JP7127618B2 - Heat exchanger manufacturing method - Google Patents

Heat exchanger manufacturing method Download PDF

Info

Publication number
JP7127618B2
JP7127618B2 JP2019120709A JP2019120709A JP7127618B2 JP 7127618 B2 JP7127618 B2 JP 7127618B2 JP 2019120709 A JP2019120709 A JP 2019120709A JP 2019120709 A JP2019120709 A JP 2019120709A JP 7127618 B2 JP7127618 B2 JP 7127618B2
Authority
JP
Japan
Prior art keywords
extruded
lid
perforated tube
aluminum alloy
stirring pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019120709A
Other languages
Japanese (ja)
Other versions
JP2021006349A (en
Inventor
久司 堀
伸城 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2019120709A priority Critical patent/JP7127618B2/en
Priority to CN201980097737.0A priority patent/CN113993650B/en
Priority to PCT/JP2019/045194 priority patent/WO2020261597A1/en
Publication of JP2021006349A publication Critical patent/JP2021006349A/en
Application granted granted Critical
Publication of JP7127618B2 publication Critical patent/JP7127618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器の製造方法に関する。 The present invention relates to a method for manufacturing a heat exchanger.

例えば、特許文献1には、複数の孔部が並設された押出多孔管と、当該押出多孔管の開口部を封止する封止体とを摩擦攪拌で接合する熱交換器の製造方法が開示されている。図8は、従来の熱交換器の製造方法を示す断面図である。 For example, Patent Document 1 discloses a heat exchanger manufacturing method in which an extruded perforated tube having a plurality of holes arranged side by side and a sealing body that seals the opening of the extruded perforated tube are joined by friction stir. disclosed. FIG. 8 is a cross-sectional view showing a method of manufacturing a conventional heat exchanger.

従来の熱交換器の製造方法では、複数のフィン110を備えたアルミニウム合金製の押出多孔管101と、蓋体102の外周に形成された段差部103とを突き合わせて突合せ部J10を形成した後、突合せ部J10に対して回転ツールGを用いて摩擦攪拌接合を行うというものである。段差部103は、段差底面103aと、段差側面103bとで構成されている。突合せ部J10は、押出多孔管101の端面101aと、蓋体102の段差底面103aとを突き合わせて構成されている。回転ツールGは、ショルダ部G1と、ショルダ部G1から垂下する攪拌ピンG2とを備えている。摩擦攪拌工程では、回転させた攪拌ピンG2の回転中心軸Zを突合せ部J10に重ね合わせて相対移動させるというものである。 In the conventional method of manufacturing a heat exchanger, after the extruded perforated tube 101 made of aluminum alloy provided with a plurality of fins 110 and the stepped portion 103 formed on the outer periphery of the lid 102 are butted against each other to form the butted portion J10. , friction stir welding is performed using a rotary tool G on the butted portion J10. The step portion 103 is composed of a step bottom surface 103a and a step side surface 103b. The abutting portion J10 is formed by abutting the end surface 101a of the extruded perforated tube 101 and the stepped bottom surface 103a of the lid body 102 together. The rotary tool G has a shoulder portion G1 and an agitating pin G2 depending from the shoulder portion G1. In the friction stir process, the rotation center axis Z of the rotated stir pin G2 is superimposed on the butted portion J10 and relatively moved.

特開2016-74016号公報JP 2016-74016 A

ここで、押出多孔管101のように比較的単純な形状のものは、1000系アルミニウム合金の展伸材で形成し、蓋体102は、例えば、4000系アルミニウム合金の鋳造材で形成するというような場合がある。このように、アルミニウム合金の材種の異なる部材同士を接合して、熱交換器を製造する場合がある。このような場合は、蓋体102の方が押出多孔管101よりも硬度が高くなることが一般的であるため、図8のように摩擦攪拌接合を行うと、攪拌ピンG2が押出多孔管101側から受ける材料抵抗に比べて、蓋体102側から受ける材料抵抗が大きくなる。そのため、回転ツールGの攪拌ピンG2によって異なる材種をバランスよく攪拌することが困難となり、接合後の塑性化領域に空洞欠陥が発生し接合強度が低下するという問題がある。 Here, a relatively simple shape like the extruded perforated tube 101 is made of a wrought material of 1000 series aluminum alloy, and the lid body 102 is made of a cast material of a 4000 series aluminum alloy, for example. There are cases. In this way, there is a case where a heat exchanger is manufactured by joining aluminum alloy members of different grades. In such a case, the lid 102 generally has a higher hardness than the perforated extruded pipe 101. Therefore, if friction stir welding is performed as shown in FIG. The material resistance received from the lid body 102 side is greater than the material resistance received from the side. Therefore, it becomes difficult to stir different types of materials with the stirring pin G2 of the rotary tool G in a well-balanced manner, and there is a problem that void defects occur in the plasticized region after bonding, resulting in a decrease in bonding strength.

また、図8に示すように、攪拌ピンG2を突合せ部J10に挿入する際、所定の深さとなるまで鉛直方向に攪拌ピンG2を押入するため、摩擦攪拌の開始位置における摩擦熱が過大となる。これにより、当該開始位置において、蓋体102側の金属が押出多孔管101側に混入しやすくなり、接合不良の一因となるという問題がある。 In addition, as shown in FIG. 8, when inserting the agitating pin G2 into the abutting portion J10, the agitating pin G2 is pushed in in the vertical direction to a predetermined depth. . As a result, the metal on the side of the lid 102 is likely to mix into the side of the extruded perforated tube 101 at the start position, which causes a problem of joining failure.

一方、攪拌ピンG2を突合せ部J10から引き抜いて離脱させる際、鉛直方向に攪拌ピンG2を引き抜くため、摩擦攪拌の終了位置における摩擦熱が過大となる。これにより、当該終了位置において、蓋体102側の金属が押出多孔管101側に混入しやすくなり、接合不良の一因となるという問題がある。 On the other hand, when the agitating pin G2 is pulled out from the abutting portion J10 and separated, the agitating pin G2 is pulled out in the vertical direction. As a result, at the end position, the metal on the side of the lid 102 tends to be mixed into the side of the extruded perforated tube 101, which causes a problem of joint failure.

このような観点から、本発明は、材種の異なるアルミニウム合金を好適に接合することができる熱交換器の製造方法を提供することを課題とする。 From this point of view, an object of the present invention is to provide a method for manufacturing a heat exchanger that can suitably join aluminum alloys of different materials.

前記課題を解決するために、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、回転する前記攪拌ピンのみを前記設定移動ルートよりもさらに前記押出多孔管側に設定した開始位置に挿入した後、前記回転ツールの回転中心軸を前記設定移動ルートと重複する位置まで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする。 In order to solve the above problems, the present invention comprises an extruded perforated tube having fins inside and a lid for sealing an opening of the extruded perforated tube, wherein the extruded perforated tube and the lid are In a method for manufacturing a heat exchanger that is joined by friction stir, the lid has a bottom and a peripheral wall rising from the peripheral edge of the bottom, and the peripheral edge of the peripheral wall has a stepped side surface and a stepped side surface from the stepped side surface. and a stepped sloped surface that slopes toward the bottom side toward the outside, and the extruded perforated tube has no fins formed at the end and the peripheral wall portion is fitted. The extruded perforated tube is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is higher than the second aluminum alloy. The rotary tool used for friction stir is equipped with a stirring pin, the stirring pin is tapered toward the tip side, and the fitting part of the extruded perforated tube By inserting the peripheral wall portion of the lid, the inner peripheral surface of the extruded perforated tube and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated tube and the stepped inclined surface of the lid are aligned. and inserting only the stirring pin of the rotating rotating tool into the outer peripheral surface of the extruded perforated tube, and inserting only the stirring pin into the outer peripheral surface of the extruded perforated tube, and inserting the outer peripheral surface of the stirring pin into the lid. A predetermined depth along a set movement route set on the extruded perforated tube side of the abutting portion while allowing the second aluminum alloy to flow into the gap while slightly contacting the step inclined surface of and a main joining step in which the butt portion is friction-stirred by making one turn around the outer peripheral surface of the extruded perforated tube, and in the main joining step, only the rotating stirring pin is moved further than the set movement route. After inserting the agitating pin into the start position set on the extruded perforated tube side, while moving the rotation center axis of the rotating tool to a position that overlaps with the set movement route, the stirring pin is gradually pushed in until the predetermined depth is reached. characterized by

また、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ所定の高さとなるまで徐々に前記攪拌ピンを押入することを特徴とする。 In addition, the present invention comprises an extruded perforated tube having fins inside and a lid for sealing an opening of the extruded perforated tube, and the heat treatment for joining the extruded perforated tube and the lid by friction stirring. In the method for manufacturing an exchanger, the lid has a bottom and a peripheral wall rising from the peripheral edge of the bottom, and the peripheral wall has a stepped side surface on the peripheral edge of the peripheral wall, and the bottom portion increases outward from the stepped side. and a peripheral wall stepped portion having a stepped inclined surface that slopes toward the side, and the extruded perforated pipe has a fitting portion in which the peripheral wall portion is fitted without the fins formed at the end. wherein the extruded perforated tube is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy has a higher hardness than the second aluminum alloy. The rotating tool used for friction stirring is provided with a stirring pin, the stirring pin is tapered toward the tip side, and the fitting portion of the extruded perforated tube is fitted to the peripheral wall of the lid. By inserting the portion, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe and the stepped inclined surface of the lid are abutted to the abutting portion. A butting step of forming a gap with a V-shaped cross section, inserting only the stirring pin of the rotating rotating tool into the outer peripheral surface of the extruded perforated tube, and slightly placing the outer peripheral surface of the stirring pin on the step inclined surface of the lid. of the extruded perforated tube at a predetermined depth along a set movement route set closer to the extruded perforated tube than the abutting portion while allowing the second aluminum alloy to flow into the gap while the extruded perforated tube is in contact with the and a main welding step of friction-stirring the butt portion by making one turn around the outer peripheral surface, and in the main welding step, inserting the agitation pin from a start position set on the set movement route, and moving in the direction of movement It is characterized in that the stirring pin is gradually pushed in until it reaches a predetermined height while being moved.

