JP2021186862A - Heat exchanger manufacturing method - Google Patents

Heat exchanger manufacturing method Download PDF

Info

Publication number
JP2021186862A
JP2021186862A JP2020097864A JP2020097864A JP2021186862A JP 2021186862 A JP2021186862 A JP 2021186862A JP 2020097864 A JP2020097864 A JP 2020097864A JP 2020097864 A JP2020097864 A JP 2020097864A JP 2021186862 A JP2021186862 A JP 2021186862A
Authority
JP
Japan
Prior art keywords
lid
extruded
extruded porous
peripheral wall
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020097864A
Other languages
Japanese (ja)
Inventor
久司 堀
Hisashi Hori
伸城 瀬尾
Nobushiro Seo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2020097864A priority Critical patent/JP2021186862A/en
Publication of JP2021186862A publication Critical patent/JP2021186862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

To provide a heat exchanger manufacturing method that can manufacture a heat exchanger at low cost.SOLUTION: The heat exchanger manufacturing method includes a main jointing step in which only a stirring pin F2 of a rotating tool F that rotates is inserted into an outer peripheral surface 11f of at least one end part of an extrusion porous pipe 2 and is made to go around the outer peripheral surface 11f of the extrusion porous pipe 2 at a predetermined depth along an overlapping part J2 to friction-stir the overlapping part J2, while contacting only the stirring pin F2 with only the extrusion porous pipe 2 or with the extrusion porous pipe 2 and lid bodes 3. In the main jointing step, the extrusion porous pipe 2 and the lid bodies 3 are rotated or moved parallel using a pair of holding parts 32 and 32 to friction-stir the extrusion porous pipe 2 and at least one lid body 3, while making the holding parts 32 press and hold the two lid bodies 3 and the extrusion porous pipe 2 from both outsides of the lid bodies 3.SELECTED DRAWING: Figure 4

Description

本発明は、熱交換器の製造方法に関する。 The present invention relates to a method for manufacturing a heat exchanger.

摩擦攪拌を利用した熱交換器の製造方法が行われている。例えば、特許文献1には、複数の孔部が並設された押出多孔管と、当該押出多孔管の開口部を封止する封止体とを摩擦攪拌で接合する熱交換器の製造方法が開示されている。 A method of manufacturing a heat exchanger using friction stir welding is performed. For example, Patent Document 1 describes a method for manufacturing a heat exchanger in which an extruded porous tube in which a plurality of holes are arranged side by side and a sealing body that seals an opening of the extruded porous tube are joined by friction stir welding. It has been disclosed.

特開2016−74016号公報Japanese Unexamined Patent Publication No. 2016-74016

特許文献1に係る発明では、回転ツールと押出多孔管の外周面とを垂直にした状態で回転ツールを押出多孔管廻りに一周させるため、回転ツールを、例えば、先端にスピンドルユニット等の回転駆動手段を備えたアームロボットに取り付けるなどして、回転ツールの回転中心軸の角度や挿入位置を変更・調整する必要がある。また、押出多孔管及び蓋体を位置決めする治具と回転ツールの移動ルートとが干渉しないように調整する必要がある。このため作業が煩雑になるとともに、回転ツールを駆動させるための装置等の付帯設備に費用がかかり、結果的に製造コストが高くなるという問題がある。 In the invention according to Patent Document 1, in order to rotate the rotary tool around the extruded porous tube with the rotary tool and the outer peripheral surface of the extruded porous tube perpendicular to each other, the rotary tool is driven to rotate, for example, a spindle unit or the like at the tip. It is necessary to change / adjust the angle and insertion position of the rotation center axis of the rotation tool by attaching it to an arm robot equipped with means. In addition, it is necessary to adjust so that the jig for positioning the extruded perforated pipe and the lid and the moving route of the rotating tool do not interfere with each other. For this reason, there is a problem that the work becomes complicated and ancillary equipment such as a device for driving the rotation tool is costly, resulting in high manufacturing cost.

このような観点から、本発明は、熱交換器を低コストで製造することができる熱交換器の製造方法を提供することを課題とする。 From such a viewpoint, it is an object of the present invention to provide a method for manufacturing a heat exchanger, which can manufacture a heat exchanger at low cost.

前記課題を解決するため、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する二つの蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記押出多孔管は、両端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、前記押出多孔管の一方の前記嵌合部に一の前記蓋体の前記周壁部を挿入し、前記押出多孔管の他方の前記嵌合部に他の前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の両端部の内周面とそれぞれの前記蓋体の前記周壁部の外周面とを重ね合わせて二つの重合部を形成するとともに、前記押出多孔管の一方のフィンの端面と一の前記蓋体の前記周壁部の端面、及び、前記押出多孔管の他方のフィンの端面と他の前記蓋体の前記周壁部の端面とをそれぞれ突き合わせて二組の突合せ部を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の少なくとも一方の端部の外周面に挿入し、前記攪拌ピンのみを前記押出多孔管のみ、又は前記押出多孔管及び前記蓋体に接触させた状態で、前記重合部に沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記重合部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、二つの前記蓋体と前記押出多孔管とを各前記蓋体の両外側から一対の保持部で押圧して保持しつつ、前記保持部を用いて前記押出多孔管及び前記蓋体を回転又は平行移動させて前記押出多孔管と少なくとも一つの前記蓋体とを摩擦攪拌することを特徴とする。 In order to solve the above problems, the present invention is composed of an extruded perforated tube having fins inside and two lids for sealing the openings of the extruded perforated tube, and the extruded perforated tube and the lid. This is a method for manufacturing a heat exchanger in which the lids are joined by frictional stirring. The lid has a peripheral wall portion that rises from a bottom portion and a peripheral edge of the bottom portion, and the extruded porous tube has fins formed at both ends thereof. The rotary tool used for friction stirring has a fitting portion to which the peripheral wall portion is fitted, and the stirring pin is provided with a stirring pin, which is tapered toward the tip side and is extruded porous. By inserting the peripheral wall portion of one lid body into one of the fitting portions of the tube and inserting the peripheral wall portion of the other lid body into the other fitting portion of the extruded porous tube, the said. The inner peripheral surfaces of both ends of the extruded porous tube and the outer peripheral surface of the peripheral wall of each of the lids are overlapped to form two overlapping portions, and the extruded porous tube is one with the end surface of one fin. A butting step of forming two sets of butt portions by abutting the end face of the peripheral wall portion of the lid body and the end face of the other fin of the extruded porous tube with the end face of the peripheral wall portion of the other lid body. , Only the stirring pin of the rotating tool is inserted into the outer peripheral surface of at least one end of the extruded porous tube, and only the stirring pin is in contact with the extruded porous tube only or the extruded porous tube and the lid. In the main joining step, the main joining step of circling around the outer peripheral surface of the extruded porous tube at a predetermined depth along the polymerized portion and rubbing and stirring the polymerized portion is included. While pressing and holding the two lids and the extruded porous tube from both outer sides of each of the lids with a pair of holding portions, the extruded porous tube and the lid are rotated or parallel using the holding portions. It is characterized in that the extruded perforated tube and at least one of the lids are rubbed and stirred by moving the extruded perforated tube.

