fiber
monomer
nanocellulose
resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020092921A
Other languages
Japanese (ja)
Inventor
大介 森
Daisuke Mori
航 奥村
Ko Okumura
裕之 長谷部
Hiroyuki Hasebe
豊 林
Yutaka Hayashi
武俊 中山
Taketoshi Nakayama
昂志 野北
Takashi NOGITA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefecture
Komatsu Matere Co Ltd
Chuetsu Pulp and Paper Co Ltd
Original Assignee
Ishikawa Prefecture
Komatsu Matere Co Ltd
Chuetsu Pulp and Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefecture, Komatsu Matere Co Ltd, Chuetsu Pulp and Paper Co Ltd filed Critical Ishikawa Prefecture
Priority to JP2020092921A priority Critical patent/JP2021187917A/en
Publication of JP2021187917A publication Critical patent/JP2021187917A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a resin composition which is excellent in environmental characteristics by using a biomass material, has high rigidity with low specific gravity and is excellent in molding appearance.SOLUTION: A hydrophobic nanocellulose fiber is added to a monomer and is agitated. At this time, as shown in Fig. 4, melt viscosity of the monomer is lower than melt viscosity of a polymer by 3 to 4 digits, and the hydrophobic nanocellulose fiber is likely to be dispersed in the monomer and accordingly the nanocellulose fiber is uniformly dispersed in the monomer. When the monomer is polymerized and is converted into a polymer in a state where the nanocellulose fiber is uniformly dispersed in the monomer in this manner, a nanocellulose fiber composite resin in which the nanocellulose fiber is uniformly dispersed is obtained. The obtained nanocellulose fiber composite resin exhibits high dynamic properties, and high performance (improvement in flexural strength, interlayer shear strength, impact strength and fatigue strength) of an FRP is achieved using the nanocellulose fiber composite resin in a matrix of a fiber-reinforced composite material (FRP) of a carbon fiber and the like, as shown in Fig. 5.SELECTED DRAWING: Figure 6

Description

本発明は、バイオマス材料の利用により環境特性に優れ、かつ低比重にして高剛性で成形外観に優れた複合樹脂組成物および繊維強化複合材料とその製造方法に関する。 The present invention relates to a composite resin composition and a fiber-reinforced composite material which are excellent in environmental characteristics by utilizing a biomass material, have a low specific density, have high rigidity, and have an excellent molded appearance, and a method for producing the same.

近年、環境保護の観点からバイオマス材料が注目されており、自動車、OA・電気電子分野向け材料として天然由来の有機充填材やバイオポリマーとの複合材料が、使用され始めている。また、剛性等の機械的強度や耐熱性を向上させる目的で、樹脂組成にガラス繊維等の無機充填剤を配合する方法が検討されている。しかしこれらの無機充填剤は、大量に加える必要があるため、成形品の比重が増大し、さらに焼却又は廃棄時にゴミとなる残留物が増加して環境に負荷がかかる等の問題がある。 In recent years, biomass materials have been attracting attention from the viewpoint of environmental protection, and naturally-derived organic fillers and composite materials with biopolymers have begun to be used as materials for the fields of automobiles, OA and electrical and electronic fields. Further, for the purpose of improving mechanical strength such as rigidity and heat resistance, a method of blending an inorganic filler such as glass fiber with a resin composition is being studied. However, since it is necessary to add a large amount of these inorganic fillers, there are problems that the specific gravity of the molded product increases, and the residue that becomes dust during incineration or disposal increases, which imposes a burden on the environment.

特許文献1には、芳香族ポリカーボネート樹脂に脂肪族ポリエステルと天然由来の有機充填材を配合して機械特性及び難燃性に優れた樹脂組成物とするために、天然由来の有機充填材としてジュート繊維やレーヨン繊維を用いて樹脂組成物と複合化した技術が開示されている。しかし、特許文献1で得られる樹脂組成物は、衝撃強度の低下が大きかったり、成形外観が不十分であったりし、また着色が大きく、成形時の熱安定性も十分ではない。 Patent Document 1 describes jute as a naturally-derived organic filler in order to blend an aromatic polycarbonate resin with an aliphatic polyester and a naturally-derived organic filler to obtain a resin composition having excellent mechanical properties and flame retardancy. A technique of compounding a resin composition with a fiber or a rayon fiber is disclosed. However, the resin composition obtained in Patent Document 1 has a large decrease in impact strength, an insufficient molding appearance, a large coloring, and insufficient thermal stability during molding.

特許文献2には、(A)ポリカーボネート樹脂99〜60質量%及び(B)平均繊維径が5〜50μmであり、平均繊維長が0.03〜1.5mmであるセルロース繊維1〜40質量%からなる樹脂混合物100質量部に対し、(C)テルペン系化合物を0.2〜30質量部含むポリカーボネート樹脂組成物であり、バイオマス材料の利用により環境特性に優れ、かつ低比重にして高剛性で成形外観に優れ、さらに熱安定性が良好で、難燃性が付与された樹脂組成物が開示された。しかし、この樹脂組成物は低比重であるとはするもののその比重(g/cm3)は何れの実施例も1.20を超えるものであり、水よりも比重が大きく、構成材料の軽量化という課題に充分に応えるものではなかった。 Patent Document 2 describes (A) 99 to 60% by mass of polycarbonate resin and (B) 1 to 40% by mass of cellulose fibers having an average fiber diameter of 5 to 50 μm and an average fiber length of 0.03 to 1.5 mm. It is a polycarbonate resin composition containing 0.2 to 30 parts by mass of (C) a terpene-based compound with respect to 100 parts by mass of a resin mixture composed of the above. Disclosed is a resin composition having excellent molded appearance, good thermal stability, and imparted flame retardancy. However, although this resin composition has a low specific density, its specific gravity (g / cm3) exceeds 1.20 in all the examples, and the specific gravity is larger than that of water, and the weight of the constituent material is reduced. It did not fully meet the challenges.

特許文献3には、セルロースと、分散剤とを含む組成物であって、該分散剤が樹脂親和性セグメントAとセルロース親和性セグメントBとを有し、ブロック共重合体構造又はグラジエント共重合体構造を有するものであることを特徴とする組成物製造技術が開示されているが、オレフィン系樹脂を組合せる場合、無水マレイン酸変性樹脂を併用しており単独で分散できていない上に10μm以上の凝集物が多数存在する。さらに強度レベルにおいても弾性率は向上するものの衝撃強度が著しく低下するものである。 Patent Document 3 describes a composition containing cellulose and a dispersant, wherein the dispersant has a resin-affinitive segment A and a cellulose-affinitive segment B, and has a block copolymer structure or a gradient copolymer. Although a composition manufacturing technique characterized by having a structure is disclosed, when an olefin resin is combined, a maleic anhydride-modified resin is used in combination, and the composition cannot be dispersed alone and is 10 μm or more. There are many aggregates of. Further, at the strength level, the elastic modulus is improved, but the impact strength is significantly reduced.

特許文献4には、水酸基を有する親水性ナノ繊維の前記水酸基を親水性有機溶媒で溶媒和させ、溶融したプラスチックと混合することを特徴とする親水性ナノ繊維複合材料の製造技術が開示されている。 Patent Document 4 discloses a technique for producing a hydrophilic nanofiber composite material, which comprises solvating the hydroxyl group of a hydrophilic nanofiber having a hydroxyl group with a hydrophilic organic solvent and mixing it with a molten plastic. There is.

特許文献5には分散媒中で、ナノセルロース繊維と樹脂との両方が分散している分散液、並びに樹脂中でナノセルロース繊維を含有する樹脂組成物を開示している。 Patent Document 5 discloses a dispersion liquid in which both nanocellulose fibers and a resin are dispersed in a dispersion medium, and a resin composition containing nanocellulose fibers in the resin.

特許文献6には平均繊維径が小さいセルロース繊維がポリアミド樹脂中に凝集することなく、分散性よく含有されたポリアミド樹脂組成物を少なくとも一部に用いたシート状成形体であり、易引裂性に優れ、かつ熱収縮率が小さく、熱寸法安定性に優れるシート状成形体を提供することを課題としたポリアミド樹脂100質量部に対して、セルロース繊維を0.1〜10質量部含有するポリアミド樹脂組成物を用いて成形されてなるシート状成形体であって、シート状成形体中のセルロース繊維の平均繊維径が10μm以下であるシート状成形体。ポリアミド樹脂組成物が、水を含んだ状態のセルロース繊維の存在下に、ポリアミド樹脂を構成するモノマーの重合反応を行うことにより得られたものであるシート状成形体が開示された。 Patent Document 6 describes a sheet-like molded body in which cellulose fibers having a small average fiber diameter do not aggregate in the polyamide resin and a polyamide resin composition containing well-dispersible is used in at least a part thereof, and is easily tearable. A polyamide resin containing 0.1 to 10 parts by mass of cellulose fibers with respect to 100 parts by mass of a polyamide resin, which has an object of providing a sheet-shaped molded product having excellent, low thermal shrinkage, and excellent thermal dimensional stability. A sheet-shaped molded body formed by using the composition, wherein the average fiber diameter of the cellulose fibers in the sheet-shaped molded body is 10 μm or less. A sheet-shaped molded product obtained by subjecting a polyamide resin composition to a polymerization reaction of monomers constituting the polyamide resin in the presence of cellulose fibers containing water has been disclosed.

