JP2021181042A - Disinfecting ethanol manufacturing system - Google Patents

Disinfecting ethanol manufacturing system Download PDF

Info

Publication number
JP2021181042A
JP2021181042A JP2020086603A JP2020086603A JP2021181042A JP 2021181042 A JP2021181042 A JP 2021181042A JP 2020086603 A JP2020086603 A JP 2020086603A JP 2020086603 A JP2020086603 A JP 2020086603A JP 2021181042 A JP2021181042 A JP 2021181042A
Authority
JP
Japan
Prior art keywords
membrane
ethanol
steam
separation membrane
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020086603A
Other languages
Japanese (ja)
Inventor
健一 澤村
Kenichi Sawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Esep Inc
Original Assignee
Esep Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Esep Inc filed Critical Esep Inc
Priority to JP2020086603A priority Critical patent/JP2021181042A/en
Publication of JP2021181042A publication Critical patent/JP2021181042A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a disinfecting ethanol manufacturing system that is simple and can save a space and costs.SOLUTION: A disinfecting ethanol manufacturing system includes a heat exchanger 4 that performs primary heating on treatment liquid, a heat exchanger 5 that performs secondary heating, an evaporator 6 that performs tertiary heating, a separation membrane 11 mounted on a membrane module 10, an aspirator 19 that decompresses a membrane permeation side of the separation membrane 11, and an ethanol concentration meter 15. The treatment liquid is heated by the evaporator 6 from 80 to 150°C, and is supplied to a primary side of the separation membrane 11 in a steam state. The membrane permeation side of the separation membrane 11 is decompressed by the aspirator 19, and moisture of treatment steam preferentially permeates the separation membrane 11 as steam, thereby increasing the ethanol concentration of the treatment steam. Components permeating the membrane as steam merge with fluid passing through in the aspirator 19 to be condensed and captured. The thermal energy of the membrane permeating components is recovered by the primary heat exchanger 4, and the thermal energy of the ethanol concentration stream discharged from a non-permeation side of the membrane module 10 is recovered by the secondary heat exchanger 5.SELECTED DRAWING: Figure 1

Description

本発明は、膜分離による消毒用エタノール製造システムに関するものである。 The present invention relates to an ethanol production system for disinfection by membrane separation.

膜分離は将来の化学プロセスを簡略化する技術として近年導入が期待されており、特に、化学プロセスにおいて最もエネルギー消費の大きい蒸留プロセスに膜分離を導入することで、大きな省エネルギー効果が見込まれている。 Membrane separation is expected to be introduced in recent years as a technology to simplify future chemical processes, and in particular, by introducing membrane separation into the distillation process that consumes the most energy in the chemical process, a large energy saving effect is expected. ..

例えば特許文献1には、蒸留とゼオライト分離膜を組み合わせたハイブリッドプロセスにより、エタノールなどの水溶性有機物の脱水において、従来の蒸留のみによる脱水に比べて省エネルギー化できる技術が開示されている。 For example, Patent Document 1 discloses a technique capable of saving energy in dehydration of a water-soluble organic substance such as ethanol by a hybrid process combining distillation and a zeolite separation membrane, as compared with conventional dehydration by distillation alone.

また特許文献2では、各種蒸留と膜分離を組み合わせたハイブリッドプロセスを検討し、用いる分離膜の最適条件を解析により示している。 Further, in Patent Document 2, a hybrid process combining various distillations and membrane separation is examined, and the optimum conditions of the separation membrane to be used are shown by analysis.

特許第4414922号Patent No. 4414922 特許第6196807号Patent No. 6196807

しかしながら、上記特許文献に記載の方法はいずれも相応の設備投資を要する比較的大型の工業プロセスへの適用を想定している。そのためオンサイトでの小規模な分離ニーズではしばしばオーバースペックとなり、コストが釣り合わず不向きである。 However, all of the methods described in the above patent documents are intended to be applied to relatively large industrial processes that require a reasonable capital investment. Therefore, it is often over-engineered for small-scale on-site separation needs, and the cost is not balanced and unsuitable.

例えば低濃度エタノール(エタノール濃度5から40vol%)を新型コロナウィルス抑制に有効な消毒用エタノール(エタノール濃度70から83vol%)に転換・利用したい場合、オンサイトで所望のエタノール濃度にすぐに調整できる分離システムがあれば、非常に便利である。 For example, if you want to convert and use low-concentration ethanol (ethanol concentration 5 to 40 vol%) to disinfectant ethanol (ethanol concentration 70 to 83 vol%) that is effective in suppressing the new corona virus, you can immediately adjust the desired ethanol concentration on-site. It would be very convenient to have a separation system.

