JP2021178540A - Vehicular cooling device and cooling method using the same - Google Patents

Vehicular cooling device and cooling method using the same Download PDF

Info

Publication number
JP2021178540A
JP2021178540A JP2020083784A JP2020083784A JP2021178540A JP 2021178540 A JP2021178540 A JP 2021178540A JP 2020083784 A JP2020083784 A JP 2020083784A JP 2020083784 A JP2020083784 A JP 2020083784A JP 2021178540 A JP2021178540 A JP 2021178540A
Authority
JP
Japan
Prior art keywords
battery
evaporator
refrigerant
rear seat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020083784A
Other languages
Japanese (ja)
Other versions
JP7271470B2 (en
Inventor
光彦 赤星
Mitsuhiko Akaboshi
記明 根本
Noriaki Nemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co Ltd filed Critical Valeo Japan Co Ltd
Priority to JP2020083784A priority Critical patent/JP7271470B2/en
Publication of JP2021178540A publication Critical patent/JP2021178540A/en
Application granted granted Critical
Publication of JP7271470B2 publication Critical patent/JP7271470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

To enable cooling in a passenger compartment without using an expensive electronic expansion device and enable only a battery to be cooled in a vehicular cooling device which can cool the battery and a front seat space and a rear seat space in the passenger compartment.SOLUTION: A first branch point (B1), at which a duct line leading to a battery evaporator 11 which cools a battery 13 is branched, and a second branch point (B2), at which a duct line leading to a front seat evaporator 21 which cools a front seat space and a duct line leading to a rear seat evaporator 31 which cools a rear seat space are branched, are provided at a refrigerant duct line at the downstream side of a radiator 3 which radiates heat from a refrigerant compressed by a compressor 2. A first confluence point (J1), at which a duct line of the refrigerant flowing out from the battery evaporator 11 is joined, and a second confluence point (J2), at which a duct line of the refrigerant flowing out from the front seat evaporator 21 and a duct line of the refrigerant flowing out from the rear seat evaporator 31 are joined, are provided at the refrigerant duct line at the upstream side of the compressor 2. An on-off valve 5 is disposed in a refrigerant duct line 101b between the first branch point (B1) and the second branch point (B2).SELECTED DRAWING: Figure 1

Description

この発明は、車両走行用の電力を蓄電可能とするバッテリと車両の前席空間および後席空間とを冷却するために用いられる車両用冷却装置、及びこれを用いた冷却方法に関する。 The present invention relates to a vehicle cooling device used for cooling a battery capable of storing electric power for traveling a vehicle, a front seat space and a rear seat space of the vehicle, and a cooling method using the same.

従来において、車両の前席空間と後席空間を冷却すると共に、車両走行用のバッテリを冷却することが可能な車両用冷却装置として、例えば、特許文献1に示される冷却装置が知られている。
これは、前席空間と後席空間とを冷却する空調用冷凍サイクルを、前席用空調ユニットに設けられた前席側膨張弁および前席側蒸発器と、後席用空調ユニットに設けられた後席側膨張弁および後席側蒸発器と、を圧縮機および凝縮器に対して並列的に設け、圧縮機で圧縮された冷媒を凝縮器で放熱した後、前席側膨張弁を介して前席側蒸発器へ供給すると共に後席側膨張弁を介して後席側蒸発器へ供給するようにしている。また、車両に搭載されるバッテリを冷却するために、空調ケースとは別に設けられた電池収納ケースにバッテリを収納し、この電池収容ケースにバッテリへ送風するための電池冷却用送風機を設け、電池冷却用送風機により、後席側空調ユニットの後席側蒸発器で冷却された冷風を冷風吸入通路を介して電池収納ケースに取り入れ、バッテリへ送風するようにしている。
Conventionally, as a vehicle cooling device capable of cooling the front seat space and the rear seat space of a vehicle and cooling a battery for traveling the vehicle, for example, the cooling device shown in Patent Document 1 is known. ..
This is provided with an air-conditioning refrigeration cycle that cools the front-seat space and the rear-seat space in the front-seat side expansion valve and front-seat side evaporator provided in the front-seat air-conditioning unit, and in the rear-seat air-conditioning unit. A rear seat side expansion valve and a rear seat side evaporator are provided in parallel with the compressor and the condenser, and the refrigerant compressed by the compressor is dissipated by the condenser, and then via the front seat side expansion valve. It is supplied to the front seat side evaporator and also to the rear seat side evaporator via the rear seat side expansion valve. Further, in order to cool the battery mounted on the vehicle, the battery is stored in a battery storage case provided separately from the air conditioning case, and a battery cooling blower for blowing air to the battery is provided in this battery storage case. The cooling blower takes in the cold air cooled by the rear seat side evaporator of the rear seat side air conditioning unit into the battery storage case through the cold air suction passage and blows it to the battery.

しかしながら、上述の車両用冷却装置においては、バッテリを冷却するために、後席側空調ユニットで冷却した冷風を電池収納ケースに取り入れ、バッテリの冷却風としているので、後席側空調ユニットが稼働していることが前提となる。即ち、後席に乗員が搭乗している場合、或いは、搭乗することが予定される場合(プレ空調の場合)にバッテリへ冷却風を供給することは可能となる。 However, in the vehicle cooling device described above, in order to cool the battery, the cold air cooled by the rear seat side air conditioning unit is taken into the battery storage case and used as the battery cooling air, so that the rear seat side air conditioning unit operates. It is assumed that it is. That is, it is possible to supply cooling air to the battery when an occupant is on the rear seat or when the occupant is scheduled to be on board (in the case of pre-air conditioning).

一方、車両に乗員が搭乗していない場合においてバッテリを充電する場合には、必ずしも車室を冷房する必要はないが、バッテリは充電により発熱する場合があるため、バッテリを冷却させる必要がある。このため、上述の車両用冷却装置においては、バッテリを冷却させるためには、乗員の有無に拘わらず少なくとも後席側空調ユニットを稼働させる必要があり、省エネの観点から好ましくない。 On the other hand, when charging the battery when no occupant is on board the vehicle, it is not always necessary to cool the passenger compartment, but the battery may generate heat due to charging, so it is necessary to cool the battery. Therefore, in the above-mentioned vehicle cooling device, in order to cool the battery, it is necessary to operate at least the rear seat side air conditioning unit regardless of the presence or absence of an occupant, which is not preferable from the viewpoint of energy saving.

また、上述の車両用冷却装置にあっては、後席側空調ユニットで生成した冷風を電池冷却用送風機で電池収納ケースに取り入れ、バッテリへ送風する手法を採用しているので、バッテリの冷却効率の点でも十分ではなく、また、バッテリを冷却するために、バッテリに向けて冷風を供給する専用の装置、すなわち、電池冷却用送風機とこの送風機によって送風された空気をバッテリに導くダクト又はケースが必要となり、省スペース化の点でも、改善の余地がある。 Further, in the above-mentioned vehicle cooling device, the cooling efficiency of the battery is adopted because the method of taking the cold air generated by the rear seat side air conditioning unit into the battery storage case with the battery cooling blower and blowing the air to the battery is adopted. Also, a dedicated device that supplies cold air to the battery to cool the battery, that is, a battery cooling blower and a duct or case that guides the air blown by this blower to the battery. It is necessary, and there is room for improvement in terms of space saving.

このような不都合に鑑み、バッテリを冷却するためのバッテリ用蒸発器(電池用熱交換器)を設け、空調用冷凍サイクルの冷媒をバッテリ蒸発器にも供給可能とするバッテリ冷却装置を構築することは有用であり、例えば、下記する特許文献2に示されるような冷却装置が提案されている。 In view of these inconveniences, it is necessary to provide a battery evaporator (battery heat exchanger) for cooling the battery and construct a battery cooling device capable of supplying the refrigerant of the air conditioning refrigeration cycle to the battery evaporator as well. Is useful, and for example, a cooling device as shown in Patent Document 2 below has been proposed.

これは、電子式の冷房用膨張弁で減圧された冷媒を室内蒸発器に供給する経路と、電子式の電池用膨張弁で減圧された冷媒を電池用熱交換器に供給する経路と、を圧縮機、室内凝縮器、及び室外熱交換器に対して並列的に接続し、また、室外熱交換器から流出した冷媒を冷房用膨張弁へ流入する冷媒回路と電池用膨張弁へ流入する冷媒回路とに切り換える電池用開閉弁を設け、圧縮機から吐出した冷媒を室内凝縮器および室外熱交換器にて放熱させ、冷房用膨張弁で減圧した後に室内蒸発器で蒸発させる場合と、圧縮機から吐出された冷媒を室内凝縮器および室外熱交換器にて放熱させ、電池用膨張弁で減圧させた後に電池用熱交換器にて蒸発させる場合と、を切り替え可能としている。 This includes a path for supplying the refrigerant decompressed by the electronic cooling expansion valve to the indoor evaporator and a path for supplying the decompressed refrigerant with the electronic battery expansion valve to the battery heat exchanger. It is connected in parallel to the compressor, indoor condenser, and outdoor heat exchanger, and the refrigerant flowing out of the outdoor heat exchanger flows into the cooling expansion valve and the refrigerant circuit that flows into the battery expansion valve. An on-off valve for batteries is provided to switch to the circuit, and the refrigerant discharged from the compressor is dissipated by the indoor condenser and outdoor heat exchanger, decompressed by the cooling expansion valve, and then evaporated by the indoor evaporator. It is possible to switch between the case where the refrigerant discharged from the refrigerant is dissipated by the indoor condenser and the outdoor heat exchanger, the pressure is reduced by the battery expansion valve, and then the refrigerant is evaporated by the battery heat exchanger.