かかる製造方法によれば、蓋体と押出多孔管との摩擦熱によって突合せ部の主として押出多孔管側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において蓋体と押出多孔管とを接合することができる。また、攪拌ピンの外周面を蓋体にわずかに接触させるに留めるため、蓋体から押出多孔管への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主として押出多孔管側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールを移動させながら所定の深さとなるまで攪拌ピンを徐々に押入することにより、局所的に摩擦熱が過大になるのを防ぐことができる。これにより、設定移動ルート上において、蓋体の第一アルミニウム合金が押出多孔管側に混入するのを防ぐことができる。 According to this manufacturing method, the second aluminum alloy mainly on the extruded perforated tube side of the butted portion is agitated and plastically fluidized by frictional heat between the lid and the perforated extruded tube, and the lid and the perforated extruded tube are agitated at the butted portion. can be spliced. In addition, since the outer peripheral surface of the stirring pin is only slightly in contact with the cover, it is possible to minimize the mixing of the first aluminum alloy from the cover into the extruded perforated tube. As a result, mainly the second aluminum alloy on the extruded perforated tube side is friction-stirred at the butted portion, so that a decrease in joint strength can be suppressed. Further, by gradually pushing the agitation pin until it reaches a predetermined depth while moving the rotating tool, it is possible to prevent frictional heat from becoming excessive locally. As a result, it is possible to prevent the first aluminum alloy of the lid from entering the extruded perforated tube side on the set movement route.

また、前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることが好ましい。 Further, in the main bonding step, friction stir is performed by rotating the stirring pin at a predetermined rotational speed, and when the stirring pin is inserted in the main bonding step, the stirring is performed at a speed higher than the predetermined rotational speed. It is preferable to insert the pin in a rotated state and move it to the set movement route while gradually decreasing the rotational speed.

かかる製造方法によれば、より好適に摩擦攪拌接合を行うことができる。 According to this manufacturing method, friction stir welding can be performed more preferably.

また、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルートよりもさらに前記押出多孔管側に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする。 In addition, the present invention comprises an extruded perforated tube having fins inside and a lid for sealing an opening of the extruded perforated tube, and the heat treatment for joining the extruded perforated tube and the lid by friction stirring. In the method for manufacturing an exchanger, the lid has a bottom and a peripheral wall rising from the peripheral edge of the bottom, and the peripheral wall has a stepped side surface on the peripheral edge of the peripheral wall, and the bottom portion increases outward from the stepped side. and a peripheral wall stepped portion having a stepped inclined surface that slopes toward the side, and the extruded perforated pipe has a fitting portion in which the peripheral wall portion is fitted without the fins formed at the end. wherein the extruded perforated tube is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy has a higher hardness than the second aluminum alloy. The rotating tool used for friction stirring is provided with a stirring pin, the stirring pin is tapered toward the tip side, and the fitting portion of the extruded perforated tube is fitted to the peripheral wall of the lid. By inserting the portion, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe and the stepped inclined surface of the lid are abutted to the abutting portion. A butting step of forming a gap with a V-shaped cross section, inserting only the stirring pin of the rotating rotating tool into the outer peripheral surface of the extruded perforated tube, and slightly placing the outer peripheral surface of the stirring pin on the step inclined surface of the lid. of the extruded perforated tube at a predetermined depth along a set movement route set closer to the extruded perforated tube than the abutting portion while allowing the second aluminum alloy to flow into the gap while the extruded perforated tube is in contact with the a main joining step of friction-stirring the butted portion by making one turn around the outer peripheral surface, in the main joining step, setting an end position further on the extruded perforated tube side than the set movement route, and After the friction stir welding of the parts, the rotating tool is moved to the end position and the stirring pin is gradually pulled out to separate the rotating tool from the extruded perforated tube at the end position.

また、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする。 In addition, the present invention comprises an extruded perforated tube having fins inside and a lid for sealing an opening of the extruded perforated tube, and the heat treatment for joining the extruded perforated tube and the lid by friction stirring. In the method for manufacturing an exchanger, the lid has a bottom and a peripheral wall rising from the peripheral edge of the bottom, and the peripheral wall has a stepped side surface on the peripheral edge of the peripheral wall, and the bottom portion increases outward from the stepped side. and a peripheral wall stepped portion having a stepped inclined surface that slopes toward the side, and the extruded perforated pipe has a fitting portion in which the peripheral wall portion is fitted without the fins formed at the end. wherein the extruded perforated tube is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy has a higher hardness than the second aluminum alloy. The rotating tool used for friction stirring is provided with a stirring pin, the stirring pin is tapered toward the tip side, and the fitting portion of the extruded perforated tube is fitted to the peripheral wall of the lid. By inserting the portion, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe and the stepped inclined surface of the lid are abutted to the abutting portion. A butting step of forming a gap with a V-shaped cross section, inserting only the stirring pin of the rotating rotating tool into the outer peripheral surface of the extruded perforated tube, and slightly placing the outer peripheral surface of the stirring pin on the step inclined surface of the lid. of the extruded perforated tube at a predetermined depth along a set movement route set closer to the extruded perforated tube than the abutting portion while allowing the second aluminum alloy to flow into the gap while the extruded perforated tube is in contact with the and a final welding step of friction-stirring the butt portion by making one turn around the outer peripheral surface, in the main welding step, setting an end position on the set movement route, and performing friction stir welding on the butt portion. a., while moving the rotating tool to the end position, the stirring pin is gradually pulled out, and the rotating tool is separated from the extruded perforated tube at the end position;

かかる製造方法によれば、蓋体と押出多孔管との摩擦熱によって突合せ部の主として押出多孔管側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において蓋体と押出多孔管とを接合することができる。また、攪拌ピンの外周面を蓋体にわずかに接触させるに留めるため、蓋体から押出多孔管への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主として押出多孔管側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールを移動させながら攪拌ピンを徐々に引き抜くことにより、局所的に摩擦熱が過大になるのを防ぐことができる。これにより、設定移動ルート上において、蓋体の第一アルミニウム合金が押出多孔管側に混入するのを防ぐことができる。 According to this manufacturing method, the second aluminum alloy mainly on the extruded perforated tube side of the butted portion is agitated and plastically fluidized by frictional heat between the lid and the perforated extruded tube, and the lid and the perforated extruded tube are agitated at the butted portion. can be spliced. In addition, since the outer peripheral surface of the stirring pin is only slightly in contact with the cover, it is possible to minimize the mixing of the first aluminum alloy from the cover into the extruded perforated tube. As a result, mainly the second aluminum alloy on the extruded perforated tube side is friction-stirred at the butted portion, so that a decrease in joint strength can be suppressed. Further, by gradually withdrawing the stirring pin while moving the rotary tool, it is possible to prevent the frictional heat from becoming excessive locally. As a result, it is possible to prevent the first aluminum alloy of the lid from entering the extruded perforated tube side on the set movement route.

また、 前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら終了位置まで移動させることが好ましい。 Further, in the main welding step, friction stirring is performed by rotating the stirring pin at a predetermined rotational speed, and when the stirring pin is detached in the main welding step, the rotational speed is gradually increased from the predetermined rotational speed. It is preferable to move it to the end position while raising it.

かかる製造方法によれば、より好適に摩擦攪拌接合を行うことができる。 According to this manufacturing method, friction stir welding can be performed more preferably.

また、前記突合せ工程では、前記蓋体の外周面よりも前記押出多孔管の外周面の方が外側となるように、前記押出多孔管と前記蓋体とを形成することが好ましい。 Moreover, in the butting step, the extruded perforated pipe and the lid are preferably formed so that the outer peripheral surface of the extruded perforated pipe is positioned outside the outer peripheral surface of the lid.

かかる製造方法によれば、接合部の金属不足を防ぐことができる。 According to this manufacturing method, it is possible to prevent shortage of metal in the joint.

また、前記回転ツールの回転方向及び進行方向を前記突合せ部側がアドバンシング側となるように設定することが好ましい。 Further, it is preferable to set the rotating direction and advancing direction of the rotating tool such that the butting portion side is the advancing side.

かかる製造方法によれば、突合せ部側の摩擦攪拌が促進され、より好適に接合することができる。 According to this manufacturing method, the friction stir at the butt portion side is promoted, and more suitable joining can be achieved.

また、前記本接合工程では、前記攪拌ピンの先端が前記蓋体の段差側面を突き抜けた状態で前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌することが好ましい。 Further, in the main joining step, it is preferable that the tip of the stirring pin is passed through the stepped side surface of the lid body and then made to circle around the outer peripheral surface of the extruded perforated tube to friction stir the butted portion.

かかる製造方法によれば、蓋体と押出多孔管とをより好適に接合することができる。 According to this manufacturing method, the lid and the extruded perforated pipe can be more suitably joined.