本発明の目的は、オンサイトにおける小規模な分離ニーズに対応するため、簡素で省スペース・省エネルギー化が可能な消毒用エタノール製造システムを提供することにある。 An object of the present invention is to provide a simple, space-saving and energy-saving disinfectant ethanol production system in order to meet small-scale on-site separation needs.

上記の目的を達成するために、請求項1の発明は、膜分離による消毒用エタノール(エタノール濃度70から83vol%)製造システムであって、処理液(低濃度エタノール(エタノール濃度5から40vol%))を一次加熱する熱交換器と、二次加熱する熱交換器と、三次加熱する蒸発器と、膜モジュールに搭載した分離膜と、前記分離膜の二次側(膜透過側)を減圧するアスピレーターと、エタノール濃度計と、を備え、処理液は前記蒸発器にて80から150℃に加熱され、固体残渣成分を除去した蒸気状態にて前記分離膜の一次側に供給され、前記分離膜の二次側(膜透過側)は前記アスピレーターにより減圧され、処理蒸気の水分が蒸気として優先的に前記分離膜を透過することで処理蒸気のエタノール濃度を高め、蒸気として膜透過した成分は前記アスピレーター内を通過する流体と合流することにより凝縮・捕集させ、膜透過成分の熱エネルギーを前記処理液を一次加熱する熱交換器にて回収し、膜モジュールの保持側(非透過側)から排出されるエタノール濃縮蒸気の熱エネルギーを前記処理液を二次加熱する熱交換器にて回収することを特徴としている。 In order to achieve the above object, the invention of claim 1 is a disinfectant ethanol (ethanol concentration 70 to 83 vol%) production system by membrane separation, wherein a treatment liquid (low concentration ethanol (ethanol concentration 5 to 40 vol%)). ) Is primary heated, a heat exchanger is secondary heated, an evaporator is tertiary heated, a separation membrane mounted on a membrane module, and the secondary side (membrane permeation side) of the separation membrane is depressurized. The treatment liquid is provided with an aspirator and an ethanol concentration meter, and the treatment liquid is heated to 80 to 150 ° C. by the evaporator and supplied to the primary side of the separation membrane in a steam state from which the solid residue component is removed, and the separation membrane is provided. The secondary side (membrane permeation side) is depressurized by the aspirator, and the water content of the treated steam preferentially permeates the separation membrane as steam to increase the ethanol concentration of the treated steam, and the components permeated through the membrane as steam are described above. It is condensed and collected by merging with the fluid passing through the aspirator, and the heat energy of the membrane permeation component is recovered by the heat exchanger that primarily heats the treatment liquid, and is collected from the holding side (non-permeation side) of the membrane module. It is characterized in that the heat energy of the discharged ethanol concentrated steam is recovered by a heat exchanger that secondarily heats the treatment liquid.

請求項2の発明は、請求項目1記載の消毒用エタノール製造システムであって、前記分離膜の分離層が-Si-C2H4-Si-結合を有するシリカ系無機有機ハイブリッドの蒸気分離膜であることを特徴としている。 The invention of claim 2 is the disinfectant ethanol production system according to claim 1, wherein the separation membrane of the separation membrane is a silica-based inorganic organic hybrid steam separation membrane having a -Si-C 2 H 4-Si- bond. It is characterized by being.