特開2007−137127号公報Japanese Unexamined Patent Publication No. 2007-137127 特開2014−228190号公報Japanese Unexamined Patent Publication No. 2014-228190

しかしながら、このような構成においては、冷房用膨張弁や電池用開閉弁を開閉制御することで、車室内空調とは独立にバッテリを冷却することは可能であるが、膨張弁として高価な電子式膨張弁(電子式膨張装置)を用いなければならないため、車両用冷却装置としてコストを抑えることが難しくなるという不都合がある。特に、前席空間と後席空間とを独立させて空調する所謂デュアルエアコンにおいては、各空間を冷却する蒸発器がそれぞれ必要となるため、室内冷却用の蒸発器毎に電子式膨張装置が用いられると、冷却装置としてコストを抑えることが一層難しくなる。 However, in such a configuration, it is possible to cool the battery independently of the air conditioning in the vehicle interior by controlling the opening and closing of the expansion valve for cooling and the on-off valve for the battery, but it is an expensive electronic type as an expansion valve. Since an expansion valve (electronic expansion device) must be used, there is an inconvenience that it becomes difficult to reduce the cost as a vehicle cooling device. In particular, in a so-called dual air conditioner that air-conditions the front seat space and the rear seat space independently, an evaporator for cooling each space is required, so an electronic expansion device is used for each evaporator for indoor cooling. If this is done, it will be more difficult to reduce the cost as a cooling device.

また、上述の装置においても、バッテリの冷却は、電池用熱交換器で生成した冷気を送風機でバッテリへ送風する空冷式となるので、バッテリの冷却効率の点でも十分ではなく、また、送風機や送風された空気をバッテリに導くダクト又はケースが必要となり、省スペース化の点でも、依然として改善の余地がある。 Further, also in the above-mentioned device, the cooling of the battery is an air-cooled type in which the cold air generated by the heat exchanger for the battery is blown to the battery by the blower, so that the cooling efficiency of the battery is not sufficient. A duct or case is required to guide the blown air to the battery, and there is still room for improvement in terms of space saving.

さらに、車室の前席空間と後席空間とを別々に冷却可能とするために前席用蒸発器と後席用蒸発器とを設ける構成においては、バッテリ用蒸発器へ冷媒を供給する経路を、前席用蒸発器や後席用蒸発器に冷媒を供給する経路と切り離して形成することが要請されるため、バッテリ蒸発器をどのように冷凍サイクルに組み込むかは非常に重要なポイントとなる。 Further, in the configuration in which the front seat evaporator and the rear seat evaporator are provided so that the front seat space and the rear seat space of the passenger compartment can be cooled separately, the route for supplying the refrigerant to the battery evaporator is provided. Is required to be formed separately from the path that supplies the refrigerant to the front seat evaporator and the rear seat evaporator, so how to incorporate the battery evaporator into the refrigeration cycle is a very important point. Become.

本発明は係る事情に鑑みてなされたものであり、バッテリの冷却と車室の前席空間および後席空間とを冷却することが可能な車両用冷却装置において、高価な電子式膨張装置を用いることなく車室を冷却できるようにしつつ、前席空間および後席空間とは独立させてバッテリを冷却させることで効率的なバッテリ冷却を行うことが可能な車両用冷却装置とこれを用いた冷却方法を提供することを主たる課題としている。
また、上記課題を達成した上で、さらにバッテリの冷却を効果的に行うと共に、省スペース化を図ることができれば、一層好ましい。
The present invention has been made in view of the above circumstances, and an expensive electronic expansion device is used in a vehicle cooling device capable of cooling a battery and cooling the front seat space and the rear seat space of a vehicle interior. A vehicle cooling device capable of efficiently cooling the battery by cooling the battery independently of the front seat space and the rear seat space while allowing the vehicle interior to be cooled without the need for cooling, and cooling using the same. The main task is to provide a method.
Further, it is more preferable if the battery can be effectively cooled and the space can be saved after achieving the above problems.

上記課題を達成するために、本発明に係る車両用冷却装置は、車両に搭載され、車両走行用の電力を蓄電可能とするバッテリ(13)を冷却する機能を備えた車両用冷却装置(1)であって、
冷媒を圧縮する圧縮機(2)と、前記圧縮機(2)で圧縮された冷媒を放熱する放熱器(3)と、車両の前席空間に送風される空気を冷却する前席用蒸発器(21)と、前記前席用蒸発器(21)から前記圧縮機(2)に向かう冷媒の温度、または冷媒の温度及び圧力を感知して前記放熱器(3)で放熱された冷媒の前記前席用蒸発器(21)への供給流量を自律的に調節する前席用機械式膨張装置(22)と、車両の後席空間に送風される空気を冷却する後席用蒸発器(31)と、前記後席用蒸発器(31)から前記圧縮機(2)に向かう冷媒の温度、または冷媒の温度及び圧力を感知して前記放熱器(3)で放熱された冷媒の前記後席用蒸発器(31)への供給流量を自律的に調節する後席用機械式膨張装置(32)と、前記バッテリ(13)を冷却可能なバッテリ用蒸発器(11)と、前記放熱器(3)で放熱された冷媒の前記バッテリ用蒸発器(11)への供給流量を調節する電子式膨張装置(12)と、を有する冷凍サイクル(100)を備え、
前記冷凍サイクル(100)は、前記放熱器(3)より下流側の冷媒管路(101)に設けられ、前記電子式膨張装置(12)を介して前記バッテリ用蒸発器(11)へ向かう管路(101a)と後述する第2分岐点(B2)へ向かう管路(101b)とを分岐させる第1分岐点(B1)と、前記前席用機械式膨張装置(22)を介して前記前席用蒸発器(21)へ向かう管路(101c)と前記後席用機械式膨張装置(32)を介して前記後席用蒸発器(31)へ向かう管路(101d)とを分岐させる第2分岐点(B2)と、前記圧縮機(2)より上流側の冷媒管路(102)に設けられ、前記バッテリ用蒸発器(11)から流出した冷媒の管路(102a)と後述する第2合流点(J2)を通過した冷媒の管路(102b)とを合流させる第1合流点(J1)と、前記前席用蒸発器(21)から流出した冷媒の管路(102c)と前記後席用蒸発器(31)から流出した冷媒の管路(102d)とを合流させる第2合流点(J2)と、前記第1分岐点(B1)と前記第2分岐点(B2)との間の冷媒管路(101b)、及び、前記第1合流点(J1)と前記第2合流点(J2)との間の冷媒管路(102b)の少なくとも一方に配置された開閉弁(5,6)と、
を有することを特徴としている。
In order to achieve the above object, the vehicle cooling device according to the present invention is a vehicle cooling device (1) having a function of cooling a battery (13) mounted on a vehicle and capable of storing electric power for traveling the vehicle. ) And
A compressor (2) that compresses the refrigerant, a radiator (3) that dissipates the refrigerant compressed by the compressor (2), and a front seat evaporator that cools the air blown into the front seat space of the vehicle. (21) and the refrigerant radiated by the radiator (3) by sensing the temperature of the refrigerant heading from the front seat evaporator (21) to the compressor (2), or the temperature and pressure of the refrigerant. A front seat mechanical inflator (22) that autonomously adjusts the supply flow rate to the front seat evaporator (21), and a rear seat evaporator (31) that cools the air blown into the rear seat space of the vehicle. ) And the temperature of the refrigerant heading from the rear seat evaporator (31) to the compressor (2), or the rear seat of the refrigerant radiated by the radiator (3) by sensing the temperature and pressure of the refrigerant. A rear-seat mechanical inflator (32) that autonomously adjusts the supply flow rate to the refrigerant (31), a battery evaporator (11) that can cool the battery (13), and the radiator (the radiator). A refrigeration cycle (100) comprising an electronic expansion device (12) for adjusting the supply flow rate of the refrigerant radiated in 3) to the battery evaporator (11) is provided.
The refrigerating cycle (100) is provided in a refrigerant conduit (101) downstream of the radiator (3), and is directed to the battery evaporator (11) via the electronic expansion device (12). The front via the first branch point (B1) for branching the road (101a) and the conduit (101b) toward the second branch point (B2) described later, and the front seat mechanical expansion device (22). A first branching line (101c) toward the seat evaporator (21) and a line (101d) toward the rear seat evaporator (31) via the rear seat mechanical inflator (32). The two branch points (B2) and the refrigerant line (102a) provided in the refrigerant line (102) on the upstream side of the compressor (2) and flowing out of the battery evaporator (11), and the refrigerant line (102a) described later. The first confluence point (J1) for merging the refrigerant conduit (102b) that has passed through the two confluence points (J2), the refrigerant conduit (102c) that has flowed out from the front seat evaporator (21), and the above. A second merging point (J2) for merging the refrigerant conduit (102d) flowing out of the rear seat evaporator (31), the first branch point (B1), and the second branch point (B2). An on-off valve (5, 5) arranged on at least one of the refrigerant pipeline (101b) between them and the refrigerant conduit (102b) between the first confluence point (J1) and the second confluence point (J2). 6) and
It is characterized by having.

したがって、前席空間および後席空間を冷却すると共に車両走行用のバッテリを冷却する機能を備えた車両用冷却装置において、前席および後席用の蒸発器への冷媒流量を調節する膨張装置を機械式膨張装置とした上で、バッテリのみを冷却することができるようになる。このため、室内冷却用の構成部品を廉価な部品で対応できるようにすると共に、バッテリ冷却を単独運転できるようにしてバッテリ冷却の効率を高めることが可能となる。 Therefore, in a vehicle cooling device having a function of cooling the front seat space and the rear seat space and cooling the battery for traveling the vehicle, an expansion device for adjusting the flow rate of the refrigerant to the evaporators for the front seat and the rear seat is provided. After making it a mechanical expansion device, it will be possible to cool only the battery. Therefore, it is possible to improve the efficiency of battery cooling by making it possible to handle the components for indoor cooling with inexpensive parts and to enable the battery cooling to operate independently.