また、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する二つの蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差底面と、前記段差底面から立ち上がる段差側面と、を有する周壁段差部を形成し、前記押出多孔管は、両端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、前記押出多孔管の一方の前記嵌合部に一の前記蓋体の前記周壁部を挿入し、前記押出多孔管の他方の前記嵌合部に他の前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の両端部の内周面とそれぞれの前記蓋体の前記段差側面とを重ね合わせて二つの重合部を形成するとともに、前記押出多孔管の一方の端面と一の前記蓋体の前記段差底面、及び、前記押出多孔管の他方の端面と他の前記蓋体の前記段差底面とをそれぞれ突き合わせて二つの突合せ部を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の少なくとも一方の端部の外周面に挿入し、前記攪拌ピンのみを前記押出多孔管のみ、又は前記押出多孔管及び前記蓋体に接触させた状態で、前記重合部に沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記重合部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、二つの前記蓋体と前記押出多孔管とを各前記蓋体の両外側から一対の保持部で押圧して保持しつつ、前記保持部を用いて前記押出多孔管及び前記蓋体を回転又は平行移動させて前記押出多孔管と少なくとも一つの前記蓋体とを摩擦攪拌することを特徴とする。 Further, the present invention is composed of an extruded porous pipe having fins inside and two lids for sealing the openings of the extruded porous pipe, and the extruded porous pipe and the lid are joined by friction stirring. In the method of manufacturing a heat exchanger, the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a step bottom surface and a step side surface rising from the step bottom surface are formed on the outer peripheral edge of the peripheral wall portion. The extruded perforated pipe has a fitting portion in which the fins are not formed at both ends and the peripheral wall portion is fitted, and the rotary tool used for friction stirring is a stirring portion. The stirring pin is provided with a pin, and the stirring pin is tapered toward the tip end side. By inserting the peripheral wall portion of the other lid body into the other fitting portion of the pipe, the inner peripheral surfaces of both ends of the extruded porous pipe and the stepped side surface of each of the lid bodies are overlapped with each other. While forming two overlapping portions, one end surface of the extruded porous pipe and the step bottom surface of one lid body, and the other end surface of the extruded porous pipe and the step bottom surface of the other lid body are formed. In the butt step of forming two butt portions by butt-butting each, only the stirring pin of the rotating tool is inserted into the outer peripheral surface of at least one end of the extruded porous tube, and only the stirring pin is inserted into the extruded porous tube. A book that rubs and stirs the polymerized portion only or in contact with the extruded porous pipe and the lid by making a circumference around the outer peripheral surface of the extruded porous pipe at a predetermined depth along the polymerized portion. Including the joining step, in the main joining step, the holding portion is used while pressing and holding the two lids and the extruded perforated pipe from both outer sides of each lid with a pair of holding portions. The extruded porous tube and the lid are rotated or moved in parallel to rub and stir the extruded porous tube and at least one of the lids.

かかる製造方法によれば、蓋体を一対の保持部で保持した状態で押出多孔管及び蓋体を回転又は平行移動させるため、本接合工程中に保持部と回転ツールとが干渉しない。つまり、押出多孔管及び蓋体を位置決めするための治具が回転ツールの移動の妨げにならない。これにより、挿入位置等の調整が容易になるとともに、付帯設備の費用も抑えることができる。よって、熱交換器を低コストで製造することができる。また、押出多孔管のフィン又は端面と、蓋体の周壁部とを突き合わせることで、蓋体の挿入方向の位置決めを容易に行うことができる。 According to such a manufacturing method, since the extruded porous tube and the lid are rotated or translated while the lid is held by the pair of holding portions, the holding portion and the rotating tool do not interfere with each other during the main joining step. That is, the extruded perforated pipe and the jig for positioning the lid do not hinder the movement of the rotating tool. As a result, the insertion position and the like can be easily adjusted, and the cost of incidental equipment can be suppressed. Therefore, the heat exchanger can be manufactured at low cost. Further, by abutting the fins or end faces of the extruded perforated pipe with the peripheral wall portion of the lid, the positioning of the lid in the insertion direction can be easily performed.

また、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であることが好ましい。 Further, the extruded porous tube is formed of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy. It is preferable to have.

また、前記第一アルミニウム合金は鋳造材からなり、前記第二アルミニウム合金は展伸材からなることが好ましい。 Further, it is preferable that the first aluminum alloy is made of a cast material and the second aluminum alloy is made of a wrought material.

また、前記本接合工程では、前記攪拌ピンの先端を前記蓋体の前記周壁部に接触させた状態で前記押出多孔管の外周面の廻りに一周させて前記重合部を摩擦攪拌することが好ましい。 Further, in the main joining step, it is preferable that the tip of the stirring pin is made to go around the outer peripheral surface of the extruded perforated pipe in a state of being in contact with the peripheral wall portion of the lid body, and the polymerized portion is frictionally agitated. ..

かかる製造方法によれば、蓋体と押出多孔管との接合強度を高めることができる。 According to such a manufacturing method, the joint strength between the lid and the extruded perforated pipe can be increased.

本発明によれば、熱交換器を低コストで製造することができる熱交換器の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a heat exchanger, which can manufacture the heat exchanger at low cost.

本発明の第一実施形態に係る熱交換器を示す分解斜視図である。It is an exploded perspective view which shows the heat exchanger which concerns on 1st Embodiment of this invention. 第一実施形態に係る熱交換器の製造方法の突合せ工程を示す断面図である。It is sectional drawing which shows the butt process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程を示す斜視図である。It is a perspective view which shows the main joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程の開始位置を示す模式図である。It is a schematic diagram which shows the start position of the main joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程を示す断面図である。It is sectional drawing which shows the main joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程の終了位置を示す模式図である。It is a schematic diagram which shows the end position of this joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 本発明の第二実施形態に係る熱交換器の製造方法の突合せ工程を示す断面図である。It is sectional drawing which shows the butt process of the manufacturing method of the heat exchanger which concerns on 2nd Embodiment of this invention. 本発明の第二実施形態に係る熱交換器の製造方法の本接合工程を示す断面図である。It is sectional drawing which shows this joining process of the manufacturing method of the heat exchanger which concerns on 2nd Embodiment of this invention.

[第一実施形態]
本発明の実施形態について、適宜図面を参照しながら説明する。本発明は以下の実施形態のみに限定されるものではない。また、各実施形態における構成要素は一部又は全部を適宜組み合わせることができる。第一実施形態に係る熱交換器1は、図1に示すように、押出多孔管2と、押出多孔管2の両端にそれぞれ配置された蓋体3(3A,3B)とで構成されている。熱交換器1は、内部に流体を流通させて、配置される発熱体を冷却する機器である。押出多孔管2と各蓋体3とは摩擦攪拌接合で一体化される。なお、蓋体3は、必要に応じて蓋体3A,3Bと称して区別する。
[First Embodiment]
An embodiment of the present invention will be described with reference to the drawings as appropriate. The present invention is not limited to the following embodiments. In addition, some or all of the components in each embodiment can be combined as appropriate. As shown in FIG. 1, the heat exchanger 1 according to the first embodiment is composed of an extruded porous tube 2 and lids 3 (3A, 3B) arranged at both ends of the extruded porous tube 2. .. The heat exchanger 1 is a device that circulates a fluid inside to cool an arranged heating element. The extruded perforated pipe 2 and each lid 3 are integrated by friction stir welding. The lid 3 is referred to as a lid 3A and 3B as necessary to distinguish them.

押出多孔管2は、本体部11と、複数のフィン12とで主に構成されている。フィン12は、本体部11の内部に形成されている。押出多孔管2は、本実施形態では第二アルミニウム合金を主に含んで形成されている。第二アルミニウム合金は、例えば、JIS A1050,A1100,A6063等のアルミニウム合金展伸材で形成されている。押出多孔管2は、第二アルミニウム合金で形成された押出形材である。 The extruded perforated pipe 2 is mainly composed of a main body portion 11 and a plurality of fins 12. The fin 12 is formed inside the main body 11. In the present embodiment, the extruded porous tube 2 is formed mainly containing a second aluminum alloy. The second aluminum alloy is formed of, for example, an aluminum alloy wrought material such as JIS A1050, A1100, A6063. The extruded perforated pipe 2 is an extruded profile made of a second aluminum alloy.