また、前記第一アルミニウム合金は鋳造材からなり、前記第二アルミニウム合金は展伸材からなることが好ましい。 Moreover, it is preferable that the first aluminum alloy is made of a cast material, and the second aluminum alloy is made of a wrought material.

本発明に係る熱交換器の製造方法によれば、材種の異なるアルミニウム合金を好適に接合することができる。 According to the heat exchanger manufacturing method of the present invention, aluminum alloys of different types can be suitably joined.

本発明の第一実施形態に係る熱交換器を示す分解斜視図である。It is an exploded perspective view showing a heat exchanger concerning a first embodiment of the present invention. 第一実施形態に係る熱交換器の製造方法の突合せ工程を示す断面図である。It is sectional drawing which shows the butt|matching process of the manufacturing method of the heat exchanger which concerns on 1st embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程の開始位置を示す模式図である。FIG. 4 is a schematic diagram showing the starting position of the main joining step in the method for manufacturing the heat exchanger according to the first embodiment; 第一実施形態に係る熱交換器の製造方法の本接合工程を示す断面図である。FIG. 4 is a cross-sectional view showing the main joining step of the method for manufacturing the heat exchanger according to the first embodiment; 第一実施形態に係る熱交換器の製造方法の本接合工程の終了位置を示す模式図である。FIG. 4 is a schematic diagram showing the end position of the main joining step in the method for manufacturing the heat exchanger according to the first embodiment; 本発明の第二実施形態に係る熱交換器の製造方法の本接合工程の開始位置を示す模式図である。FIG. 5 is a schematic diagram showing the starting position of the main joining step in the method for manufacturing a heat exchanger according to the second embodiment of the present invention; 本発明の第二実施形態に係る熱交換器の製造方法の本接合工程の終了位置を示す模式図である。FIG. 5 is a schematic diagram showing the end position of the main joining step in the method for manufacturing a heat exchanger according to the second embodiment of the present invention; 従来の熱交換器の製造方法を示す断面図である。It is a cross-sectional view showing a method of manufacturing a conventional heat exchanger.

[第一実施形態]
本発明の実施形態について、適宜図面を参照しながら説明する。第一実施形態に係る熱交換器1は、図1に示すように、押出多孔管2と、押出多孔管2の両端に配置された蓋体3,3とで構成されている。熱交換器1は、内部に流体を流通させて、配置される発熱体を冷却する機器である。押出多孔管2と蓋体3,3とは摩擦攪拌接合で一体化される。
[First embodiment]
Embodiments of the present invention will be described with reference to the drawings as appropriate. A heat exchanger 1 according to the first embodiment, as shown in FIG. The heat exchanger 1 is a device that circulates a fluid inside to cool a heat generating element arranged therein. The extruded perforated pipe 2 and the lid bodies 3, 3 are integrated by friction stir welding.

押出多孔管2は、本体部11と、複数のフィン12とで主に構成されている。押出多孔管2は、本実施形態では第二アルミニウム合金を主に含んで形成されている。第二アルミニウム合金は、例えば、JIS A1050,A1100,A6063等のアルミニウム合金展伸材で形成されている。押出多孔管2は、第二アルミニウム合金で形成された押出形材である。 The extruded perforated tube 2 is mainly composed of a body portion 11 and a plurality of fins 12 . The extruded perforated tube 2 is formed mainly containing a second aluminum alloy in this embodiment. The second aluminum alloy is made of, for example, an aluminum alloy wrought material such as JIS A1050, A1100, A6063. The extruded perforated tube 2 is an extruded profile made of a second aluminum alloy.

本体部11は、筒状を呈する。本体部11の側部11a,11bは外側(本体部11の幅方向外側)に凸となるように湾曲している。本体部11の基板部11c,11dは平坦になっており、平行に対向している。つまり、本体部11の断面は長丸形状になっている。フィン12は、基板部11c,11dに対して垂直になっている。フィン12は、本体部11の押し出し方向に延設され、それぞれ平行に形成されている。隣り合うフィン12の間には、流体が流通する断面矩形の孔部13が形成されている。 The body portion 11 has a tubular shape. The side portions 11a and 11b of the main body portion 11 are curved so as to protrude outward (outward in the width direction of the main body portion 11). The substrate portions 11c and 11d of the body portion 11 are flat and face each other in parallel. That is, the cross section of the main body portion 11 has an oval shape. The fins 12 are perpendicular to the substrate portions 11c and 11d. The fins 12 extend in the direction in which the main body 11 is pushed out and are formed parallel to each other. Between adjacent fins 12, holes 13 having rectangular cross sections are formed through which fluid flows.

押出多孔管2の両端の開口部には、フィン12が形成されていない嵌合部14が形成されている。嵌合部14は、後記する蓋体3の周壁部22が挿入される部位である。嵌合部14は、フィン12の両端を切削することにより形成されている。押出多孔管2の形状は、上記した形状に限定されるものではない。例えば、押出多孔管2の断面(押出方向に対して垂直な断面)が、円形、楕円形又は角形であってもよい。 The openings at both ends of the extruded perforated tube 2 are formed with fitting portions 14 where the fins 12 are not formed. The fitting portion 14 is a portion into which a peripheral wall portion 22 of the lid 3 described later is inserted. The fitting portions 14 are formed by cutting both ends of the fins 12 . The shape of the extruded perforated tube 2 is not limited to the shape described above. For example, the cross section of the extruded perforated tube 2 (the cross section perpendicular to the extrusion direction) may be circular, elliptical, or square.

蓋体3,3は、押出多孔管2の両端の開口部を封止する部材である。蓋体3,3は、それぞれ同形状になっている。蓋体3は、底部21と、周壁部22とを有する。底部21は、長丸形状を呈する板状部材である。底部21の外形は、押出多孔管2の開口部を封止するように、押出多孔管2の本体部11の外形と概ね同形状になっている。周壁部22は、底部21の周縁部から垂直に立ち上がる部位である。周壁部22は、底部21の形状に沿って長丸の枠状に形成されている。底部21と周壁部22とで凹状のヘッダー流路24が形成されている。 The lids 3 , 3 are members for sealing openings at both ends of the extruded perforated tube 2 . The lids 3, 3 have the same shape. The lid 3 has a bottom portion 21 and a peripheral wall portion 22 . The bottom portion 21 is a plate-like member having an oblong shape. The outer shape of the bottom portion 21 is substantially the same as the outer shape of the main body portion 11 of the extruded perforated pipe 2 so as to seal the opening of the extruded perforated pipe 2 . The peripheral wall portion 22 is a portion that rises vertically from the peripheral portion of the bottom portion 21 . The peripheral wall portion 22 is formed in an elongated frame shape along the shape of the bottom portion 21 . A concave header channel 24 is formed by the bottom portion 21 and the peripheral wall portion 22 .

蓋体3の材料は、摩擦攪拌可能な金属であれば特に制限されないが、本実施形態では第一アルミニウム合金を主に含んで形成されている。第一アルミニウム合金は、第二アルミニウム合金よりも硬度の高い材料である。第一アルミニウム合金は、例えば、JISH5302 ADC12(Al-Si-Cu系)等のアルミニウム合金鋳造材を用いている。 The material of the lid 3 is not particularly limited as long as it is a metal that can be friction-stirred, but in the present embodiment, it mainly contains a first aluminum alloy. The first aluminum alloy is a harder material than the second aluminum alloy. As the first aluminum alloy, for example, an aluminum alloy cast material such as JISH5302 ADC12 (Al-Si-Cu system) is used.

図2にも示すように、周壁部22の外周縁には、段差側面23aと、段差側面23aから立ち上がる段差傾斜面23bとで構成された周壁段差部23が形成されている。周壁段差部23は、周方向全体にわたって形成されている。段差側面23aは、押し出し方向と平行になっている。段差傾斜面23bは、段差側面23aから外側(本体部11の幅方向外側)に向かうにつれて底部21に近接するように傾斜している。換言すると、段差傾斜面23bは、外側に向かうにつれて本体部11から離間するように傾斜している。段差傾斜面23bの傾斜角度βは、一定の傾斜角度になっている。 As shown in FIG. 2, the outer peripheral edge of the peripheral wall portion 22 is formed with a peripheral wall stepped portion 23 composed of a stepped side surface 23a and a stepped inclined surface 23b rising from the stepped side surface 23a. The peripheral wall stepped portion 23 is formed over the entire circumferential direction. The stepped side surface 23a is parallel to the extrusion direction. The stepped inclined surface 23b is inclined so as to approach the bottom portion 21 from the stepped side surface 23a toward the outside (outer side in the width direction of the main body portion 11). In other words, the step sloped surface 23b slopes away from the body portion 11 toward the outside. The inclination angle β of the step inclined surface 23b is a constant inclination angle.

押出多孔管2の外周面11fと周壁部22の外周面22bとは面一でもよいが、本実施形態では、押出多孔管2及び蓋体3は、後記する突合せ工程を行った後、周壁部22の外周面22bよりも、押出多孔管2の外周面11fが外側となるように設定している。換言すると、段差傾斜面23bの高さ寸法よりも、押出多孔管2の端面11eの高さ(厚さ)寸法の方が大きくなるように設定している。 The outer peripheral surface 11f of the extruded perforated tube 2 and the outer peripheral surface 22b of the peripheral wall portion 22 may be flush with each other. The outer peripheral surface 11 f of the extruded perforated tube 2 is set to be outside the outer peripheral surface 22 b of the extruded perforated tube 2 . In other words, the height (thickness) dimension of the end surface 11e of the extruded perforated tube 2 is set to be larger than the height dimension of the step inclined surface 23b.