第1分岐点(B1)と第2分岐点(B2)との間の冷媒管路、及び、第1合流点(J1)と第2合流点(J2)との間の冷媒管路の少なくとも一方に開閉弁を設けず、この開閉弁によって前席用蒸発器および後席用蒸発器への冷媒供給を停止させない場合には、前席用および後席用の膨張装置として機械式膨張装置を用いていると、少なからず冷媒がこの機械式膨張装置を介して前席用蒸発器や後席用蒸発器へ流出し、蒸発器を凍結させる不都合が考えられる。機械式膨張装置では、冷媒の流路を絞り状態とすることは可能であるが、完全に閉状態とすることが困難なためである。 At least one of the refrigerant pipelines between the first branch point (B1) and the second branch point (B2) and the refrigerant pipeline between the first confluence point (J1) and the second confluence point (J2). If the on-off valve is not provided in the on-off valve and the on-off valve does not stop the supply of refrigerant to the front-seat evaporator and the rear-seat evaporator, a mechanical inflator is used as the front-seat and rear-seat inflator. If this is the case, it is conceivable that the refrigerant will flow out to the front seat evaporator and the rear seat evaporator via this mechanical expansion device, and freeze the evaporator. This is because it is possible to close the flow path of the refrigerant in the mechanical expansion device, but it is difficult to make it completely closed.

このような不都合を回避するために、電子式膨張装置を用いて完全に閉状態を形成することも考えられるが、前席用蒸発器と後席用蒸発器のそれぞれに対応させて電子式膨張装置を用いる場合には、前述した如く、コストを抑えることが難しくなる。そこで、前席用蒸発器と後席用蒸発器のそれぞれに対応する膨張装置は機械式膨張装置とした上で、第1分岐点(B1)と第2分岐点(B2)との間の冷媒管路、及び、第1合流点(J1)と第2合流点(J2)との間の冷媒管路の少なくとも一方に開閉弁を設け、この開閉弁を閉とすることによって前席用蒸発器および後席用蒸発器への冷媒供給を停止させるようにすれば、前席用蒸発器および後席用蒸発器への冷媒供給を確実に停止させることが可能となり、前席用蒸発器や後席用蒸発器の凍結を防止しつつ、開閉弁を閉とした場合にはバッテリのみへ冷媒を供給することが可能となるので、バッテリの冷却効率を高めることが可能となる。 In order to avoid such inconvenience, it is conceivable to use an electronic expansion device to form a completely closed state, but the electronic expansion corresponds to each of the front seat evaporator and the rear seat evaporator. When the device is used, it becomes difficult to suppress the cost as described above. Therefore, the expansion device corresponding to each of the front seat evaporator and the rear seat evaporator is a mechanical expansion device, and the refrigerant between the first branch point (B1) and the second branch point (B2) is used. An on-off valve is provided in at least one of the conduit and the refrigerant pipeline between the first confluence (J1) and the second confluence (J2), and the on-off valve is closed to close the front-seat evaporator. If the refrigerant supply to the front seat evaporator and the rear seat evaporator is stopped, the refrigerant supply to the front seat evaporator and the rear seat evaporator can be surely stopped, and the front seat evaporator and the rear seat evaporator can be stopped. When the on-off valve is closed, the refrigerant can be supplied only to the battery while preventing the seat evaporator from freezing, so that the cooling efficiency of the battery can be improved.

なお、開閉弁を設ける態様としては、分岐点B1と分岐点B2との間に開閉弁を設ける態様(図1、図2)、合流点J1と合流点J2との間に開閉弁を設ける態様(図3、図4)、B1とB2との間、及び、J1とJ2との間の両方に開閉弁を設ける態様(図5、図6)が考えられる。 As a mode of providing the on-off valve, an on-off valve is provided between the branch point B1 and the branch point B2 (FIGS. 1 and 2), and an on-off valve is provided between the confluence point J1 and the confluence point J2. (FIGS. 3 and 4), an embodiment in which an on-off valve is provided between B1 and B2 and between J1 and J2 (FIGS. 5 and 6) can be considered.

また、上述の車両用冷却装置において、前記バッテリ用蒸発器は、前記バッテリと熱的に結合されているようにするとよい。
このような構成においては、バッテリの熱をバッテリ用蒸発器に移動させることが容易となり、空気冷却よりも効率的な冷却が可能となる。また、バッテリを冷却するために送風機や空気流路を形成するダクト等が不要となるので、省スペース化、小型化を図ることが可能となる。
Further, in the vehicle cooling device described above, the battery evaporator may be thermally coupled to the battery.
In such a configuration, it becomes easy to transfer the heat of the battery to the evaporator for the battery, and more efficient cooling than air cooling becomes possible. Further, since a blower and a duct forming an air flow path are not required to cool the battery, it is possible to save space and reduce the size.

上述の車両用冷却装置を用いて冷却する場合において、前席空間および後席空間の冷却が不要であり、且つ、バッテリの冷却要請がある場合には、前記開閉弁を閉とし、前席空間および後席空間の冷却要請がある場合には、開閉弁を開にすればよい。また、バッテリの冷却要請が無い場合には、電子式膨張装置を閉にすればよい。 In the case of cooling using the above-mentioned vehicle cooling device, if it is not necessary to cool the front seat space and the rear seat space and there is a request to cool the battery, the on-off valve is closed and the front seat space is closed. And when there is a request to cool the rear seat space, the on-off valve may be opened. Further, when there is no request for cooling the battery, the electronic expansion device may be closed.

以上述べたように、本発明によれば、バッテリ用蒸発器から流出した冷媒の管路と第2合流点を通過した冷媒の管路とを合流させる第1合流点と、前席用蒸発器から流出した冷媒の管路と後席用蒸発器から流出した冷媒の管路とを合流させる第2合流点と、第1分岐点と第2分岐点との間の冷媒管路、及び、第1合流点と第2合流点との間の冷媒管路の少なくとも一方に開閉弁を配置したので、前席用蒸発器と後席用蒸発器のそれぞれに対応する膨張装置を機械式膨張装置とした上で、前席空間および後席空間とは独立させてバッテリを冷却させることが可能となり、高価な電子式膨張装置を用いることなく車室を冷却することが可能になると共に、前席空間および後席空間とは独立させてバッテリを効率的に冷却することが可能となる。 As described above, according to the present invention, the first confluence point for merging the refrigerant conduit flowing out of the battery evaporator and the refrigerant conduit passing through the second confluence point, and the front seat evaporator. The second confluence point that joins the refrigerant line that flows out from the rear seat evaporator and the refrigerant line that flows out from the rear seat evaporator, the refrigerant lineage between the first branch point and the second branch point, and the second Since the on-off valve is arranged on at least one of the refrigerant pipelines between the 1st confluence point and the 2nd confluence point, the expansion device corresponding to each of the front seat evaporator and the rear seat evaporator is referred to as a mechanical expansion device. In addition, the battery can be cooled independently of the front seat space and the rear seat space, and the passenger compartment can be cooled without using an expensive electronic expansion device, and the front seat space can be cooled. And it is possible to efficiently cool the battery independently of the rear seat space.

また、バッテリ用蒸発器をバッテリと熱的に結合した構成とすることで、バッテリの熱をバッテリ用蒸発器に円滑に移動させることが可能となるので、空気冷却よりも効率的な冷却が可能となる。しかも、バッテリを冷却するために送風機や空気流路を形成するダクトが不要となるので、省スペース化、小型化を図ることが可能となる。 In addition, by configuring the battery evaporator to be thermally coupled to the battery, the heat of the battery can be smoothly transferred to the battery evaporator, so that cooling can be performed more efficiently than air cooling. It becomes. Moreover, since a blower and a duct forming an air flow path are not required to cool the battery, it is possible to save space and reduce the size.

図1は、本発明に係る車両用冷却装置の構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a vehicle cooling device according to the present invention. 図2は、図1の車両用冷却装置を用いた冷却態様を示す図であり、冷媒が流れている管路を太線で示したものであり、(a)は、バッテリのみを冷却する状態を示し、(b)は、バッテリと車室(前席空間および後席空間)とを冷却する状態を示し、(c)は、車室(前席空間と後席空間)のみを冷却する状態を示す。FIG. 2 is a diagram showing a cooling mode using the vehicle cooling device of FIG. 1, and the pipeline through which the refrigerant is flowing is shown by a thick line, and FIG. 2A shows a state in which only the battery is cooled. (B) shows a state in which the battery and the passenger compartment (front seat space and rear seat space) are cooled, and (c) shows a state in which only the passenger compartment (front seat space and rear seat space) is cooled. show. 図3は、本発明に係る車両用冷却装置の他の構成例を示す図である。FIG. 3 is a diagram showing another configuration example of the vehicle cooling device according to the present invention. 図4は、図3の車両用冷却装置を用いた冷却態様を示す図であり、冷媒が流れている管路を太線で示したものであり、(a)は、バッテリのみを冷却する状態を示し、(b)は、バッテリと車室(前席空間および後席空間)とを冷却する状態を示し、(c)は、車室(前席空間と後席空間)のみを冷却する状態を示す。FIG. 4 is a diagram showing a cooling mode using the vehicle cooling device of FIG. 3, in which the pipeline through which the refrigerant is flowing is shown by a thick line, and FIG. 4A shows a state in which only the battery is cooled. (B) shows a state in which the battery and the passenger compartment (front seat space and rear seat space) are cooled, and (c) shows a state in which only the passenger compartment (front seat space and rear seat space) is cooled. show. 図5は、本発明に係る車両用冷却装置のさらに他の構成例を示す図である。FIG. 5 is a diagram showing still another configuration example of the vehicle cooling device according to the present invention. 図6は、図5の車両用冷却装置を用いた冷却態様を示す図であり、冷媒が流れている管路を太線で示したものであり、(a)は、バッテリのみを冷却する状態を示し、(b)は、バッテリと車室(前席空間および後席空間)とを冷却する状態を示し、(c)は、車室(前席空間と後席空間)のみを冷却する状態を示す。FIG. 6 is a diagram showing a cooling mode using the vehicle cooling device of FIG. 5, in which the pipeline through which the refrigerant is flowing is shown by a thick line, and FIG. 6A shows a state in which only the battery is cooled. (B) shows a state in which the battery and the passenger compartment (front seat space and rear seat space) are cooled, and (c) shows a state in which only the passenger compartment (front seat space and rear seat space) is cooled. show.

