JP2021168239A - Power storage element - Google Patents

Power storage element Download PDF

Info

Publication number
JP2021168239A
JP2021168239A JP2020070437A JP2020070437A JP2021168239A JP 2021168239 A JP2021168239 A JP 2021168239A JP 2020070437 A JP2020070437 A JP 2020070437A JP 2020070437 A JP2020070437 A JP 2020070437A JP 2021168239 A JP2021168239 A JP 2021168239A
Authority
JP
Japan
Prior art keywords
separator
electrode
insulating member
power storage
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020070437A
Other languages
Japanese (ja)
Inventor
右京 針長
Ukyo Harinaga
雄大 川副
Yudai Kawazoe
和司 新田
Kazushi Nitta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Blue Energy Co Ltd
Original Assignee
GS Yuasa Corp
Blue Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp, Blue Energy Co Ltd filed Critical GS Yuasa Corp
Priority to JP2020070437A priority Critical patent/JP2021168239A/en
Publication of JP2021168239A publication Critical patent/JP2021168239A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

To provide a power storage element in which heat shrinkage of separators is suppressed.SOLUTION: A power storage element comprises: an electrode body 2 in which electrodes 23, 24 and separators 25 are laminated; a case which houses the electrode body; and an insulation member 7 which is disposed between the electrode body and the case. The separators are located on the outermost side, of the electrode body, in a lamination direction of the electrodes and the separators. An outer surface 252, of the separator located on the outermost side, which faces the outer side in the lamination direction comes into contact with the insulation member. The outer surface of the separator located on the outermost side has a friction coefficient higher than that of an inner surface 253, of the separator located on the outermost side, which faces the inner side in the lamination direction.SELECTED DRAWING: Figure 7

Description

本発明は、正極、負極、及び、正極と負極との間に配置されたセパレータを有する電極体を備えた蓄電素子に関する。 The present invention relates to a power storage element including a positive electrode, a negative electrode, and an electrode body having a separator arranged between the positive electrode and the negative electrode.

従来、巻回タイプの電極群を備えた二次電池が知られている(例えば、特許文献1参照)。この二次電池は、電極群に加えて、電極群とともに電解液を収容するケースを備える。この電極群は、それぞれ金属箔を含む正極及び負極と、正極及び負極の間に介在して積層され絶縁性を有するセパレータと、を有する。この電極群では、セパレータが正極と負極とを絶縁している。 Conventionally, a secondary battery including a winding type electrode group is known (see, for example, Patent Document 1). In addition to the electrode group, this secondary battery includes a case for accommodating the electrolytic solution together with the electrode group. This electrode group has a positive electrode and a negative electrode each containing a metal foil, and a separator laminated between the positive electrode and the negative electrode and having an insulating property. In this electrode group, the separator insulates the positive electrode and the negative electrode.

特開2011−54567号公報Japanese Unexamined Patent Publication No. 2011-54567

ところで、電極群のエネルギー密度の向上を目的として、薄膜状の樹脂製のセパレータが採用されている。しかしながら、このようなセパレータを採用した場合、使用等により二次電池が高温になると、セパレータが熱収縮するおそれがある。 By the way, a thin film resin separator is adopted for the purpose of improving the energy density of the electrode group. However, when such a separator is adopted, the separator may be thermally shrunk when the temperature of the secondary battery becomes high due to use or the like.

そこで、本実施形態は、正極と負極との間に配置されたセパレータを備え、セパレータの熱収縮を抑制した蓄電素子を提供することを目的とする。 Therefore, an object of the present embodiment is to provide a power storage element provided with a separator arranged between a positive electrode and a negative electrode and suppressing heat shrinkage of the separator.

本実施形態の蓄電素子は、
電極とセパレータとが重ねられた電極体と、
前記電極体を収容するケースと、
前記電極体と前記ケースとの間に配置された絶縁部材と、を備え、
前記電極体における前記電極とセパレータとの重なり方向における最も外側に、前記セパレータが位置し、
前記最も外側に位置するセパレータの前記重なり方向における外側を向いた外面は、前記絶縁部材と接し、
前記最も外側に位置するセパレータの外面の摩擦係数が、前記最も外側に位置するセパレータの前記重なり方向における内側を向いた内面の摩擦係数より大きい。
The power storage element of this embodiment is
An electrode body in which an electrode and a separator are stacked, and
A case for accommodating the electrode body and
An insulating member arranged between the electrode body and the case is provided.
The separator is located on the outermost side of the electrode body in the overlapping direction of the electrode and the separator.
The outer surface of the outermost separator facing outward in the overlapping direction is in contact with the insulating member.
The coefficient of friction of the outer surface of the outermost separator is greater than the coefficient of friction of the inner surface of the outermost separator facing inward in the overlapping direction.

かかる構成によれば、電極体の最も外側において、セパレータの外面と絶縁部材との摩擦抵抗により、セパレータの熱収縮を抑制できる。 According to such a configuration, the thermal shrinkage of the separator can be suppressed by the frictional resistance between the outer surface of the separator and the insulating member on the outermost side of the electrode body.

前記蓄電素子では、
前記最も外側に位置するセパレータは、基材層と、該基材層に重ねられた結着剤層と、を有し、
前記結着剤層が、前記最も外側に位置するセパレータの外面を構成していてもよい。
In the power storage element,
The outermost separator has a base material layer and a binder layer superimposed on the base material layer.
The binder layer may constitute the outer surface of the outermost separator.

かかる構成によれば、電極体の最も外側において、セパレータの結着剤層が絶縁部材と接するため、セパレータの基材層が絶縁部材と接する構成と比べて、絶縁部材とセパレータとの摩擦抵抗を大きくすることができる。 According to this configuration, since the binder layer of the separator is in contact with the insulating member on the outermost side of the electrode body, the frictional resistance between the insulating member and the separator is increased as compared with the configuration in which the base material layer of the separator is in contact with the insulating member. It can be made larger.

また、前記蓄電素子では、
前記電極は、活物質が金属箔に塗布された塗工部と、前記活物質が前記金属箔に塗布されていない未塗工部と、を含み、
前記電極体の前記重なり方向における外側に位置する端部では、
前記セパレータが複数重ねられ、複数重ねられた前記セパレータの前記重なり方向の最も内側に位置するセパレータと隣り合う電極の未塗工部が、前記最も内側に位置するセパレータの内面と接触していてもよい。
Further, in the power storage element,
The electrode includes a coated portion in which the active material is applied to the metal foil and an uncoated portion in which the active material is not applied to the metal foil.
At the outer end of the electrode body in the overlapping direction,
Even if a plurality of the separators are stacked and the uncoated portion of the electrode adjacent to the separator located on the innermost side in the overlapping direction of the plurality of stacked separators is in contact with the inner surface of the separator located on the innermost side. good.