請求項1の発明は、膜分離による消毒用エタノール(70から83vol%)製造システムであって、処理液(低濃度エタノール(エタノール濃度5から40vol%))を一次加熱する熱交換器(一次熱交換器)と、二次加熱する熱交換器(二次熱交換器)と、三次加熱する蒸発器と、膜モジュールに搭載した分離膜と、前記分離膜の二次側(膜透過側)を減圧するアスピレーターと、エタノール濃度計と、を備え、処理液は前記蒸発器にて80から150℃に加熱され、固体残渣成分を除去した蒸気にて前記分離膜の一次側に供給され、前記分離膜の二次側(膜透過側)は前記アスピレーターにより減圧され、処理蒸気の水分が蒸気として優先的に前記分離膜を透過することで処理蒸気のエタノール濃度を高め、蒸気として膜透過した成分は前記アスピレーター内を通過する流体と合流することにより凝縮・捕集させ、膜透過成分の熱エネルギーを前記処理液を一次加熱する熱交換器にて回収し、膜モジュールの保持側(非透過側)から排出されるエタノール濃縮蒸気の熱エネルギーを前記処理液を二次加熱する熱交換器にて回収することを特徴とするもので、請求項1の発明によれば、膜透過を促進する駆動力となる熱エネルギーを、熱交換器及び蒸発器より供給すると同時に、熱交換器により膜透過成分とエタノール濃縮蒸気の熱エネルギーを回収し、アスピレーター内を循環する液体の除熱と、アスピレーター循環液による膜透過成分の高効率捕集を同時に達成するという効果を奏する。これにより一般的に用いられる真空ポンプ、チラー、コンプレッサー等を本発明では必要としないため、小型化・低コスト化が可能となる。また固体残渣成分を除去した蒸気状態にて前記分離膜の一次側に供給し、膜モジュールの分離膜における作動温度を80から150℃の範囲で運転することで、高いエタノール濃縮効果を発揮させることができるという効果を奏する。またエタノール濃度計により、所定のエタノール濃度(70から83vol%)となるように、運転温度、圧力を微調整できるという効果を奏する。 The invention of claim 1 is a disinfection ethanol (70 to 83 vol%) production system by membrane separation, and is a heat exchanger (primary heat) for primary heating a treatment liquid (low concentration ethanol (ethanol concentration 5 to 40 vol%)). Exchanger), heat exchanger (secondary heat exchanger) for secondary heating, evaporator for tertiary heating, separation membrane mounted on the membrane module, and secondary side (membrane permeation side) of the separation membrane. The treatment liquid is provided with a depressurizing aspirator and an ethanol concentration meter, and the treatment liquid is heated to 80 to 150 ° C. by the evaporator and supplied to the primary side of the separation membrane by steam from which the solid residue component has been removed, and the separation is performed. The secondary side (membrane permeation side) of the membrane is depressurized by the aspirator, and the water content of the treated steam preferentially permeates the separation membrane as steam to increase the ethanol concentration of the treated steam, and the components that permeate the membrane as steam It is condensed and collected by merging with the fluid passing through the aspirator, and the heat energy of the membrane permeation component is recovered by the heat exchanger that primarily heats the treatment liquid, and the holding side (non-permeation side) of the membrane module. It is characterized in that the heat energy of the ethanol concentrated steam discharged from the above is recovered by a heat exchanger that secondarily heats the treatment liquid, and according to the invention of claim 1, a driving force for promoting membrane permeation. At the same time as supplying the heat energy that becomes It has the effect of achieving high-efficiency collection of membrane-permeable components at the same time. As a result, a vacuum pump, chiller, compressor, etc., which are generally used, are not required in the present invention, so that the size and cost can be reduced. Further, by supplying the separation membrane in a steam state from which the solid residue component has been removed and operating the operating temperature of the separation membrane of the membrane module in the range of 80 to 150 ° C., a high ethanol concentration effect can be exhibited. It has the effect of being able to. Further, the ethanol concentration meter has an effect that the operating temperature and pressure can be finely adjusted so as to have a predetermined ethanol concentration (70 to 83 vol%).

請求項2の発明は、請求項目1記載の消毒用エタノール製造システムであって、前記分離膜の分離層が-Si-C2H4-Si-結合を有するシリカ系無機有機ハイブリッドの蒸気分離膜であることを特徴としており、請求項2の発明によれば、安定的に高いエタノール濃縮効果を発揮させることができるという効果を奏する。 The invention of claim 2 is the disinfectant ethanol production system according to claim 1, wherein the separation membrane of the separation membrane is a vapor separation membrane of a silica-based inorganic organic hybrid having a -Si-C 2 H 4-Si- bond. According to the invention of claim 2, it is characterized in that it can stably exert a high ethanol concentration effect.

本発明の液組成調整システムの実施形態を示すフローシートである。It is a flow sheet which shows the embodiment of the liquid composition adjustment system of this invention.

つぎに、本発明の実施の形態を図面に基づいて説明するが、本発明はこれらに限定されるものではない。 Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