以下、本発明に係る車両用冷却装置の実施形態を図面により説明する。
図1において、車両用冷却装置1は、車両走行用の電力を蓄電可能とするバッテリ13を冷却可能とするバッテリ温度管理装置10と、車両の前席空間を冷却可能とする前席用空調ユニット20と、車両の後席空間を冷却可能とする後席用空調ユニット30と、を有し、バッテリ温度管理装置10に設けられ、バッテリ13を冷却可能とするバッテリ用蒸発器11と、前席用空調ユニット20内に配置されて前席空間から取り込んだ空気を冷却する前席用蒸発器21と、後席用空調ユニット内に配置されて後席空間から取り込んだ空気を冷却する後席用蒸発器31と、を有する冷凍サイクル100を備えている。
Hereinafter, embodiments of the vehicle cooling device according to the present invention will be described with reference to the drawings.
In FIG. 1, the vehicle cooling device 1 includes a battery temperature control device 10 capable of cooling a battery 13 capable of storing electric power for traveling a vehicle, and a front seat air conditioning unit capable of cooling the front seat space of the vehicle. A battery evaporator 11 having 20 and a rear seat air conditioning unit 30 capable of cooling the rear seat space of the vehicle, which is provided in the battery temperature control device 10 and capable of cooling the battery 13, and a front seat. For the front seat evaporator 21 which is arranged in the air conditioning unit 20 for cooling the air taken in from the front seat space and for the rear seat which is arranged in the air conditioning unit for the rear seat and cools the air taken in from the rear seat space. It comprises a refrigeration cycle 100 with an evaporator 31.

この冷凍サイクル100は、具体的には、冷媒を圧縮する圧縮機2と、圧縮機2で圧縮された冷媒を放熱する放熱器3と、バッテリ13を冷却可能とする前記バッテリ用蒸発器11と、放熱器3で放熱された冷媒を減圧膨張してバッテリ用蒸発器11へ供給する冷媒量を調節するバッテリ用膨張装置12と、車両の前席空間に送風される空気を冷却する前記前席用蒸発器21と、放熱器3で放熱された冷媒を減圧膨張して前席用蒸発器21へ供給する冷媒量を調節する前席用膨張装置22と、車両の後席空間に送風される空気を冷却する前記後席用蒸発器31と、放熱器3で放熱された冷媒を減圧膨張して後席用蒸発器31へ供給される冷媒量を調節する後席用膨張装置32と、を有して構成されている。 Specifically, the refrigeration cycle 100 includes a compressor 2 that compresses the refrigerant, a radiator 3 that dissipates heat from the refrigerant compressed by the compressor 2, and the battery evaporator 11 that can cool the battery 13. The battery expansion device 12 that adjusts the amount of refrigerant that decompresses and expands the refrigerant radiated by the radiator 3 and supplies it to the battery evaporator 11, and the front seat that cools the air that is blown into the front seat space of the vehicle. The refrigerant 21 is blown to the front seat expansion device 22 that adjusts the amount of refrigerant supplied to the front seat evaporator 21 by reducing the pressure and expanding the refrigerant radiated by the radiator 3 and the rear seat space of the vehicle. The rear seat evaporator 31 that cools the air and the rear seat expansion device 32 that decompresses and expands the refrigerant radiated by the radiator 3 to adjust the amount of the refrigerant supplied to the rear seat evaporator 31. It is configured to have.

バッテリ用蒸発器11と、前席用蒸発器21、後席用蒸発器31は、圧縮機2及び放熱器3に対して並列的に接続されている。放熱器3より下流側の冷媒管路101は、バッテリ用膨張装置12を介してバッテリ用蒸発器11へ向かう管路101aと後述する第2分岐点(B2)へ向かう管路101bとを分岐させる第1分岐点(B1)と、前席用膨張装置22を介して前席用蒸発器21へ向かう管路101cと後席用膨張装置32を介して後席用蒸発器31へ向かう管路101dとを分岐させる第2分岐点(B2)と、を備え、放熱器3から流出した冷媒を、第1分岐点(B1)を介してバッテリ用膨張装置12へ導き、また、第1分岐点(B1)および第2分岐点(B2)を介して前席用膨張装置22と後席用膨張装置32へ導くようにしている。 The battery evaporator 11, the front seat evaporator 21, and the rear seat evaporator 31 are connected in parallel to the compressor 2 and the radiator 3. The refrigerant pipe 101 on the downstream side of the radiator 3 branches the pipe 101a toward the battery evaporator 11 and the pipe 101b toward the second branch point (B2) described later via the battery expansion device 12. The first branch point (B1), the pipeline 101c toward the front seat evaporator 21 via the front seat expansion device 22, and the pipeline 101d toward the rear seat evaporator 31 via the rear seat expansion device 32. A second branch point (B2) for branching the It is guided to the front seat expansion device 22 and the rear seat expansion device 32 via the B1) and the second branch point (B2).

また、圧縮機2より上流側の冷媒管路102は、バッテリ用蒸発器11から流出した冷媒の管路102aと後述する第2合流点(J2)を通過した冷媒の管路102bとを合流させる第1合流点(J1)と、前席用蒸発器21から流出した冷媒の管路102cと後席用蒸発器31から流出した冷媒の管路102dとを合流させる第2合流点(J2)と、を備え、バッテリ用蒸発器11から流出した冷媒を第1合流点(J1)を経て圧縮機2に戻し、前席用蒸発器21と後席用蒸発器31から流出した冷媒を第2合流点(J2)および第1合流点(J1)を経て圧縮機2に戻すようにしている。 Further, the refrigerant pipe 102 on the upstream side of the compressor 2 merges the refrigerant pipe 102a flowing out from the battery evaporator 11 with the refrigerant pipe 102b passing through the second merging point (J2) described later. A first confluence point (J1) and a second confluence point (J2) that merges the refrigerant line 102c flowing out of the front seat evaporator 21 and the refrigerant line 102d flowing out of the rear seat evaporator 31. , The refrigerant flowing out of the battery evaporator 11 is returned to the compressor 2 through the first confluence point (J1), and the refrigerant flowing out from the front seat evaporator 21 and the rear seat evaporator 31 is secondly merged. It is returned to the compressor 2 via the point (J2) and the first confluence point (J1).

ここで、前席用膨張装置22は、前席用蒸発器21から圧縮機2に向かう冷媒の温度、または冷媒の温度及び圧力を感知して放熱器3で放熱された冷媒の前席用蒸発器21への供給流量を自律的に調節する機械式膨張弁(前席用機械式膨張装置)で構成される。後席用膨張装置32も、後席用蒸発器31から圧縮機2に向かう冷媒の温度、または冷媒の温度及び圧力を感知して放熱器3で放熱された冷媒の後席用蒸発器31への供給流量を自律的に調節する機械式膨張弁(後席用機械式膨張装置)で構成されている。 Here, the front seat expansion device 22 senses the temperature of the refrigerant heading from the front seat evaporator 21 to the compressor 2, or the temperature and pressure of the refrigerant, and evaporates the refrigerant radiated by the radiator 3 for the front seat. It is composed of a mechanical expansion valve (mechanical expansion device for the front seat) that autonomously adjusts the supply flow rate to the vessel 21. The rear seat expansion device 32 also senses the temperature of the refrigerant heading from the rear seat evaporator 31 toward the compressor 2, or the temperature and pressure of the refrigerant, and dissipates heat from the radiator 3 to the rear seat evaporator 31. It is composed of a mechanical expansion valve (mechanical expansion device for the rear seat) that autonomously adjusts the supply flow rate of the vehicle.

冷媒の温度を感知して冷媒の供給流量を自律的に調節する機械式膨張弁は、いわゆる内部均圧式の自動膨張弁を想定したもので、蒸発器21,31の温度又は蒸発器21,31を流出する冷媒の温度の高低を予め封入されたガスの圧力の高低へと変換する感温筒と、感温筒側のガスの封入空間と蒸発器21,31に流入する冷媒(流入冷媒)が導入される導入空間とを区画すると共に感温筒側のガスの圧力と流入冷媒の圧力とがそれぞれ対向して作用するように構成されたダイヤフラム(又はベローズ)とを有し、この感温筒側のガスの圧力と流入冷媒の圧力とを均等にするように動作させる。また、冷媒の温度及び圧力を感知して冷媒の供給流量を自律的に調節する機械式膨張弁は、いわゆる外部均圧式の自動膨張弁を想定したもので、蒸発器21,31の温度又は蒸発器21,31を流出する冷媒の温度の高低を予め封入されたガスの圧力の高低へと変換する感温筒と、蒸発器21,31を流出する冷媒(流出冷媒)が導入される導入空間とを区画すると共に感温筒側のガスの圧力と流出冷媒の圧力とがそれぞれ対向して作用するように構成されたダイヤフラム(又はベローズ)とを有し、この感温筒側のガスの圧力と流出冷媒の圧力とを均等にするように動作させる。 The mechanical expansion valve that senses the temperature of the refrigerant and autonomously adjusts the supply flow rate of the refrigerant is supposed to be a so-called internal pressure equalizing type automatic expansion valve, and is the temperature of the evaporators 21 and 31 or the evaporators 21 and 31. A temperature-sensitive cylinder that converts the high and low temperatures of the outflowing refrigerant into high and low pressures of the pre-filled gas, the gas-filled space on the temperature-sensitive cylinder side, and the refrigerant that flows into the evaporators 21 and 31 (inflow refrigerant). It has a diaphragm (or bellows) configured so that the pressure of the gas on the temperature sensitive cylinder side and the pressure of the inflowing refrigerant act in opposition to each other while partitioning the introduction space into which the is introduced. Operate so that the pressure of the gas on the cylinder side and the pressure of the inflowing refrigerant are equalized. The mechanical expansion valve that senses the temperature and pressure of the refrigerant and autonomously adjusts the supply flow rate of the refrigerant is supposed to be a so-called external pressure equalizing type automatic expansion valve, and the temperature or evaporation of the evaporators 21 and 31. A temperature-sensitive cylinder that converts the high and low temperatures of the refrigerant flowing out of the vessels 21 and 31 into high and low pressures of the pre-sealed gas, and an introduction space in which the refrigerant (outflow refrigerant) flowing out of the evaporators 21 and 31 is introduced. It has a diaphragm (or bellows) configured so that the pressure of the gas on the temperature-sensitive cylinder side and the pressure of the outflow refrigerant act in opposition to each other, and the pressure of the gas on the temperature-sensitive cylinder side. And the pressure of the outflow refrigerant are operated to be equal.