かかる構成によれば、電極体の重なり方向における端部において、重ねられたセパレータのうち最も内側に位置するセパレータの内面が、電極において滑りやすい未塗工部と接触していても、最も外側に位置するセパレータの外面と絶縁部材との摩擦抵抗が大きいため、最も外側に位置するセパレータが熱収縮しにくいことにより、電極間の接触を抑制できる。 According to such a configuration, at the end portion in the overlapping direction of the electrode bodies, even if the inner surface of the separator located on the innermost side of the stacked separators is in contact with the slippery uncoated portion on the electrode, it is on the outermost side. Since the frictional resistance between the outer surface of the position separator and the insulating member is large, the outermost separator is less likely to shrink due to heat, so that contact between the electrodes can be suppressed.

前記蓄電素子では、
前記絶縁部材は、複数配置されていてもよい。
In the power storage element,
A plurality of the insulating members may be arranged.

かかる構成によれば、絶縁部材に対して最も外側に位置するセパレータをしっかりと押し付けることができ、絶縁部材とこのセパレータの間の摩擦抵抗を十分に確保することができる。 According to such a configuration, the separator located on the outermost side can be firmly pressed against the insulating member, and the frictional resistance between the insulating member and the separator can be sufficiently secured.

別の実施形態の蓄電素子は、
電極とセパレータとが重ねられ、前記電極と前記セパレータとの重なり方向において前記電極よりも前記セパレータが外側に位置する電極体と、
前記電極体を収容するケースと、
前記電極体と前記ケースとの間に配置された絶縁部材と、を備え、
前記外側に位置するセパレータは、基材層と、該基材層に重ねられた結着剤層を有し、
前記外側に位置するセパレータにおいて、前記結着剤層と前記絶縁部材とが接触している。
The power storage element of another embodiment
An electrode body in which the electrode and the separator are overlapped, and the separator is located outside the electrode in the overlapping direction of the electrode and the separator.
A case for accommodating the electrode body and
An insulating member arranged between the electrode body and the case is provided.
The separator located on the outside has a base material layer and a binder layer superimposed on the base material layer.
In the separator located on the outside, the binder layer and the insulating member are in contact with each other.

かかる構成によれば、外側に位置するセパレータにおいて、セパレータの結着剤層と絶縁部材とが接触していることにより、セパレータと絶縁部材との摩擦抵抗が大きくなるため、セパレータの熱収縮を抑制できる。 According to this configuration, in the separator located on the outside, the frictional resistance between the separator and the insulating member increases due to the contact between the binder layer of the separator and the insulating member, so that the thermal shrinkage of the separator is suppressed. can.

前記蓄電素子では、
前記電極は、活物質が金属箔に塗布された塗工部と、該塗工部と並んで配置されるとともに前記活物質が前記金属箔に塗布されていない未塗工部と、を含み、
前記外側に位置するセパレータの前記塗工部と前記未塗工部の並び方向における少なくとも端部において、前記結着剤層と前記絶縁部材とが接触していてもよい。
In the power storage element,
The electrode includes a coated portion in which the active material is applied to the metal foil, and an uncoated portion in which the active material is arranged side by side with the coated portion and the active material is not applied to the metal foil.
The binder layer and the insulating member may be in contact with each other at least at the ends of the coated portion and the uncoated portion of the separator located on the outer side in the alignment direction.

かかる構成によれば、セパレータの少なくとも端部において、セパレータの熱収縮を抑制できる。 According to such a configuration, heat shrinkage of the separator can be suppressed at least at the end portion of the separator.

本実施形態の蓄電素子によれば、正極と負極との間に配置されたセパレータを備え、セパレータの熱収縮を抑制した蓄電素子を提供することができる。 According to the power storage element of the present embodiment, it is possible to provide a power storage element provided with a separator arranged between a positive electrode and a negative electrode and suppressing heat shrinkage of the separator.

図1は、本実施形態に係る蓄電素子の斜視図である。FIG. 1 is a perspective view of a power storage element according to the present embodiment. 図2は、前記蓄電素子の側面図である。FIG. 2 is a side view of the power storage element. 図3は、前記蓄電素子の平面図である。FIG. 3 is a plan view of the power storage element. 図4は、図3のIV−IV位置における断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 図5は、前記蓄電素子の分解図である。FIG. 5 is an exploded view of the power storage element. 図6は、前記蓄電素子の電極体を説明するための斜視図である。FIG. 6 is a perspective view for explaining an electrode body of the power storage element. 図7は、前記電極体の正極未塗工部周辺の拡大図である。FIG. 7 is an enlarged view of the periphery of the uncoated portion of the positive electrode of the electrode body. 図8は、前記電極体の負極未塗工部周辺の拡大図である。FIG. 8 is an enlarged view of the periphery of the negative electrode uncoated portion of the electrode body. 図9は、変形例に係る蓄電素子の電極体の正極未塗工部周辺の拡大図である。FIG. 9 is an enlarged view of the periphery of the positive electrode uncoated portion of the electrode body of the power storage element according to the modified example. 図10は、前記電極体の負極未塗工部周辺の拡大図である。FIG. 10 is an enlarged view of the periphery of the negative electrode uncoated portion of the electrode body. 図11は、前記蓄電素子を含む蓄電装置の斜視図である。FIG. 11 is a perspective view of a power storage device including the power storage element.

以下、本発明の一実施形態について、図1〜図8を参照しつつ説明する。本実施形態では、蓄電素子の一例として、充放電可能な二次電池について説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 8. In the present embodiment, a rechargeable secondary battery will be described as an example of the power storage element. The name of each component (each component) of the present embodiment is that of the present embodiment, and may be different from the name of each component (each component) in the background technology.

本実施形態の蓄電素子は、非水電解質二次電池である。より詳しくは、蓄電素子は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。この種の蓄電素子は、電気エネルギーを供給する。蓄電素子は、単一又は複数で使用される。具体的に、蓄電素子は、要求される出力及び要求される電圧が小さいときには、単一で使用される。一方、蓄電素子は、要求される出力及び要求される電圧の少なくとも一方が大きいときには、他の蓄電素子と組み合わされて蓄電装置に用いられる。前記蓄電装置では、該蓄電装置に用いられる蓄電素子が電気エネルギーを供給する。 The power storage element of this embodiment is a non-aqueous electrolyte secondary battery. More specifically, the power storage element is a lithium ion secondary battery that utilizes the electron transfer that occurs with the movement of lithium ions. This type of power storage element supplies electrical energy. The power storage element may be used alone or in combination of two or more. Specifically, the power storage element is used alone when the required output and the required voltage are small. On the other hand, when at least one of the required output and the required voltage is large, the power storage element is used in the power storage device in combination with another power storage element. In the power storage device, the power storage element used in the power storage device supplies electrical energy.