特許文献7には最適な繊維長のセルロースナノファイバーを含有させることで疲労寿命を向上させた炭素繊維強化プラスチックおよびその製造方法を提供する課題達成のために平均繊維長が20〜80μmのセルロースナノファイバーが添加された炭素繊維強化プラスチックが開示された。 Patent Document 7 provides a carbon fiber reinforced plastic having an improved fatigue life by containing cellulose nanofibers having an optimum fiber length and a method for producing the same. To achieve the problem, cellulose nanos having an average fiber length of 20 to 80 μm. The carbon fiber reinforced plastic to which the fiber was added was disclosed.

特許文献8には曲げ疲労寿命が向上した炭素繊維強化プラスチックを提供する課題達成のためにマトリックス樹脂に0.05〜1質量%の平均繊維長0.05μm〜100μmのセルロースナノファイバーを配合した樹脂組成物100質量部に対して、炭素繊維を50〜250質量部配合してなる炭素繊維強化プラスチックが開示された。 Patent Document 8 describes a resin in which a matrix resin is mixed with cellulose nanofibers having an average fiber length of 0.05 μm to 100 μm in an average fiber length of 0.05 to 1% by mass in order to achieve the problem of providing a carbon fiber reinforced plastic having an improved bending fatigue life. A carbon fiber reinforced plastic made by blending 50 to 250 parts by mass of carbon fiber with respect to 100 parts by mass of the composition has been disclosed.

特開2010−215791号公報Japanese Unexamined Patent Publication No. 2010-215791 WO/2013/133228WO / 2013/133228 特開2014−162880JP-A-2014-162880 特開2013−170241JP 2013-170241 特開2013−166818JP 2013-166818 特開2016−14117号公報Japanese Unexamined Patent Publication No. 2016-14117 特開2019−210434号公報Japanese Unexamined Patent Publication No. 2019-210434 特開2019−1872号公報Japanese Unexamined Patent Publication No. 2019-1872

特許文献4や特許文献5に開示された様にナノセルロース繊維と樹脂とを複合化する場合、通常樹脂を溶融して混合する溶融混練が用いられる。特許文献4ではメタノールによりナノセルロース分散液中の水を溶媒置換して除いたメタノール置換ナノセルロース分散液を調製し、これを溶融状態の樹脂へ添加し混合する技術が開示されており、特に親水性のナノセルロースを溶媒分散状態で溶融樹脂へ添加する場合は極性の違いにより均一には混合できないため極性を高めた樹脂を併用する技術が開示されている。しかしナノセルロース分散液を溶媒沸点以上の樹脂溶融物に添加する場合は、ナノセルロース同士が凝集しながら乾燥して水素結合物を生じることが判っており、決して目視外観が良くともナノレベルで均一分散することはありえない。さらに特許文献5では極性の高いナノセルロースと極性の低い粉末樹脂の馴染みを改善するための界面活性剤の選定技術が開示されているが、水分散液中で均一混合した状態であっても、粉末個体状の樹脂内部へはナノセルロースは侵入・分散することは出来ないため、分散レベルは粉末粒子径レベル以下にはなり得ないため、例えば粉末粒子の大きさが17μmであれば均一分散レベルはそれ以上のサイズに限定される。さらに、いずれの技術を利用した場合であっても、樹脂を熱溶融させた場合の溶融粘度は一般的に高く、ナノセルロース繊維分散液の粘度は樹脂溶融粘度と大きく異なるため、ナノセルロース繊維を均一に分散するためには樹脂の溶融粘度をナノセルロース繊維分散液と同程度まで低くする必要がある。しかし、樹脂の溶融粘度を下げるためには樹脂温度を高くする必要があるが、ナノセルロース繊維は、特にヘミセルロース成分は約200℃から変色・分解するため、これを防ぐために樹脂温度を高くすることができない。
その結果、ナノセルロース繊維と樹脂とを複合化する場合、ナノセルロース繊維を樹脂中に均一に分散することは困難であった。
When the nanocellulose fiber and the resin are composited as disclosed in Patent Document 4 and Patent Document 5, melt kneading in which the resin is usually melted and mixed is used. Patent Document 4 discloses a technique for preparing a methanol-substituted nanocellulose dispersion obtained by removing water in the nanocellulose dispersion with methanol by solvent substitution, adding the methanol-substituted nanocellulose dispersion to a molten resin, and mixing the mixture. In particular, hydrophilicity is disclosed. When sexual nanocellulose is added to a molten resin in a solvent-dispersed state, it cannot be mixed uniformly due to the difference in polarity, so a technique of using a resin having an increased polarity is disclosed. However, when the nanocellulose dispersion is added to the resin melt above the boiling point of the solvent, it is known that the nanocellulose aggregates and dries to form hydrogen bonds, and even if the visual appearance is good, it is uniform at the nano level. It cannot be dispersed. Further, Patent Document 5 discloses a technique for selecting a surfactant for improving the compatibility between highly polar nanocellulose and low polar powder resin, but even in a uniformly mixed state in an aqueous dispersion. Since nanocellulose cannot penetrate or disperse into the powder solid resin, the dispersion level cannot be lower than the powder particle size level. For example, if the powder particle size is 17 μm, the uniform dispersion level. Is limited to larger sizes. Furthermore, regardless of which technique is used, the melt viscosity when the resin is thermally melted is generally high, and the viscosity of the nanocellulose fiber dispersion is significantly different from the resin melt viscosity. In order to disperse uniformly, it is necessary to reduce the melt viscosity of the resin to the same level as the nanocellulose fiber dispersion. However, in order to reduce the melt viscosity of the resin, it is necessary to raise the resin temperature. In nanocellulose fibers, especially the hemicellulose component discolors and decomposes from about 200 ° C., so raise the resin temperature to prevent this. Can't.
As a result, when the nanocellulose fiber and the resin are composited, it is difficult to uniformly disperse the nanocellulose fiber in the resin.

特許文献6に開示されたシート状成形体は、ポリアミド系モノマーであるε―カプロラクタムは水分により失活しやすい樹脂であるだけでなくセルロース繊維が混合しにくいという問題がある。 The sheet-shaped molded product disclosed in Patent Document 6 has a problem that ε-caprolactam, which is a polyamide-based monomer, is not only a resin that is easily deactivated by moisture, but also that cellulose fibers are difficult to mix.

また、特許文献7、特許文献8にて開示された炭素繊維強化プラスチックは熱硬化性樹脂を用いたCFRPにセルロースナノファイバーを添加し、耐久性を向上させるものであり、樹脂との混合特性に一定の限界が有り、また熱硬化性であることから2次加工が困難であるという問題がある。 Further, the carbon fiber reinforced plastics disclosed in Patent Documents 7 and 8 add cellulose nanofibers to CFRP using a thermosetting resin to improve durability, and the mixing characteristics with the resin are improved. There is a certain limit, and there is a problem that secondary processing is difficult because it is thermosetting.

本発明は、以上の従来技術における問題に鑑み、バイオマス材料の利用により環境特性に優れ、かつ低比重にして高剛性で成形外観に優れた複合樹脂組成物および繊維強化複合材料とその製造方法の製造方法を提供することを目的とする。 In view of the above problems in the prior art, the present invention relates to a composite resin composition, a fiber-reinforced composite material, and a method for producing the same, which are excellent in environmental characteristics by using a biomass material, have a low specific gravity, have high rigidity, and have an excellent molded appearance. The purpose is to provide a manufacturing method.

本発明者らは、鋭意研究を重ねた結果、モノマーの溶融粘度はポリマーの溶融粘度より著しく低く、また疎水性のナノセルロース繊維はモノマーに分散し易いため、疎水性のナノセルロース繊維をモノマーに添加・攪拌すると疎水性ナノセルロース繊維はモノマー中に均ーに分散し、この様にモノマー中に疎水性ナノセルロース繊維が均ーに分散している状態でモノマーを重合しポリマー化すると、均ーに疎水性ナノセルロース繊維が分散したナノセルロース繊維複合樹脂が得られることにより、上記課題を解決し得ることを見出した。さらに強化繊維への含侵時に粘度が高過ぎると含浸不良やボイドの発生により、繊維強化複合材料の強度が低下する等の不具合が生じるため、重合反応によるポリマー化の重合度を調整することで良好に樹脂組成物が強化繊維に含侵することを見出した。 As a result of diligent research, the present inventors have made the hydrophobic nanocellulose fiber into a monomer because the melt viscosity of the monomer is significantly lower than the melt viscosity of the polymer and the hydrophobic nanocellulose fiber is easily dispersed in the monomer. When added and stirred, the hydrophobic nanocellulose fibers are evenly dispersed in the monomer, and when the monomer is polymerized and polymerized with the hydrophobic nanocellulose fibers evenly dispersed in the monomer in this way, it becomes uniform. It has been found that the above-mentioned problems can be solved by obtaining a nanocellulose fiber composite resin in which hydrophobic nanocellulose fibers are dispersed. Furthermore, if the viscosity is too high when the fiber is impregnated into the reinforcing fiber, problems such as impregnation failure and generation of voids may cause a decrease in the strength of the fiber-reinforced composite material. It was found that the resin composition satisfactorily impregnates the reinforcing fibers.