これに対して、バッテリ用蒸発器11への供給流量を調節するバッテリ用膨張装置12は、外部からの制御信号(後述する制御ユニット50からの信号)で開度が制御される電子式膨張装置が用いられる。 On the other hand, the battery expansion device 12 that adjusts the supply flow rate to the battery evaporator 11 is an electronic expansion device whose opening degree is controlled by an external control signal (a signal from the control unit 50 described later). Is used.

また、この例において、バッテリ用蒸発器11は、バッテリ13と熱的に結合し冷却する方式を採用している。具体的には、バッテリ用蒸発器11を、例えば、特開2016−35378号公報に示されるように、並行に配置された複数のフラットチューブと、各々のフラットチューブの両端部のそれぞれに配置されたマニホールドとを有して構成し、フラットチューブをバッテリ13の表面に直接的に接触させるようにしている。あるいは、フラットチューブとバッテリ13の表面との間に熱伝導度を調整して温度の均一化を行うための熱伝導度調整部材や、フラットチューブとバッテリ13の表面のそれぞれの歪みに基づいた非接触部を減少するための充填剤を介するよう構成し、フラットチューブをバッテリ13の表面に間接的に接触させてもよい。 Further, in this example, the battery evaporator 11 adopts a method of thermally coupling and cooling with the battery 13. Specifically, the battery evaporator 11 is arranged at a plurality of flat tubes arranged in parallel and at both ends of each flat tube, for example, as shown in Japanese Patent Application Laid-Open No. 2016-355378. It is configured to have a manifold so that the flat tube is in direct contact with the surface of the battery 13. Alternatively, a thermal conductivity adjusting member for adjusting the thermal conductivity between the flat tube and the surface of the battery 13 to make the temperature uniform, or a non-strain based on the respective strains of the surface of the flat tube and the battery 13. The flat tube may be indirectly contacted with the surface of the battery 13 by configuring it via a filler to reduce the contact area.

そして、第1分岐点(B1)と第2分岐点(B2)との間の冷媒管路101b、及び、第1合流点(J1)と第2合流点(J2)との間の冷媒管路102bの少なくとも一方に開閉弁(この例では、第1分岐点(B1)と第2分岐点(B2)との間の冷媒管路101bに開閉弁5)が配置されている。開閉弁は、絞り機能を有さないことが好ましい。これにより製造コストを抑制できる。 Then, the refrigerant pipe 101b between the first branch point (B1) and the second branch point (B2) and the refrigerant pipe between the first confluence point (J1) and the second confluence point (J2). An on-off valve (in this example, an on-off valve 5 in the refrigerant pipe 101b between the first branch point (B1) and the second branch point (B2)) is arranged on at least one of the 102b. The on-off valve preferably does not have a throttle function. As a result, the manufacturing cost can be suppressed.

制御ユニット50は、車室内の熱負荷情報や前席用空調ユニット20及び後席用空調ユニット30の稼働の有無、バッテリの充電の有無等の情報を入力し、冷凍サイクル100の稼働の有無(圧縮機2や放熱器3の冷却用ファン6の稼働の有無)を制御すると共に、バッテリ用膨張装置12の開度制御や開閉弁5をオンオフさせる制御等を行うようにしている。 The control unit 50 inputs information such as heat load information in the vehicle interior, whether or not the front seat air conditioning unit 20 and the rear seat air conditioning unit 30 are operating, and whether or not the battery is charged, and whether or not the refrigeration cycle 100 is operating (whether or not the refrigeration cycle 100 is operating). The presence / absence of operation of the cooling fan 6 of the compressor 2 and the radiator 3) is controlled, and the opening degree control of the battery expansion device 12 and the control of turning on / off the on-off valve 5 are performed.

図2に開閉弁5のオンオフ制御、及び、バッテリ用膨張装置12の開度を制御することによって切り替えられる冷却態様が示されている。 FIG. 2 shows an on / off control of the on-off valve 5 and a cooling mode that can be switched by controlling the opening degree of the battery expansion device 12.

このうち、図2(a)は、バッテリ13のみを冷却するために、開閉弁5を閉として前席用蒸発器21と後席用蒸発器31への冷媒供給を止め、バッテリ用蒸発器11のみへ冷媒を供給するように冷凍サイクル100を稼働させた状態である。
この状態において、圧縮機2で圧縮された冷媒は、放熱器3で放熱され、その全てがバッテリ用膨張装置12にて減圧膨張されてバッテリ用蒸発器11へ供給される。したがって、放熱器3から流出する全ての冷媒をバッテリ冷却用として用いることが可能となるので(車室を冷却するために用いられないので)、バッテリを効率よく冷却することが可能となる。
Of these, in FIG. 2A, in order to cool only the battery 13, the on-off valve 5 is closed to stop the supply of the refrigerant to the front seat evaporator 21 and the rear seat evaporator 31, and the battery evaporator 11 is shown. It is a state in which the refrigerating cycle 100 is operated so as to supply the refrigerant only to.
In this state, the refrigerant compressed by the compressor 2 is dissipated by the radiator 3, and all of the refrigerant is decompressed and expanded by the battery expansion device 12 and supplied to the battery evaporator 11. Therefore, since all the refrigerant flowing out of the radiator 3 can be used for cooling the battery (because it is not used for cooling the vehicle interior), the battery can be efficiently cooled.

また、バッテリ用蒸発器11は、バッテリ13と熱的に結合されてバッテリの熱を吸収するので、バッテリを空気冷却する従来の冷却装置に比べて、冷却効率は非常に高いものとなる。バッテリ用蒸発器11で得られた冷気を運搬するために送風機を用いる従来の空冷方式においては、空気の熱伝導率は極めて低いので、効果的にバッテリ13を冷却することはできない。これに対して本発明においては、バッテリ13にバッテリ用蒸発器11を熱的に結合する(直接的に、または間接的に接触する)ことで、バッテリ13から発生した熱を除去させるので、バッテリ13を効果的に冷却させることができると共に、バッテリ13を速やかに冷却することが可能となる。 Further, since the battery evaporator 11 is thermally coupled to the battery 13 to absorb the heat of the battery, the cooling efficiency is very high as compared with the conventional cooling device for air-cooling the battery. In the conventional air cooling system using a blower to carry the cold air obtained by the battery evaporator 11, the thermal conductivity of air is extremely low, so that the battery 13 cannot be effectively cooled. On the other hand, in the present invention, the heat generated from the battery 13 is removed by thermally coupling (directly or indirectly contacting) the battery evaporator 11 to the battery 13, so that the battery is used. The battery 13 can be cooled effectively and the battery 13 can be cooled quickly.

また、バッテリ用蒸発器11をバッテリ13と熱的に結合することで、送風機や空気流路を形成するダクトが不要となり、バッテリ温度管理装置10の小型化が図れ、省スペース化を図ることが可能となる。 Further, by thermally coupling the battery evaporator 11 to the battery 13, the duct for forming the blower and the air flow path becomes unnecessary, the battery temperature control device 10 can be miniaturized, and the space can be saved. It will be possible.

また、図2(b)は、バッテリ13と車室(前席空間および後席空間)の両方を冷却するために、開閉弁5を開として前席用蒸発器21と後席用蒸発器31への冷媒供給を行いつつ、バッテリ用蒸発器11へも冷媒を供給するように冷凍サイクル100を稼働させた状態である。この例では、圧縮機2で圧縮された冷媒は、放熱器3で放熱され、その後、一部の冷媒が第1分岐点(B1)で分岐してバッテリ用蒸発器11へ送られ、バッテリ冷却用として用いられ、残りの冷媒は、第2分岐点(B2)を介して前席用蒸発器21と後席用蒸発器31に振り分けられて供給される。したがって、バッテリ13はバッテリ用蒸発器11によって速やかに冷却され、また車室(前席空間、後席空間)も同時に冷却されることになる。 Further, in FIG. 2B, in order to cool both the battery 13 and the passenger compartment (front seat space and rear seat space), the on-off valve 5 is opened and the front seat evaporator 21 and the rear seat evaporator 31 are opened. The refrigerating cycle 100 is operated so as to supply the refrigerant to the battery evaporator 11 while supplying the refrigerant to the battery. In this example, the refrigerant compressed by the compressor 2 is dissipated by the radiator 3, and then a part of the refrigerant branches at the first branch point (B1) and is sent to the battery evaporator 11 to cool the battery. The remaining refrigerant is distributed and supplied to the front seat evaporator 21 and the rear seat evaporator 31 via the second branch point (B2). Therefore, the battery 13 is quickly cooled by the battery evaporator 11, and the passenger compartment (front seat space, rear seat space) is also cooled at the same time.

さらに、図2(c)は、車室(前席空間および後席空間)のみを冷却するために、開閉弁5を開としつつバッテリ用膨張装置12を閉とした状態である。この例では、圧縮機2で圧縮された冷媒は、放熱器3で放熱され、その後、バッテリ用蒸発器11へ送られることなく、全ての冷媒が第2分岐点(B2)で分岐されて、前席用蒸発器21と後席用蒸発器31へ送られる。このため、圧縮機2で圧縮された冷媒を車室(前席空間および後席空間)の冷房のためだけに使用することができ、車室内の冷房を効率よく行うことが可能となる。 Further, FIG. 2C shows a state in which the battery expansion device 12 is closed while the on-off valve 5 is opened in order to cool only the passenger compartment (front seat space and rear seat space). In this example, the refrigerant compressed by the compressor 2 is dissipated by the radiator 3, and then all the refrigerant is branched at the second branch point (B2) without being sent to the battery evaporator 11. It is sent to the front seat evaporator 21 and the rear seat evaporator 31. Therefore, the refrigerant compressed by the compressor 2 can be used only for cooling the vehicle interior (front seat space and rear seat space), and the vehicle interior can be efficiently cooled.