図1を参照すると、本発明の消毒用エタノール(エタノール濃度70から83vol%)製造システムは、処理液タンク1から送液ポンプ2により送液される処理液3(低濃度エタノール(エタノール濃度5から40vol%))は、一次加熱する熱交換器4と、二次加熱する熱交換器5と、三次加熱する蒸発器6により80から150℃の蒸気状態とすることで、処理液中に混在している固体成分を残渣受槽7から粉末残渣8として排出するとともに、過熱蒸気状態とした低濃度エタノール9を膜モジュール10に搭載した分離膜11の一次側に供給する。分離膜11において、膜透過側に水分を主成分とする膜透過蒸気12、膜モジュールの保持側(非透過側)にエタノール濃縮蒸気13をそれぞれ分離し、エタノール濃縮蒸気13は熱交換器5にて熱エネルギーを回収・冷却後、液体状態14となり、エタノール濃度計15にてエタノール濃度を確認後、製品タンク16へ貯蔵し、一方で、送液ポンプ17 から送液される水溶液18とアスピレーター19により膜透過側は減圧され、膜透過蒸気12は前記アスピレーター内を通過する流体、例えば水と合流することにより凝縮・捕集させ、合流した膜透過成分20の熱エネルギーを熱交換器4にて回収後、貯蔵タンク21に送液し、余剰水溶液22は排水処理することを特徴としている。
ここで、分離膜の一次側に供給する低濃度エタノール原料は、固体残渣成分を除去した80から150℃、望ましくは100から140℃の蒸気状態にて供給することが望ましい。80℃未満だと蒸気状態とならず、また150℃より高温だと内圧が1MPaより大きくなる可能性があり高圧となり危険である。膜の透過側については、アスピレーター19により1から60kPa(絶対圧)の範囲で運転することが望ましい。分離膜の二次側(膜透過側)が減圧状態でないと、膜透過側の駆動力が小さくなり、必要な透過処理量を得ることが困難になる場合がある。
エタノール濃度計15にて製造されるエタノール濃度を確認し、所定のエタノール濃度(70から83vol%)よりもエタノール濃度が小さい場合は膜運転温度を上昇させる、あるいは膜透過側圧力を低下させ、所定のエタノール濃度(70から83vol%)よりもエタノール濃度が大きい場合は膜運転温度を低下させる、あるいは膜透過側圧力を上昇させることで、運転状況を調整することを特徴とする。
Referring to FIG. 1, in the disinfectant ethanol (ethanol concentration 70 to 83 vol%) production system of the present invention, the treatment liquid 3 (low concentration ethanol (from ethanol concentration 5)) is fed from the treatment liquid tank 1 by the liquid feed pump 2. 40vol%))) is mixed in the treatment liquid by setting the steam state at 80 to 150 ° C. by the heat exchanger 4 for primary heating, the heat exchanger 5 for secondary heating, and the evaporator 6 for tertiary heating. The solid component is discharged from the residue receiving tank 7 as a powder residue 8, and the low-concentration ethanol 9 in a superheated steam state is supplied to the primary side of the separation film 11 mounted on the film module 10. In the separation membrane 11, the membrane permeation vapor 12 containing water as a main component is separated on the membrane permeation side, and the ethanol-concentrated vapor 13 is separated on the holding side (non-permeation side) of the membrane module, and the ethanol-concentrated vapor 13 is transferred to the heat exchanger 5. After recovering and cooling the heat energy, it becomes a liquid state 14, and after confirming the ethanol concentration with the ethanol concentration meter 15, it is stored in the product tank 16, while the aqueous solution 18 and the aspirator 19 sent from the liquid feed pump 17 are stored. The pressure is reduced on the membrane permeation side, and the membrane permeation vapor 12 is condensed and collected by merging with a liquid passing through the aspirator, for example, water, and the heat energy of the merged membrane permeation component 20 is transferred by the heat exchanger 4. After the collection, the liquid is sent to the storage tank 21, and the surplus aqueous solution 22 is treated with wastewater.
Here, it is desirable that the low-concentration ethanol raw material supplied to the primary side of the separation membrane is supplied in a vapor state of 80 to 150 ° C., preferably 100 to 140 ° C. from which the solid residue component has been removed. If it is less than 80 ° C, it will not be in a steam state, and if it is higher than 150 ° C, the internal pressure may be higher than 1MPa, which is dangerous because it becomes high pressure. It is desirable to operate the permeation side of the membrane in the range of 1 to 60 kPa (absolute pressure) by the ejector 19. If the secondary side (membrane permeation side) of the separation membrane is not in a reduced pressure state, the driving force on the membrane permeation side becomes small, and it may be difficult to obtain the required permeation treatment amount.
Check the ethanol concentration produced by the ethanol concentration meter 15, and if the ethanol concentration is smaller than the specified ethanol concentration (70 to 83 vol%), raise the membrane operating temperature or lower the membrane permeation side pressure to specify. When the ethanol concentration is higher than the ethanol concentration (70 to 83 vol%), the operating condition is adjusted by lowering the membrane operating temperature or increasing the membrane permeation side pressure.

ここで、本発明で用いる分離膜としては耐久性に優れたゼオライト膜やシリカ系分離膜を用いることができる。膜耐久性及び水透過分離性能の観点から、特に分離層が-Si-C2H4-Si-結合を有するシリカ系無機有機ハイブリッドの蒸気分離膜を用いることが好ましい。 Here, as the separation membrane used in the present invention, a zeolite membrane or a silica-based separation membrane having excellent durability can be used. From the viewpoint of membrane durability and water permeation separation performance, it is particularly preferable to use a silica-based inorganic-organic hybrid vapor separation membrane having a -Si-C 2 H 4-Si- bond as the separation layer.