すなわち、本発明は、下記の複合樹脂組成物に関する。
1.(A)平均太さ3〜200nmであり、原料のα−セルロース含有率60%〜99質量%であり、繊維表面の水酸基の一部が疎水性官能基で置換された疎水性ナノセルロース繊維0.3〜5質量%及び(B)反応により重合することで熱可塑エポキシ樹脂となるモノマー99.7〜95質量%からなる混合物がポリマー化されてなることを特徴とする複合樹脂組成物。
本発明で樹脂というときは、必ずしもポリマーだけでなく、モノマー、ポリマー、もしくは、モノマーとポリマーが混合したものを包括的に指称する。
That is, the present invention relates to the following composite resin composition.
1. 1. (A) Hydrophobic nanocellulose fiber 0 having an average thickness of 3 to 200 nm, an α-cellulose content of the raw material of 60% to 99% by mass, and a part of hydroxyl groups on the fiber surface substituted with a hydrophobic functional group. A composite resin composition comprising a polymerized mixture of 3 to 5% by mass and 99.7 to 95% by mass of a monomer that becomes a thermoplastic epoxy resin by polymerizing by the reaction (B).
In the present invention, the term resin is not necessarily limited to a polymer, but a monomer, a polymer, or a mixture of a monomer and a polymer is comprehensively referred to.

2.前記1に記載の複合樹脂組成物と強化繊維とからなることを特徴とする繊維強化複合材料。 2. 2. A fiber-reinforced composite material comprising the composite resin composition according to 1 and the reinforcing fibers.

3.前記2に記載の強化繊維が炭素繊維であることを特徴とする繊維強化複合材料。 3. 3. A fiber-reinforced composite material, wherein the reinforcing fiber according to 2 is a carbon fiber.

さらに本発明は下記の複合樹脂組成物の製造方法に関する。
4.(A)平均太さ3〜200nmであり、原料のα−セルロース含有率60%〜99質量%であり、繊維表面の水酸基の一部が疎水性官能基で置換された疎水性ナノセルロース繊維0.3〜5質量%及び(B)反応により重合することで熱可塑エポキシ樹脂となるエポキシ系のモノマー99.7〜95質量%からなる混合物を強化繊維に含浸させる工程と、前記モノマーをポリマー化する工程とからなることを特徴とする繊維強化複合材料の製造方法。
Further, the present invention relates to a method for producing the following composite resin composition.
4. (A) Hydrophobic nanocellulose fiber 0 having an average thickness of 3 to 200 nm, an α-cellulose content of the raw material of 60% to 99% by mass, and a part of hydroxyl groups on the fiber surface substituted with a hydrophobic functional group. A step of impregnating the reinforcing fiber with a mixture of 3 to 5% by mass and 99.7 to 95% by mass of an epoxy-based monomer that becomes a thermoplastic epoxy resin by polymerizing by the reaction (B), and polymerizing the monomer. A method for producing a fiber-reinforced composite material, which comprises the steps of making a fiber-reinforced composite material.

本発明の複合樹脂組成物の(A)成分であるナノセルロース繊維の製造装置の概念図である。It is a conceptual diagram of the manufacturing apparatus of the nanocellulose fiber which is the component (A) of the composite resin composition of this invention. 本発明の複合樹脂組成物の(A)成分であるナノセルロース繊維の製造装置の他の例の概念図である。It is a conceptual diagram of another example of the manufacturing apparatus of the nanocellulose fiber which is the component (A) of the composite resin composition of this invention. 本発明で用いる強化繊維織物の一例の説明図であり、(a)樹脂が強化繊維織物表面および内部に付着した状態を示す図、(b)樹脂が表面および内部に付着していない状態を示す図It is explanatory drawing of an example of the reinforced fiber woven fabric used in this invention, (a) the figure which shows the state which the resin adhered to the surface and the inside of a reinforced fiber woven fabric, (b) the state which shows the state which the resin has not adhered to the surface and the inside. figure モノマーの溶融粘度に関する説明図Explanatory drawing about melt viscosity of monomer 本発明の一実施の形態の模式図Schematic diagram of an embodiment of the present invention 実施例のプロセスの概略図Schematic diagram of the process of the embodiment 実施例で得られた炭素繊維強化複合材の電子顕微鏡による拡大写真Enlarged photograph of the carbon fiber reinforced composite material obtained in the examples by an electron microscope 実施例で得られた炭素繊維強化複合材に行った曲げ試験方法の説明図Explanatory drawing of bending test method performed on carbon fiber reinforced composite material obtained in Example 実施例で得られた炭素繊維強化複合材に行った曲げ試験結果を示すグラフA graph showing the results of bending tests performed on the carbon fiber reinforced composite material obtained in the examples. 実施例で得られた炭素繊維強化複合材に行った耐衝撃試験方法の説明図Explanatory drawing of impact resistance test method performed on carbon fiber reinforced composite material obtained in Example 実施例で得られた炭素繊維強化複合材に行った耐衝撃試験結果を示すグラフA graph showing the results of impact resistance tests performed on the carbon fiber reinforced composite material obtained in the examples. 実施例で得られた炭素繊維強化複合材に行ったショートビーム試験による見掛け上の層間せん断強度試験方法の説明図Explanatory drawing of apparent interlayer shear strength test method by short beam test performed on carbon fiber reinforced composite material obtained in Example 実施例で得られた炭素繊維強化複合材に行ったショートビーム試験による見掛け上の層間せん断強度試験結果を示すグラフA graph showing the results of an apparent interlayer shear strength test by a short beam test performed on the carbon fiber reinforced composite material obtained in the examples.

[(A)疎水性ナノセルロース繊維]
疎水性とは、水に対する親和性が低い、すなわち水に溶解しにくい、あるいは水と混ざりにくい物質または分子(の一部分)の性質のことである。
ナノセルロース繊維は、その分子内に多数の水酸基を有しており、極めて親水性が高いことが知られている。それゆえ、疎水環境中あるいは乾燥状態では自己凝集を起こす。その結果、極めて疎水性が高い樹脂と混ぜることは容易ではなく、従来、ナノセルロース繊維とポリプロピレン(PP)やポリエチレン(PE)を混練したコンポジットは、期待される機械強度特性を発揮できていない。そのため、疎水環境中でナノセルロース繊維が十分に分散できる手法が求められていた。
[(A) Hydrophobic nanocellulose fiber]
Hydrophobicity is the property of a substance or molecule that has a low affinity for water, that is, is difficult to dissolve in water or is difficult to mix with water.
Nanocellulose fibers have a large number of hydroxyl groups in their molecules and are known to be extremely hydrophilic. Therefore, self-aggregation occurs in a hydrophobic environment or in a dry state. As a result, it is not easy to mix with a resin having extremely high hydrophobicity, and conventionally, a composite obtained by kneading nanocellulose fiber with polypropylene (PP) or polyethylene (PE) has not exhibited the expected mechanical strength characteristics. Therefore, there has been a demand for a method in which nanocellulose fibers can be sufficiently dispersed in a hydrophobic environment.