なお、図2(b)や図2(c)のように車室(前席空間と後席空間)を冷却する場合、後席空間のみを単独で冷却する運転モードは行われない。前席空間に運転手や乗員が搭乗せず、後席空間に搭乗した乗員によって後席空間の冷却のみが要請されることが無いためである。このため、前席用膨張装置22を閉弁機能を有した電子式膨張装置とする必要や、第2分岐点B2と前席用膨張装置22との間に開閉弁5とは異なる開閉弁を設定する必要は、無い。 When the passenger compartment (front seat space and rear seat space) is cooled as in FIGS. 2 (b) and 2 (c), the operation mode in which only the rear seat space is cooled independently is not performed. This is because the driver and the occupants do not board the front seat space, and the occupants who board the rear seat space do not request only the cooling of the rear seat space. Therefore, it is necessary to use an electronic expansion device having a valve closing function for the front seat expansion device 22, and an on-off valve different from the on-off valve 5 is provided between the second branch point B2 and the front seat expansion device 22. There is no need to set it.

以上の例においては、開閉弁5を第1分岐点(B1)と第2分岐点(B2)との間の冷媒管路101bに配置した例を示したが、図3に示されるように、開閉弁6を第1合流点(J1)と第2合流点(J2)との間の冷媒管路102bに配置し、制御ユニット50で開閉制御するようにしてもよい。 In the above example, an example in which the on-off valve 5 is arranged in the refrigerant pipe line 101b between the first branch point (B1) and the second branch point (B2) is shown, but as shown in FIG. The on-off valve 6 may be arranged in the refrigerant pipe line 102b between the first confluence point (J1) and the second confluence point (J2), and the on-off control may be controlled by the control unit 50.

図4に、図3の構成において開閉弁6をオンオフ制御することにより切り替えられる冷却態様が示されている。
このうち、図4(a)は、バッテリのみを冷却するために、開閉弁6を閉として前席用蒸発器21と後席用蒸発器31から流出する冷媒を止め、第2分岐点(B2)から前席用蒸発器21や後席用蒸発器31へ導かれる冷媒を停止させるように冷凍サイクル100を稼働させた状態である。
FIG. 4 shows a cooling mode that can be switched by controlling the on-off valve 6 on and off in the configuration of FIG.
Of these, in FIG. 4A, in order to cool only the battery, the on-off valve 6 is closed to stop the refrigerant flowing out from the front seat evaporator 21 and the rear seat evaporator 31, and the second branch point (B2). ), The refrigerating cycle 100 is operated so as to stop the refrigerant guided to the front seat evaporator 21 and the rear seat evaporator 31.

この状態においては、圧縮機2で圧縮された冷媒が放熱器3で放熱され、その全てがバッテリ用膨張装置12にて減圧膨張されてバッテリ用蒸発器11へ供給される。したがって、放熱器3から流出する全ての冷媒をバッテリ冷却用として用いることが可能となるので、バッテリ13効率よく冷却することが可能となる。
また、バッテリ用蒸発器11は、バッテリ13と熱的に結合されてバッテリ13の熱を吸収するので、バッテリ用蒸発器11の冷気を送風するための送風機やダクトが不要となる。
In this state, the refrigerant compressed by the compressor 2 is dissipated by the radiator 3, and all of the refrigerant is decompressed and expanded by the battery expansion device 12 and supplied to the battery evaporator 11. Therefore, all the refrigerant flowing out of the radiator 3 can be used for cooling the battery, so that the battery 13 can be efficiently cooled.
Further, since the battery evaporator 11 is thermally coupled to the battery 13 and absorbs the heat of the battery 13, a blower or a duct for blowing the cold air of the battery evaporator 11 becomes unnecessary.

また、図4(b)は、バッテリ13と車室(前席空間および後席空間)の両方を冷却するために、開閉弁6を開として前席用蒸発器21と後席用蒸発器31への冷媒循環を行いつつ、バッテリ用蒸発器11へも冷媒を供給するように冷凍サイクル100を稼働させた状態である。この例では、圧縮機2で圧縮された冷媒は、放熱器3で放熱され、その後、一部の冷媒が第1分岐点(B1)で分岐してバッテリ用蒸発器11へ送られ、バッテリ冷却用として用いられ、残りの冷媒は、第2分岐点(B2)を介して前席用蒸発器21と後席用蒸発器31に振り分けられて供給される。したがって、バッテリ13はバッテリ用蒸発器11によって速やかに冷却され、また車室(前席空間、後席空間)も同時に冷却されることになる。 Further, in FIG. 4B, in order to cool both the battery 13 and the passenger compartment (front seat space and rear seat space), the on-off valve 6 is opened and the front seat evaporator 21 and the rear seat evaporator 31 are opened. The refrigerating cycle 100 is operated so as to supply the refrigerant to the battery evaporator 11 while circulating the refrigerant to the battery. In this example, the refrigerant compressed by the compressor 2 is dissipated by the radiator 3, and then a part of the refrigerant branches at the first branch point (B1) and is sent to the battery evaporator 11 to cool the battery. The remaining refrigerant is distributed and supplied to the front seat evaporator 21 and the rear seat evaporator 31 via the second branch point (B2). Therefore, the battery 13 is quickly cooled by the battery evaporator 11, and the passenger compartment (front seat space, rear seat space) is also cooled at the same time.

さらに、図4(c)は、車室(前席空間および後席空間)のみを冷却するために、開閉弁6を開としつつバッテリ用膨張装置12を閉とした状態である。この例では、圧縮機2で圧縮された冷媒は、放熱器3で放熱され、その後、バッテリ用蒸発器11へ送られることなく、全ての冷媒が第2分岐点(B2)で分岐されて前席用蒸発器21と後席用蒸発器31へ送られる。このため、圧縮機2で圧縮された冷媒を車室(前席空間および後席空間)の冷房のためだけに使用することができ、車室内の冷房を効率よく行うことが可能となる。 Further, FIG. 4C shows a state in which the battery expansion device 12 is closed while the on-off valve 6 is opened in order to cool only the passenger compartment (front seat space and rear seat space). In this example, the refrigerant compressed by the compressor 2 is dissipated by the radiator 3, and then all the refrigerant is branched at the second branch point (B2) without being sent to the battery evaporator 11. It is sent to the seat evaporator 21 and the rear seat evaporator 31. Therefore, the refrigerant compressed by the compressor 2 can be used only for cooling the vehicle interior (front seat space and rear seat space), and the vehicle interior can be efficiently cooled.

なお、図4(b)や図4(c)のように車室(前席空間と後席空間)を冷却する場合、後席空間のみを単独で冷却する運転モードは行われない。前席空間に運転手や乗員が搭乗せず、後席空間に搭乗した乗員によって後席空間の冷却のみが要請されることが無いためである。このため、前席用膨張装置22を閉弁機能を有した電子式膨張装置とする必要や、第2分岐点B2と前席用膨張装置22との間に開閉弁5とは異なる開閉弁を設定する必要は、無い。 When the passenger compartment (front seat space and rear seat space) is cooled as in FIGS. 4 (b) and 4 (c), the operation mode in which only the rear seat space is cooled independently is not performed. This is because the driver and the occupants do not board the front seat space, and the occupants who board the rear seat space do not request only the cooling of the rear seat space. Therefore, it is necessary to use an electronic expansion device having a valve closing function for the front seat expansion device 22, and an on-off valve different from the on-off valve 5 is provided between the second branch point B2 and the front seat expansion device 22. There is no need to set it.

図5において、さらに他の構成例が示され、開閉弁5を第1分岐点(B1)と第2分岐点(B2)との間の冷媒管路101bに配置し、また、開閉弁6を第1合流点(J1)と第2合流点(J2)との間の冷媒管路102bにも配置し、制御ユニット50でこれらの開閉弁5,6を開閉制御するようにしてもよい。 In FIG. 5, still another configuration example is shown, in which the on-off valve 5 is arranged in the refrigerant pipe 101b between the first branch point (B1) and the second branch point (B2), and the on-off valve 6 is provided. It may also be arranged in the refrigerant pipe line 102b between the first confluence point (J1) and the second confluence point (J2), and the control unit 50 may control the opening and closing of these on-off valves 5 and 6.

図6に、図5の構成において開閉弁5,6をオンオフ制御することにより切り替えられる冷却態様例が示されている。 FIG. 6 shows an example of a cooling mode that can be switched by controlling on / off of the on-off valves 5 and 6 in the configuration of FIG.

このうち、図6(a)は、バッテリ13のみを冷却するために、開閉弁5と開閉弁6を閉として前席用蒸発器21と後席用蒸発器31への冷媒の供給を止め、バッテリ用蒸発器11のみへ冷媒を供給するように冷凍サイクル100を稼働させた状態である。
この状態においては、圧縮機2で圧縮された冷媒が放熱器3で放熱され、その全てがバッテリ用膨張装置12にて減圧膨張されてバッテリ用蒸発器11へ供給される。したがって、放熱器3から流出する全ての冷媒をバッテリ冷却用として用いることが可能となるので、バッテリ13を効率よく冷却することが可能となる。
また、バッテリ用蒸発器11は、バッテリ13と熱的に結合されてバッテリ13の熱を吸収するので、バッテリ用蒸発器11の冷気を送風するための送風機やダクトが不要となる。
Of these, in FIG. 6A, in order to cool only the battery 13, the on-off valve 5 and the on-off valve 6 are closed to stop the supply of the refrigerant to the front seat evaporator 21 and the rear seat evaporator 31. The refrigerating cycle 100 is operated so as to supply the refrigerant only to the battery evaporator 11.
In this state, the refrigerant compressed by the compressor 2 is dissipated by the radiator 3, and all of the refrigerant is decompressed and expanded by the battery expansion device 12 and supplied to the battery evaporator 11. Therefore, all the refrigerant flowing out of the radiator 3 can be used for cooling the battery, so that the battery 13 can be efficiently cooled.
Further, since the battery evaporator 11 is thermally coupled to the battery 13 and absorbs the heat of the battery 13, a blower or a duct for blowing the cold air of the battery evaporator 11 becomes unnecessary.