蒸気分離膜の基材としては、セラミクス等の無機多孔質基材、耐熱性高分子膜等の有機多孔質基材、ステンレス等金属基材等、 工業的な使用に耐え得る機械的強度を有するものが用いられる。無機多孔質基材として、例えばα-アルミナ、γ-アルミナ、ムライト、ジルコニア、チタニア、炭化ケイ素、或いはこれらの複合物からなるセラミクスが挙げられる。 As the base material of the steam separation membrane, it has mechanical strength that can withstand industrial use such as an inorganic porous base material such as ceramics, an organic porous base material such as a heat-resistant polymer film, and a metal base material such as stainless steel. Things are used. Examples of the inorganic porous substrate include ceramics composed of α-alumina, γ-alumina, mullite, zirconia, titania, silicon carbide, or a composite thereof.

無機多孔質基材である場合、無機多孔質基材と無機有機ハイブリッド蒸気分離膜との間に 中間層が設けられた3層構造であることが好ましい。中間層の細孔径は、無機多孔質基材の細孔径よりも小さく、無機有機ハイブリッド分離膜の細孔径よりも大きいことが好ましい。中間層を構成する物質は限定されないが、一例としてシリカ-ジルコニア、あるいは粒径が3から30nm程度の無機有機ハイブリッドナノ粒子が挙げられる。蒸気分離層の中間層の平均細孔径としては、1から3nmの範囲が好ましい。このように無機有機ハイブリッド蒸気分離膜が形成されることで、エタノール脱水性能が優れた無機有機ハイブリッド蒸気分離膜を得ることができる。 In the case of an inorganic porous substrate, it is preferable to have a three-layer structure in which an intermediate layer is provided between the inorganic porous substrate and the inorganic-organic hybrid vapor separation membrane. The pore diameter of the intermediate layer is preferably smaller than the pore diameter of the inorganic porous substrate and larger than the pore diameter of the inorganic organic hybrid separation membrane. The substance constituting the intermediate layer is not limited, and examples thereof include silica-zirconia and inorganic-organic hybrid nanoparticles having a particle size of about 3 to 30 nm. The average pore diameter of the intermediate layer of the steam separation layer is preferably in the range of 1 to 3 nm. By forming the inorganic-organic hybrid vapor separation membrane in this way, it is possible to obtain an inorganic-organic hybrid vapor separation membrane having excellent ethanol dehydration performance.

また、多孔質基材が有機多孔質基材である場合、有機多孔質基材として、ボリスルホン、ポリエーテルスルホン、ポリイミド 30、ポリテトラフルオロエチレン等が耐熱性を有する高分子膜であることが好ましい。 When the porous base material is an organic porous base material, it is preferable that the organic porous base material is a polymer film having heat resistance such as bolisulfone, polyether sulfone, polyimide 30, and polytetrafluoroethylene. ..

上述した蒸気分離膜フィルタは、例えば、以下のようにして製造することができる。 The vapor separation membrane filter described above can be manufactured, for example, as follows.

(RO)3SiXSi(OR)3 で表される化合物、例えば、(RO)3 SiCnH2n Si(OR)3 で表されるビスエトキシシリルエタン(B T E S E)、ビスエトキシシリルブタン、ビスエトキシシリルオクタンや、(RO)3SiCnH( 2 n -2 ) Si(OR)3で表わされるビスエトキシシリルエチレン等の化合物、(RO)3SiCnH( 2 n - 4 ) Si(OR)3 で表わされるビスエトキシシリルアセチレン等の化合物を、水を含む溶媒に加 えてゾル状にする。ここで、上記Rはアルキル基を表す。この化合物を水に加えるとアルコキシ基(OR)が加水分解し、隣接する化合物同士がSi-O-Si結合により重合する。より具体的には、上記化合物を、水を含む溶媒(エタノール等)に溶解し、触媒としで酸(塩酸、硝酸等)又は塩基(アンモニア等)を添加して、加水分解と縮重合反応に十 分な時間攪拌することで、ポリマーゾルが調製できる。 Compounds represented by (RO) 3 SiXSi (OR) 3 , for example, bisethoxysilylethane (BTESE), bisethoxysilylbutane, bisethoxysilyl represented by (RO) 3 SiC n H 2n Si (OR) 3. octane and, (RO) 3 SiC n H (2 n -2) Si (oR) compounds such as bis triethoxysilyl ethylene represented by 3, (RO) 3 SiC n H (2 n - 4) Si (oR) 3 A compound such as bisethoxysilyl acetylene represented by is added to a solvent containing water to form a sol. Here, R represents an alkyl group. When this compound is added to water, the alkoxy group (OR) is hydrolyzed and the adjacent compounds are polymerized by a Si-O-Si bond. More specifically, the above compound is dissolved in a solvent containing water (ethanol, etc.), and an acid (hydrochloric acid, nitric acid, etc.) or a base (ammonia, etc.) is added as a catalyst to cause hydrolysis and polycondensation reaction. A polymer sol can be prepared by stirring for a sufficient period of time.