一般的にナノセルロース繊維に疎水性置換基を導入して疎水性を付与する場合、非水溶媒中で反応を行う。しかしながら、ナノセルロース繊維の場合では高い比表面積上に存在する水酸基の影響で極めて親水性が高い。それゆえ、ナノセルロース繊維から水を除去することは難しく、多段回の溶媒置換や過熱による脱水処理を行う、あるいは有機溶媒中でナノ化した後に置換反応を行う必要があるなど煩雑な操作を必要としていた。
これに対して本発明では例えばWO2018/194080に開示された、表面疎水化セルロースナノ繊維の製造方法によって製造した疎水性セルロースナノ繊維を用いることができる。しかし、疎水性であれば特にこれには限られない。
具体的には含水状態のセルロースナノ繊維を攪拌可能な濃度で有機溶剤に分散し、炭酸カリウムを1〜40wt%の範囲で添加し、次いで、ビニルエステル類及び/又は有機酸ビニルエステル類を加え、反応系温度25℃〜100℃の条件下において反応させ、反応終了後、生成物を回収する工程によって本発明で用いる疎水性セルロースナノ繊維を得ることができる。この方法では、セルロースナノ繊維のセロビオースユニット内の水酸基の一部がビニルエステル類に置換され、置換度0.2〜3.0の疎水性セルロースナノ繊維を得ることができる。疎水性とセルロースの結晶性の両立の観点から置換度は好ましくは0.2〜1.2である。
Generally, when a hydrophobic substituent is introduced into a nanocellulose fiber to impart hydrophobicity, the reaction is carried out in a non-aqueous solvent. However, in the case of nanocellulose fiber, it is extremely hydrophilic due to the influence of hydroxyl groups existing on a high specific surface area. Therefore, it is difficult to remove water from nanocellulose fibers, and complicated operations such as multi-stage solvent replacement, dehydration treatment by overheating, or substitution reaction after nanonization in an organic solvent are required. Was supposed to be.
On the other hand, in the present invention, for example, hydrophobic cellulose nanofibers produced by the method for producing surface hydrophobic cellulose nanofibers disclosed in WO2018 / 194080 can be used. However, this is not particularly limited as long as it is hydrophobic.
Specifically, the water-containing cellulose nanofibers are dispersed in an organic solvent at a concentration that can be stirred, potassium carbonate is added in the range of 1 to 40 wt%, and then vinyl esters and / or organic acid vinyl esters are added. The hydrophobic cellulose nanofibers used in the present invention can be obtained by the step of reacting under the condition of the reaction system temperature of 25 ° C. to 100 ° C. and recovering the product after the reaction is completed. In this method, a part of the hydroxyl groups in the cellobiose unit of the cellulose nanofibers is replaced with vinyl esters, and hydrophobic cellulose nanofibers having a degree of substitution of 0.2 to 3.0 can be obtained. The degree of substitution is preferably 0.2 to 1.2 from the viewpoint of achieving both hydrophobicity and crystallinity of cellulose.

[ナノセルロース繊維]
本発明において、バイオマス材料として特定の平均太さを有し、凝集せず分散する疎水性ナノセルロース繊維を用いることにより、セルロースの凝集性が抑制され、衝撃強度の低下を抑えることができる。さらに(A)疎水性ナノセルロース繊維は、ガラス繊維等の無機繊維に比べ低い比重でありながら剛性を向上させることができるので、剛性の高い低比重の樹脂組成物とすることができる。ナノセルロース繊維としては例えば、木本類、草本類由来のセルロースを利用できる。具体的には木材繊維、竹繊維、サトウキビ繊維、種子毛繊維、葉繊維等の天然の植物を含む多糖由来のナノセルロース繊維が挙げられる。さらに、海洋成分であるホヤ、および酢酸菌由来のセルロースも利用できる。これらナノセルロース繊維は一種を単独で又は二種以上を混合して用いてもよい。また多糖としてはα−セルロース含有率60%〜99質量%のパルプを用いる。α−セルロース含有率60質量%以上の純度であれば繊維径及び繊維長さが調整しやすくなって繊維同士の絡み合いを抑えることができ、α−セルロース含有率60質量%未満のものを用いた場合に比べ、溶融時の熱安定性が高く、強度の低下を引き起こすことがないほか、着色抑制効果が良好であり、本発明の効果をより優れたものとすることができる。さらに、99質量%を超えるものを用いた場合、繊維をナノレベルに解繊することが困難になる。但し、酢酸菌由来のセルロースは結晶性が非常に高い特徴があるがナノ繊維として解きほぐすことも比較的容易である。
[Nanocellulose fiber]
In the present invention, by using hydrophobic nanocellulose fibers having a specific average thickness and dispersing without agglomerating as a biomass material, the agglomeration of cellulose can be suppressed and the decrease in impact strength can be suppressed. Further, (A) the hydrophobic nanocellulose fiber can improve the rigidity while having a lower specific gravity than the inorganic fiber such as glass fiber, so that a resin composition having a high rigidity and a low specific gravity can be obtained. As the nanocellulose fiber, for example, cellulose derived from woody plants and herbs can be used. Specific examples thereof include nanocellulose fibers derived from polysaccharides including natural plants such as wood fiber, bamboo fiber, sugar cane fiber, seed hair fiber and leaf fiber. Furthermore, sea squirts, which are marine components, and cellulose derived from acetic acid bacteria can also be used. These nanocellulose fibers may be used alone or in combination of two or more. As the polysaccharide, pulp having an α-cellulose content of 60% to 99% by mass is used. If the purity has an α-cellulose content of 60% by mass or more, the fiber diameter and fiber length can be easily adjusted and entanglement between the fibers can be suppressed. Compared with the case, the thermal stability at the time of melting is high, the strength is not lowered, and the coloring suppressing effect is good, so that the effect of the present invention can be further improved. Further, when a fiber exceeding 99% by mass is used, it becomes difficult to defibrate the fiber at the nano level. However, although cellulose derived from acetic acid bacteria has a very high crystallinity, it is relatively easy to unravel it as nanofibers.

本発明におけるナノセルロース繊維は、平均太さ3〜200nmであり、多糖を高圧水流にて解繊してなる。
平均太さは日本電子株式会社の電界放出形走査電子顕微鏡JSM−7001FTTLS、および株式会社島津製作所の走査型プローブ顕微鏡SPM−9700HTによって測定した。
平均太さ3〜200nmのレベルまで解繊することで流動性があり衝撃強度の低下が少なく、低比重にして高剛性で成形外観に優れた樹脂組成物を得ることができる。
平均太さ3nm未満では結晶度が低下するため強度補強能力の点から好ましくない。
平均太さ200nmを超える場合には、解繊が進んでいない数10μmの太さのものが多く含まれることになり流動性が著しく低下し、且つ分散性が悪化することとなり好ましくない。
多糖の高圧水流による解繊は、0.5〜10質量%の水混合液にした多糖に対し、50〜400MPa程度の高圧水を衝突させて行うことができる。
The nanocellulose fiber in the present invention has an average thickness of 3 to 200 nm, and is obtained by defibrating a polysaccharide with a high-pressure water stream.
The average thickness was measured by a field emission scanning electron microscope JSM-7001FTTLS manufactured by JEOL Ltd. and a scanning probe microscope SPM-9700HT manufactured by Shimadzu Corporation.
By defibrating to a level of an average thickness of 3 to 200 nm, it is possible to obtain a resin composition having fluidity, little decrease in impact strength, low specific density, high rigidity, and excellent molded appearance.
If the average thickness is less than 3 nm, the crystallinity is lowered, which is not preferable from the viewpoint of strength reinforcing ability.
If the average thickness exceeds 200 nm, a large amount of those having a thickness of several tens of μm in which defibration has not progressed will be included, and the fluidity will be significantly reduced and the dispersibility will be deteriorated, which is not preferable.
The defibration by a high-pressure water flow of a polysaccharide can be carried out by colliding high-pressure water of about 50 to 400 MPa with the polysaccharide prepared in a water mixture of 0.5 to 10% by mass.

この多糖を高圧水流にて解繊してナノセルロース繊維とする手法としては特開2005−270891に記載された水中対向衝突法がある。これは、水に懸濁した天然セルロース繊維をチャンバー(図1:107)内で相対する二つのノズル(図1:108a,108b)に導入し、これらのノズルから一点に向かって噴射、衝突させる手法である(図1)。この手法によれば、天然微結晶セルロース繊維(例えば、フナセル)の懸濁水を対向衝突させ、その表面をナノフィブリル化させて引き剥がし、キャリアーである水との親和性を向上させることによって、最終的には溶解に近い状態に至らせることが可能となる。図1に示される装置は液体循環型となっており、タンク(図1:109)、プランジャ(図1:110)、対向する二つのノズル(図1:108a,108b)、必要に応じて熱交換器(図1:111)を備え、水中に分散させた微粒子を二つのノズルに導入し高圧下で合い対するノズル(図1:108a,108b)から噴射して水中で対向衝突させる。この手法では天然セルロース繊維の他には水しか使用せず、繊維間の相互作用のみを解裂させることによってナノ微細化を行うためセルロース分子の構造変化がなく、解裂に伴う重合度低下を最小限にした状態でナノセルロース繊維を得ることが可能となる。 As a method of defibrating this polysaccharide with a high-pressure water stream to obtain nanocellulose fibers, there is an underwater facing collision method described in JP-A-2005-270891. This introduces natural cellulose fibers suspended in water into two opposing nozzles (FIGS. 1: 108a, 108b) in a chamber (FIG. 1: 107) and ejects and collides from these nozzles toward one point. This is a method (Fig. 1). According to this method, suspended water of natural microcrystalline cellulose fibers (for example, funacell) is opposed to each other, and the surface thereof is nano-fibrillated and peeled off to improve the affinity with water as a carrier. It is possible to reach a state close to dissolution. The device shown in FIG. 1 is of a liquid circulation type, with a tank (FIG. 1: 109), a plunger (FIG. 1: 110), two opposing nozzles (FIGS. 1: 108a, 108b), and heat as needed. A exchanger (FIG. 1: 111) is provided, and fine particles dispersed in water are introduced into two nozzles and jetted from the nozzles (FIGS. 1: 108a and 108b) facing each other under high pressure to cause a facing collision in water. In this method, only water is used in addition to the natural cellulose fibers, and nanominiaturization is performed by cleaving only the interaction between the fibers, so that there is no structural change in the cellulose molecules and the degree of polymerization decreases due to the cleaving. It is possible to obtain nanocellulose fibers in a minimal state.