本体部11は、筒状を呈する。本体部11の側部11a,11bは外側(本体部11の幅方向外側)に凸となるように湾曲している。本体部11の基板部11c,11dは平坦になっており、平行に対向している。つまり、本体部11の断面は長丸形状になっている。フィン12は、基板部11c,11dに対して垂直になっている。フィン12は、本体部11の押し出し方向に延設され、それぞれ平行に形成されている。隣り合うフィン12の間には、流体が流通する断面矩形の複数の孔部13が形成されている。 The main body 11 has a tubular shape. The side portions 11a and 11b of the main body portion 11 are curved so as to be convex outward (outside in the width direction of the main body portion 11). The substrate portions 11c and 11d of the main body portion 11 are flat and face each other in parallel. That is, the cross section of the main body 11 has an oblong shape. The fins 12 are perpendicular to the substrate portions 11c and 11d. The fins 12 extend in the extrusion direction of the main body 11, and are formed in parallel with each other. A plurality of holes 13 having a rectangular cross section through which a fluid flows are formed between the adjacent fins 12.

押出多孔管2の両端の開口部には、フィン12が形成されていない嵌合部14が形成されている。嵌合部14は、後記する蓋体3の周壁部22が挿入される部位である。嵌合部14は、フィン12の両端を切削することにより形成されている。押出多孔管2の形状は、上記した形状に限定されるものではない。例えば、押出多孔管2の断面(押出方向に対して垂直な断面)が、円形、楕円形又は角形であってもよい。 Fitting portions 14 to which fins 12 are not formed are formed in the openings at both ends of the extruded porous tube 2. The fitting portion 14 is a portion into which the peripheral wall portion 22 of the lid 3, which will be described later, is inserted. The fitting portion 14 is formed by cutting both ends of the fin 12. The shape of the extruded perforated pipe 2 is not limited to the above-mentioned shape. For example, the cross section of the extruded porous tube 2 (cross section perpendicular to the extrusion direction) may be circular, elliptical, or square.

蓋体3A,3Bは、押出多孔管2の両端の開口部を封止する部材である。蓋体3A,3Bは、それぞれ同形状になっている。蓋体3は、底部21と、周壁部22とを有する。底部21は、長丸形状を呈する板状部材である。底部21の外形は、押出多孔管2の内部に収容されて、押出多孔管2の開口部を封止するように、押出多孔管2の本体部11の内周面11g(図2参照)と概ね同形状になっている。周壁部22は、底部21の周縁部から垂直に立ち上がる部位である。周壁部22は、底部21の形状に沿って長丸の枠状に形成されている。底部21と周壁部22とで凹状のヘッダー流路24が形成されている。 The lids 3A and 3B are members that seal the openings at both ends of the extruded porous tube 2. The lids 3A and 3B have the same shape, respectively. The lid 3 has a bottom portion 21 and a peripheral wall portion 22. The bottom portion 21 is a plate-shaped member having an oval shape. The outer shape of the bottom portion 21 is housed inside the extruded perforated pipe 2, and is formed with an inner peripheral surface 11 g (see FIG. 2) of the main body 11 of the extruded perforated pipe 2 so as to seal the opening of the extruded perforated pipe 2. It has almost the same shape. The peripheral wall portion 22 is a portion that rises vertically from the peripheral edge portion of the bottom portion 21. The peripheral wall portion 22 is formed in an oval frame shape along the shape of the bottom portion 21. A concave header flow path 24 is formed by the bottom portion 21 and the peripheral wall portion 22.

蓋体3の材料は、摩擦攪拌可能な金属であれば特に制限されないが、本実施形態では第一アルミニウム合金を主に含んで形成されている。第一アルミニウム合金は、第二アルミニウム合金よりも硬度の高い材料である。第一アルミニウム合金は、例えば、JISH5302 ADC12(Al-Si-Cu系)等のアルミニウム合金鋳造材を用いている。なお、本明細書において硬度はブリネル硬さをいい、JIS Z 2243に準じた方法によって測定することができる。 The material of the lid 3 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing a first aluminum alloy. The first aluminum alloy is a material having a higher hardness than the second aluminum alloy. As the first aluminum alloy, for example, an aluminum alloy cast material such as JISH5302 ADC12 (Al—Si—Cu system) is used. In the present specification, the hardness refers to Brinell hardness, and can be measured by a method according to JIS Z 2243.

次に、本実施形態に係る熱交換器の製造方法について説明する。本実施形態に係る熱交換器の製造方法では、準備工程と、突合せ工程と、本接合工程とを行う。 Next, a method of manufacturing the heat exchanger according to the present embodiment will be described. In the method for manufacturing a heat exchanger according to the present embodiment, a preparation step, a butt step, and a main joining step are performed.

準備工程は、押出多孔管2及び蓋体3を準備する工程である。押出多孔管2は、例えば、押出成形で成形する。蓋体3は、例えば、ダイキャストにより成形する。 The preparation step is a step of preparing the extruded porous tube 2 and the lid 3. The extruded porous tube 2 is formed by, for example, extrusion molding. The lid 3 is molded by die casting, for example.

突合せ工程は、図2に示すように、押出多孔管2に蓋体3を突き合わせる工程である。突合せ工程では、押出多孔管2の嵌合部14に、蓋体3の周壁部22を挿入して、嵌め合わせる。これにより、周壁部22の端面22aと、複数のフィン12の端面12aとが突き合わされて複数の突合せ部J1が形成される。また、押出多孔管2の内周面11gと周壁部22の外周面22bとが重ね合されて重合部J2が形成される。 The butt step is a step of butting the lid 3 against the extruded porous tube 2 as shown in FIG. In the butt step, the peripheral wall portion 22 of the lid 3 is inserted into the fitting portion 14 of the extruded perforated pipe 2 and fitted. As a result, the end surface 22a of the peripheral wall portion 22 and the end surface 12a of the plurality of fins 12 are abutted to form a plurality of abutment portions J1. Further, the inner peripheral surface 11g of the extruded porous tube 2 and the outer peripheral surface 22b of the peripheral wall portion 22 are overlapped to form the polymerization portion J2.

本接合工程は、回転ツールF(図5参照)を用いて重合部J2を摩擦攪拌接合する工程である。本接合工程では、保持工程と、摩擦攪拌工程とを行う。保持工程は、図3に示すように、一対の保持部32を備える挟持装置(治具)で蓋体3A,3Bを両外側から押圧して挟持する。本実施形態では、保持部32と蓋体3Aとの間、保持部32と蓋体3Bとの間にそれぞれ中間プレート31を介設している。保持部32は円柱状を呈し、その端面が中間プレート31,31にそれぞれ面接触する。中間プレート31を設けることで、保持部32の押圧力を分散させて、押出多孔管2及び蓋体3A,3Bを確実に保持することができる。なお、中間プレート31は省略してもよい。 This joining step is a step of friction-stir welding the polymerized portion J2 using the rotary tool F (see FIG. 5). In this joining step, a holding step and a friction stir welding step are performed. In the holding step, as shown in FIG. 3, the lids 3A and 3B are pressed and held from both outer sides by a holding device (jig) provided with a pair of holding portions 32. In the present embodiment, an intermediate plate 31 is interposed between the holding portion 32 and the lid 3A, and between the holding portion 32 and the lid 3B, respectively. The holding portion 32 has a columnar shape, and its end faces come into surface contact with the intermediate plates 31 and 31, respectively. By providing the intermediate plate 31, the pressing force of the holding portion 32 can be dispersed to reliably hold the extruded perforated pipe 2 and the lids 3A and 3B. The intermediate plate 31 may be omitted.