蓄電素子は、図1〜図5に示すように、電極体2と、電極体2を収容するケース3と、ケース3の外側に配置される外部端子4であって電極体2と導通する外部端子4と、を備える。本実施形態の蓄電素子1は、電極体2、ケース3、及び外部端子4の他に、電極体2と外部端子4とを導通させる集電体5、及び、電極体2と集電体5とを通電可能に接続するクリップ部材6を備える。また、蓄電素子1は、電極体2とケース3とを絶縁する絶縁部材7(具体的には、第一絶縁部材71及び第二絶縁部材72)を備える。本実施形態の蓄電素子1には、絶縁部材7は、複数配置されている。 As shown in FIGS. 1 to 5, the power storage element is an electrode body 2, a case 3 accommodating the electrode body 2, and an external terminal 4 arranged outside the case 3 which is electrically connected to the electrode body 2. It is provided with a terminal 4. In the power storage element 1 of the present embodiment, in addition to the electrode body 2, the case 3, and the external terminal 4, the current collector 5 that conducts the electrode body 2 and the external terminal 4 and the electrode body 2 and the current collector 5 The clip member 6 is provided so as to be able to energize and. Further, the power storage element 1 includes an insulating member 7 (specifically, a first insulating member 71 and a second insulating member 72) that insulates the electrode body 2 and the case 3. A plurality of insulating members 7 are arranged in the power storage element 1 of the present embodiment.

電極体2は、図6に示すように、電極とセパレータ25とが重ねられた構成を有する。本実施形態の電極体2では、電極とセパレータ25の重なり方向において電極よりもセパレータ25が外側に位置する。具体的に、電極体2では、電極とセパレータ25とが交互に配置され、電極体2の外面を構成する箇所にセパレータ25が位置している。即ち、電極体2では、電極体2の外面を構成するセパレータ25は、電極とセパレータ25との重なり方向においてこのセパレータ25と隣接する電極よりも、重なり方向における外側に位置している。 As shown in FIG. 6, the electrode body 2 has a structure in which an electrode and a separator 25 are overlapped. In the electrode body 2 of the present embodiment, the separator 25 is located outside the electrode in the overlapping direction of the electrode and the separator 25. Specifically, in the electrode body 2, the electrodes and the separator 25 are alternately arranged, and the separator 25 is located at a position constituting the outer surface of the electrode body 2. That is, in the electrode body 2, the separator 25 constituting the outer surface of the electrode body 2 is located outside in the overlapping direction with respect to the electrode adjacent to the separator 25 in the overlapping direction of the electrode and the separator 25.

また、本実施形態の電極体2は、巻芯21と、正極23と負極24とが互いに絶縁された状態で積層された積層体22であって、巻芯21の周囲に巻回された積層体22と、を備える。さらに、本実施形態の電極体2の外周部では、電極の外側にセパレータ25が一周巻き付けられている。この電極体2において、リチウムイオンが正極23と負極24との間を移動することにより、蓄電素子1が充放電する。本実施形態の電極体2は、扁平な筒形状である。 Further, the electrode body 2 of the present embodiment is a laminate 22 in which the winding core 21 and the positive electrode 23 and the negative electrode 24 are laminated in a state of being insulated from each other, and the lamination is wound around the winding core 21. It comprises a body 22 and. Further, on the outer peripheral portion of the electrode body 2 of the present embodiment, the separator 25 is wound around the outside of the electrode. In the electrode body 2, lithium ions move between the positive electrode 23 and the negative electrode 24, so that the power storage element 1 is charged and discharged. The electrode body 2 of the present embodiment has a flat tubular shape.

巻芯21は、通常、絶縁材料によって形成される。巻芯21は、筒形状である。本実施形態の巻芯21は、偏平な筒形状である。本実施形態の巻芯21は、可撓性又は熱可塑性を有するシートを巻回することによって形成される。 The winding core 21 is usually formed of an insulating material. The winding core 21 has a tubular shape. The winding core 21 of the present embodiment has a flat tubular shape. The winding core 21 of the present embodiment is formed by winding a sheet having flexibility or thermoplasticity.

積層体22は、正極23及び負極24が積層された(重ねられた)状態で巻芯21の周囲に巻回されることによって形成される。本実施形態の積層体22では、電極(例えば、正極23及び負極24)は、活物質が金属箔に塗布された塗工部と、活物質が金属箔に塗布されていない未塗工部と、を含む。 The laminated body 22 is formed by winding the positive electrode 23 and the negative electrode 24 around the winding core 21 in a laminated (stacked) state. In the laminate 22 of the present embodiment, the electrodes (for example, the positive electrode 23 and the negative electrode 24) are a coated portion in which the active material is applied to the metal foil and an uncoated portion in which the active material is not applied to the metal foil. ,including.

正極23は、図7に示すように、金属箔231と、金属箔231の上に形成された正極活物質層232と、を有する。金属箔231は帯状である。本実施形態の金属箔231は、例えば、アルミニウム箔である。本実施形態の正極活物質層232は、金属箔231の両面に形成されている。また、本実施形態の正極23は、正極活物質が金属箔231に塗布された正極塗工部234と、正極活物質が金属箔231に塗布されていない正極未塗工部233と、を含む(図6参照)。この正極23では、正極未塗工部233は、正極塗工部234と並んで配置されている。具体的に、正極23は、帯形状の短手方向である幅方向の一方の端縁部に、正極活物質の正極未塗工部233(正極活物質層が形成されていない部位)を有する。 As shown in FIG. 7, the positive electrode 23 has a metal foil 231 and a positive electrode active material layer 232 formed on the metal foil 231. The metal foil 231 has a strip shape. The metal foil 231 of the present embodiment is, for example, an aluminum foil. The positive electrode active material layer 232 of the present embodiment is formed on both sides of the metal foil 231. Further, the positive electrode 23 of the present embodiment includes a positive electrode coated portion 234 in which the positive electrode active material is applied to the metal foil 231 and a positive electrode uncoated portion 233 in which the positive electrode active material is not applied to the metal foil 231. (See FIG. 6). In the positive electrode 23, the positive electrode uncoated portion 233 is arranged side by side with the positive electrode coated portion 234. Specifically, the positive electrode 23 has a positive electrode uncoated portion 233 (a portion where the positive electrode active material layer is not formed) of the positive electrode active material at one edge portion in the width direction, which is the lateral direction of the band shape. ..