次に、本実施形態に係る熱交換器の製造方法について説明する。本実施形態に係る熱交換器の製造方法では、準備工程と、突合せ工程と、本接合工程とを行う。 Next, a method for manufacturing the heat exchanger according to this embodiment will be described. In the method for manufacturing a heat exchanger according to this embodiment, a preparatory step, a butting step, and a final joining step are performed.

準備工程は、押出多孔管2及び蓋体3を準備する工程である。押出多孔管2及び蓋体3は、製造方法については特に制限されないが、押出多孔管2は、例えば、押出成形で成形する。蓋体3は、例えば、ダイキャストにより成形する。 The preparation step is a step of preparing the extruded perforated pipe 2 and the lid 3 . The extruded perforated tube 2 and the lid 3 are not particularly limited in their manufacturing method, but the extruded perforated tube 2 is formed by, for example, extrusion molding. The lid 3 is formed by die casting, for example.

突合せ工程は、図2に示すように、押出多孔管2に蓋体3を突き合わせる工程である。突合せ工程では、蓋体3の周壁部22に、押出多孔管2の嵌合部14を嵌め合わせる。これにより、蓋体3の段差傾斜面23bと押出多孔管2の端面11eとが突き合わされて突合せ部J1が形成されるとともに、蓋体3の段差側面23aと押出多孔管2の内周面11gとが重ね合わされて突合せ部J2が形成される。周壁部22の端面22aと、フィン12の端面12aとは接触するか、わずかな隙間をあけて対向する。突合せ部J1,J2は、周方向にわたって形成される。突合せ部J1には断面V字状の隙間が形成される。 The butting step is, as shown in FIG. In the butting step, the fitting portion 14 of the perforated extruded pipe 2 is fitted to the peripheral wall portion 22 of the lid 3 . As a result, the step inclined surface 23b of the lid 3 and the end surface 11e of the extruded perforated tube 2 are abutted to form a butting portion J1, and the stepped side surface 23a of the lid 3 and the inner peripheral surface 11g of the extruded perforated tube 2 are formed. are overlapped to form a butting portion J2. The end surface 22a of the peripheral wall portion 22 and the end surface 12a of the fin 12 are in contact with each other or face each other with a small gap therebetween. The butted portions J1 and J2 are formed along the circumferential direction. A gap having a V-shaped cross section is formed in the butted portion J1.

本接合工程は、図3及び図4に示すように、回転ツールFを用いて突合せ部J1を摩擦攪拌接合する工程である。まず、突合せ部J1に対して蓋体3から離間する位置に「設定移動ルートL1」(一点鎖線)を設定する。設定移動ルートL1は、後記する本接合工程において、突合せ部J1を接合するために必要な回転ツールFの移動ルートである。設定移動ルートL1については追って詳述する。 3 and 4, the main welding step is a step of friction stir welding the butted portion J1 using a rotary tool F. FIG. First, a “set movement route L1” (one-dot chain line) is set at a position away from the cover 3 with respect to the abutting portion J1. The set movement route L1 is a movement route of the rotary tool F necessary for joining the butt portion J1 in the main joining process described later. The set travel route L1 will be described later in detail.

図4に示すように、回転ツールFは、連結部F1と、攪拌ピンF2とで構成されている。回転ツールFは、例えば工具鋼で形成されている。連結部F1は、摩擦攪拌装置(図示省略)の回転軸に連結される部位である。連結部F1は円柱状を呈し、ボルトが締結されるネジ孔(図示省略)が形成されている。 As shown in FIG. 4, the rotary tool F is composed of a connecting portion F1 and a stirring pin F2. The rotary tool F is made of tool steel, for example. The connecting portion F1 is a portion connected to a rotating shaft of a friction stirrer (not shown). The connecting portion F1 has a cylindrical shape and is formed with a screw hole (not shown) for fastening a bolt.

攪拌ピンF2は、連結部F1から垂下しており、連結部F1と同軸になっている。攪拌ピンF2は連結部F1から離間するにつれて先細りになっている。回転中心軸Zに対する攪拌ピンF2の傾斜角度αは、鉛直面に対する段差傾斜面23bの傾斜角度β(図2)と同一になっている。攪拌ピンF2の先端には平坦な平坦面F3を備えている。 The stirring pin F2 hangs down from the connecting portion F1 and is coaxial with the connecting portion F1. The agitating pin F2 tapers away from the connecting portion F1. The inclination angle α of the stirring pin F2 with respect to the rotation center axis Z is the same as the inclination angle β (FIG. 2) of the step inclined surface 23b with respect to the vertical plane. A flat surface F3 is provided at the tip of the stirring pin F2.

攪拌ピンF2の外周面には螺旋溝が刻設されている。本実施形態では、回転ツールFを右回転させるため、螺旋溝は、基端から先端に向かうにつれて左回りに形成されている。言い換えると、螺旋溝は、螺旋溝を基端から先端に向けてなぞると上から見て左回りに形成されている。 A spiral groove is engraved on the outer peripheral surface of the stirring pin F2. In this embodiment, since the rotating tool F is rotated rightward, the spiral groove is formed counterclockwise from the proximal end toward the distal end. In other words, the spiral groove is formed counterclockwise when viewed from above when the spiral groove is traced from the proximal end to the distal end.

なお、回転ツールFを左回転させる場合は、螺旋溝を基端から先端に向かうにつれて右回りに形成することが好ましい。言い換えると、この場合の螺旋溝は、螺旋溝を基端から先端に向けてなぞると上から見て右回りに形成されている。螺旋溝をこのように設定することで、摩擦攪拌の際に塑性流動化した金属が螺旋溝によって攪拌ピンF2の先端側に導かれる。これにより、被接合金属部材(押出多孔管2及び蓋体3)の外部に溢れ出る金属の量を少なくすることができる。回転ツールFは、例えば、先端にスピンドルユニット等の回転駆動手段を備えたロボットアームに取り付けてもよい。 In addition, when rotating the rotating tool F to the left, it is preferable to form the spiral groove in a clockwise direction from the proximal end to the distal end. In other words, the helical groove in this case is formed in a clockwise direction as viewed from above when the helical groove is traced from the proximal end to the distal end. By setting the spiral groove in this way, the metal plastically fluidized during friction stirring is guided to the tip side of the stirring pin F2 by the spiral groove. As a result, the amount of metal overflowing to the outside of the metal members to be joined (the perforated extruded pipe 2 and the lid 3) can be reduced. The rotary tool F may be attached to, for example, a robot arm having a rotary drive means such as a spindle unit at its tip.

図3に示すように、本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1までの離脱区間の三つの区間を連続して摩擦攪拌接合する。中間点S1,S2は、設定移動ルートL1上に設定されている。開始位置SP1は、押出多孔管2の本体部11において、設定移動ルートL1に対して蓋体3から離間する位置に設定されている。本実施形態では、開始位置SP1と中間点S1とを結ぶ線分と、設定移動ルートL1とのなす角度が鈍角となる位置に開始位置SP1を設定している。 As shown in FIG. 3, in the main joining step, there are a push-in section from the starting position SP1 to the intermediate point S1, a main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and an intermediate point S2. to the end position EP1 are continuously friction stir welded. The intermediate points S1 and S2 are set on the set movement route L1. The starting position SP1 is set at a position in the body portion 11 of the extruded perforated tube 2 at a position separated from the lid 3 with respect to the set movement route L1. In this embodiment, the start position SP1 is set at a position where the angle formed by the line segment connecting the start position SP1 and the intermediate point S1 and the set movement route L1 is an obtuse angle.

本接合工程の押入区間では、開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、本体部11の外周面11fに対して回転中心軸Zを垂直にしつつ、右回転させた攪拌ピンF2を開始位置SP1に挿入し、中間点S1まで相対移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを設定移動ルートL1に移動させながら徐々に下降させていく。回転ツールFが中間点S1に達したら、そのまま本区間に移行する。 In the pushing section of the main joining step, friction stir is performed from the start position SP1 to the intermediate point S1. In the push-in section, while the central axis of rotation Z is perpendicular to the outer peripheral surface 11f of the main body 11, the stirring pin F2 rotated to the right is inserted into the starting position SP1 and relatively moved to the intermediate point S1. At this time, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" at least until reaching the intermediate point S1. In other words, the rotating tool F is gradually lowered while being moved along the set movement route L1 without remaining in one place. When the rotating tool F reaches the intermediate point S1, the process proceeds directly to the main section.

本区間では、図4に示すように回転ツールFを設定移動ルートL1に沿って一周させる。本区間においては、中間点S1に達した際に、攪拌ピンF2の外周面と段差傾斜面23bとが平行となるように設定する。また、中間点S1に達した際に、攪拌ピンF2の外周面と段差傾斜面23bとがわずかに接触するように設定する。回転ツールFの回転中心軸Zと、本体部11の外周面11fとが垂直となるように設定し、これらを維持した状態で、突合せ部J1に沿って回転ツールFを相対移動させる。 In this section, as shown in FIG. 4, the rotary tool F is made to go around along the set movement route L1. In this section, the outer peripheral surface of the stirring pin F2 and the step inclined surface 23b are set so as to be parallel when the intermediate point S1 is reached. Further, the outer peripheral surface of the stirring pin F2 and the step inclined surface 23b are set so as to slightly contact each other when the intermediate point S1 is reached. The rotation center axis Z of the rotating tool F and the outer peripheral surface 11f of the body portion 11 are set to be perpendicular to each other, and the rotating tool F is relatively moved along the abutting portion J1 while maintaining these.