その他に多糖を高圧水流にて解繊してナノセルロース繊維とする手法としては特開2012−36518に記載された破砕型ホモバルブシートを備えたホモジナイザーで原料繊維を溶媒に分散させた分散液を処理するホモジナイズ処理法がある。図2に示されるようにこのホモジナイズ処理法によれば高圧でホモジナイザー内を圧送される原料繊維101が、狭い間隙である小径オリフィス102を通過する際に、小径オリフィス102の壁面(特にインパクトリング103の壁面)と衝突することにより、剪断応力又は切断作用を受けて分割され、均一な繊維径を有するミクロフィブリル化が行われる。またナノセルロース繊維とする手法は、任意好適な従来公知の他の方法で行うことができる。公知の他の方法には、TEMPO触媒を用いてセルロース表面を化学修飾した後に解繊を行う方法や、石臼の中で磨砕して製造する方法、セルラーゼなどの酵素により微細化させる方法などがある。また、酢酸菌が分泌するペリクルもナノセルロース繊維の一種であり、そのまま、あるいは、機械解繊などして使うこともできる。 In addition, as a method of defibrating polysaccharides with a high-pressure water stream to obtain nanocellulose fibers, a dispersion liquid in which raw material fibers are dispersed in a solvent with a homogenizer equipped with a crushable homovalve sheet described in JP-A-2012-36518 is used. There is a homogenized processing method to process. As shown in FIG. 2, according to this homogenization method, when the raw material fiber 101 pressure-fed in the homogenizer at high pressure passes through the small-diameter orifice 102, which is a narrow gap, the wall surface of the small-diameter orifice 102 (particularly the impact ring 103). By colliding with the wall surface of the fiber, it is divided by shear stress or cutting action, and microfibrillation with a uniform fiber diameter is performed. Further, the method of using nanocellulose fiber can be performed by any suitable conventionally known method. Other known methods include a method of chemically modifying the surface of cellulose using a TEMPO catalyst and then defibrating it, a method of grinding it in a stone mill to produce it, and a method of refining it with an enzyme such as cellulase. be. The pellicle secreted by acetic acid bacteria is also a kind of nanocellulose fiber, and can be used as it is or by mechanical defibration.

(A)平均太さ3〜200nmであり、原料のα−セルロース含有率60%〜99質量%であり、繊維表面の水酸基の一部が疎水性官能基で置換された疎水性ナノセルロース繊維0.3〜5質量%及び(B)反応により重合することで熱可塑エポキシ樹脂となるモノマー99.7〜95質量%からなる混合物において、各成分の含有量は(A)成分0.3〜5質量%及び(B)成分99.7〜95質量%である。(A)成分が1質量%未満であると弾性率等の機械特性の向上効果が十分に発揮されず、60質量%を超えると衝撃強度等の機械特性が大きく低下する。ナノセルロース繊維及びモノマー混合物中の(A)成分の含有量は、好ましくは2〜30質量%であり、さらに好ましくは3〜25質量%である。 (A) Hydrophobic nanocellulose fiber 0 having an average thickness of 3 to 200 nm, an α-cellulose content of the raw material of 60% to 99% by mass, and a part of hydroxyl groups on the fiber surface substituted with a hydrophobic functional group. In a mixture consisting of 3 to 5% by mass and 99.7 to 95% by mass of a monomer that becomes a thermoplastic epoxy resin by polymerizing by the reaction (B), the content of each component is 0.3 to 5 by the component (A). The mass% and the component (B) are 99.7 to 95% by mass. If the component (A) is less than 1% by mass, the effect of improving mechanical properties such as elastic modulus is not sufficiently exhibited, and if it exceeds 60% by mass, the mechanical properties such as impact strength are significantly deteriorated. The content of the component (A) in the nanocellulose fiber and the monomer mixture is preferably 2 to 30% by mass, more preferably 3 to 25% by mass.

本発明で樹脂というときはモノマー状態、ポリマー状態、モノマーとポリマーが混合した状態を包括的に指称する。
[(B)反応により重合することで熱可塑エポキシ樹脂となるモノマー]
本発明の(B)モノマーは、ポリマー化されて得られる樹脂成形品の機械物性、成形加工性、耐溶剤性、耐熱性などの特性を発現する本発明の複合樹脂組成物の主成分である。
In the present invention, the term resin comprehensively refers to a monomer state, a polymer state, and a state in which a monomer and a polymer are mixed.
[Monomer that becomes a thermoplastic epoxy resin by polymerizing by (B) reaction]
The monomer (B) of the present invention is the main component of the composite resin composition of the present invention, which exhibits characteristics such as mechanical properties, molding processability, solvent resistance, and heat resistance of the resin molded product obtained by polymerizing. ..

係るモノマーとしては、熱可塑エポキシ樹脂となるモノマーである。
具体的には、(イ)2官能エポキシ化合物、(ロ)2官能フェノール化合物、および(ハ)触媒の混合系が挙げられる。
(イ)2官能エポキシ化合物としては、分子中にエポキシ基を2つ有するものであればとくに限定なく使用し得るが、貯蔵安定性、タックフリー性、熱可塑性、得られた複合樹脂組成物および繊維強化複合材料の機械物性などの点からは、ビスフェノール型エポキシ化合物類およびこれらが部分縮合したオリゴマー混合物(ビスフェノール型エポキシ樹脂類)、ジヒドロキシナフタレンジグリシジルエーテルが好ましく、とくに低粘度であることからビスフェノール型エポキシ樹脂類が好ましい。
(ロ)2官能フェノール化合物としては、分子中にフェノール性水酸基を2つ有するものであればとくに限定なく使用し得るが、カテコール、レゾルシノール、ヒドロキノン、ビスフェノール類、およびこれらの混合物が、粘度、ナノセルロース繊維および強化繊維との接着性などの特性をバランスよく有する点から好ましい。
(ハ)触媒としては、(イ)成分と(ロ)成分との重合反応を促進させ、かつポリマー化して得られたエポキシ樹脂が熱可塑性を有する程度に架橋が少なくできるものであれば特に限定されない。さらに、重合時に直鎖状の重合を優位に進める特徴を有することが好ましい。具体的には、エポキシ基のアニオン重合よりもフェノール性水酸基とエポキシ基との付加反応に対して優先的に触媒作用を示す、リン系触媒、求核性を抑制する置換基を有するイミダゾール系触媒などが挙げられる。
前記混合系をポリマー化し得られる熱可塑性エポキシ樹脂は、フェノキシ樹脂と同様の分子構造を持つ樹脂となる。前記混合系をポリマー化することで、フェノキシ樹脂の熱可塑性や機械物性等の望ましい性質、モノマーの低い粘性によるナノセルロース繊維の分散のしやすさ、加熱条件等で重合度を制御し粘度調整できることによる、強化繊維への含浸工程など後工程での扱いやすさ、といった利点を得られる。
[ポリマー化]
本発明の(B)モノマー99.7〜95質量%からなる混合物がポリマー化されたポリマーは、本発明の複合樹脂組成物を成形することによって得られる樹脂成形品の機械物性、成形加工性、耐溶剤性、耐熱性などの特性を発現する本発明の複合樹脂組成物の主成分である。
The monomer is a monomer that is a thermoplastic epoxy resin.
Specific examples thereof include a mixed system of (a) a bifunctional epoxy compound, (b) a bifunctional phenol compound, and (c) a catalyst.
(A) The bifunctional epoxy compound can be used without particular limitation as long as it has two epoxy groups in the molecule, but it has storage stability, tack-free property, thermoplasticity, and the obtained composite resin composition and From the viewpoint of mechanical properties of the fiber-reinforced composite material, bisphenol type epoxy compounds, oligomer mixtures (bisphenol type epoxy resins) in which these are partially condensed, and dihydroxynaphthalenediglycidyl ether are preferable, and bisphenol is particularly low in viscosity. Type epoxy resins are preferred.
(B) The bifunctional phenol compound may be used without particular limitation as long as it has two phenolic hydroxyl groups in the molecule, but catechol, resorcinol, hydroquinone, bisphenols, and mixtures thereof have a viscosity and nanonity. It is preferable because it has well-balanced characteristics such as adhesion to cellulose fibers and reinforcing fibers.
The catalyst (c) is particularly limited as long as it promotes the polymerization reaction between the components (a) and (b) and can reduce the number of crosslinks to the extent that the epoxy resin obtained by polymerizing has thermoplasticity. Not done. Further, it is preferable to have a feature of predominantly promoting linear polymerization at the time of polymerization. Specifically, a phosphorus-based catalyst that preferentially catalyzes the addition reaction between a phenolic hydroxyl group and an epoxy group over anionic polymerization of an epoxy group, and an imidazole-based catalyst having a substituent that suppresses nucleophilicity. And so on.
The thermoplastic epoxy resin obtained by polymerizing the mixed system is a resin having a molecular structure similar to that of a phenoxy resin. By polymerizing the mixed system, the degree of polymerization can be controlled and the viscosity can be adjusted by controlling the desired properties such as thermoplasticity and mechanical characteristics of the phenoxy resin, the ease of dispersion of nanocellulose fibers due to the low viscosity of the monomer, and the heating conditions. Therefore, it is possible to obtain advantages such as ease of handling in a post-process such as an impregnation process of reinforcing fibers.
[Polymerization]
The polymer obtained by polymerizing the mixture of the (B) monomer (B) monomer 99.7 to 95% by mass of the present invention has the mechanical properties and molding processability of the resin molded product obtained by molding the composite resin composition of the present invention. It is the main component of the composite resin composition of the present invention that exhibits properties such as solvent resistance and heat resistance.