また、図6(b)は、バッテリ13と車室(前席空間および後席空間)の両方を冷却するために、開閉弁5と開閉弁6を開としてバッテリ用蒸発器11へ冷媒を供給しつつ、前席用蒸発器21と後席用蒸発器へも冷媒供給を行うように冷凍サイクルを稼働させた状態である。この例では、圧縮機2で圧縮された冷媒は、放熱器3で放熱され、その後、一部の冷媒が第1分岐点(B1)で分岐してバッテリ用蒸発器11へ送られ、バッテリ冷却用として用いられ、残りの冷媒は、第2分岐点(B2)を介して前席用蒸発器21と後席用蒸発器31に振り分けられて供給される。したがって、バッテリ13はバッテリ用蒸発器11によって速やかに冷却され、また車室(前席空間、後席空間)も同時に冷却されることになる。 Further, in FIG. 6B, in order to cool both the battery 13 and the passenger compartment (front seat space and rear seat space), the on-off valve 5 and the on-off valve 6 are opened to supply the refrigerant to the battery evaporator 11. At the same time, the refrigeration cycle is operated so as to supply the refrigerant to the front seat evaporator 21 and the rear seat evaporator. In this example, the refrigerant compressed by the compressor 2 is dissipated by the radiator 3, and then a part of the refrigerant branches at the first branch point (B1) and is sent to the battery evaporator 11 to cool the battery. The remaining refrigerant is distributed and supplied to the front seat evaporator 21 and the rear seat evaporator 31 via the second branch point (B2). Therefore, the battery 13 is quickly cooled by the battery evaporator 11, and the passenger compartment (front seat space, rear seat space) is also cooled at the same time.

さらに、図6(c)は、車室(前席空間および後席空間)のみを冷却するために、開閉弁5と開閉弁6を開としつつバッテリ用膨張装置12を閉とした状態である。この例では、圧縮機2で圧縮された冷媒は、放熱器3で放熱され、その後、バッテリ用蒸発器11へ送られることなく、全ての冷媒が第2分岐点(B2)で分岐されて前席用蒸発器21と後席用蒸発器31へ送られる。このため、圧縮機2で圧縮された冷媒を車室(前席空間および後席空間)の冷房のためだけに使用することができ、車室内の冷房を効率よく行うことが可能となる。 Further, FIG. 6C shows a state in which the on-off valve 5 and the on-off valve 6 are opened and the battery expansion device 12 is closed in order to cool only the passenger compartment (front seat space and rear seat space). .. In this example, the refrigerant compressed by the compressor 2 is dissipated by the radiator 3, and then all the refrigerant is branched at the second branch point (B2) without being sent to the battery evaporator 11. It is sent to the seat evaporator 21 and the rear seat evaporator 31. Therefore, the refrigerant compressed by the compressor 2 can be used only for cooling the vehicle interior (front seat space and rear seat space), and the vehicle interior can be efficiently cooled.

以上のように、前席空間と後席空間を冷却するデュアルエアコンを搭載すると共に、車両走行用の電力を蓄電可能とするバッテリ13を冷却する機能を備えた車両用冷却装置1において、前席用膨張装置22と後席用膨張装置32を機械式膨張装置とし、バッテリ用膨張装置12を電子式膨張装置とし、第1分岐点(B1)と第2分岐点(B2)との間の冷媒管路101b、及び、第1合流点(J1)と第2合流点(J2)との間の冷媒管路102bの少なくとも一方に開閉弁5,6を配置し、この開閉弁5,6のオンオフ、及び、バッテリ用膨張装置12の開度制御によって冷却態様を切り替えるようにしたので、前席空間および後席空間とバッテリ13を冷却可能とする冷凍サイクルを廉価に形成することが可能になると共に、バッテリ13を単独で冷却することが可能となる。すなわち、バッテリ13のみを単独で冷却させる運転モードと、バッテリ13及び車室(前席空間と構成空間)を同時に冷却させる運転モードと、車室のみを冷却させる運転モードの切り替えが可能となる As described above, in the vehicle cooling device 1 equipped with a dual air conditioner for cooling the front seat space and the rear seat space and having a function of cooling the battery 13 capable of storing electric power for traveling the vehicle, the front seat The expansion device 22 for the rear seat and the expansion device 32 for the rear seat are used as the mechanical expansion device, the expansion device 12 for the battery is used as the electronic expansion device, and the refrigerant between the first branch point (B1) and the second branch point (B2) is used. On-off valves 5 and 6 are arranged in at least one of the pipeline 101b and the refrigerant pipeline 102b between the first confluence point (J1) and the second confluence point (J2), and the on-off valves 5 and 6 are turned on and off. Since the cooling mode is switched by controlling the opening degree of the battery expansion device 12, it becomes possible to inexpensively form a refrigerating cycle that can cool the front seat space, the rear seat space, and the battery 13. , The battery 13 can be cooled independently. That is, it is possible to switch between an operation mode in which only the battery 13 is cooled independently, an operation mode in which the battery 13 and the vehicle interior (front seat space and the constituent space) are simultaneously cooled, and an operation mode in which only the vehicle interior is cooled.

なお、図6(b)や図6(c)のように車室(前席空間と後席空間)を冷却する場合、後席空間のみを単独で冷却する運転モードは行われない。前席空間に運転手や乗員が搭乗せず、後席空間に搭乗した乗員によって後席空間の冷却のみが要請されることが無いためである。このため、前席用膨張装置22を閉弁機能を有した電子式膨張装置とする必要や、第2分岐点B2と前席用膨張装置22との間に開閉弁5とは異なる開閉弁を設定する必要は、無い。 When the passenger compartment (front seat space and rear seat space) is cooled as in FIGS. 6 (b) and 6 (c), the operation mode in which only the rear seat space is cooled independently is not performed. This is because the driver and the occupants do not board the front seat space, and the occupants who board the rear seat space do not request only the cooling of the rear seat space. Therefore, it is necessary to use an electronic expansion device having a valve closing function for the front seat expansion device 22, and an on-off valve different from the on-off valve 5 is provided between the second branch point B2 and the front seat expansion device 22. There is no need to set it.

また、上述の例では、バッテリ用蒸発器11をバッテリ13と熱的に結合させてバッテリ13を冷却させるようにしているので、バッテリ13を冷却するために送風機や空気流路を形成するダクトが不要となり、バッテリ温度管理装置10を小型にすることができ、省スペース化を図ることが可能となる。 Further, in the above example, since the battery evaporator 11 is thermally coupled to the battery 13 to cool the battery 13, a blower or a duct forming an air flow path for cooling the battery 13 is provided. It becomes unnecessary, the battery temperature control device 10 can be made smaller, and space can be saved.

さらに、上述の構成においては、デュアルエアコンの冷凍サイクルにおいて、開閉弁5(分岐側開閉弁)を設ける場合には、バッテリ用蒸発器11に通じる管路101aを接続する第1分岐点(B1)を放熱器3と開閉弁5との間に設け、開閉弁6(合流側開閉弁)を設ける場合には、バッテリ用蒸発器11に通じる管路102aを接続する第1合流点(J1)を開閉弁6と圧縮機2との間に設けるようにしたので、第1分岐点(B1)と第1合流点(J1)を介してバッテリ用蒸発器11に通じる管路101a,102aを接続すれば電気自動車に適用可能な冷凍サイクルとすることができ、容易に製造ができる。また第1分岐点と第1合流点との間のバッテリ用蒸発器11に通じる管路101a,102aを除去すれば、エンジン車両に適用可能な冷凍サイクルとすることができ、冷凍サイクルの汎用化を図ることが可能になる。 Further, in the above configuration, in the refrigeration cycle of the dual air conditioner, when the on-off valve 5 (branch-side on-off valve) is provided, the first branch point (B1) connecting the pipeline 101a leading to the battery evaporator 11 Is provided between the radiator 3 and the on-off valve 5, and when the on-off valve 6 (merging side on-off valve) is provided, a first confluence point (J1) for connecting the pipeline 102a leading to the battery evaporator 11 is provided. Since it is provided between the on-off valve 6 and the compressor 2, the pipelines 101a and 102a leading to the battery evaporator 11 are connected via the first branch point (B1) and the first confluence point (J1). For example, it can be a refrigeration cycle applicable to electric vehicles and can be easily manufactured. Further, if the pipelines 101a and 102a leading to the battery evaporator 11 between the first branch point and the first confluence point are removed, the refrigeration cycle can be applied to the engine vehicle, and the refrigeration cycle can be generalized. It becomes possible to plan.