上記ゾルを細孔径1から3nm程度の基材表面に塗布し、100から400℃の範囲で焼成することで無機有機ハイブリッド蒸気分離膜を得ることができる。焼成温度が300℃以上の場合は、Si-CnH2n-Si等のアルキル鎖が消失してしまうため、窒素雰囲気下での加熱が望ましい。 An inorganic-organic hybrid vapor separation membrane can be obtained by applying the sol to the surface of a substrate having a pore diameter of about 1 to 3 nm and firing in the range of 100 to 400 ° C. When the firing temperature is 300 ° C. or higher, the alkyl chains such as Si-C n H 2n -Si disappear, so heating in a nitrogen atmosphere is desirable.

つぎに、本発明の実施例を比較例と共に説明するが、本発明は、これらの実施例に限定されるものではない。 Next, examples of the present invention will be described together with comparative examples, but the present invention is not limited to these examples.

(実施例1)
本発明の製造システムを、図1にフローシートを示すシステムにより、低濃度エタノール(エタノール濃度5から40vol%)を新型コロナウィルス抑制に有効な消毒用エタノール(エタノール濃度70から83vol%)に転換するプロセス解析を実施した。分離膜としては、ビストリエトキシシリルエタン(B T E S E)を重合して得られるナノ粒子を製膜して得られる-Si-C2H4-Si-結合を有するシリカ系無機有機ハイブリッド分離膜(オルガノシリカ膜)を想定し、水透過度8×10−6[mol/(m2・s・Pa)]、エタノール透過度2×10−8[mol/(m2・s・Pa)]、水とエタノールの透過度比400の性能を仮定して、長さ80cm、直径12mmの管状の膜エレメント31本を束ねた膜モジュール1基(有効膜面積0.935m)を、温度80から150℃、膜透過側圧力5kPaの範囲で運転するプロセス解析を行った。エタノール製造条件としては、原料としてエタノール10vol%の低濃度エタノール水を流量50kg/hにて供給し、エタノール濃度70から83vol%の消毒用エタノールを製造するプロセスシミュレーションを実施した。
(Example 1)
The manufacturing system of the present invention is converted from low-concentration ethanol (ethanol concentration 5 to 40 vol%) into disinfectant ethanol (ethanol concentration 70 to 83 vol%) effective for suppressing the new coronavirus by the system shown in the flow sheet in FIG. A process analysis was performed. The separation membrane is a silica-based inorganic-organic hybrid separation membrane (organosilica) having a -Si-C 2 H 4- Si- bond obtained by forming nanoparticles obtained by polymerizing bistriethoxysilylethane (BTESE). Membrane), water permeability 8 × 10-6 [mol / (m 2・ s ・ Pa)], ethanol permeability 2 × 10-8 [mol / (m 2・ s ・ Pa)], water Assuming the performance of an ethanol permeability ratio of 400, one membrane module (effective membrane area 0.935 m 2 ) in which three tubular membrane elements with a length of 80 cm and a diameter of 12 mm are bundled is provided at a temperature of 80 to 150 ° C. A process analysis was performed in which the membrane permeation side pressure was in the range of 5 kPa. As the ethanol production conditions, a process simulation was carried out in which low-concentration ethanol water having an ethanol concentration of 10 vol% was supplied as a raw material at a flow rate of 50 kg / h to produce disinfectant ethanol having an ethanol concentration of 70 to 83 vol%.

(実施例2)
実施例1の試験において、原料流量を100kg/hにスケールアップして解析を行った。
(Example 2)
In the test of Example 1, the raw material flow rate was scaled up to 100 kg / h for analysis.

(実施例3)
実施例1の試験において、原料流量を150kg/hにスケールアップして解析を行った。
(Example 3)
In the test of Example 1, the raw material flow rate was scaled up to 150 kg / h for analysis.

(実施例4)
実施例1の試験において、温度101.8℃における膜透過側圧力を0.1から60k Paの範囲で解析を行った。
(Example 4)
In the test of Example 1, the membrane permeation side pressure at a temperature of 101.8 ° C. was analyzed in the range of 0.1 to 60 kPa.

(実施例5)
実施例2の試験において、温度121.8℃における膜透過側圧力を0.1から60k Paの範囲で解析を行った。
(Example 5)
In the test of Example 2, the membrane permeation side pressure at a temperature of 121.8 ° C. was analyzed in the range of 0.1 to 60 kPa.

(実施例6)
実施例3の試験において、温度140.0℃における膜透過側圧力を0.1から60k Paの範囲で解析を行った。
(Example 6)
In the test of Example 3, the membrane permeation side pressure at a temperature of 140.0 ° C. was analyzed in the range of 0.1 to 60 kPa.