前記正極活物質層232は、正極活物質と、バインダーと、を有する。 The positive electrode active material layer 232 has a positive electrode active material and a binder.

前記正極活物質は、例えば、リチウム金属酸化物である。具体的に、正極活物質は、例えば、LiMe(Meは、1又は2以上の遷移金属を表す)によって表される複合酸化物(LiCo、LiNi、LiMn、LiNiCoMn等)、LiMe(XO(Meは、1又は2以上の遷移金属を表し、Xは例えばP、Si、B、Vを表す)によって表されるポリアニオン化合物(LiFePO、LiMnPO、LiMnSiO、LiCoPOF等)である。本実施形態の正極活物質は、LiNi1/3Co1/3Mn1/3である。 The positive electrode active material is, for example, a lithium metal oxide. Specifically, the positive electrode active material, for example, Li a Me b O c ( Me represents one or more transition metal) complex oxide represented by (Li a Co y O 2, Li a Ni w O 2, Li a Mn z O 4, Li a Ni w Co y Mn z O 2 , etc.), Li l Me m (XO n) p (Me represents one or more transition metals, X is for example P , Si, B, a polyanion compounds represented by the representative of the V) (Li a Fe b PO 4, Li a Mn b PO 4, Li a Mn b SiO 4, Li a Co b PO 4 F , etc.). The positive electrode active material of this embodiment is LiNi 1/3 Co 1/3 Mn 1/3 O 2 .

前記正極活物質層232に用いられるバインダーは、例えば、ポリフッ化ビニリデン(PVdF)、エチレンとビニルアルコールとの共重合体、ポリメタクリル酸メチル、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、スチレンブタジエンゴム(SBR)等である。本実施形態のバインダーは、ポリフッ化ビニリデンである。 The binder used for the positive electrode active material layer 232 is, for example, polyvinylidene fluoride (PVdF), a copolymer of ethylene and vinyl alcohol, polymethyl methacrylate, polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyacrylic acid, poly. Polyacrylic acid, styrene-butadiene rubber (SBR) and the like. The binder of this embodiment is polyvinylidene fluoride.

前記正極活物質層232は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の正極活物質層232は、導電助剤としてアセチレンブラックを有する。 The positive electrode active material layer 232 may further have a conductive auxiliary agent such as Ketjen Black (registered trademark), acetylene black, and graphite. The positive electrode active material layer 232 of the present embodiment has acetylene black as a conductive auxiliary agent.

負極24は、図8に示すように、金属箔241と、金属箔241の上に形成された負極活物質層242と、を有する。金属箔241は帯状である。本実施形態の金属箔241は、例えば、銅箔である。本実施形態の負極活物質層242は、金属箔241の両面に形成されている。また、本実施形態の負極24は、活物質が金属箔に塗布された負極塗工部244と、負極活物質が金属箔に塗布されていない負極未塗工部243と、を含む(図6参照)。この負極24では、負極未塗工部243は、負極塗工部244と並んで配置されている。具体的に、負極24は、帯形状の短手方向である幅方向の他方(正極未塗工部233と反対側)の端縁部に、負極未塗工部243を有する。負極塗工部244の幅は、正極塗工部234の幅よりも大きい。 As shown in FIG. 8, the negative electrode 24 has a metal foil 241 and a negative electrode active material layer 242 formed on the metal foil 241. The metal foil 241 is strip-shaped. The metal foil 241 of the present embodiment is, for example, a copper foil. The negative electrode active material layer 242 of the present embodiment is formed on both surfaces of the metal foil 241. Further, the negative electrode 24 of the present embodiment includes a negative electrode coated portion 244 in which the active material is applied to the metal foil and a negative electrode uncoated portion 243 in which the negative electrode active material is not applied to the metal foil (FIG. 6). reference). In the negative electrode 24, the negative electrode uncoated portion 243 is arranged side by side with the negative electrode coated portion 244. Specifically, the negative electrode 24 has a negative electrode uncoated portion 243 at the edge portion on the other side (opposite side of the positive electrode uncoated portion 233) in the width direction, which is the lateral direction of the strip shape. The width of the negative electrode coated portion 244 is larger than the width of the positive electrode coated portion 234.

前記負極活物質層242は、負極活物質と、バインダーと、を有する。 The negative electrode active material layer 242 has a negative electrode active material and a binder.

前記負極活物質は、例えば、グラファイト、難黒鉛化炭素、及び易黒鉛化炭素などの炭素材、チタン酸リチウム、又は、リチウムイオンと合金化反応を生じるケイ素(Si)及び錫(Sn)などの材料である。本実施形態の負極活物質は、難黒鉛化炭素である。 The negative electrode active material may be, for example, a carbon material such as graphite, non-graphitized carbon, and easily graphitized carbon, lithium titanate, or silicon (Si) and tin (Sn) that alloy with lithium ions. It is a material. The negative electrode active material of the present embodiment is non-graphitized carbon.

負極活物質層242に用いられるバインダーは、正極活物質層に用いられたバインダーと同様のものである。本実施形態のバインダーは、ポリフッ化ビニリデンである。 The binder used for the negative electrode active material layer 242 is the same as the binder used for the positive electrode active material layer. The binder of this embodiment is polyvinylidene fluoride.

前記負極活物質層242は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の負極活物質層242は、導電助剤を有していない。 The negative electrode active material layer 242 may further have a conductive auxiliary agent such as Ketjen Black (registered trademark), acetylene black, and graphite. The negative electrode active material layer 242 of the present embodiment does not have a conductive auxiliary agent.

本実施形態の電極体2では、以上のように構成される正極23と負極24とがセパレータ25によって絶縁された状態で巻回される(図6参照)。即ち、本実施形態の電極体2では、正極23、負極24、及びセパレータ25の積層体22が巻回される。 In the electrode body 2 of the present embodiment, the positive electrode 23 and the negative electrode 24 configured as described above are wound in a state of being insulated by the separator 25 (see FIG. 6). That is, in the electrode body 2 of the present embodiment, the laminated body 22 of the positive electrode 23, the negative electrode 24, and the separator 25 is wound.