攪拌ピンF2の外周面と段差傾斜面23bとの接触代(オフセット量)Nは、例えば、0<N≦1.0mmの間で設定し、好ましくは0<N≦0.85mmの間で設定し、より好ましくは0<N≦0.65mmの間で設定する。 A contact margin (offset amount) N between the outer peripheral surface of the stirring pin F2 and the step inclined surface 23b is set, for example, between 0<N≦1.0 mm, preferably between 0<N≦0.85 mm. and more preferably set between 0<N≦0.65 mm.

設定移動ルートL1は、図4に示すように、平坦面F3の中心が通過する軌跡を示している。つまり、設定移動ルートL1は、突合せ部J1の周方向において、段差傾斜面23bと攪拌ピンF2の外周面とを平行にしつつ両者がわずかに接触するように設定されている。本区間においては、回転ツールFを上方から見た場合に、平坦面F3の中心が、設定移動ルートL1と重なるように回転ツールFを移動させる。なお、攪拌ピンF2の「所定の深さ」は、適宜設定すればよいが、本実施形態では回転ツールFの平坦面F3が、段差側面23aを突き抜ける位置まで挿入する。これにより、突合せ部J2も確実に接合することができる。 The set movement route L1, as shown in FIG. 4, indicates a locus through which the center of the flat surface F3 passes. That is, the set movement route L1 is set so that the step inclined surface 23b and the outer peripheral surface of the agitation pin F2 are parallel to each other in the circumferential direction of the butted portion J1 and are slightly in contact with each other. In this section, the rotating tool F is moved so that the center of the flat surface F3 overlaps the set moving route L1 when the rotating tool F is viewed from above. The "predetermined depth" of the stirring pin F2 may be appropriately set, but in this embodiment, the flat surface F3 of the rotary tool F is inserted to a position where it penetrates the stepped side surface 23a. As a result, the butted portion J2 can also be reliably joined.

攪拌ピンF2の外周面と段差傾斜面23bとが接触しないように設定すると、突合せ部J1の接合強度が低くなる。一方、攪拌ピンF2の段差傾斜面23bの接触代Nが1.0mmを超えると蓋体3の第一アルミニウム合金が、押出多孔管2側に大量に混入して接合不良となるおそれがある。 If the outer peripheral surface of the stirring pin F2 and the step inclined surface 23b are set so as not to come into contact with each other, the bonding strength of the butted portion J1 is reduced. On the other hand, if the contact margin N of the step inclined surface 23b of the stirring pin F2 exceeds 1.0 mm, a large amount of the first aluminum alloy of the lid 3 may be mixed into the perforated extruded tube 2 side, resulting in poor bonding.

図5に示すように、回転ツールFを一周させて攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、中間点S2から終了位置EP1に向かうまでの間に攪拌ピンF2を徐々に引き抜いて(上昇させて)、終了位置EP1で押出多孔管2から攪拌ピンF2を離脱させる。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを終了位置EP1に移動させながら徐々に引抜いていく。終了位置EP1は、終了位置EP1と中間点S2とが結ぶ線分と設定移動ルートL1とでなす角度が鈍角となる位置に設定する。回転ツールFの移動軌跡には塑性化領域W1が形成される。なお、前記したように押出多孔管2と一端側の蓋体3との摩擦攪拌接合が終了したら、同じ要領で押出多孔管2と他端側の蓋体3との摩擦攪拌接合を行う。 As shown in FIG. 5, when the rotary tool F is made to make one turn and the stirring pin F2 reaches the intermediate point S2, the process proceeds to the detachment section. In the detachment section, the stirring pin F2 is gradually pulled out (raised) from the intermediate point S2 to the end position EP1, and the agitation pin F2 is detached from the extruded perforated tube 2 at the end position EP1. In other words, the rotating tool F is gradually pulled out while being moved to the end position EP1 without remaining in one place. The end position EP1 is set at a position where the angle formed by the line segment connecting the end position EP1 and the intermediate point S2 and the set movement route L1 is an obtuse angle. A plasticized region W1 is formed in the movement locus of the rotating tool F. As shown in FIG. After the friction stir welding of the extruded perforated pipe 2 and the cover 3 on the one end side is completed as described above, friction stir welding of the extruded perforated pipe 2 and the cover 3 on the other end is performed in the same manner.

以上説明した本実施形態における熱交換器の製造方法によれば、押出多孔管2と攪拌ピンF2との摩擦熱によって突合せ部J1の主として押出多孔管2側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部J1において押出多孔管2の端面11eと蓋体3の段差傾斜面23bとを接合することができる。 According to the heat exchanger manufacturing method of the present embodiment described above, the frictional heat between the perforated extruded pipe 2 and the stirring pin F2 stirs mainly the second aluminum alloy on the side of the perforated extruded pipe 2 of the butted portion J1, resulting in plasticity. Fluidized, the end surface 11e of the extruded perforated tube 2 and the step inclined surface 23b of the lid 3 can be joined at the abutting portion J1.

また、攪拌ピンF2の外周面を段差傾斜面23bにわずかに接触させるに留めるため、蓋体3から押出多孔管2への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部J1においては主として押出多孔管2側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。つまり、本接合工程では、攪拌ピンF2の回転中心軸Zに対して一方側と他方側で、攪拌ピンF2が受ける材料抵抗の不均衡を極力少なくすることができる。また、攪拌ピンF2の外周面と蓋体3の段差傾斜面23bとを平行に設定しているため、塑性流動材がバランス良く摩擦攪拌され、接合強度の低下を抑制することができる。 In addition, since the outer peripheral surface of the stirring pin F2 is only slightly in contact with the step inclined surface 23b, mixing of the first aluminum alloy from the lid 3 into the extruded perforated tube 2 can be minimized. As a result, mainly the second aluminum alloy on the extruded perforated pipe 2 side is friction-stirred at the butted portion J1, so that a decrease in joint strength can be suppressed. That is, in the main joining step, the imbalance in material resistance received by the stirring pin F2 on one side and the other side with respect to the rotation center axis Z of the stirring pin F2 can be minimized. In addition, since the outer peripheral surface of the stirring pin F2 and the step inclined surface 23b of the lid 3 are set parallel, the plastic flow material is friction-stirred in a well-balanced manner, and a decrease in bonding strength can be suppressed.

また、本接合工程の押入区間では、開始位置SP1から設定移動ルートL1と重複する位置まで回転ツールFを移動させつつ所定の深さとなるまで攪拌ピンF2を徐々に押入することにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
同様に、本接合工程の離脱区間では、設定移動ルートL1から終了位置EP1まで回転ツールFを移動させつつ所定の深さから攪拌ピンF2を徐々に引き抜いて離脱させることにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
In addition, in the pushing section of the main joining step, the rotating tool F is moved from the starting position SP1 to a position overlapping the set movement route L1, and the stirring pin F2 is gradually pushed in until the set movement route L1 reaches a predetermined depth. It is possible to prevent the rotary tool F from stopping on L1 and excessive frictional heat.
Similarly, in the detachment section of the main welding process, while moving the rotating tool F from the set movement route L1 to the end position EP1, the agitation pin F2 is gradually pulled out from a predetermined depth to be detached, thereby moving the set movement route L1. It is possible to prevent the rotary tool F from stopping at , and the frictional heat from becoming excessive.

これらにより、設定移動ルートL1上で摩擦熱が過大となり、蓋体3から押出多孔管2へ第一アルミニウム合金が過剰に混入して接合不良となるのを防ぐことができる。 As a result, it is possible to prevent the frictional heat from becoming excessively large on the set movement route L1 and the first aluminum alloy from being excessively mixed into the extruded perforated tube 2 from the lid 3, resulting in poor bonding.

また、本接合工程において、開始位置SP1及び終了位置EP1の位置は適宜設定すればよいが、開始位置SP1と設定移動ルートL1とのなす角度、終了位置EP1と設定移動ルートL1とのなす角度が鈍角となるように設定することにより、中間点S1,S2で回転ツールFの移動速度が低下することなくスムーズに本区間又は離脱区間に移行することができる。これにより、設定移動ルートL1上で回転ツールFが停止又は移動速度が低下することにより、摩擦熱が過大となることを防ぐことができる。なお、上方から見て回転ツールFの軌跡が円弧を描くように開始位置SP1から設定移動ルートL1に回転ツールFを移動させてもよい。同様に、上方から見て回転ツールFの軌跡が円弧を描くように設定移動ルートL1から終了位置EP1に回転ツールFを移動させてもよい。 In addition, in the main joining step, the positions of the start position SP1 and the end position EP1 may be appropriately set, but the angle formed between the start position SP1 and the set movement route L1 and the angle formed between the end position EP1 and the set movement route L1 are By setting the obtuse angle, the movement speed of the rotating tool F does not decrease at the intermediate points S1 and S2, and the transition to the main section or the detachment section can be performed smoothly. As a result, it is possible to prevent frictional heat from becoming excessive due to the rotation tool F stopping or moving at a reduced speed on the set movement route L1. Note that the rotary tool F may be moved from the start position SP1 to the set movement route L1 so that the trajectory of the rotary tool F draws an arc when viewed from above. Similarly, the rotary tool F may be moved from the set movement route L1 to the end position EP1 so that the trajectory of the rotary tool F draws an arc when viewed from above.