挟持装置の保持部32と押出多孔管2及び蓋体3A,3Bとは同期して回転又は平行移動する。つまり、当該挟持装置は、蓋体3A及び蓋体3Bを保持部32,32でそれぞれ押圧し挟持した状態で、押出多孔管2及び蓋体3A,3Bを周方向に回転させるとともに、上下、左右及び前後方向に直線移動させることができる。 The holding portion 32 of the holding device, the extruded perforated tube 2, and the lids 3A and 3B rotate or move in parallel in synchronization with each other. That is, in the holding device, the extruded perforated pipe 2 and the lids 3A and 3B are rotated in the circumferential direction while the lid 3A and the lid 3B are pressed and held by the holding portions 32 and 32, respectively, and up and down, left and right. And it can be moved linearly in the front-back direction.

図5に示すように、回転ツールFは、連結部F1と、攪拌ピンF2とで構成されている。回転ツールFは、例えば工具鋼で形成されている。連結部F1は、摩擦攪拌装置(図示省略)の回転軸に連結される部位である。連結部F1は円柱状を呈し、ボルトが締結されるネジ孔(図示省略)が形成されている。 As shown in FIG. 5, the rotation tool F includes a connecting portion F1 and a stirring pin F2. The rotary tool F is made of, for example, tool steel. The connecting portion F1 is a portion connected to the rotating shaft of the friction stir device (not shown). The connecting portion F1 has a columnar shape, and a screw hole (not shown) to which a bolt is fastened is formed.

攪拌ピンF2は、連結部F1から垂下しており、連結部F1と同軸になっている。攪拌ピンF2は連結部F1から離間するにつれて先細りになっている。攪拌ピンF2の先端には、回転中心軸線Zに対して垂直であり、平坦な平坦面F3が形成されている。攪拌ピンF2の外周面には螺旋溝が刻設されている。本実施形態では、回転ツールFを右回転させるため、螺旋溝は、基端から先端に向かうにつれて左回りに形成されている。言い換えると、螺旋溝は、螺旋溝を基端から先端に向けてなぞると上から見て左回りに形成されている。 The stirring pin F2 hangs down from the connecting portion F1 and is coaxial with the connecting portion F1. The stirring pin F2 is tapered as it is separated from the connecting portion F1. At the tip of the stirring pin F2, a flat flat surface F3 that is perpendicular to the rotation center axis Z is formed. A spiral groove is engraved on the outer peripheral surface of the stirring pin F2. In the present embodiment, in order to rotate the rotation tool F clockwise, the spiral groove is formed counterclockwise from the base end to the tip end. In other words, the spiral groove is formed counterclockwise when viewed from above when the spiral groove is traced from the base end to the tip end.

なお、回転ツールFを左回転させる場合は、螺旋溝を基端から先端に向かうにつれて右回りに形成することが好ましい。言い換えると、この場合の螺旋溝は、螺旋溝を基端から先端に向けてなぞると上から見て右回りに形成されている。螺旋溝をこのように設定することで、摩擦攪拌の際に塑性流動化した金属が螺旋溝によって攪拌ピンF2の先端側に導かれる。これにより、被接合金属部材(押出多孔管2及び蓋体3)の外部に溢れ出る金属の量を少なくすることができる。回転ツールFは、例えば、鉛直方向及び水平方向に移動可能な摩擦攪拌装置に取り付けてもよいし、先端にスピンドルユニット等の回転駆動手段を備えたアームロボットに取り付けてもよい。 When the rotation tool F is rotated counterclockwise, it is preferable to form the spiral groove clockwise from the base end toward the tip end. In other words, the spiral groove in this case is formed clockwise when viewed from above when the spiral groove is traced from the base end to the tip end. By setting the spiral groove in this way, the metal plastically fluidized during friction stir welding is guided to the tip end side of the stirring pin F2 by the spiral groove. As a result, the amount of metal that overflows to the outside of the metal member to be joined (extruded porous tube 2 and lid 3) can be reduced. The rotation tool F may be attached to, for example, a friction stir device that can move in the vertical direction and the horizontal direction, or may be attached to an arm robot having a rotation driving means such as a spindle unit at the tip.

摩擦攪拌工程では、図4に示すように、設定移動ルートL1上に、開始位置SP1、終了位置EP1、中間点S1,S2をそれぞれ離間して設定する。設定移動ルートL1は、押出多孔管2の端面11eの近傍に、端面11eと平行に設定する。 In the friction stir welding step, as shown in FIG. 4, the start position SP1, the end position EP1, and the intermediate points S1 and S2 are set apart from each other on the set movement route L1. The set movement route L1 is set in the vicinity of the end face 11e of the extruded perforated pipe 2 in parallel with the end face 11e.

図4に示すように、摩擦攪拌工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1までの離脱区間の三つの区間を連続して摩擦攪拌接合する。摩擦攪拌工程では、例えば、回転ツールFを摩擦攪拌装置に取り付ける場合は、回転ツールFの位置を移動させずに、保持部32,32で被接合金属部材を回転又は直線移動させて摩擦攪拌接合を行う。また、例えば、回転ツールFをアームロボットに取りつける場合は、保持部32,32を備えた挟持装置及びアームロボットの少なくとも一方を変位させて被接合金属部材の周りに回転ツールFを相対移動させて摩擦攪拌接合を行う。 As shown in FIG. 4, in the friction stir welding step, the intrusion section from the start position SP1 to the intermediate point S1, the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and the intermediate point S2. Three sections of the detachment section from to the end position EP1 are continuously subjected to friction stir welding. In the friction stir welding step, for example, when the rotary tool F is attached to the friction stir welder, the metal member to be joined is rotated or linearly moved by the holding portions 32 and 32 without moving the position of the rotary tool F to perform friction stir welding. I do. Further, for example, when the rotation tool F is attached to the arm robot, at least one of the holding device provided with the holding portions 32 and 32 and the arm robot is displaced to move the rotation tool F relative to the metal member to be joined. Perform friction stir welding.

押入区間では、開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、本体部11の一方の端部の外周面11fに対して回転中心軸線Zを垂直にしつつ、右回転させた攪拌ピンF2を開始位置SP1に挿入し、中間点S1まで相対移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを設定移動ルートL1に移動させながら徐々に下降させていく。回転ツールFの移動軌跡には塑性化領域W1が形成される。 In the closet section, friction stir welding is performed from the start position SP1 to the intermediate point S1. In the closet section, the stirring pin F2 rotated clockwise is inserted into the start position SP1 while the rotation center axis Z is perpendicular to the outer peripheral surface 11f of one end of the main body 11, and is relatively moved to the intermediate point S1. .. At this time, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" by at least reaching the intermediate point S1. That is, instead of keeping the rotation tool F in one place, the rotation tool F is gradually lowered while being moved to the set movement route L1. A plasticized region W1 is formed in the movement locus of the rotation tool F.

回転ツールFが中間点S1に達したら、そのまま本区間に移行する。所定の深さとは、中間点S1から一周廻って中間点S2までの本区間において、攪拌ピンF2を差し込む深さを言う。本区間では、図5に示すように回転ツールFの攪拌ピンF2のみを被接合金属部材に接触させて設定移動ルートL1に沿って一周させる。 When the rotation tool F reaches the intermediate point S1, the section shifts to this section as it is. The predetermined depth means the depth at which the stirring pin F2 is inserted in this section from the intermediate point S1 to the intermediate point S2. In this section, as shown in FIG. 5, only the stirring pin F2 of the rotation tool F is brought into contact with the metal member to be joined and is made to go around along the set movement route L1.