セパレータ25は、絶縁性を有する部材である。また、セパレータ25は、正極23と負極24との間に配置される。これにより、電極体2(詳しくは、積層体22)において、正極23と負極24とが互いに絶縁される。さらに、セパレータ25は、ケース3内において、電解液を保持する。これにより、蓄電素子1の充放電時において、リチウムイオンが、セパレータ25を挟んで交互に積層される正極23と負極24との間を移動する。 The separator 25 is a member having an insulating property. Further, the separator 25 is arranged between the positive electrode 23 and the negative electrode 24. As a result, in the electrode body 2 (specifically, the laminated body 22), the positive electrode 23 and the negative electrode 24 are insulated from each other. Further, the separator 25 holds the electrolytic solution in the case 3. As a result, when the power storage element 1 is charged and discharged, lithium ions move between the positive electrode 23 and the negative electrode 24, which are alternately laminated with the separator 25 in between.

本実施形態のセパレータ25は、二軸延伸フィルムを含む。セパレータ25に含まれる二軸延伸フィルムは、例えば、150℃以上まで加熱されると、熱収縮する。具体的に、セパレータ25は、150℃となったまま30分間経過すると、2%以上5%以下程度熱収縮する。本実施形態の外側に位置するセパレータ25(具体的には、最も外側に位置するセパレータ25、より具体的には、電極体2の外周面を構成するセパレータ25)は、基材層250と、該基材層250に重ねられた結着剤層251と、を有する(図7及び図8参照)。なお、本実施形態のセパレータ25の巻回方向における全域には、基材層250と、結着剤層251と、が配置されている。 The separator 25 of the present embodiment includes a biaxially stretched film. The biaxially stretched film contained in the separator 25 shrinks heat when heated to, for example, 150 ° C. or higher. Specifically, the separator 25 heat-shrinks by about 2% or more and 5% or less after 30 minutes have passed while keeping the temperature at 150 ° C. The separator 25 located on the outer side of the present embodiment (specifically, the separator 25 located on the outermost side, more specifically, the separator 25 forming the outer peripheral surface of the electrode body 2) includes the base material layer 250 and the separator 25. It has a binder layer 251 superimposed on the base material layer 250 (see FIGS. 7 and 8). The base material layer 250 and the binder layer 251 are arranged over the entire area of the separator 25 of the present embodiment in the winding direction.

セパレータ25は、帯状である(図6参照)。セパレータ25の幅(帯形状の短手方向の寸法)は、負極24の負極塗工部244の幅より僅かに大きい。セパレータ25は、塗工部234、244同士が重なるように幅方向に位置ずれした状態で重ね合わされた正極23と負極24との間に配置される。また、セパレータ25は、電極体2における電極とセパレータ25との重なり方向における最も外側に位置する。 The separator 25 has a strip shape (see FIG. 6). The width of the separator 25 (dimension of the strip shape in the lateral direction) is slightly larger than the width of the negative electrode coated portion 244 of the negative electrode 24. The separator 25 is arranged between the positive electrode 23 and the negative electrode 24 which are overlapped with each other in a state where the coating portions 234 and 244 are displaced in the width direction so as to overlap each other. Further, the separator 25 is located on the outermost side in the overlapping direction of the electrode and the separator 25 in the electrode body 2.

基材層250は、二軸延伸フィルムで構成される(図7及び図8参照)。例えば、基材層250は、二軸延伸ポリオレフィン系フィルムである。二軸延伸ポリオレフィン系フィルムは、多孔質の二軸延伸フィルムである。また、このフィルムに設けられた細孔は三次元構造を有するため、基材層250に対する電解液の浸透性が向上している。基材層250を構成する二軸延伸ポリオレフィン系フィルムは、例えば、ポリプロピレンフィルムやポリエチレンフィルム等である。 The base material layer 250 is composed of a biaxially stretched film (see FIGS. 7 and 8). For example, the base material layer 250 is a biaxially stretched polyolefin-based film. The biaxially stretched polyolefin-based film is a porous biaxially stretched film. Further, since the pores provided in this film have a three-dimensional structure, the permeability of the electrolytic solution to the base material layer 250 is improved. The biaxially stretched polyolefin-based film constituting the base material layer 250 is, for example, a polypropylene film, a polyethylene film, or the like.

結着剤層251は、最も外側に位置するセパレータ25の外面を構成している。結着剤層251は、ポリアクリロニトリルやPVDF等の結着剤を含む。例えば、結着剤層251は、結着剤に加えて、SiO粒子、Al粒子、ベーマイト(アルミナ水和物)等の無機粒子を含んでいても良い。本実施形態の結着剤層251は無機粒子を含み、基材層250の厚み方向に並ぶ一対の表面のうち片方の表面に設けられている。また、結着剤層251は、正極23或いは絶縁部材7に対向していることが好ましい。 The binder layer 251 constitutes the outer surface of the separator 25 located on the outermost side. The binder layer 251 contains a binder such as polyacrylonitrile or PVDF. For example, the binder layer 251 may contain inorganic particles such as SiO 2 particles, Al 2 O 3 particles, and boehmite (alumina hydrate) in addition to the binder. The binder layer 251 of the present embodiment contains inorganic particles and is provided on one of a pair of surfaces arranged in the thickness direction of the base material layer 250. Further, the binder layer 251 preferably faces the positive electrode 23 or the insulating member 7.

ケース3は、電極体2に加えて、集電体5等を電解液とともに収容する(図4参照)。本実施形態のケース3は、開口を有するケース本体31と、ケース本体31の開口を塞ぐ(閉じる)蓋板32と、を有する。 In the case 3, in addition to the electrode body 2, the current collector 5 and the like are housed together with the electrolytic solution (see FIG. 4). The case 3 of the present embodiment has a case main body 31 having an opening and a lid plate 32 that closes (closes) the opening of the case main body 31.

また、ケース3は、電解液に耐性を有する金属によって形成される。本実施形態のケース3は、例えば、アルミニウム、又は、アルミニウム合金等のアルミニウム系金属材料によって形成される。ケース3は、ステンレス鋼及びニッケル等の金属材料、又は、アルミニウムにナイロン等の樹脂を接着した複合材料等によって形成されてもよい。 Further, the case 3 is formed of a metal having resistance to an electrolytic solution. Case 3 of the present embodiment is formed of, for example, aluminum or an aluminum-based metal material such as an aluminum alloy. The case 3 may be formed of a metal material such as stainless steel and nickel, or a composite material in which a resin such as nylon is adhered to aluminum.

前記電解液は、非水溶液系電解液である。電解液は、有機溶媒に電解質塩を溶解させることによって得られる。有機溶媒は、例えば、プロピレンカーボネート及びエチレンカーボネートなどの環状炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートなどの鎖状カーボネート類である。電解質塩は、LiClO、LiBF、及びLiPF等である。 The electrolytic solution is a non-aqueous electrolyte solution. The electrolytic solution is obtained by dissolving an electrolyte salt in an organic solvent. The organic solvent is, for example, cyclic carbonates such as propylene carbonate and ethylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Electrolyte salts are LiClO 4 , LiBF 4 , LiPF 6 , and the like.