また、本実施形態の本接合工程では、回転ツールFの回転方向及び進行方向は適宜設定すればよいが、回転ツールFの移動軌跡に形成される塑性化領域W1のうち、蓋体3側(突合せ部J1側)がシアー側となり、押出多孔管2側がフロー側となるように回転ツールFの回転方向及び進行方向を設定した。蓋体3側がシアー側となるように設定することで、突合せ部J1の周囲における攪拌ピンF2による攪拌作用が高まり、突合せ部J1における温度上昇が期待でき、突合せ部J1において押出多孔管2と蓋体3とをより確実に接合することができる。 In addition, in the main joining process of the present embodiment, the rotation direction and the traveling direction of the rotary tool F may be appropriately set. The direction of rotation and the direction of movement of the rotating tool F were set so that the butted portion J1 side) was on the shear side and the extruded perforated tube 2 side was on the flow side. By setting the lid 3 side to be the shear side, the stirring action by the stirring pin F2 around the butted portion J1 is enhanced, and the temperature rise at the butted portion J1 can be expected. The body 3 can be joined more reliably.

なお、シアー側(Advancing side)とは、被接合部に対する回転ツールの外周の相対速度が、回転ツールの外周における接線速度の大きさに移動速度の大きさを加算した値となる側を意味する。一方、フロー側(Retreating side)とは、回転ツールの移動方向の反対方向に回転ツールが回動することで、被接合部に対する回転ツールの相対速度が低速になる側を言う。 The shear side (Advancing side) means the side where the relative velocity of the outer circumference of the rotating tool with respect to the part to be welded is the sum of the tangential velocity at the outer circumference of the rotating tool and the moving velocity. . On the other hand, the flow side (retreating side) refers to the side where the relative speed of the rotating tool with respect to the parts to be welded becomes low due to the rotation of the rotating tool in the direction opposite to the moving direction of the rotating tool.

また、蓋体3の第一アルミニウム合金は、押出多孔管2の第二アルミニウム合金よりも硬度の高い材料になっている。これにより、熱交換器1の耐久性を高めることができる。また、蓋体3の第一アルミニウム合金をアルミニウム合金鋳造材とし、押出多孔管2の第二アルミニウム合金をアルミニウム合金展伸材とすることが好ましい。第一アルミニウム合金を例えば、JISH5302 ADC12等のAl-Si-Cu系アルミニウム合金鋳造材とすることにより、蓋体3の鋳造性、強度、被削性等を高めることができる。また、第二アルミニウム合金を例えば、JIS A1000系又はA6000系とすることにより、押出多孔管2の加工性、熱伝導性を高めることができる。 Moreover, the first aluminum alloy of the lid 3 is a material with higher hardness than the second aluminum alloy of the extruded perforated tube 2 . Thereby, the durability of the heat exchanger 1 can be improved. Moreover, it is preferable that the first aluminum alloy of the lid body 3 is a cast aluminum alloy material, and the second aluminum alloy of the extruded perforated tube 2 is a wrought aluminum alloy material. By using, for example, an Al--Si--Cu-based aluminum alloy cast material such as JISH5302 ADC12 as the first aluminum alloy, the castability, strength, machinability, etc. of the lid 3 can be enhanced. Further, by using, for example, JIS A1000 series or A6000 series as the second aluminum alloy, the workability and thermal conductivity of the extruded perforated pipe 2 can be enhanced.

また、本接合工程においては、突合せ部J1の全周を摩擦攪拌接合できるため、熱交換器の気密性及び水密性を高めることができる。また、本接合工程の終端部分において、回転ツールFが中間点S1を完全に通過してから終了位置EP1に向かうようにする。つまり、本接合工程によって形成された塑性化領域W1の各端部同士をオーバーラップさせることにより、より気密性及び水密性を高めることができる。 In addition, in the main joining step, the entire circumference of the butted portion J1 can be friction stir welded, so that the airtightness and watertightness of the heat exchanger can be improved. Also, at the end portion of the main joining process, the rotating tool F is made to head toward the end position EP1 after completely passing the intermediate point S1. That is, by overlapping the ends of the plasticized regions W1 formed by the main joining step, airtightness and watertightness can be further enhanced.

また、本接合工程では、回転ツールFの攪拌ピンF2の基端側を露出した状態で摩擦攪拌を行うため、摩擦攪拌装置に作用する負荷を軽減することができる。また、本実施形態では、突合せ工程を行った後、周壁部22の外周面22bよりも、押出多孔管2の外周面11fが外側となるように設定している。これにより、摩擦攪拌を行う際に、突合せ部J1の金属不足をより防ぐことができる。 In addition, in the main welding step, since the friction stir is performed with the base end side of the stir pin F2 of the rotary tool F exposed, the load acting on the friction stir device can be reduced. Further, in this embodiment, the outer peripheral surface 11f of the perforated extruded pipe 2 is set to be outside the outer peripheral surface 22b of the peripheral wall portion 22 after the butting step is performed. Thereby, when friction stir is performed, it is possible to further prevent shortage of metal in the butted portion J1.

また、蓋体3にヘッダー流路24を備えることにより、孔部13に流入又は流出する流体を集約することができる。 Moreover, by providing the lid 3 with the header flow path 24, the fluid flowing into or out of the hole 13 can be collected.

なお、本接合工程では、回転ツールFの回転速度を一定としてもよいが、可変させてもよい。本接合工程の押入区間において、開始位置SP1における回転ツールFの回転速度をV1とし、本区間における回転ツールFの回転速度をV2とすると、V1>V2としてもよい。回転速度のV2は、設定移動ルートL1における予め設定された一定の回転速度である。つまり、開始位置SP1では、回転速度を高く設定しておき、押入区間内で徐々に回転速度を低減させながら本区間に移行してもよい。 In addition, in the main joining step, the rotating speed of the rotating tool F may be constant, but may be varied. In the pressing section of the main joining step, if the rotational speed of the rotating tool F at the start position SP1 is V1 and the rotational speed of the rotating tool F in this section is V2, V1>V2 may be satisfied. The rotation speed V2 is a preset constant rotation speed on the set movement route L1. In other words, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the push-in interval to shift to the main interval.

また、第一本接合工程の離脱区間において、本区間における回転ツールFの回転速度をV2、終了位置EP1において離脱させるときの回転ツールFの回転速度をV3とすると、V3>V2としてもよい。つまり、離脱区間に移行したら、終了位置EP1に向けて徐々に回転速度を上げながら押出多孔管2から回転ツールFを離脱させてもよい。回転ツールFを押出多孔管2に押し入れる際又は押出多孔管2から離脱させる際に、前記のように設定することで、押入区間又は離脱区間時における少ない押圧力を、回転速度で補うことができるため、摩擦攪拌を好適に行うことができる。 Further, in the detachment section of the first main welding step, V3>V2 may be satisfied, where V2 is the rotational speed of the rotating tool F in this section and V3 is the rotational speed of the rotating tool F when detached at the end position EP1. That is, after shifting to the detachment section, the rotary tool F may be detached from the extruded perforated tube 2 while gradually increasing the rotational speed toward the end position EP1. When the rotating tool F is pushed into the extruded perforated tube 2 or removed from the extruded perforated tube 2, by setting as described above, the small pressing force in the pushing section or the removing section can be compensated for by the rotation speed. Therefore, friction stirring can be preferably performed.

[第二実施形態]
次に、本発明の第二実施形態に係る熱交換器の製造方法について説明する。第二実施形態では、図6,7に示すように、本接合工程における開始位置SP1、中間点S1,S2及び終了位置EP1の位置をいずれも設定移動ルートL1上に設定する点で第一実施形態と相違する。第二実施形態では、第一実施形態と相違する部分を中心に説明する。
[Second embodiment]
Next, a method for manufacturing a heat exchanger according to the second embodiment of the invention will be described. In the second embodiment, as shown in FIGS. 6 and 7, the positions of the start position SP1, intermediate points S1 and S2, and end position EP1 in the main joining process are all set on the set movement route L1. Different from the form. In the second embodiment, the description will focus on the parts that are different from the first embodiment.

第二実施形態に係る熱交換器の製造では、準備工程と、突合せ工程と、本接合工程とを行う。準備工程及び突合せ工程は、第一実施形態と同一である。 In manufacturing the heat exchanger according to the second embodiment, a preparation step, a butting step, and a final joining step are performed. The preparation process and matching process are the same as in the first embodiment.

本接合工程では、図6に示すように、開始位置SP1を設定移動ルートL1上に設定する。本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1までの離脱区間の三つの区間を連続して摩擦攪拌する。 In the main joining step, as shown in FIG. 6, the starting position SP1 is set on the set moving route L1. In the main joining process, there is a push-in section from the starting position SP1 to the intermediate point S1, a main section from the intermediate point S1 to the intermediate point S2 around the set movement route L1, and a separation from the intermediate point S2 to the end position EP1. Friction stir the three sections of the section in succession.

押入区間では、図6に示すように、設定移動ルート上の開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、押出多孔管2の外周面11fに対して回転中心軸Zを垂直となるようにしつつ、右回転させた攪拌ピンF2を開始位置SP1に挿入し、中間点S1まで相対移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。 In the push-in section, as shown in FIG. 6, friction stir is performed from the start position SP1 to the intermediate point S1 on the set movement route. In the push-in section, while the central axis of rotation Z is perpendicular to the outer peripheral surface 11f of the extruded perforated tube 2, the stirring pin F2 rotated to the right is inserted into the starting position SP1 and relatively moved to the intermediate point S1. At this time, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" at least until reaching the intermediate point S1.