(比較例1)
比較のため、実施例1の試験において、膜温度75.0℃、膜透過側圧力を0.1から60k Paの範囲で解析を行った。
(Comparative Example 1)
For comparison, in the test of Example 1, the membrane temperature was 75.0 ° C., and the membrane permeation side pressure was analyzed in the range of 0.1 to 60 kPa.

(比較例2)
比較のため、実施例1の試験において、膜透過側圧力101k Pa(常圧)の条件で解析を行った。
(Comparative Example 2)
For comparison, in the test of Example 1, the analysis was performed under the condition of the membrane permeation side pressure of 101 kPa (normal pressure).

上記実施試験結果を表1にまとめた。

Figure 2021181042


実施した試験1から6において、本発明のシステムにおいて原料流量に応じて膜温度を100から140℃の範囲で膜透過側圧力を調整することで、所定のエタノール濃度(エタノール濃度70から83vol%)の消毒用エタノールが製造できることを確認した。一方で、比較例1、2においては、所定のエタノール濃度までエタノールを濃縮することが困難であった。
以上から、本発明の消毒用エタノールの実施形態の有用性が確認された。 The results of the above-mentioned implementation test are summarized in Table 1.
Figure 2021181042


In Tests 1 to 6 carried out, in the system of the present invention, the membrane temperature was adjusted in the range of 100 to 140 ° C. according to the flow rate of the raw material to adjust the membrane permeation side pressure to a predetermined ethanol concentration (ethanol concentration 70 to 83 vol%). It was confirmed that ethanol for disinfection can be produced. On the other hand, in Comparative Examples 1 and 2, it was difficult to concentrate ethanol to a predetermined ethanol concentration.
From the above, the usefulness of the embodiment of the disinfecting ethanol of the present invention was confirmed.

本発明は、例えば低濃度エタノールを新型コロナウィルス抑制に有効な消毒用エタノール(エタノール濃度70から83vol%)に転換するなど、オンサイトでの小規模・低コストな溶液組成調整手段として産業上利用できる。
The present invention is industrially used as an on-site small-scale, low-cost solution composition adjusting means, for example, by converting low-concentration ethanol to disinfectant ethanol (ethanol concentration 70 to 83 vol%) effective for suppressing the new coronavirus. can.

1 処理液タンク
2 送液ポンプ
3 処理液(低濃度エタノール(エタノール濃度5から40vol%))
4 一次加熱熱交換器
5 二次加熱熱交換器
6 蒸発器
7 残渣受槽
8 粉末残渣
9 低濃度エタノール蒸気(80から150℃)
10 膜モジュール
11 分離膜
12 水分を主成分とする膜透過蒸気
13 エタノール濃縮蒸気
14 エタノール濃縮液(液体)
15 エタノール濃度計
16 製品タンク
17 送液ポンプ
18 流体
19 アスピレーター
20 膜透過成分混合流体
21 貯蔵タンク
22 余剰水溶液












1 Treatment liquid tank 2 Liquid feed pump 3 Treatment liquid (low concentration ethanol (ethanol concentration 5 to 40 vol%))
4 Primary heat heat exchanger 5 Secondary heat heat exchanger 6 Evaporator 7 Residue receiving tank 8 Powder residue 9 Low concentration ethanol steam (80 to 150 ° C)
10 Membrane module 11 Separation membrane 12 Membrane permeation steam containing water as the main component 13 Ethanol concentrated steam
14 Ethanol concentrate (liquid)
15 Ethanol concentration meter 16 Product tank 17 Liquid feed pump 18 Fluid 19 Aspirator 20 Membrane permeation component mixed fluid 21 Storage tank 22 Excess aqueous solution












Claims (2)