本実施形態では、攪拌ピンF2の先端(平坦面F3)が、周壁部22の外周面22bに接触した状態となるように所定の深さを設定する。本区間においては、攪拌ピンF2のみを押出多孔管2の端部の外周面11fの側から重合部J2まで挿入して、攪拌ピンF2のみを押出多孔管2及び蓋体3Aに接触させて、攪拌ピンF2の基端側を露出させた状態で、重合部J2を摩擦攪拌接合する。なお、本区間においては、攪拌ピンF2が蓋体3Aに接触しないように所定の深さを設定してもよい。すなわち、攪拌ピンF2のみを押出多孔管2のみに接触させた状態で摩擦攪拌接合を行ってもよい。この場合は、攪拌ピンF2と押出多孔管2との摩擦熱により、重合部J2が塑性流動化して接合される。 In the present embodiment, a predetermined depth is set so that the tip of the stirring pin F2 (flat surface F3) is in contact with the outer peripheral surface 22b of the peripheral wall portion 22. In this section, only the stirring pin F2 is inserted from the outer peripheral surface 11f side of the end portion of the extruded porous tube 2 to the overlapping portion J2, and only the stirring pin F2 is brought into contact with the extruded porous tube 2 and the lid 3A. The polymerized portion J2 is friction-stir welded with the base end side of the stirring pin F2 exposed. In this section, a predetermined depth may be set so that the stirring pin F2 does not come into contact with the lid 3A. That is, friction stir welding may be performed in a state where only the stirring pin F2 is in contact with only the extruded porous tube 2. In this case, the polymerized portion J2 is plastically fluidized and joined by the frictional heat between the stirring pin F2 and the extruded porous tube 2.

本区間においては、回転ツールFを上方から見た場合に、回転中心軸線Zが、設定移動ルートL1と重なるように回転ツールFを移動させる。図6に示すように、回転ツールFを一周させて攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。 In this section, when the rotation tool F is viewed from above, the rotation tool F is moved so that the rotation center axis Z overlaps with the set movement route L1. As shown in FIG. 6, when the stirring pin F2 reaches the intermediate point S2 by rotating the rotation tool F around the rotation tool F, the rotation tool F shifts to the withdrawal section as it is.

離脱区間では、中間点S2から終了位置EP1に向かうまでの間に攪拌ピンF2を徐々に引き抜いて(上昇させて)、終了位置EP1で押出多孔管2から攪拌ピンF2を離脱させる。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを終了位置EP1に移動させながら徐々に引抜いていく。 In the detachment section, the stirring pin F2 is gradually pulled out (raised) from the intermediate point S2 toward the end position EP1, and the stirring pin F2 is detached from the extruded porous tube 2 at the end position EP1. That is, the rotation tool F is gradually pulled out while being moved to the end position EP1 without staying in one place.

なお、押出多孔管2と一端側の蓋体3Aとの摩擦攪拌接合が終了したら、同じ要領で押出多孔管2と他端側の蓋体3Bとの摩擦攪拌接合を行う。すなわち、押出多孔管2の一方の嵌合部14に一の蓋体3Aの周壁部22を挿入するとともに、押出多孔管2の他方の嵌合部に他の蓋体3Bの周壁部を挿入する。これにより、押出多孔管2の両端部の内周面とそれぞれの蓋体3A,3Bの周壁部22の外周面とを重ね合わせて二つの重合部J2を形成する(一部図示略)。また、押出多孔管2の一方のフィン12の端面12aと蓋体3Aの周壁部22の端面22a、及び、押出多孔管2の他方のフィン12の端面と他の蓋体3Bの周壁部の端面とをそれぞれ突き合わせて、フィン12の両端に二組の突合せ部J1を形成する(一部図示略)。そして、二つの重合部J2をそれぞれ摩擦攪拌する。なお、押出多孔管2と他端側の蓋体3Bとの摩擦攪拌は省略してもよい。つまり、押出多孔管2と少なくとも一つの蓋体3が摩擦攪拌されていればよい。 After the friction stir welding between the extruded porous pipe 2 and the lid 3A on one end side is completed, the friction stir welding between the extruded porous pipe 2 and the lid 3B on the other end side is performed in the same manner. That is, the peripheral wall portion 22 of one lid 3A is inserted into one fitting portion 14 of the extruded porous pipe 2, and the peripheral wall portion of the other lid 3B is inserted into the other fitting portion of the extruded porous pipe 2. .. As a result, the inner peripheral surfaces of both ends of the extruded porous tube 2 and the outer peripheral surfaces of the peripheral wall portions 22 of the respective lids 3A and 3B are overlapped to form two overlapping portions J2 (partially not shown). Further, the end surface 12a of one fin 12 of the extruded porous tube 2, the end surface 22a of the peripheral wall portion 22 of the lid 3A, and the end surface of the other fin 12 of the extruded porous tube 2 and the end surface of the peripheral wall portion of the other lid 3B. And are butted against each other to form two sets of butted portions J1 at both ends of the fin 12 (partially not shown). Then, the two polymerization portions J2 are frictionally agitated. Friction stir welding between the extruded porous tube 2 and the lid 3B on the other end side may be omitted. That is, it is sufficient that the extruded porous tube 2 and at least one lid 3 are frictionally agitated.

以上説明した本実施形態における熱交換器の製造方法によれば、蓋体3A,3Bを一対の保持部32で両外側から保持した状態で押出多孔管2及び蓋体3A,3Bを回転又は直線移動させるため、本接合工程中に保持部32と回転ツールFとが干渉しない。つまり押出多孔管2と蓋体3A,3Bとを位置決めするための治具が、回転ツールFの移動ルート上に無いため回転ツールFの移動の妨げにならない。これにより、挿入位置等の調整が容易になるとともに、付帯設備の費用も抑えることができる。よって、熱交換器1を低コストで製造することができる。 According to the method for manufacturing a heat exchanger in the present embodiment described above, the extruded perforated pipe 2 and the lids 3A and 3B are rotated or linearly held in a state where the lids 3A and 3B are held from both outer sides by a pair of holding portions 32. Since it is moved, the holding portion 32 and the rotation tool F do not interfere with each other during the main joining process. That is, since the jig for positioning the extruded perforated pipe 2 and the lids 3A and 3B is not on the movement route of the rotation tool F, it does not hinder the movement of the rotation tool F. As a result, the insertion position and the like can be easily adjusted, and the cost of incidental equipment can be suppressed. Therefore, the heat exchanger 1 can be manufactured at low cost.

また、本接合工程では、攪拌ピンF2の先端(平坦面F3)が、周壁部22の外周面22bに接触するように(突き抜けるように)所定の深さを設定することで、蓋体3と押出多孔管2との接合強度を高めることができる。 Further, in this joining step, the tip of the stirring pin F2 (flat surface F3) is set to a predetermined depth so as to come into contact with (penetrate) the outer peripheral surface 22b of the peripheral wall portion 22, so that the lid 3 and the lid 3 are formed. The bonding strength with the extruded porous tube 2 can be increased.

また、突合せ工程では、押出多孔管2のフィン12に周壁部22の端面22aを当接させることで、蓋体3の挿入方向(押出多孔管2の押し出し方向)の位置決めを容易に行うことができる。 Further, in the butt step, the end surface 22a of the peripheral wall portion 22 is brought into contact with the fin 12 of the extruded perforated pipe 2, so that the insertion direction of the lid 3 (extrusion direction of the extruded perforated pipe 2) can be easily positioned. can.