更に、(B)モノマー99.7〜95質量%からなる混合物の成分として、次に例示するようなゴムを配合してもよい。
このようなゴムとしては、具体例として、エチレン−プロピレン−非共役ジエン共重合ゴム、エチレン−ブテン−1共重合ゴム、エチレン−ヘキセン共重合ゴム、エチレン−オクテン共重合ゴム、ポリブタジエン、スチレン−ブタジエンブロック共重合ゴム、スチレン−ブタジエン共重合ゴム、部分水添スチレン−ブタジエン−スチレンブロック共重合ゴム、スチレン−イソプレンブロック共重合ゴム、部分水添スチレン−イソプレンブロック共重合ゴム、ポリウレタンゴム、スチレングラフト−エチレン−プロピレン−非共役ジエン共重合ゴム、スチレン−グラフト−エチレン−プロピレン共重合ゴム、スチレン/アクリロニトリル−グラフト−エチレン−プロピレン−非共役ジエン共重合ゴム、スチレン/アクリロニトリル−グラフト−エチレン−プロピレン共重合ゴムがなど挙げられる。
ポリマーアロイ中のゴムの含量は、ポリオレフィン系樹脂の特性に新たな特性を付加するという観点から、50質量%以下であることが好ましい。(以上特開2007−39592の記述に基づく)
Further, as a component of the mixture (B) consisting of 99.7 to 95% by mass of the monomer, rubber as exemplified below may be blended.
Specific examples of such rubbers include ethylene-propylene-non-conjugated diene copolymer rubber, ethylene-butene-1 copolymer rubber, ethylene-hexene copolymer rubber, ethylene-octene copolymer rubber, polybutadiene, and styrene-butadiene. Block copolymer rubber, styrene-butadiene copolymer rubber, partially hydrogenated styrene-butadiene-styrene block copolymer rubber, styrene-isoprene block copolymer rubber, partially hydrogenated styrene-isoprene block copolymer rubber, polyurethane rubber, styrene graft- Ethylene-propylene-non-conjugated diene copolymer rubber, styrene-graft-ethylene-propylene copolymer rubber, styrene / acrylonitrile-graft-ethylene-propylene-non-conjugated diene copolymer rubber, styrene / acrylonitrile-graft-ethylene-propylene copolymer Examples include rubber.
The content of rubber in the polymer alloy is preferably 50% by mass or less from the viewpoint of adding new properties to the properties of the polyolefin resin. (The above is based on the description of JP-A-2007-39592)

[添加剤]
本発明の複合樹脂組成物は、その物性を損なわない限りにおいてその混合時、成形時に他の樹脂、添加剤、例えば、重合触媒、相溶化剤、界面活性剤、でんぷん類、多糖類、ゼラチン、ニカワ、天然たんぱく質、タンニン、ゼオライト、セラミックス、金属粉末、顔料、染料、強化剤、充填剤、耐熱剤、酸化抑制剤、耐候剤、滑剤、離型剤、結晶核剤、着色剤、香料、レベリング剤、可塑剤、流動性改良剤、導電剤、帯電抑制剤等、紫外線吸収剤、紫外線分散剤、消臭剤を添加することができる。
[Additive]
The composite resin composition of the present invention has other resins, additives such as polymerization catalysts, compatibilizers, surfactants, starches, polysaccharides, gelatin, etc. at the time of mixing and molding as long as the physical properties are not impaired. Nikawa, natural protein, tannin, zeolite, ceramics, metal powder, pigment, dye, strengthening agent, filler, heat resistant agent, oxidation inhibitor, weather resistant agent, lubricant, mold release agent, crystal nucleating agent, coloring agent, fragrance, leveling Agents, plasticizers, fluidity improvers, conductive agents, charge suppressants, etc., UV absorbers, UV dispersants, deodorants, etc. can be added.

任意の添加剤の含有割合としては、本発明の効果が損なわれない範囲で適宜含有されても良いが、例えば、複合樹脂組成物中10質量%程度以下が好ましく、5質量%程度以下がより好ましい。 The content ratio of the arbitrary additive may be appropriately contained as long as the effect of the present invention is not impaired, but for example, it is preferably about 10% by mass or less in the composite resin composition, and more preferably about 5% by mass or less. preferable.

[複合樹脂組成物]
本発明の複合樹脂組成物を用いた成形方法には特に制限はなく、射出成形、射出圧縮成形、押出し成形、圧縮(プレス)成形、オートクレーブ成形、VaRTM成形、回転成形、ブロー成形、移送成形、積層成形、カレンダー成形、発泡成形、真空成形、圧空成形、粉末成形、注型成形、中空成形体等の成形法を適用することができる。
本発明の複合樹脂組成物を用いた成形品は、前記の性状を有することから、例えば、OA機器、情報・通信機器、自動車部品又は建材分野等で好適に用いることができる。
[Composite resin composition]
The molding method using the composite resin composition of the present invention is not particularly limited, and injection molding, injection compression molding, extrusion molding, compression (press) molding, autoclave molding, VaRTM molding, rotation molding, blow molding, transfer molding, Molding methods such as laminate molding, calendar molding, foam molding, vacuum molding, pressure molding, powder molding, casting molding, and hollow molding can be applied.
Since the molded product using the composite resin composition of the present invention has the above-mentioned properties, it can be suitably used in, for example, OA equipment, information / communication equipment, automobile parts, building materials, and the like.

[強化繊維の形態]
図3に示すように強化繊維織物1は、互いに平行となるよう一方向に引き揃えられた複数本の強化繊維束2を直交する二方向に織成してなる二方向性織物である。二方向性織物は、強化繊維束2間の相対位置の変化による変形がしやすく立体形状に変形しやすいこと、少ない枚数で力学的に擬似等方性を有する積層成形材を得やすい利点がある。
強化繊維束2は、炭素繊維束、黒鉛繊維束、ガラス繊維束、バサルト繊維束または、アラミド繊維束などを用いることができ、炭素繊維束であることが好ましい。炭素繊維束を用いることにより、最終製品である炭素繊維強化複合材料成形品の力学特性を高いものとすることができる。
なお本発明の精神に照らし、強化繊維の形態として織物以外の強化繊維の形態も適用することが可能である。
その主な強化繊維の形態としては、一方向材、織物、組物、編物、ノンクリンプファブリック、不織布がある。
[Form of reinforcing fiber]
As shown in FIG. 3, the reinforcing fiber woven fabric 1 is a bidirectional woven fabric in which a plurality of reinforcing fiber bundles 2 aligned in one direction so as to be parallel to each other are woven in two orthogonal directions. The bidirectional woven fabric has the advantages that it is easily deformed due to a change in the relative position between the reinforcing fiber bundles 2 and is easily deformed into a three-dimensional shape, and it is easy to obtain a laminated molded material having mechanically pseudo-isotropic properties with a small number of sheets. ..
As the reinforcing fiber bundle 2, a carbon fiber bundle, a graphite fiber bundle, a glass fiber bundle, a basalt fiber bundle, an aramid fiber bundle, or the like can be used, and the carbon fiber bundle is preferable. By using the carbon fiber bundle, the mechanical properties of the final product, the carbon fiber reinforced composite material molded product, can be enhanced.
In the light of the spirit of the present invention, it is possible to apply the form of the reinforcing fiber other than the woven fabric as the form of the reinforcing fiber.
The main forms of reinforcing fibers include unidirectional materials, woven fabrics, braids, knitted fabrics, non-crimp fabrics, and non-woven fabrics.