ケース本体31は、板状の閉塞部311であってケース3の内側を向く内面とケース3の外側を向く外面とを有する閉塞部311と、閉塞部311の周縁に接続される胴部312であって、閉塞部311の内面側に延び且つ該内面を包囲する筒状の胴部312とを備える(図5参照)。 The case body 31 is a plate-shaped closing portion 311 having a closing portion 311 having an inner surface facing the inside of the case 3 and an outer surface facing the outside of the case 3, and a body portion 312 connected to the peripheral edge of the closing portion 311. It is provided with a tubular body portion 312 extending toward the inner surface side of the closing portion 311 and surrounding the inner surface (see FIG. 5).

閉塞部311は、開口が上を向くようにケース本体31が配置されたときに、ケース本体31の下端に位置する(即ち、前記開口が上を向いたときのケース本体31の底壁となる)部位である。閉塞部311は、該閉塞部311の法線方向視において、矩形状である。閉塞部311の四隅は円弧状である。 The closing portion 311 is located at the lower end of the case body 31 when the case body 31 is arranged so that the opening faces upward (that is, becomes the bottom wall of the case body 31 when the opening faces upward). ) The part. The closed portion 311 has a rectangular shape in the normal direction of the closed portion 311. The four corners of the closing portion 311 are arcuate.

以下では、図1に示すように、閉塞部311の長辺方向をX軸方向とし、閉塞部311の短辺方向をY軸方向とし、閉塞部311の法線方向をZ軸方向とする。 In the following, as shown in FIG. 1, the long side direction of the closed portion 311 is the X-axis direction, the short side direction of the closed portion 311 is the Y-axis direction, and the normal direction of the closed portion 311 is the Z-axis direction.

本実施形態の胴部312は、角筒形状を有する(図5参照)。詳しくは、胴部312は、偏平な角筒形状を有する。胴部312は、閉塞部311の周縁における長辺から延びる一対の長壁部313と、閉塞部311の周縁における短辺から延びる一対の短壁部314とを有する。即ち、一対の長壁部313は、Y軸方向に間隔(詳しくは、閉塞部311の周縁における短辺に相当する間隔)を空けて対向し、一対の短壁部314は、X軸方向に間隔(詳しくは、閉塞部311の周縁における長辺に相当する間隔)を空けて対向する。短壁部314が一対の長壁部313の対応(詳しくは、Y軸方向に対向)する端部同士をそれぞれ接続することによって、角筒状の胴部312が形成される。 The body portion 312 of the present embodiment has a square tubular shape (see FIG. 5). Specifically, the body portion 312 has a flat square tube shape. The body portion 312 has a pair of long wall portions 313 extending from the long side at the peripheral edge of the closed portion 311 and a pair of short wall portions 314 extending from the short side at the peripheral edge of the closed portion 311. That is, the pair of long wall portions 313 face each other with an interval in the Y-axis direction (specifically, the interval corresponding to the short side at the peripheral edge of the closed portion 311), and the pair of short wall portions 314 are spaced in the X-axis direction. (Specifically, they face each other with an interval corresponding to the long side at the peripheral edge of the closed portion 311). A square tubular body portion 312 is formed by connecting the corresponding (specifically, Y-axis direction) end portions of the short wall portion 314 to each other of the pair of long wall portions 313.

以上のように、ケース本体31は、開口方向(Z軸方向)における一方の端部が塞がれた角筒形状(即ち、有底角筒形状)を有する。 As described above, the case body 31 has a square tube shape (that is, a bottomed square tube shape) in which one end in the opening direction (Z-axis direction) is closed.

蓋板32は、ケース本体31の開口を塞ぐ板状の部材である。具体的に、蓋板32は、ケース本体31の開口を塞ぐようにケース本体31に当接する。また、蓋板32は、Z軸方向視において、X軸方向に長い矩形状の板材である。さらに、蓋板32の四隅は、円弧状である。 The lid plate 32 is a plate-shaped member that closes the opening of the case body 31. Specifically, the lid plate 32 comes into contact with the case body 31 so as to close the opening of the case body 31. The lid plate 32 is a rectangular plate material that is long in the X-axis direction when viewed in the Z-axis direction. Further, the four corners of the lid plate 32 are arcuate.

蓋板32は、ケース3内のガスを外部に排出可能なガス排出弁321を有する。ガス排出弁321は、ケース3の内部圧力が所定の圧力まで上昇したときに、該ケース3内から外部にガスを排出する。本実施形態のガス排出弁321は、X軸方向における蓋板32の中央部に設けられる。 The lid plate 32 has a gas discharge valve 321 capable of discharging the gas in the case 3 to the outside. The gas discharge valve 321 discharges gas from the inside of the case 3 to the outside when the internal pressure of the case 3 rises to a predetermined pressure. The gas discharge valve 321 of the present embodiment is provided at the center of the lid plate 32 in the X-axis direction.

外部端子4は、外部機器又は他の蓄電素子の外部端子等と電気的に接続される部位である。外部端子4は、導電性を有する部材によって形成される。例えば、外部端子4は、アルミニウム、銅、鉄、ステンレス、クロムモリブデン鋼等の鋼、その他の強度の高い導電性金属によって形成される。 The external terminal 4 is a portion that is electrically connected to an external device, an external terminal of another power storage element, or the like. The external terminal 4 is formed of a conductive member. For example, the external terminal 4 is formed of steel such as aluminum, copper, iron, stainless steel, chrome molybdenum steel, or other high-strength conductive metal.

集電体5は、ケース3内に配置され、電極体2と通電可能に直接又は間接に接続される。本実施形態の集電体5は、クリップ部材6を介して電極体2と通電可能に接続される。 The current collector 5 is arranged in the case 3 and is directly or indirectly connected to the electrode body 2 so as to be energized. The current collector 5 of the present embodiment is electrically connected to the electrode body 2 via the clip member 6.