また、本接合工程の押入区間では、開始位置SP1から中間点S1まで回転ツールFを移動させつつ所定の深さとなるまで攪拌ピンF2を徐々に押入することにより、設定移動ルートL1上の一点で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
同様に、本接合工程の離脱区間では、中間点S2から終了位置EP1まで回転ツールFを移動させつつ所定の深さから攪拌ピンF2を徐々に引き抜いて離脱させることにより、設定移動ルートL1上の一点で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
Further, in the closet section of the main joining step, the stirring pin F2 is gradually pushed in until the predetermined depth is reached while moving the rotary tool F from the start position SP1 to the intermediate point S1 at one point on the set movement route L1. It is possible to prevent the rotation tool F from stopping and the frictional heat from becoming excessive.
Similarly, in the disengagement section of the main joining step, the stirring pin F2 is gradually pulled out from a predetermined depth while moving the rotation tool F from the intermediate point S2 to the end position EP1 to disengage the stirring pin F2 on the set movement route L1. It is possible to prevent the rotation tool F from stopping at one point and causing the frictional heat to become excessive.

これらにより、設定移動ルートL1上で摩擦熱が過大となり、蓋体3から押出多孔管2へ第一アルミニウム合金が過剰に混入して接合不良となるのを防ぐことができる。 As a result, it is possible to prevent the frictional heat from becoming excessive on the set movement route L1 and the first aluminum alloy from being excessively mixed into the extruded porous pipe 2 from the lid 3 to cause poor joining.

また、蓋体3の第一アルミニウム合金は、押出多孔管2の第二アルミニウム合金よりも硬度の高い材料になっている。これにより、熱交換器1の耐久性を高めることができる。また、蓋体3の第一アルミニウム合金をアルミニウム合金鋳造材とし、押出多孔管2の第二アルミニウム合金をアルミニウム合金展伸材とすることが好ましい。第一アルミニウム合金を例えば、JISH5302 ADC12等のAl−Si−Cu系アルミニウム合金鋳造材とすることにより、蓋体3の鋳造性、強度、被削性等を高めることができる。また、第二アルミニウム合金を例えば、JIS A1000系又はA6000系とすることにより、押出多孔管2の加工性、熱伝導性を高めることができる。 Further, the first aluminum alloy of the lid 3 is a material having a higher hardness than the second aluminum alloy of the extruded porous tube 2. Thereby, the durability of the heat exchanger 1 can be enhanced. Further, it is preferable that the first aluminum alloy of the lid 3 is an aluminum alloy cast material and the second aluminum alloy of the extruded porous tube 2 is an aluminum alloy wrought material. By using an Al—Si—Cu based aluminum alloy casting material such as JISH5302 ADC12 as the first aluminum alloy, the castability, strength, machinability and the like of the lid 3 can be improved. Further, by using, for example, JIS A1000 series or A6000 series as the second aluminum alloy, the processability and thermal conductivity of the extruded porous tube 2 can be improved.

また、本接合工程においては、突合せ部J1の全周を摩擦攪拌接合できるため、熱交換器の気密性及び水密性を高めることができる。また、本接合工程の終端部分において、回転ツールFが中間点S1を完全に通過してから終了位置EP1に向かうようにする。つまり、本接合工程によって形成された塑性化領域W1の設定移動ルートL1上の各端部同士をオーバーラップさせることにより、より気密性及び水密性を高めることができる。 Further, in this joining step, since the entire circumference of the butt portion J1 can be friction-stir welded, the airtightness and watertightness of the heat exchanger can be improved. Further, at the end portion of the main joining step, the rotation tool F is made to go to the end position EP1 after completely passing through the intermediate point S1. That is, the airtightness and watertightness can be further improved by overlapping the ends of the plasticized region W1 formed by this joining step on the set movement route L1.

また、本接合工程では、攪拌ピンF2のみを押出多孔管2及び蓋体3Aに接触させて、回転ツールFの攪拌ピンF2の基端側が露出した状態で摩擦攪拌を行うため、摩擦攪拌装置に作用する負荷を軽減することができる。なお、本接合工程では、攪拌ピンF2のみを押出多孔管2のみに接触させて、回転ツールFの攪拌ピンF2の基端側が露出した状態で摩擦攪拌を行うようにしてもよい。また、蓋体3にヘッダー流路24を備えることにより、各孔部13に流れる流体を集約することができる。 Further, in this joining step, only the stirring pin F2 is brought into contact with the extruded porous tube 2 and the lid 3A, and friction stirring is performed with the base end side of the stirring pin F2 of the rotary tool F exposed. The acting load can be reduced. In this joining step, only the stirring pin F2 may be brought into contact with only the extruded porous tube 2, and friction stirring may be performed with the base end side of the stirring pin F2 of the rotary tool F exposed. Further, by providing the header flow path 24 in the lid 3, the fluid flowing in each hole 13 can be collected.

なお、本接合工程では、回転ツールFの回転速度を一定としてもよいが、可変させてもよい。本接合工程の押入区間において、開始位置SP1における回転ツールFの回転速度をV1とし、本区間における回転ツールFの回転速度をV2とすると、V1>V2としてもよい。回転速度のV2は、設定移動ルートL1における予め設定された一定の回転速度である。つまり、開始位置SP1では、回転速度を高く設定しておき、押入区間内で徐々に回転速度を低減させながら本区間に移行してもよい。 In this joining step, the rotation speed of the rotation tool F may be constant or variable. In the intrusion section of the main joining step, if the rotation speed of the rotation tool F at the start position SP1 is V1 and the rotation speed of the rotation tool F in this section is V2, V1> V2 may be satisfied. The rotation speed V2 is a preset constant rotation speed in the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the closet section to shift to the main section.

また、第一本接合工程の離脱区間において、本区間における回転ツールFの回転速度をV2、終了位置EP1において離脱させるときの回転ツールFの回転速度をV3とすると、V3>V2としてもよい。つまり、離脱区間に移行したら、終了位置EP1に向けて徐々に回転速度を上げながら押出多孔管2から回転ツールFを離脱させてもよい。回転ツールFを押出多孔管2に押し入れる際又は押出多孔管2から離脱させる際に、前記のように設定することで、押入区間又は離脱区間時における少ない押圧力を、回転速度で補うことができるため、摩擦攪拌を好適に行うことができる。 Further, if the rotation speed of the rotation tool F in this section is V2 and the rotation speed of the rotation tool F at the end position EP1 is V3 in the detachment section of the first main joining step, V3> V2 may be satisfied. That is, after shifting to the detachment section, the rotation tool F may be detached from the extruded porous tube 2 while gradually increasing the rotation speed toward the end position EP1. By setting as described above when the rotary tool F is pushed into the extruded perforated pipe 2 or when it is detached from the extruded perforated pipe 2, it is possible to compensate for the small pushing pressure in the indentation section or the incision section at the rotation speed. Therefore, friction stir welding can be preferably performed.

[第二実施形態]
次に、本発明の第二実施形態に係る熱交換器の製造方法について説明する。第二実施形態では、図7,8に示すように、蓋体3Cの形状が第一実施形態と相違する。第二実施形態では、第一実施形態と相違する部分を中心に説明する。第二実施形態に係る熱交換器の製造では、準備工程と、突合せ工程と、本接合工程とを行う。
[Second Embodiment]
Next, a method for manufacturing the heat exchanger according to the second embodiment of the present invention will be described. In the second embodiment, as shown in FIGS. 7 and 8, the shape of the lid 3C is different from that of the first embodiment. In the second embodiment, the parts different from the first embodiment will be mainly described. In the manufacture of the heat exchanger according to the second embodiment, a preparation step, a butt step, and a main joining step are performed.

準備工程では、押出多孔管2及び蓋体3Cを準備する。蓋体3Cは、底部21と、底部21の周縁から立ち上がる周壁部22Cとを有する。周壁部22Cの外周縁には周方向全体に亘って周壁段差部23が形成されている。周壁段差部23は、段差底面23aと、段差底面23aから垂直に立ち上がる段差側面23bとを有する。段差底面23aは、底部21と平行になっている。 In the preparation step, the extruded perforated pipe 2 and the lid 3C are prepared. The lid 3C has a bottom portion 21 and a peripheral wall portion 22C rising from the peripheral edge of the bottom portion 21. A peripheral wall step portion 23 is formed on the outer peripheral edge of the peripheral wall portion 22C over the entire circumferential direction. The peripheral wall step portion 23 has a step bottom surface 23a and a step side surface 23b that rises vertically from the step bottom surface 23a. The step bottom surface 23a is parallel to the bottom portion 21.