強化繊維織物1の表面および内部に付着している樹脂材料4は、熱可塑性エポキシ樹脂であり、強化繊維織物の繊維間に含浸することによって強化繊維織物の層間を接着する作用を得ることができる樹脂材料4が熱可塑性樹脂を主成分とするものとすることによって強化繊維織物1を積層して、立体形状へと変形させた後に強化繊維織物1の層間を接着させる場合の取り扱い性が向上し、生産性が向上する。
[疎水性ナノセルロース繊維のモノマーへの分散]
本発明では、簡便にナノセルロース繊維を樹脂に均ーに分散させる手法として具体的には、(i)疎水性のナノセルロース繊維を(ii)モノマーに添加・攪拌する。この時、図4に示すようにモノマーの溶融粘度はポリマーの溶融粘度の3〜4桁低く、また、疎水性のナノセルロース繊維はモノマーに分散し易いため、ナノセルロース繊維はモノマー中に均ーに分散する。(iii)この様にモノマー中にナノセルロース繊維が均ーに分散している状態でモノマーを重合しポリマー化すると、均ーにナノセルロース繊維が分散したナノセルロース繊維複合樹脂組成物が得られる。得られたナノセルロース繊維複合樹脂は高い力学的性質を示すと共に、さらに図5に示す様に炭素繊維等の繊維強化複合材料(FRP) のマトリックスにこのナノセルロース繊維複合樹脂組成物を用いることでFRPの高性能化(曲げ強度、層間せん断強度、衝撃強度、疲労強度の向上)が図れる。
繊維強化複合材料の態様として、強化繊維に樹脂を含浸させ、複合化させることによって得られる材料であり、完全ポリマー化していない樹脂を強化繊維に含浸させたプリプレグや、ポリマー化した樹脂が強化繊維に含浸した成形物および、プリプレグを積層して成形し、樹脂をポリマー化することで得られる成形物も含まれる。
The resin material 4 adhering to the surface and the inside of the reinforced fiber woven fabric 1 is a thermoplastic epoxy resin, and by impregnating between the fibers of the reinforced fiber woven fabric, it is possible to obtain an action of adhering the layers of the reinforced fiber woven fabric. By assuming that the resin material 4 contains a thermoplastic resin as a main component, the handleability is improved when the reinforcing fiber woven fabric 1 is laminated, deformed into a three-dimensional shape, and then the layers of the reinforcing fiber woven fabric 1 are adhered to each other. , Productivity is improved.
[Dispersion of hydrophobic nanocellulose fibers in monomers]
In the present invention, as a method for easily and evenly dispersing the nanocellulose fibers in the resin, specifically, (i) hydrophobic nanocellulose fibers are added to and stirred in (ii) the monomer. At this time, as shown in FIG. 4, the melt viscosity of the monomer is 3 to 4 orders of magnitude lower than the melt viscosity of the polymer, and the hydrophobic nanocellulose fibers are easily dispersed in the monomer, so that the nanocellulose fibers are uniform in the monomer. Disperse to. (Iii) By polymerizing and polymerizing the monomer in a state where the nanocellulose fibers are evenly dispersed in the monomer, a nanocellulose fiber composite resin composition in which the nanocellulose fibers are evenly dispersed can be obtained. The obtained nanocellulose fiber composite resin exhibits high mechanical properties, and as shown in FIG. 5, by using this nanocellulose fiber composite resin composition in a matrix of a fiber reinforced composite material (FRP) such as carbon fiber. Higher performance of FRP (improvement of bending strength, interlayer shear strength, impact strength, fatigue strength) can be achieved.
As an aspect of the fiber-reinforced composite material, it is a material obtained by impregnating a reinforcing fiber with a resin and compounding it. Also included are molded products impregnated with, and molded products obtained by laminating and molding prepregs and polymerizing the resin.

以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例及び比較例において用いた各成分を次に示す。
(A)成分:ナノセルロース繊維
・親水性ナノセルロース繊維:商品名BiNFi−s BMa10010[株式会社スギノマシン製]
・疎水性ナノセルロース繊維:表面疎水化セルロースナノファイバーnanoforest−M[中越パルプ工業株式会社製](竹パルプ由来) 原料のα−セルロース含有率86%
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
Each component used in Examples and Comparative Examples is shown below.
(A) Ingredients: Nanocellulose fiber / Hydrophilic nanocellulose fiber: Product name BiNFi-s BMa10010 [manufactured by Sugino Machine Limited]
-Hydropulous nanocellulose fiber: Surface hydrophobicized cellulose nanofiber nanoforcest-M [manufactured by Chuetsu Pulp Industry Co., Ltd.] (derived from bamboo pulp) α-cellulose content of raw material 86%

(B)成分:熱可塑エポキシモノマー:DENATITE XNR6850V[ナガセケムテックス(株)]((イ)2官能エポキシ化合物、(ロ)2官能フェノール化合物の混合物)
触媒:DENATITE XNH6850V[ナガセケムテックス(株)]((ハ)リン系触媒)
(B) Component: Thermoplastic Epoxy Monomer: DENATITE XNR6850V [Nagase ChemteX Corporation] ((a) Bifunctional epoxy compound, (b) Bifunctional phenol compound mixture)
Catalyst: DENATITE XNH6850V [Nagase Chemtex Co., Ltd.] ((c) Linh-based catalyst)

実施したプロセスを図6に示す。
図6に示すように木材パルプを使用した固形分10%の親水性ナノセルロース繊維である試料1と竹パルプを使用した固形分10%の疎水性ナノセルロース繊維である試料2とを用意した。これらの試料1と試料2とを含有率1.0%で熱可塑エポキシモノマーと混合した。混合後真空乾燥機内で105℃で脱泡し、触媒を投入した。
The process carried out is shown in FIG.
As shown in FIG. 6, a sample 1 which is a hydrophilic nanocellulose fiber having a solid content of 10% using wood pulp and a sample 2 which is a hydrophobic nanocellulose fiber having a solid content of 10% using bamboo pulp were prepared. These Samples 1 and 2 were mixed with a thermoplastic epoxy monomer at a content of 1.0%. After mixing, defoaming was performed at 105 ° C. in a vacuum dryer, and the catalyst was charged.

得られた複合樹脂組成物につき電子顕微鏡によりナノセルロース繊維の分散性に関する拡大観察を行った。その写真を図7に示す。図7に示すように試料1の親水性の試料よりも試料2の疎水性の試料の方が良好にナノセルロース繊維が分散した。 The obtained composite resin composition was magnified and observed with respect to the dispersibility of the nanocellulose fibers by an electron microscope. The photograph is shown in FIG. As shown in FIG. 7, the nanocellulose fibers were dispersed better in the hydrophobic sample of sample 2 than in the hydrophilic sample of sample 1.

また試料1と試料2とを含有率0.5〜2.0%の範囲で熱可塑エポキシモノマーと混合後真空乾燥機内で105℃で脱泡し、触媒を投入した。
これを図3に示す炭素繊維織物3に、前記で得られた複合樹脂組成物を含浸させ、熱により重合させ、ポリマーとモノマーが混在したプリプレグとした。その樹脂含浸されたプリプレグを10枚積層し、プレス成形と熱により重合可能な熱可塑エポキシ樹脂を重合してポリマー化し、炭素繊維強化複合材料成形物とした。
Further, the sample 1 and the sample 2 were mixed with the thermoplastic epoxy monomer in a content range of 0.5 to 2.0%, defoamed in a vacuum dryer at 105 ° C., and the catalyst was charged.
The carbon fiber woven fabric 3 shown in FIG. 3 was impregnated with the composite resin composition obtained above and polymerized by heat to obtain a prepreg in which a polymer and a monomer were mixed. Ten prepregs impregnated with the resin were laminated, and a thermoplastic epoxy resin that could be polymerized by press molding and heat was polymerized and polymerized to obtain a carbon fiber reinforced composite material molded product.

この炭素繊維強化複合材料につき図8に示す方法で曲げ試験を行った。試験片は、幅15mm、長さ100mm、厚さ2mmを用いた。試験は、万能試験を用い、支点間距離80mm、試験速度5mm/minで3点曲げ試験を行った。その結果を図9に示す。図に示すように試料2を熱可塑エポキシモノマーに混合することで、炭素繊維強化複合材料の曲げ強度が11%向上した。 The carbon fiber reinforced composite material was subjected to a bending test by the method shown in FIG. As the test piece, a width of 15 mm, a length of 100 mm, and a thickness of 2 mm were used. The test was a universal test, and a 3-point bending test was performed at a distance between fulcrums of 80 mm and a test speed of 5 mm / min. The results are shown in FIG. By mixing the sample 2 with the thermoplastic epoxy monomer as shown in the figure, the bending strength of the carbon fiber reinforced composite material was improved by 11%.