絶縁部材7は、電極体2とケース3との間に配置されている。また、絶縁部材7は、電極体2の主面のうち巻回軸方向における少なくとも両端部(例えば、集電体5が配置される部位)を被覆している。本実施形態の絶縁部材7は、電極体2の主面の全域を被覆している。なお、電極体2の主面とは、電極体2の外表面のうち電極とセパレータ25との重なり方向に垂直に広がる面である。また、本実施形態の絶縁部材7(例えば、第一絶縁部材71又は第二絶縁部材72)の厚みは、いずれの部位においても均一である。さらに、絶縁部材7(例えば、第一絶縁部材71又は第二絶縁部材72)の表面粗さは、いずれの部位においても均一である。 The insulating member 7 is arranged between the electrode body 2 and the case 3. Further, the insulating member 7 covers at least both ends (for example, a portion where the current collector 5 is arranged) in the winding axis direction on the main surface of the electrode body 2. The insulating member 7 of the present embodiment covers the entire main surface of the electrode body 2. The main surface of the electrode body 2 is a surface of the outer surface of the electrode body 2 that extends perpendicularly to the overlapping direction of the electrode and the separator 25. Further, the thickness of the insulating member 7 (for example, the first insulating member 71 or the second insulating member 72) of the present embodiment is uniform in any portion. Further, the surface roughness of the insulating member 7 (for example, the first insulating member 71 or the second insulating member 72) is uniform in any portion.

第一絶縁部材71は、図4及び図5に示すように、ケース3(詳しくはケース本体31)と電極体2との間に配置される。第一絶縁部材71は、絶縁性を有する部材によって形成される。第一絶縁部材71は、シート状の部材によって構成される。本実施形態の第一絶縁部材71は、例えば、ポリプロピレン、ポリフェニレンスルフィド等の樹脂によって形成される。本実施形態の第一絶縁部材71は、所定の形状に裁断された絶縁性を有するシート状の部材を折り曲げることによって袋状に形成される。 As shown in FIGS. 4 and 5, the first insulating member 71 is arranged between the case 3 (specifically, the case body 31) and the electrode body 2. The first insulating member 71 is formed of an insulating member. The first insulating member 71 is composed of a sheet-shaped member. The first insulating member 71 of the present embodiment is formed of, for example, a resin such as polypropylene or polyphenylene sulfide. The first insulating member 71 of the present embodiment is formed in a bag shape by bending a sheet-shaped member having an insulating property cut into a predetermined shape.

第二絶縁部材72は、第一絶縁部材71と電極体2との間に配置される(図5参照)。第二絶縁部材72は、絶縁性を有する部材によって形成される。本実施形態の第二絶縁部材72は、例えば、ポリプロピレン、ポリフェニレンスルフィド等の樹脂によって形成される。また、この第二絶縁部材72は、第一絶縁部材71と同じ材料で形成される。本実施形態の第二絶縁部材72は、電極体2の第二絶縁部材72と対向する面を覆うような矩形のシート状に形成される。 The second insulating member 72 is arranged between the first insulating member 71 and the electrode body 2 (see FIG. 5). The second insulating member 72 is formed of an insulating member. The second insulating member 72 of the present embodiment is formed of, for example, a resin such as polypropylene or polyphenylene sulfide. Further, the second insulating member 72 is made of the same material as the first insulating member 71. The second insulating member 72 of the present embodiment is formed in the shape of a rectangular sheet that covers the surface of the electrode body 2 facing the second insulating member 72.

以上の構成の蓄電素子1では、図7及び図8に示すように、電極体2の最も外側に位置するセパレータ25(図7及び図8における最も上側に位置するセパレータ25)は、絶縁部材7(例えば、第二絶縁部材72)と対向している。また、最も外側に位置するセパレータ25は、電極とセパレータ25との重なり方向(図7及び図8における上下方向、Y軸方向)において絶縁部材7と反対側で、負極24と対向している。 In the power storage element 1 having the above configuration, as shown in FIGS. 7 and 8, the separator 25 located on the outermost side of the electrode body 2 (separator 25 located on the uppermost side in FIGS. 7 and 8) is an insulating member 7. (For example, it faces the second insulating member 72). Further, the separator 25 located on the outermost side faces the negative electrode 24 on the opposite side of the insulating member 7 in the overlapping direction of the electrode and the separator 25 (vertical direction and Y-axis direction in FIGS. 7 and 8).

また、蓄電素子1では、最も外側に位置するセパレータ25の重なり方向における外側を向いた外面252は、絶縁部材7(例えば、第二絶縁部材72)と接触している。さらに、最も外側に位置するセパレータ25の外面252の摩擦係数が、最も外側に位置するセパレータ25の重なり方向における内側を向いた内面253の摩擦係数より大きい。なお、図7及び図8では、図面の各構成の見易さを重視して、セパレータ25と絶縁部材7とが離間した状態で示されている。 Further, in the power storage element 1, the outer surface 252 facing outward in the overlapping direction of the separator 25 located on the outermost side is in contact with the insulating member 7 (for example, the second insulating member 72). Further, the friction coefficient of the outer surface 252 of the separator 25 located on the outermost side is larger than the friction coefficient of the inner surface 253 facing inward in the overlapping direction of the separator 25 located on the outermost side. In addition, in FIG. 7 and FIG. 8, the separator 25 and the insulating member 7 are shown in a separated state with an emphasis on the legibility of each configuration in the drawing.

具体的に、この蓄電素子1では、電極体2の巻回軸方向における該最も外側に位置するセパレータ25と絶縁部材7との摩擦抵抗が、電極体2の巻回軸方向における該最も外側に位置するセパレータ25と電極との摩擦抵抗より大きい。より具体的に、電極体2の巻回軸方向における最も外側に位置するセパレータ25と第二絶縁部材72との摩擦抵抗が、電極体2の巻回軸方向における最も外側に位置するセパレータ25と正極23や負極24との摩擦抵抗より大きい。 Specifically, in the power storage element 1, the frictional resistance between the separator 25 located on the outermost side of the electrode body 2 in the winding axis direction and the insulating member 7 is set on the outermost side of the electrode body 2 in the winding axis direction. It is larger than the frictional resistance between the position separator 25 and the electrode. More specifically, the frictional resistance between the separator 25 located on the outermost side in the winding axis direction of the electrode body 2 and the second insulating member 72 is the same as that on the separator 25 located on the outermost side in the winding axis direction of the electrode body 2. It is larger than the frictional resistance with the positive electrode 23 and the negative electrode 24.

さらに、外側に位置するセパレータ25(例えば、最も外側に位置するセパレータ25)において、結着剤層251と絶縁部材7とが接触している。具体的に、最も外側に位置するセパレータ25において、結着剤層251が絶縁部材7(例えば、第二絶縁部材72)と接触している。より具体的に、最も外側に位置するセパレータ25の負極塗工部244と負極未塗工部243の並び方向(X軸方向)における少なくとも端部において、結着剤層251と絶縁部材7(例えば、第二絶縁部材72)とが接触している。なお、本実施形態では、最も外側に位置するセパレータ25のX軸方向における全域において、結着剤層251と絶縁部材7(例えば、第二絶縁部材72)とが接触している。 Further, in the separator 25 located on the outer side (for example, the separator 25 located on the outermost side), the binder layer 251 and the insulating member 7 are in contact with each other. Specifically, in the separator 25 located on the outermost side, the binder layer 251 is in contact with the insulating member 7 (for example, the second insulating member 72). More specifically, at least at the end in the alignment direction (X-axis direction) of the negative electrode coated portion 244 and the negative electrode uncoated portion 243 of the separator 25 located on the outermost side, the binder layer 251 and the insulating member 7 (for example, , The second insulating member 72) is in contact with the second insulating member 72). In the present embodiment, the binder layer 251 and the insulating member 7 (for example, the second insulating member 72) are in contact with each other over the entire area of the separator 25 located on the outermost side in the X-axis direction.