突合せ工程では、押出多孔管2の嵌合部14に蓋体3Cの周壁部22Cを挿入して、嵌め合わせる。これにより、周壁部22Cの段差底面23aと、押出多孔管2の端面11eとが突き合わされて突合せ部J3が形成される(押出多孔管2の両端で二つの突合せ部J3が形成される)。また、押出多孔管2の内周面11gと周壁部22Cの段差側面23bとが重ね合されて重合部J4が形成される(押出多孔管2の両端で二つの重合部J4が形成される)。なお、フィン12と、周壁部22Cの端面22aとは接触させてもよいし、離間させてもよい。 In the butt step, the peripheral wall portion 22C of the lid 3C is inserted into the fitting portion 14 of the extruded perforated pipe 2 and fitted. As a result, the step bottom surface 23a of the peripheral wall portion 22C and the end surface 11e of the extruded perforated pipe 2 are abutted to form a butt portion J3 (two butt portions J3 are formed at both ends of the extruded perforated pipe 2). Further, the inner peripheral surface 11g of the extruded porous tube 2 and the stepped side surface 23b of the peripheral wall portion 22C are overlapped to form the polymerized portion J4 (two polymerized portions J4 are formed at both ends of the extruded porous tube 2). .. The fin 12 and the end surface 22a of the peripheral wall portion 22C may be in contact with each other or may be separated from each other.

本接合工程では、図8に示すように、回転ツールFを用いて重合部J4を摩擦攪拌接合する。本接合工程の本区間では攪拌ピンF2の先端(平坦面F3)が周壁部22C(段差側面23b)に接触するように所定の深さを設定している。本接合工程は、第一実施形態と概ね同じであるため説明を省略する。 In this joining step, as shown in FIG. 8, the polymerized portion J4 is friction-stir welded using the rotary tool F. In this section of the main joining process, a predetermined depth is set so that the tip of the stirring pin F2 (flat surface F3) comes into contact with the peripheral wall portion 22C (step side surface 23b). Since this joining step is substantially the same as that of the first embodiment, the description thereof will be omitted.

以上説明した第二実施形態に係る熱交換器の製造方法でも第一実施形態と略同等の効果を得ることができる。また、突合せ工程では、蓋体3Cの段差底面23aを押出多孔管2の端面11eに当接させることで、蓋体3Cの挿入方向(押出多孔管2の押し出し方向)の位置決めを容易に行うことができる。 The method for manufacturing the heat exchanger according to the second embodiment described above can also obtain substantially the same effect as that of the first embodiment. Further, in the butt step, the step bottom surface 23a of the lid 3C is brought into contact with the end surface 11e of the extruded perforated pipe 2, so that the insertion direction of the lid 3C (extrusion direction of the extruded perforated pipe 2) can be easily positioned. Can be done.

以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲で適宜設計変更が可能である。例えば、前記した本実施形態に係る本接合工程では、設定移動ルートL1上に開始位置SP1及び終了位置EP1を設けたが、設定移動ルートL1に対して、蓋体3から離間する位置に、開始位置SP1及び終了位置EP1を設けてもよい。この場合においても、開始位置SP1から設定移動ルートL1上に設けた中間点S1まで回転ツールFを移動させながら徐々に回転ツールFを押入させる。また、中間点S2から終了位置EP1まで回転ツールFを移動させながら徐々に回転ツールFを離脱させる。これにより、設定移動ルートL1上で摩擦熱が過剰になるのを防ぐことができる。また、回転ツールFを中間点S1側に移動させる際又は中間点S2から離間させる際には、回転ツールFの移動速度が低下したり停止したりしないように移動ルートを設定することが好ましい。 Although the embodiment of the present invention has been described above, the design can be appropriately changed as long as it does not contradict the gist of the present invention. For example, in the main joining step according to the present embodiment described above, the start position SP1 and the end position EP1 are provided on the set movement route L1, but the start position SP1 and the end position EP1 are provided at a position away from the lid 3 with respect to the set movement route L1. The position SP1 and the end position EP1 may be provided. Also in this case, the rotation tool F is gradually pushed in while moving the rotation tool F from the start position SP1 to the intermediate point S1 provided on the set movement route L1. Further, the rotation tool F is gradually released while moving the rotation tool F from the intermediate point S2 to the end position EP1. This makes it possible to prevent excessive frictional heat on the set movement route L1. Further, when moving the rotation tool F to the intermediate point S1 side or separating it from the intermediate point S2, it is preferable to set a movement route so that the movement speed of the rotation tool F does not decrease or stop.

1 熱交換器
2 押出多孔管
3 蓋体
22 周壁部
32 保持部
F 回転ツール
F2 攪拌ピン
J1 突合せ部
J2 重合部
SP1 開始位置
EP1 終了位置
W1 塑性化領域
1 Heat exchanger 2 Extruded perforated pipe 3 Lid 22 Peripheral wall 32 Holding part F Rotating tool F2 Stirring pin J1 Butt part J2 Overlapping part SP1 Start position EP1 End position W1 Plasticization area

Claims (5)