また、押入区間においては、回転ツールFを移動させつつ、中間点S1に達した際に、攪拌ピンF2の外周面と段差傾斜面23bとが平行となるように設定しつつ、攪拌ピンF2の外周面と段差傾斜面23bとがわずかに接触するように設定する。そして、その状態を維持しつつ本区間の摩擦攪拌接合に移行する。攪拌ピンF2の外周面と段差傾斜面23bとの接触代(オフセット量)N及び設定移動ルートL1の設定は第一実施形態と同一である。 In the push-in section, while moving the rotary tool F, when reaching the intermediate point S1, the outer peripheral surface of the stirring pin F2 and the step inclined surface 23b are set to be parallel to each other. The outer peripheral surface and the step inclined surface 23b are set so as to be slightly in contact with each other. Then, while maintaining this state, the process shifts to friction stir welding in this section. The setting of the contact margin (offset amount) N between the outer peripheral surface of the stirring pin F2 and the step inclined surface 23b and the set movement route L1 are the same as in the first embodiment.

図7に示すように、回転ツールFを一周させて攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、図7に示すように、中間点S2から終了位置EP1に向かうまでの間に攪拌ピンF2を徐々に引き抜いて(上方に移動させて)、設定移動ルートL1上に設定された終了位置EP1で押出多孔管2から攪拌ピンF2を離脱させる。 As shown in FIG. 7, when the rotary tool F is made to make one turn and the stirring pin F2 reaches the intermediate point S2, the process proceeds to the detachment section. In the leaving section, as shown in FIG. 7, the agitation pin F2 is gradually pulled out (moved upward) from the intermediate point S2 to the end position EP1, and the end set on the set movement route L1 is reached. The stirring pin F2 is removed from the extruded perforated tube 2 at the position EP1.

以上説明した第二実施形態に係る熱交換器の製造方法によっても第一実施形態と略同等の効果を奏することができる。第二実施形態のように本接合工程における開始位置SP1、終了位置EP1は、設定移動ルートL1上に設定してもよい。 The heat exchanger manufacturing method according to the second embodiment described above can also achieve substantially the same effects as those of the first embodiment. As in the second embodiment, the start position SP1 and the end position EP1 in the main joining step may be set on the set movement route L1.

1 熱交換器
2 押出多孔管
3 蓋体
F 回転ツール
F2 攪拌ピン
F3 平坦面
J1 突合せ部
SP1 開始位置
EP1 終了位置
W1 塑性化領域
REFERENCE SIGNS LIST 1 heat exchanger 2 extruded perforated tube 3 cover F rotating tool F2 stirring pin F3 flat surface J1 butt part SP1 start position EP1 end position W1 plasticizing region

Claims (12)

内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、
前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
前記本接合工程において、回転する前記攪拌ピンのみを前記設定移動ルートよりもさらに前記押出多孔管側に設定した開始位置に挿入した後、前記回転ツールの回転中心軸を前記設定移動ルートと重複する位置まで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする熱交換器の製造方法。
A method for manufacturing a heat exchanger comprising an extruded perforated tube having fins inside and a lid sealing an opening of the extruded perforated tube, wherein the extruded perforated tube and the lid are joined by friction stir. There is
The lid has a bottom and a peripheral wall rising from the peripheral edge of the bottom, and has a stepped side surface on the peripheral edge of the peripheral wall, and a stepped side surface that slopes toward the bottom side toward the outside from the stepped side surface. forming a peripheral wall stepped portion having an inclined surface;
The extruded perforated tube has a fitting portion in which the fin is not formed at the end and the peripheral wall portion is fitted,
The extruded perforated tube is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a material having higher hardness than the second aluminum alloy,
The rotating tool used for friction stir includes a stirring pin, the stirring pin is tapered toward the tip side,
By inserting the peripheral wall portion of the lid into the fitting portion of the perforated extruded tube, the inner peripheral surface of the perforated extruded tube and the stepped side surface of the lid are overlapped, and the end surface of the perforated extruded tube is formed. and a butting step of butting the step inclined surface of the lid body to form a gap having a V-shaped cross section at the butting portion;
Only the stirring pin of the rotating rotary tool is inserted into the outer peripheral surface of the extruded perforated tube, and in a state in which the outer peripheral surface of the stirring pin is slightly in contact with the step inclined surface of the lid, the second stirring pin is inserted into the gap. While the aluminum alloy is flowing, it is made to make a circle around the outer peripheral surface of the extruded perforated pipe at a predetermined depth along a set movement route set on the extruded perforated pipe side of the abutment portion, and the abutment portion is rubbed. and a main joining step of stirring,
In the main joining step, after inserting only the rotating stirring pin into a start position set closer to the extruded perforated tube side than the set movement route, the rotation center axis of the rotating tool overlaps the set movement route. A method for manufacturing a heat exchanger, wherein the stirring pin is gradually pushed into the predetermined depth while moving to the position.
前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、
前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることを特徴とする請求項1に記載の熱交換器の製造方法。
In the main joining step, friction stir is performed by rotating the stir pin at a predetermined rotational speed,
When inserting the agitation pin in the main joining step, insert the agitation pin while rotating it at a speed higher than the predetermined rotational speed, and move it to the set movement route while gradually decreasing the rotational speed. The method for manufacturing a heat exchanger according to claim 1, characterized by:
内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、
前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
前記本接合工程において、前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ所定の高さとなるまで徐々に前記攪拌ピンを押入することを特徴とする熱交換器の製造方法。
A method for manufacturing a heat exchanger comprising an extruded perforated tube having fins inside and a lid sealing an opening of the extruded perforated tube, wherein the extruded perforated tube and the lid are joined by friction stir. There is
The lid has a bottom and a peripheral wall rising from the peripheral edge of the bottom, and has a stepped side surface on the peripheral edge of the peripheral wall, and a stepped side surface that slopes toward the bottom side toward the outside from the stepped side surface. forming a peripheral wall stepped portion having an inclined surface;
The extruded perforated tube has a fitting portion in which the fin is not formed at the end and the peripheral wall portion is fitted,
The extruded perforated tube is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a material having higher hardness than the second aluminum alloy,
The rotating tool used for friction stir includes a stirring pin, the stirring pin is tapered toward the tip side,
By inserting the peripheral wall portion of the lid into the fitting portion of the perforated extruded tube, the inner peripheral surface of the perforated extruded tube and the stepped side surface of the lid are overlapped, and the end surface of the perforated extruded tube is formed. and a butting step of butting the step inclined surface of the lid body to form a gap having a V-shaped cross section at the butting portion;
Only the stirring pin of the rotating rotary tool is inserted into the outer peripheral surface of the extruded perforated tube, and in a state in which the outer peripheral surface of the stirring pin is slightly in contact with the step inclined surface of the lid, the second stirring pin is inserted into the gap. While the aluminum alloy is flowing, it is made to go around the outer peripheral surface of the extruded perforated tube at a predetermined depth along a set movement route set on the extruded perforated tube side of the abutted part, and the abutted part is rubbed. and a main joining step of stirring,
In the main joining step, the agitation pin is inserted from a start position set on the set movement route, and the agitation pin is gradually pushed in until a predetermined height is reached while moving in the direction of movement. A method for manufacturing an exchanger.
前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、
前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることを特徴とする請求項3に記載の熱交換器の製造方法。
In the main joining step, friction stir is performed by rotating the stir pin at a predetermined rotational speed,
When inserting the agitation pin in the main joining step, insert the agitation pin while rotating it at a speed higher than the predetermined rotational speed, and move it to the set movement route while gradually decreasing the rotational speed. The method for manufacturing a heat exchanger according to claim 3, characterized by:
内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、
前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
前記本接合工程において、前記設定移動ルートよりもさらに前記押出多孔管側に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする熱交換器の製造方法。
A method for manufacturing a heat exchanger comprising an extruded perforated tube having fins inside and a lid sealing an opening of the extruded perforated tube, wherein the extruded perforated tube and the lid are joined by friction stir. There is
The lid has a bottom and a peripheral wall rising from the peripheral edge of the bottom, and has a stepped side surface on the peripheral edge of the peripheral wall, and a stepped side surface that slopes toward the bottom side toward the outside from the stepped side surface. forming a peripheral wall stepped portion having an inclined surface;
The extruded perforated tube has a fitting portion in which the fin is not formed at the end and the peripheral wall portion is fitted,
The extruded perforated tube is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a material having higher hardness than the second aluminum alloy,
The rotating tool used for friction stir includes a stirring pin, the stirring pin is tapered toward the tip side,
By inserting the peripheral wall portion of the lid into the fitting portion of the perforated extruded tube, the inner peripheral surface of the perforated extruded tube and the stepped side surface of the lid are overlapped, and the end surface of the perforated extruded tube is formed. and a butting step of butting the step inclined surface of the lid body to form a gap having a V-shaped cross section at the butting portion;
Only the stirring pin of the rotating rotary tool is inserted into the outer peripheral surface of the extruded perforated tube, and in a state in which the outer peripheral surface of the stirring pin is slightly in contact with the step inclined surface of the lid, the second stirring pin is inserted into the gap. While the aluminum alloy is flowing, it is made to make a circle around the outer peripheral surface of the extruded perforated pipe at a predetermined depth along a set movement route set on the extruded perforated pipe side of the abutment portion, and the abutment portion is rubbed. and a main joining step of stirring,
In the main welding step, the end position is set further on the extruded perforated tube side than the set moving route, and after friction stir welding to the butted portion, the rotating tool is moved to the end position while the stirring pin is moved. A method for manufacturing a heat exchanger, wherein the rotating tool is separated from the extruded perforated tube at the end position by gradually withdrawing the tool.
前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、
前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら終了位置まで移動させることを特徴とする請求項5に記載の熱交換器の製造方法。
In the main joining step, friction stir is performed by rotating the stir pin at a predetermined rotational speed,
6. The method of manufacturing a heat exchanger according to claim 5, wherein when the stirring pin is removed in the main joining step, the rotation speed is gradually increased from the predetermined rotation speed and moved to the end position.
内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
摩擦攪拌で用いる回転ツールは、攪拌ピンを備えており、前記攪拌ピンは、先端側に向けて先細りとなっており、
前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
回転する前記回転ツールの攪拌ピンのみを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする熱交換器の製造方法。
A method for manufacturing a heat exchanger comprising an extruded perforated tube having fins inside and a lid sealing an opening of the extruded perforated tube, wherein the extruded perforated tube and the lid are joined by friction stir. There is
The lid has a bottom and a peripheral wall rising from the peripheral edge of the bottom, and has a stepped side surface on the peripheral edge of the peripheral wall, and a stepped side surface that slopes toward the bottom side toward the outside from the stepped side surface. forming a peripheral wall stepped portion having an inclined surface;
The extruded perforated tube has a fitting portion in which the fin is not formed at the end and the peripheral wall portion is fitted,
The extruded perforated tube is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a material having higher hardness than the second aluminum alloy,
The rotating tool used for friction stir includes a stirring pin, the stirring pin is tapered toward the tip side,
By inserting the peripheral wall portion of the lid into the fitting portion of the perforated extruded tube, the inner peripheral surface of the perforated extruded tube and the stepped side surface of the lid are overlapped, and the end surface of the perforated extruded tube is formed. and a butting step of butting the step inclined surface of the lid body to form a gap having a V-shaped cross section at the butting portion;
Only the stirring pin of the rotating rotary tool is inserted into the outer peripheral surface of the extruded perforated tube, and in a state in which the outer peripheral surface of the stirring pin is slightly in contact with the step inclined surface of the lid, the second stirring pin is inserted into the gap. While the aluminum alloy is flowing, it is made to go around the outer peripheral surface of the extruded perforated tube at a predetermined depth along a set movement route set on the extruded perforated tube side of the abutted part, and the abutted part is rubbed. and a main joining step of stirring,
In the main welding step, an end position is set on the set movement route, and after the friction stir welding of the butted portion, the rotating tool is moved to the end position and the stirring pin is gradually pulled out to the end position. 3. A method for manufacturing a heat exchanger, wherein the rotating tool is separated from the extruded perforated tube in .
前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、
前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら終了位置まで移動させることを特徴とする請求項7に記載の熱交換器の製造方法。
In the main joining step, friction stir is performed by rotating the stir pin at a predetermined rotational speed,
8. The method of manufacturing a heat exchanger according to claim 7, wherein when the stirring pin is removed in the main joining step, the rotation speed is gradually increased from the predetermined rotation speed and moved to the end position.
前記突合せ工程では、前記蓋体の外周面よりも前記押出多孔管の外周面の方が外側となるように、前記押出多孔管と前記蓋体とを形成することを特徴とする請求項1乃至請求項8のいずれか一項に記載の熱交換器の製造方法。 1. The extruded perforated pipe and the lid are formed in the butting step so that the outer peripheral surface of the extruded perforated pipe is positioned outside the outer peripheral surface of the lid. A method for manufacturing a heat exchanger according to claim 8 . 前記回転ツールの回転方向及び進行方向を前記突合せ部側がアドバンシング側となるように設定することを特徴とする請求項1乃至請求項9のいずれか一項に記載の熱交換器の製造方法。 10. The method of manufacturing a heat exchanger according to any one of claims 1 to 9, wherein the rotating direction and advancing direction of the rotating tool are set so that the butting portion side is the advancing side. 前記本接合工程では、前記攪拌ピンの先端が前記蓋体の段差側面を突き抜けた状態で前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌することを特徴とする請求項1乃至請求項10のいずれか一項に記載の熱交換器の製造方法。 In the main joining step, the tip of the stirring pin penetrates the stepped side surface of the lid body and is made to go around the outer peripheral surface of the extruded perforated tube to friction stir the butted portion. A method for manufacturing a heat exchanger according to any one of claims 1 to 10. 前記第一アルミニウム合金は鋳造材からなり、前記第二アルミニウム合金は展伸材からなることを特徴とする請求項1乃至請求項11のいずれか一項に記載の熱交換器の製造方法。 12. The method of manufacturing a heat exchanger according to claim 1, wherein said first aluminum alloy is made of cast material, and said second aluminum alloy is made of wrought material.
JP2019120709A 2019-06-28 2019-06-28 Heat exchanger manufacturing method Active JP7127618B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019120709A JP7127618B2 (en) 2019-06-28 2019-06-28 Heat exchanger manufacturing method
CN201980097737.0A CN113993650B (en) 2019-06-28 2019-11-19 Method for manufacturing heat exchanger
PCT/JP2019/045194 WO2020261597A1 (en) 2019-06-28 2019-11-19 Method for manufacturing heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019120709A JP7127618B2 (en) 2019-06-28 2019-06-28 Heat exchanger manufacturing method