さらに図10に示す方法で試料2を用いて得られた炭素繊維強化複合材料につき耐衝撃試験を行った。試験片は、幅10mm、長さ80mm、厚さ2mmを用いた。試験は、振り子式のハンマーでフラットワイズ試験片に衝撃を加えるシャルピー衝撃試試験を行った。
その結果を図11に示す。図11に示す様に試料2を熱可塑エポキシモノマーに混合することで、炭素繊維強化複合材料の衝撃強度が23%向上した。
さらに図12に示す方法で試料2を用いて得られた炭素繊維強化複合材料につきショートビーム試験による層と層を平行にずらす方向のせん断強度を行った。試験片は、幅10mm、長さ15mm、厚さ2mmを用いた。試験は、万能試験を用い、支点間距離10mm、試験速度2mm/minで、短い試験片の曲げ試験を行った。その結果を図13に示す。図13に示す様にナノセルロース繊維を熱可塑エポキシモノマーに混合することで炭素繊維強化複合材料のせん断強度が9%向上した。
Further, an impact resistance test was performed on the carbon fiber reinforced composite material obtained by using the sample 2 by the method shown in FIG. As the test piece, a width of 10 mm, a length of 80 mm, and a thickness of 2 mm were used. The test was a Charpy impact test in which a flatwise test piece was impacted with a pendulum hammer.
The result is shown in FIG. By mixing the sample 2 with the thermoplastic epoxy monomer as shown in FIG. 11, the impact strength of the carbon fiber reinforced composite material was improved by 23%.
Further, the carbon fiber reinforced composite material obtained by using the sample 2 by the method shown in FIG. 12 was subjected to a shear strength in a direction of shifting the layers in parallel by a short beam test. As the test piece, a width of 10 mm, a length of 15 mm, and a thickness of 2 mm were used. The test used a universal test, and a bending test of a short test piece was performed at a distance between fulcrums of 10 mm and a test speed of 2 mm / min. The result is shown in FIG. As shown in FIG. 13, the shear strength of the carbon fiber reinforced composite material was improved by 9% by mixing the nanocellulose fibers with the thermoplastic epoxy monomer.

本発明は、バイオマス材料の利用により環境特性に優れ、かつ低比重にして高剛性、すなわち比剛性が大きくて成形外観に優れ、さらに熱安定性が良く、難燃性が付与された複合樹脂組成物および繊維強化複合材料とその製造方法であることから、例えばOA機器、情報・通信機器、自動車部品又は建材分野等で好適に用いることができる。 INDUSTRIAL APPLICABILITY The present invention has a composite resin composition having excellent environmental characteristics by using a biomass material, low specific gravity and high rigidity, that is, high specific rigidity, excellent molding appearance, good thermal stability, and flame retardancy. Since it is a material and a fiber-reinforced composite material and a manufacturing method thereof, it can be suitably used in, for example, OA equipment, information / communication equipment, automobile parts, building materials, and the like.

Claims (4)

(A)平均太さ3〜200nmであり、原料のα−セルロース含有率60%〜99質量%であり、繊維表面の水酸基の一部が疎水性官能基で置換された疎水性ナノセルロース繊維0.3〜5質量%及び(B)反応により重合することで熱可塑エポキシ樹脂となるモノマー99.7〜95質量%からなる混合物がポリマー化されてなることを特徴とする複合樹脂組成物。 (A) Hydrophobic nanocellulose fiber 0 having an average thickness of 3 to 200 nm, an α-cellulose content of the raw material of 60% to 99% by mass, and a part of hydroxyl groups on the fiber surface substituted with a hydrophobic functional group. A composite resin composition comprising a polymerized mixture of 3 to 5% by mass and 99.7 to 95% by mass of a monomer that becomes a thermoplastic epoxy resin by polymerizing by the reaction (B). 請求項1に記載の複合樹脂組成物と強化繊維とからなることを特徴とする繊維強化複合材料。 A fiber-reinforced composite material comprising the composite resin composition according to claim 1 and reinforcing fibers. 請求項2に記載の強化繊維が炭素繊維であることを特徴とする繊維強化複合材料。 A fiber-reinforced composite material, wherein the reinforcing fiber according to claim 2 is a carbon fiber. (A)平均太さ3〜200nmであり、原料のα−セルロース含有率60%〜99質量%であり、繊維表面の水酸基の一部が疎水性官能基で置換された疎水性ナノセルロース繊維0.3〜5質量%及び(B)反応により重合することで熱可塑エポキシ樹脂となるエポキシ系のモノマー99.7〜95質量%からなる混合物を強化繊維に含浸させる工程と、前記モノマーをポリマー化する工程とからなることを特徴とする繊維強化複合材料の製造方法。 (A) Hydrophobic nanocellulose fiber 0 having an average thickness of 3 to 200 nm, an α-cellulose content of the raw material of 60% to 99% by mass, and a part of hydroxyl groups on the fiber surface substituted with a hydrophobic functional group. A step of impregnating the reinforcing fiber with a mixture of 3 to 5% by mass and 99.7 to 95% by mass of an epoxy-based monomer that becomes a thermoplastic epoxy resin by polymerizing by the reaction (B), and polymerizing the monomer. A method for producing a fiber-reinforced composite material, which comprises the steps of making a fiber-reinforced composite material.
JP2020092921A 2020-05-28 2020-05-28 Composite resin composition and fiber-reinforced composite material and method for producing the same Pending JP2021187917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020092921A JP2021187917A (en) 2020-05-28 2020-05-28 Composite resin composition and fiber-reinforced composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020092921A JP2021187917A (en) 2020-05-28 2020-05-28 Composite resin composition and fiber-reinforced composite material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2021187917A true JP2021187917A (en) 2021-12-13

Family

ID=78848155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020092921A Pending JP2021187917A (en) 2020-05-28 2020-05-28 Composite resin composition and fiber-reinforced composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2021187917A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321897A (en) * 2005-05-18 2006-11-30 Nagase Chemtex Corp Method for molding fiber-reinforced thermoplastic resin
JP2014034616A (en) * 2012-08-08 2014-02-24 Kao Corp Resin composition
JP2019119984A (en) * 2017-12-27 2019-07-22 花王株式会社 Manufacturing method of refined hydrophobic modified cellulose fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321897A (en) * 2005-05-18 2006-11-30 Nagase Chemtex Corp Method for molding fiber-reinforced thermoplastic resin
JP2014034616A (en) * 2012-08-08 2014-02-24 Kao Corp Resin composition
JP2019119984A (en) * 2017-12-27 2019-07-22 花王株式会社 Manufacturing method of refined hydrophobic modified cellulose fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赤塚嘉寛,押川文隆,平田清和,操利一,今村順光、 福山秀久,上山貞茂,南 晃: "亜熱帯植物(芭蕉)を原料とする繊維素材新製造技術の開発研究", 鹿児島県大島紬技術指導センター 平成元年度 業務報告書, JPN6023033795, 1990, JP, pages 10, ISSN: 0005135662 *

Similar Documents

Publication Publication Date Title
JP5704198B2 (en) Method for producing cellulose nanofiber-containing epoxy resin composition, reinforced matrix resin, and fiber-reinforced resin composite
Kargarzadeh et al. Recent developments on nanocellulose reinforced polymer nanocomposites: A review
Jaafar et al. Effects of the liquid natural rubber (LNR) on mechanical properties and microstructure of epoxy/silica/kenaf hybrid composite for potential automotive applications
Oliveux et al. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties
KR101650352B1 (en) Fiber-reinforced resin composite body, and reinforced matrix resin for fiber-reinforced resin
Kopparthy et al. Green composites for structural applications
Khan et al. Hybrid composites of jute and man-made cellulose fibers with polypropylene by injection moulding
Dewan et al. Thermomechanical properties of alkali treated jute‐polyester/nanoclay biocomposites fabricated by VARTM process
CN105849162B (en) Improvement to substrate additive
JP6163958B2 (en) Epoxy resin composition, fiber reinforced composite material and molded article
CA2753852C (en) Compositions useful for non-cellulose fiber sizing, coating or binding compositions, and composites incorporating same
Thomas et al. Unsaturated polyester resins: fundamentals, design, fabrication, and applications
Ardekani et al. Mechanical and thermal properties of recycled poly (ethylene terephthalate) reinforced newspaper fiber composites
JP2015048375A (en) Resin composition, fiber-reinforced composite material and molded part
Jaafar et al. Preparation and characterisation of epoxy/silica/kenaf composite using hand lay-up method
Bajpai Update on carbon fibre
Sakakibara et al. Preparation of high-performance polyethylene composite materials reinforced with cellulose nanofiber: simultaneous nanofibrillation of wood pulp fibers during melt-compounding using urea and diblock copolymer dispersant
Kumar et al. Recent developments of lignocellulosic natural fiber reinforced hybrid thermosetting composites for high-end structural applications: a review
JP2014108990A (en) Carbon fiber-reinforced polypropylene resin composition
Mahmoudian et al. Bionanocomposite fibers based on cellulose and montmorillonite using ionic liquid 1-ethyl-3-methylimidazolium acetate
JP2021187917A (en) Composite resin composition and fiber-reinforced composite material and method for producing the same
JP2016020446A (en) Resin composition, fiber-reinforced composite material and molded article
CN110862607B (en) Regenerated carbon fiber reinforced PP (polypropylene) material based on ultrasonic technology and preparation method thereof
YI et al. BIO-COMPOSITES: Development of Bio-Composites for Green Aviation and Ground Vehicles.
JP6944804B2 (en) Manufacturing method of prepreg for fiber reinforced plastic molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240613