内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する二つの蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、
前記押出多孔管は、両端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、
前記押出多孔管の一方の前記嵌合部に一の前記蓋体の前記周壁部を挿入し、前記押出多孔管の他方の前記嵌合部に他の前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の両端部の内周面とそれぞれの前記蓋体の前記周壁部の外周面とを重ね合わせて二つの重合部を形成するとともに、前記押出多孔管の一方のフィンの端面と一の前記蓋体の前記周壁部の端面、及び、前記押出多孔管の他方のフィンの端面と他の前記蓋体の前記周壁部の端面とをそれぞれ突き合わせて二組の突合せ部を形成する突合せ工程と、
回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の少なくとも一方の端部の外周面に挿入し、前記攪拌ピンのみを前記押出多孔管のみ、又は前記押出多孔管及び前記蓋体に接触させた状態で、前記重合部に沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記重合部を摩擦攪拌する本接合工程と、を含み、
前記本接合工程において、二つの前記蓋体と前記押出多孔管とを各前記蓋体の両外側から一対の保持部で押圧して保持しつつ、前記保持部を用いて前記押出多孔管及び前記蓋体を回転又は平行移動させて前記押出多孔管と少なくとも一つの前記蓋体とを摩擦攪拌することを特徴とする熱交換器の製造方法。
Manufacture of a heat exchanger composed of an extruded porous tube having fins inside and two lids for sealing the openings of the extruded porous tube, and joining the extruded porous tube and the lid by frictional stirring. It ’s a method,
The lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion.
The extruded perforated pipe has a fitting portion in which the fins are not formed at both ends and the peripheral wall portion is fitted.
The rotary tool used for friction stirring is equipped with a stirring pin, and the stirring pin is tapered toward the tip side.
Inserting the peripheral wall portion of one lid into the fitting portion of one of the extruded porous pipes, and inserting the peripheral wall portion of the other lid into the fitting portion of the other of the extruded porous pipes. By superimposing the inner peripheral surfaces of both end portions of the extruded porous pipe and the outer peripheral surfaces of the peripheral wall portions of the respective lids to form two overlapping portions, the end surface of one fin of the extruded porous pipe is formed. The end face of the peripheral wall portion of the lid body and the end face of the other fin of the extruded porous tube are abutted against each other to form two sets of abutting portions. Butting process and
Only the stirring pin of the rotating tool is inserted into the outer peripheral surface of at least one end of the extruded porous tube, and only the stirring pin is brought into contact with the extruded porous tube only or the extruded porous tube and the lid. In this state, the present joining step of circling around the outer peripheral surface of the extruded porous pipe at a predetermined depth along the polymerized portion and frictionally stirring the polymerized portion is included.
In the main joining step, the two lids and the extruded porous pipe are pressed and held by a pair of holding portions from both outer sides of the lids, and the extruded porous pipe and the extruded porous pipe are held by using the holding portions. A method for manufacturing a heat exchanger, which comprises rotating or moving a lid in parallel to rub and agitate the extruded perforated tube and at least one of the lids.
内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する二つの蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差底面と、前記段差底面から立ち上がる段差側面と、を有する周壁段差部を形成し、
前記押出多孔管は、両端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、
前記押出多孔管の一方の前記嵌合部に一の前記蓋体の前記周壁部を挿入し、前記押出多孔管の他方の前記嵌合部に他の前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の両端部の内周面とそれぞれの前記蓋体の前記段差側面とを重ね合わせて二つの重合部を形成するとともに、前記押出多孔管の一方の端面と一の前記蓋体の前記段差底面、及び、前記押出多孔管の他方の端面と他の前記蓋体の前記段差底面とをそれぞれ突き合わせて二つの突合せ部を形成する突合せ工程と、
回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の少なくとも一方の端部の外周面に挿入し、前記攪拌ピンのみを前記押出多孔管のみ、又は前記押出多孔管及び前記蓋体に接触させた状態で、前記重合部に沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記重合部を摩擦攪拌する本接合工程と、を含み、
前記本接合工程において、二つの前記蓋体と前記押出多孔管とを各前記蓋体の両外側から一対の保持部で押圧して保持しつつ、前記保持部を用いて前記押出多孔管及び前記蓋体を回転又は平行移動させて前記押出多孔管と少なくとも一つの前記蓋体とを摩擦攪拌することを特徴とする熱交換器の製造方法。
Manufacture of a heat exchanger composed of an extruded porous tube having fins inside and two lids for sealing the openings of the extruded porous tube, and joining the extruded porous tube and the lid by frictional stirring. It ’s a method,
The lid has a peripheral wall portion rising from the bottom portion and the peripheral edge of the bottom portion, and a peripheral wall step portion having a step bottom surface and a step side surface rising from the step bottom surface is formed on the outer peripheral edge of the peripheral wall portion.
The extruded perforated pipe has a fitting portion in which the fins are not formed at both ends and the peripheral wall portion is fitted.
The rotary tool used for friction stirring is equipped with a stirring pin, and the stirring pin is tapered toward the tip side.
Inserting the peripheral wall portion of one lid into the fitting portion of one of the extruded porous pipes, and inserting the peripheral wall portion of the other lid into the fitting portion of the other of the extruded porous pipes. By superimposing the inner peripheral surfaces of both ends of the extruded porous pipe and the stepped side surfaces of the respective lids to form two overlapping portions, one end surface of the extruded porous pipe and one of the lids are formed. A butt step of forming two butt portions by abutting the step bottom surface of the body and the other end surface of the extruded porous tube with the step bottom surface of the other lid body.
Only the stirring pin of the rotating tool is inserted into the outer peripheral surface of at least one end of the extruded porous tube, and only the stirring pin is brought into contact with the extruded porous tube only or the extruded porous tube and the lid. In this state, the present joining step of circling around the outer peripheral surface of the extruded porous pipe at a predetermined depth along the polymerized portion and frictionally stirring the polymerized portion is included.
In the main joining step, the two lids and the extruded porous pipe are pressed and held by a pair of holding portions from both outer sides of the lids, and the extruded porous pipe and the extruded porous pipe are held by using the holding portions. A method for manufacturing a heat exchanger, which comprises rotating or moving a lid in parallel to rub and agitate the extruded perforated tube and at least one of the lids.
前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であることを特徴とする請求項1又は請求項2に記載の熱交換器の製造方法。 The extruded porous tube is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy. The method for manufacturing a heat exchanger according to claim 1 or 2, wherein the heat exchanger is manufactured according to claim 1. 前記第一アルミニウム合金は鋳造材からなり、前記第二アルミニウム合金は展伸材からなることを特徴とする請求項3に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 3, wherein the first aluminum alloy is made of a cast material and the second aluminum alloy is made of a wrought material. 前記本接合工程では、前記攪拌ピンの先端を前記蓋体の前記周壁部に接触させた状態で前記押出多孔管の外周面の廻りに一周させて前記重合部を摩擦攪拌することを特徴とする請求項1乃至請求項4のいずれか一項に記載の熱交換器の製造方法。 The main joining step is characterized in that the tip of the stirring pin is made to go around the outer peripheral surface of the extruded porous pipe in a state of being in contact with the peripheral wall portion of the lid body, and the polymerized portion is frictionally agitated. The method for manufacturing a heat exchanger according to any one of claims 1 to 4.
JP2020097864A 2020-06-04 2020-06-04 Heat exchanger manufacturing method Pending JP2021186862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020097864A JP2021186862A (en) 2020-06-04 2020-06-04 Heat exchanger manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020097864A JP2021186862A (en) 2020-06-04 2020-06-04 Heat exchanger manufacturing method

Publications (1)

Publication Number Publication Date
JP2021186862A true JP2021186862A (en) 2021-12-13

Family

ID=78850942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020097864A Pending JP2021186862A (en) 2020-06-04 2020-06-04 Heat exchanger manufacturing method

Country Status (1)

Country Link
JP (1) JP2021186862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433998A (en) * 2022-03-25 2022-05-06 南通重矿金属新材料有限公司 Stirring friction and extrusion compounding device for metal material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433998A (en) * 2022-03-25 2022-05-06 南通重矿金属新材料有限公司 Stirring friction and extrusion compounding device for metal material

Similar Documents

Publication Publication Date Title
WO2019193779A1 (en) Method for manufacturing liquid-cooled jacket
JP6927067B2 (en) How to manufacture a liquid-cooled jacket
JP6927068B2 (en) How to manufacture a liquid-cooled jacket
WO2019193778A1 (en) Method for manufacturing liquid-cooled jacket
WO2019064849A1 (en) Method for producing liquid-cooled jacket
JP2019037986A (en) Manufacturing method of liquid-cooled jacket
JP2019141886A (en) Liquid-cooled jacket manufacturing method
JP2020011271A (en) Liquid-cooled jacket manufacturing method
JP2021186862A (en) Heat exchanger manufacturing method
JP2021186864A (en) Heat exchanger manufacturing method
WO2021171637A1 (en) Method for manufacturing heat exchanger
JP2021186863A (en) Heat exchanger manufacturing method
WO2021171635A1 (en) Method for manufacturing heat exchanger
JP7127618B2 (en) Heat exchanger manufacturing method
WO2021171636A1 (en) Method for manufacturing heat exchanger
WO2020059198A1 (en) Method for producing liquid-cooling jacket
WO2020213195A1 (en) Method for manufacturing liquid-cooled jacket
WO2020213197A1 (en) Method for manufacturing liquid-cooled jacket
JP2020131263A (en) Liquid-cooled jacket manufacturing method
JP2019155414A (en) Manufacturing method for liquid-cooled jacket
JP7211342B2 (en) Heat exchanger manufacturing method
JP2019188414A (en) Liquid-cooled jacket manufacturing method
JP7140061B2 (en) Heat exchanger manufacturing method
WO2020170488A1 (en) Method for manufacturing liquid-cooled jacket
WO2019202754A1 (en) Liquid-cooled jacket manufacturing method