Publications (2)

Publication Number Publication Date
JP2021006349A JP2021006349A (en) 2021-01-21
JP7127618B2 true JP7127618B2 (en) 2022-08-30

Family

ID=74061578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019120709A Active JP7127618B2 (en) 2019-06-28 2019-06-28 Heat exchanger manufacturing method

Country Status (3)

Country Link
JP (1) JP7127618B2 (en)
CN (1) CN113993650B (en)
WO (1) WO2020261597A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211342B2 (en) * 2019-11-21 2023-01-24 日本軽金属株式会社 Heat exchanger manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034590A1 (en) 2012-09-03 2014-03-06 日本軽金属株式会社 Method for producing hollow container and method for bonding members
WO2019082439A1 (en) 2017-10-27 2019-05-02 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566073A (en) * 1991-09-05 1993-03-19 Sanden Corp Multilayered heat exchanger
JP3449944B2 (en) * 1999-05-11 2003-09-22 住友軽金属工業株式会社 Metal container and method of manufacturing the same
CN102284785B (en) * 2006-10-02 2013-11-06 日本轻金属株式会社 Joining method
US10209015B2 (en) * 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making
TWI485023B (en) * 2012-12-11 2015-05-21 Metal Ind Res & Dev Ct Aluminum alloy oil hot plate manufacturing method
AU2014249288A1 (en) * 2013-03-12 2015-10-01 Lockheed Martin Corporation Process of friction stir welding on tube end joints and a product produced thereby
JP6015622B2 (en) * 2013-10-21 2016-10-26 日本軽金属株式会社 Manufacturing method of heat transfer plate
CN108274109A (en) * 2018-04-18 2018-07-13 北京世佳博科技发展有限公司 A kind of composite connecting method for radiator class product
CN108480941B (en) * 2018-06-06 2019-06-28 武汉市润之达石化设备有限公司 The manufacturing process of fin tube type air cooler and its fin tube type air cooler of manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034590A1 (en) 2012-09-03 2014-03-06 日本軽金属株式会社 Method for producing hollow container and method for bonding members
WO2019082439A1 (en) 2017-10-27 2019-05-02 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Also Published As

Publication number Publication date
JP2021006349A (en) 2021-01-21
CN113993650B (en) 2023-02-24
CN113993650A (en) 2022-01-28
WO2020261597A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
WO2018193639A1 (en) Method for manufacturing liquid-cooled jacket
JP2019037986A (en) Manufacturing method of liquid-cooled jacket
JP2020011271A (en) Liquid-cooled jacket manufacturing method
JP7127618B2 (en) Heat exchanger manufacturing method
JP7140061B2 (en) Heat exchanger manufacturing method
JP2020175396A (en) Manufacturing method for liquid-cooled jacket
JP7211342B2 (en) Heat exchanger manufacturing method
WO2020059198A1 (en) Method for producing liquid-cooling jacket
WO2021171635A1 (en) Method for manufacturing heat exchanger
JP2020131263A (en) Liquid-cooled jacket manufacturing method
WO2021171637A1 (en) Method for manufacturing heat exchanger
JP7272465B2 (en) Liquid cooling jacket manufacturing method
CN114901417A (en) Method for manufacturing liquid-cooled jacket and friction stir welding method
WO2021171636A1 (en) Method for manufacturing heat exchanger
JP7226254B2 (en) Liquid cooling jacket manufacturing method
JP2020175395A (en) Manufacturing method for liquid-cooled jacket
JP7226241B2 (en) Liquid cooling jacket manufacturing method
JP7226242B2 (en) Liquid cooling jacket manufacturing method
WO2020170488A1 (en) Method for manufacturing liquid-cooled jacket
WO2020188858A1 (en) Method of manufacturing liquid-cooled jacket
JP7140062B2 (en) Friction stir welding method
JP7327237B2 (en) Liquid cooling jacket manufacturing method
JP2021112750A (en) Heat exchanger manufacturing method
WO2021144999A1 (en) Joining method
JP2020151720A (en) Manufacturing method of liquid-cooled jacket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R150 Certificate of patent or registration of utility model

Ref document number: 7127618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150