処理液(低濃度エタノール(エタノール濃度5から40vol%))を一次加熱する熱交換器と、二次加熱する熱交換器と、三次加熱する蒸発器と、膜モジュールに搭載した分離膜と、前記分離膜の二次側(膜透過側)を減圧するアスピレーターと、エタノール濃度計と、を備え、処理液は前記蒸発器にて80から150℃に加熱され、固体残渣成分を除去した蒸気状態にて前記分離膜の一次側に供給され、前記分離膜の二次側(膜透過側)は前記アスピレーターにより減圧され、処理蒸気の水分が蒸気として優先的に前記分離膜を透過することで処理蒸気のエタノール濃度を高め、蒸気として膜透過した成分は前記アスピレーター内を通過する流体と合流することにより凝縮・捕集させ、膜透過成分の熱エネルギーを前記処理液を一次加熱する熱交換器にて回収し、膜モジュールの保持側(非透過側)から排出されるエタノール濃縮蒸気の熱エネルギーを前記処理液を二次加熱する熱交換器にて回収することを特徴とする、膜分離による消毒用エタノール(エタノール濃度70から83vol%)製造システム。
A heat exchanger that primaryly heats the treatment liquid (low-concentration ethanol (ethanol concentration 5 to 40 vol%)), a heat exchanger that secondarily heats, an evaporator that tertiaryly heats, a separation membrane mounted on a membrane module, and the above. It is equipped with an aspirator that reduces the pressure on the secondary side (membrane permeation side) of the separation membrane and an ethanol concentration meter, and the treatment liquid is heated to 80 to 150 ° C. by the evaporator to bring it into a steam state from which solid residue components have been removed. The heat is supplied to the primary side of the separation membrane, the secondary side (membrane permeation side) of the separation membrane is depressurized by the aspirator, and the water content of the treatment steam preferentially permeates the separation membrane as steam to permeate the treatment steam. The ethanol concentration of the film is increased, and the components that have permeated the membrane as steam are condensed and collected by merging with the fluid that passes through the aspirator, and the heat energy of the film permeation component is used in a heat exchanger that primarily heats the treatment liquid. For disinfection by membrane separation, which is characterized in that the heat energy of the ethanol-concentrated steam that is recovered and discharged from the holding side (non-permeable side) of the membrane module is recovered by a heat exchanger that secondarily heats the treatment liquid. Ethanol (ethanol concentration 70-83 vol%) production system.
前記分離膜の分離層が-Si-C2H4-Si-結合を有するシリカ系無機有機ハイブリッドの蒸気分離膜であることを特徴とする、請求項目1記載の消毒用エタノール製造システム。
The ethanol production system for disinfection according to claim 1, wherein the separation layer of the separation membrane is a vapor separation membrane of a silica-based inorganic-organic hybrid having a -Si-C 2 H 4-Si- bond.
JP2020086603A 2020-05-18 2020-05-18 Disinfecting ethanol manufacturing system Pending JP2021181042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020086603A JP2021181042A (en) 2020-05-18 2020-05-18 Disinfecting ethanol manufacturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020086603A JP2021181042A (en) 2020-05-18 2020-05-18 Disinfecting ethanol manufacturing system

Publications (1)

Publication Number Publication Date
JP2021181042A true JP2021181042A (en) 2021-11-25

Family

ID=78605879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020086603A Pending JP2021181042A (en) 2020-05-18 2020-05-18 Disinfecting ethanol manufacturing system

Country Status (1)

Country Link
JP (1) JP2021181042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176565A1 (en) * 2022-03-17 2023-09-21 日東電工株式会社 Membrane separation system and method for operating membrane separation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176565A1 (en) * 2022-03-17 2023-09-21 日東電工株式会社 Membrane separation system and method for operating membrane separation device

Similar Documents

Publication Publication Date Title
Raza et al. Progress in pervaporation membranes for dehydration of acetic acid
Morigami et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane
JP6022443B2 (en) Organophilic polysilsesquioxane membranes for solvent nanofiltration and pervaporation
JP5305912B2 (en) Recovery method of alkoxysilane using separation membrane
CN105214502B (en) A kind of Nano Silver/graphene/polyvinyl alcohol matrix membrane and preparation method thereof
CN103635248B (en) CO2Zeolite membrane separation and recovery system
Zhang et al. Preparation and characterization of a diatomite hybrid microfiltration carbon membrane for oily wastewater treatment
CN110252152B (en) Flexible organic solvent reverse osmosis membrane with high permeation flux, preparation method and application
JP7226708B2 (en) Composite semipermeable membrane and manufacturing method thereof
JP2021181042A (en) Disinfecting ethanol manufacturing system
US20110107911A1 (en) Membrane And Process For Steam Separation, Purification And Recovery
JP5884349B2 (en) Dehydration concentration method for water-containing organic compounds and dehydration concentration apparatus used therefor
JP2021181048A (en) Membrane type disinfecting ethanol manufacturing system
Kazemimoghadam et al. The pilot-scale pervaporation plant using tubular-type module with nano pore zeolite membrane
JP2014046300A (en) Dehydration method of solution by membrane
Sawunyama et al. Ceramic-polymer composite membranes: synthesis methods and environmental applications
JP6251174B2 (en) Olefin recovery method
JP2009183814A (en) Separation membrane and its manufacturing method
JP5965945B2 (en) CO2 zeolite membrane separation and recovery system
WO2022051493A1 (en) Membrane process for h2 recovery from sulfur recovery tail gas stream of sulfur recovery units and process for environmentally greener sales gas
WO2019151075A1 (en) Composite semipermeable membrane and method for manufacturing same
Yildirim et al. An experimental study of CO2 separation using a silica based composite membrane
CN107349807B (en) Fe (BTC) -inlaid large-flux polyamide nano composite film and preparation method and application thereof
JP2020164514A (en) Method for separating glycerin
CN117157379A (en) Liquid fuel synthesis system and liquid fuel synthesis method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240328