1 車両用冷却装置
2 圧縮機
3 放熱器
5,6 開閉弁
11 バッテリ用蒸発器
12 バッテリ用膨張装置。
13 バッテリ
21 前席用蒸発器
22 前席用膨張装置
31 後席用蒸発器
32 後席用膨張装置
100 冷凍サイクル
B1 第1分岐点
B2 第2分岐点
J1 第1合流点
J2 第2合流点
1 Vehicle cooling device 2 Compressor 3 Heat sink 5, 6 On-off valve 11 Battery evaporator 12 Battery expansion device.
13 Battery 21 Front seat evaporator 22 Front seat expander 31 Rear seat evaporator 32 Rear seat expander 100 Refrigeration cycle B1 First branch point B2 Second branch point J1 First confluence J2 Second confluence

Claims (4)

車両に搭載され、車両走行用の電力を蓄電可能とするバッテリ(13)を冷却する機能を備えた車両用冷却装置(1)であって、
冷媒を圧縮する圧縮機(2)と、
前記圧縮機(2)で圧縮された冷媒を放熱する放熱器(3)と、
車両の前席空間に送風される空気を冷却する前席用蒸発器(21)と、
前記前席用蒸発器(21)から前記圧縮機(2)に向かう冷媒の温度、または冷媒の温度及び圧力を感知して前記放熱器(3)で放熱された冷媒の前記前席用蒸発器(21)への供給流量を自律的に調節する前席用機械式膨張装置(22)と、
車両の後席空間に送風される空気を冷却する後席用蒸発器(31)と、
前記後席用蒸発器(31)から前記圧縮機(2)に向かう冷媒の温度、または冷媒の温度及び圧力を感知して前記放熱器(3)で放熱された冷媒の前記後席用蒸発器(31)への供給流量を自律的に調節する後席用機械式膨張装置(32)と、
前記バッテリ(13)を冷却可能なバッテリ用蒸発器(11)と、
前記放熱器(3)で放熱された冷媒の前記バッテリ用蒸発器(11)への供給流量を調節する電子式膨張装置(12)と、を有する冷凍サイクル(100)を備え、
前記冷凍サイクル(100)は、
前記放熱器(3)より下流側の冷媒管路(101)に設けられ、前記電子式膨張装置(12)を介して前記バッテリ用蒸発器(11)へ向かう管路(101a)と後述する第2分岐点(B2)へ向かう管路(101b)とを分岐させる第1分岐点(B1)と、
前記前席用機械式膨張装置(22)を介して前記前席用蒸発器(21)へ向かう管路(101c)と前記後席用機械式膨張装置(32)を介して前記後席用蒸発器(31)へ向かう管路(101d)とを分岐させる第2分岐点(B2)と、
前記圧縮機(2)より上流側の冷媒管路(102)に設けられ、前記バッテリ用蒸発器(11)から流出した冷媒の管路(102a)と後述する第2合流点(J2)を通過した冷媒の管路(102b)とを合流させる第1合流点(J1)と、
前記前席用蒸発器(21)から流出した冷媒の管路(102c)と前記後席用蒸発器(31)から流出した冷媒の管路(102d)とを合流させる第2合流点(J2)と、
前記第1分岐点(B1)と前記第2分岐点(B2)との間の冷媒管路(101b)、及び、前記第1合流点(J1)と前記第2合流点(J2)との間の冷媒管路(102b)の少なくとも一方に配置された開閉弁(5,6)と、
を有することを特徴とする車両用冷却装置。
A vehicle cooling device (1) having a function of cooling a battery (13) mounted on a vehicle and capable of storing electric power for traveling the vehicle.
A compressor (2) that compresses the refrigerant,
A radiator (3) that dissipates heat from the refrigerant compressed by the compressor (2),
A front seat evaporator (21) that cools the air blown into the front seat space of the vehicle, and
The front seat evaporator of the refrigerant radiated by the radiator (3) by sensing the temperature of the refrigerant heading from the front seat evaporator (21) to the compressor (2), or the temperature and pressure of the refrigerant. A mechanical inflator for the front seat (22) that autonomously adjusts the supply flow rate to (21), and
A rear seat evaporator (31) that cools the air blown into the rear seat space of the vehicle, and
The rear seat evaporator of the refrigerant radiated by the radiator (3) by sensing the temperature of the refrigerant from the rear seat evaporator (31) toward the compressor (2), or the temperature and pressure of the refrigerant. A rear seat mechanical inflator (32) that autonomously adjusts the supply flow rate to (31), and
A battery evaporator (11) capable of cooling the battery (13), and a battery evaporator (11).
A refrigeration cycle (100) comprising an electronic expansion device (12) for adjusting the supply flow rate of the refrigerant radiated by the radiator (3) to the battery evaporator (11) is provided.
The refrigeration cycle (100)
A pipe line (101a) provided in the refrigerant pipe line (101) on the downstream side of the radiator (3) and directed to the battery evaporator (11) via the electronic expansion device (12), and a pipe line (101a) described later. The first branch point (B1) that branches the pipeline (101b) toward the second branch point (B2), and
Evaporation for the rear seats via the pipeline (101c) toward the evaporator (21) for the front seats via the mechanical expansion device (22) for the front seats and the mechanical expansion device (32) for the rear seats. The second branch point (B2) that branches the pipeline (101d) toward the vessel (31), and
It is provided in the refrigerant pipe (102) on the upstream side of the compressor (2) and passes through the refrigerant pipe (102a) flowing out from the battery evaporator (11) and the second confluence (J2) described later. The first confluence point (J1) that merges with the refrigerant pipeline (102b)
A second confluence (J2) that joins the refrigerant pipe (102c) that has flowed out of the front seat evaporator (21) and the refrigerant pipe (102d) that has flowed out of the rear seat evaporator (31). When,
The refrigerant pipe (101b) between the first branch point (B1) and the second branch point (B2), and between the first confluence point (J1) and the second confluence point (J2). On-off valves (5, 6) arranged on at least one of the refrigerant pipelines (102b) of the above.
A vehicle cooling device characterized by having.
前記バッテリ用蒸発器(11)は、前記バッテリ(13)と熱的に結合されていることを特徴とする請求項1記載の車両用冷却装置。 The vehicle cooling device according to claim 1, wherein the battery evaporator (11) is thermally coupled to the battery (13). 請求項1又は2に記載の車両用冷却装置を用いた冷却方法であって、
前記前席空間および前記後席空間の冷却が不要であり、且つ、前記バッテリ(13)の冷却要請がある場合には、前記開閉弁(5,6)を閉とし、
前記前席空間および前記後席空間の冷却要請がある場合には、前記開閉弁(5,6)を開とすることを特徴とする車両用冷却装置を用いた冷却方法。
A cooling method using the vehicle cooling device according to claim 1 or 2.
When the front seat space and the rear seat space do not need to be cooled and the battery (13) is requested to be cooled, the on-off valve (5, 6) is closed.
A cooling method using a vehicle cooling device, which comprises opening the on-off valves (5, 6) when there is a request for cooling of the front seat space and the rear seat space.
前記バッテリ(13)の冷却要請が無い場合には、前記電子式膨張装置(12)を閉とすることを特徴とする請求項3記載の車両用冷却装置を用いた冷却方法。 The cooling method using the vehicle cooling device according to claim 3, wherein the electronic expansion device (12) is closed when there is no cooling request for the battery (13).
JP2020083784A 2020-05-12 2020-05-12 VEHICLE COOLING DEVICE AND COOLING METHOD USING THE SAME Active JP7271470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020083784A JP7271470B2 (en) 2020-05-12 2020-05-12 VEHICLE COOLING DEVICE AND COOLING METHOD USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020083784A JP7271470B2 (en) 2020-05-12 2020-05-12 VEHICLE COOLING DEVICE AND COOLING METHOD USING THE SAME

Publications (2)

Publication Number Publication Date
JP2021178540A true JP2021178540A (en) 2021-11-18
JP7271470B2 JP7271470B2 (en) 2023-05-11

Family

ID=78510306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020083784A Active JP7271470B2 (en) 2020-05-12 2020-05-12 VEHICLE COOLING DEVICE AND COOLING METHOD USING THE SAME

Country Status (1)

Country Link
JP (1) JP7271470B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074601A1 (en) 2021-11-01 2023-05-04 株式会社スリーボンド Anaerobic curable composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066410A (en) * 2012-09-25 2014-04-17 Denso Corp Refrigeration cycle device
JP2016035378A (en) * 2014-08-04 2016-03-17 ヴァレオ システム テルミク Heat exchanger and thermal management device corresponding to the same
US20180281564A1 (en) * 2017-03-27 2018-10-04 Hanon Systems Air conditioning system for motor vehicles
JP2018184108A (en) * 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
JP2019155999A (en) * 2018-03-08 2019-09-19 三菱自動車工業株式会社 Battery cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066410A (en) * 2012-09-25 2014-04-17 Denso Corp Refrigeration cycle device
JP2016035378A (en) * 2014-08-04 2016-03-17 ヴァレオ システム テルミク Heat exchanger and thermal management device corresponding to the same
US20180281564A1 (en) * 2017-03-27 2018-10-04 Hanon Systems Air conditioning system for motor vehicles
JP2018184108A (en) * 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
JP2019155999A (en) * 2018-03-08 2019-09-19 三菱自動車工業株式会社 Battery cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074601A1 (en) 2021-11-01 2023-05-04 株式会社スリーボンド Anaerobic curable composition

Also Published As

Publication number Publication date
JP7271470B2 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US11292313B2 (en) Heat pump system for vehicle
CN111907289B (en) Vehicle-mounted temperature adjusting device
JP7172815B2 (en) In-vehicle temperature controller
KR20180065332A (en) Vehicle thermal management system
KR102573227B1 (en) Heat management system of vehicle
JP2013244844A (en) Heat pump air conditioning system for vehicle
KR20160110063A (en) Air-conditioning system of a motor vehicle and method for operating the air-conditioning system
JP2012506820A (en) Thermodynamic air conditioning loops built into heating, ventilation, and / or air conditioning equipment on electric propulsion vehicles
US20190011154A1 (en) Transport refrigeration system
US10611212B2 (en) Air conditioner for vehicle
JP2008074388A (en) Air conditioner for vehicle
CN113226814A (en) Air conditioner for vehicle
JP2000301935A (en) Heat pump type air conditioner for vehicle
US11752833B2 (en) System for air-conditioning the air of a passenger compartment and for heat transfer with drive components of a motor vehicle and method for operating the system
US20230219398A1 (en) Refrigeration cycle device
WO2020175325A1 (en) Cooling system
JP7271470B2 (en) VEHICLE COOLING DEVICE AND COOLING METHOD USING THE SAME
US20210252940A1 (en) Thermal management arrangement for vehicles and method for operating a thermal management arrangement
JP5582080B2 (en) Cold storage air conditioner
US11235641B2 (en) Thermal system control for a vehicle
GB2523264A (en) Thermal management system for a vehicle, in particular a commercial vehicle
KR20180138053A (en) Heat Pump For a Vehicle
JP2007203795A (en) Air-conditioner for vehicle
JP2000343934A (en) Heat pump type vehicle air conditioner
US20220396117A1 (en) Cooling System for Vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R150 Certificate of patent or registration of utility model

Ref document number: 7271470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150