以上の蓄電素子1によれば、電極体2の最も外側(具体的には、電極体2の最外周)において、セパレータ25の外面252の摩擦係数が、セパレータ25の内面253の摩擦係数よりも大きいため、第二絶縁部材72が存在する側において、セパレータ25の外面252と絶縁部材7(例えば、第二絶縁部材72)との摩擦抵抗により、セパレータ25の熱収縮を抑制できる。これにより、正極23と負極24とが接触することを防ぐことができる。なお、第二絶縁部材72が存在しない側において、セパレータ25の外面252と絶縁部材7(例えば、第一絶縁部材71)との摩擦抵抗により、セパレータ25の熱収縮を抑制できる。 According to the above-mentioned power storage element 1, the friction coefficient of the outer surface 252 of the separator 25 is larger than the friction coefficient of the inner surface 253 of the separator 25 on the outermost side of the electrode body 2 (specifically, the outermost circumference of the electrode body 2). Since it is large, the heat shrinkage of the separator 25 can be suppressed by the frictional resistance between the outer surface 252 of the separator 25 and the insulating member 7 (for example, the second insulating member 72) on the side where the second insulating member 72 exists. This makes it possible to prevent the positive electrode 23 and the negative electrode 24 from coming into contact with each other. On the side where the second insulating member 72 does not exist, the thermal shrinkage of the separator 25 can be suppressed by the frictional resistance between the outer surface 252 of the separator 25 and the insulating member 7 (for example, the first insulating member 71).

本実施形態の蓄電素子1によれば、電極体2の最も外側(具体的には、電極体2の最外周)において、セパレータ25の結着剤層251が絶縁部材7(例えば、第二絶縁部材72)と接するため、セパレータ25の基材層250が絶縁部材7と接する構成と比べて、絶縁部材7(例えば、第二絶縁部材72)とセパレータ25との摩擦抵抗を大きくすることができる。 According to the power storage element 1 of the present embodiment, the binder layer 251 of the separator 25 is the insulating member 7 (for example, the second insulation) on the outermost side of the electrode body 2 (specifically, the outermost circumference of the electrode body 2). Since it is in contact with the member 72), the frictional resistance between the insulating member 7 (for example, the second insulating member 72) and the separator 25 can be increased as compared with the configuration in which the base material layer 250 of the separator 25 is in contact with the insulating member 7. ..

また、本実施形態の蓄電素子1では、電極体2とケース3との間に第一絶縁部材71が配置され、さらに、第一絶縁部材71と電極体2との間に第二絶縁部材72が配置されている。そのため、第二絶縁部材72に対して最も外側に位置するセパレータ25をしっかりと押し付けることができ、第二絶縁部材72とこのセパレータ25の間の摩擦抵抗を十分に確保することができる。 Further, in the power storage element 1 of the present embodiment, the first insulating member 71 is arranged between the electrode body 2 and the case 3, and further, the second insulating member 72 is arranged between the first insulating member 71 and the electrode body 2. Is placed. Therefore, the separator 25 located on the outermost side can be firmly pressed against the second insulating member 72, and the frictional resistance between the second insulating member 72 and the separator 25 can be sufficiently secured.

本実施形態の蓄電素子1では、最も外側に位置するセパレータ25において、セパレータ25の結着剤層251と絶縁部材7(例えば、第二絶縁部材72)とが接触していることにより、セパレータ25と絶縁部材7(例えば、第二絶縁部材72)との摩擦抵抗が大きくなるため、セパレータ25の熱収縮を抑制できる。 In the power storage element 1 of the present embodiment, in the separator 25 located on the outermost side, the binder layer 251 of the separator 25 and the insulating member 7 (for example, the second insulating member 72) are in contact with each other, so that the separator 25 Since the frictional resistance between the and the insulating member 7 (for example, the second insulating member 72) is increased, the heat shrinkage of the separator 25 can be suppressed.

また、本実施形態の蓄電素子1では、セパレータ25のX軸方向における少なくとも端部において、結着剤層251と絶縁部材7(例えば、第二絶縁部材72)とが接触していることにより、セパレータ25の熱収縮を効果的に抑制できる。 Further, in the power storage element 1 of the present embodiment, the binder layer 251 and the insulating member 7 (for example, the second insulating member 72) are in contact with each other at least at the end of the separator 25 in the X-axis direction. The heat shrinkage of the separator 25 can be effectively suppressed.

尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。 The power storage element of the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. In addition, some of the configurations of certain embodiments can be deleted.

上記実施形態では、絶縁部材7は、電極体2の主面の全域を被覆していたが、電極体2の主面の一部のみを被覆してもよい。例えば、絶縁部材7は、電極体2の主面のうち巻回軸方向における両端部(例えば、負極塗工部244と負極未塗工部243の並び方向(X軸方向)における両端部、集電体5の近傍)のみを被覆してもよいし、電極体2の主面のうち周縁領域(中央領域を除く外周領域)のみを被覆してもよい。 In the above embodiment, the insulating member 7 covers the entire main surface of the electrode body 2, but may cover only a part of the main surface of the electrode body 2. For example, the insulating member 7 is a collection of both ends of the main surface of the electrode body 2 in the winding axis direction (for example, both ends in the alignment direction (X-axis direction) of the negative electrode coated portion 244 and the negative electrode uncoated portion 243). Only the vicinity of the electric body 5) may be covered, or only the peripheral region (the outer peripheral region excluding the central region) of the main surface of the electrode body 2 may be covered.

さらに、蓄電素子1は、絶縁部材7に加えて、電極体2とケース3との間に配置されるスペーサを備えてもよい。この場合、スペーサにより、電極体2が絶縁部材7に押し付けられるため、電極体2と絶縁部材7との摩擦抵抗(絶縁部材7に沿ってセパレータ25が相対移動する方向におけるセパレータ25と絶縁部材7との摩擦抵抗)を大きくすることができる。また、蓄電素子1は、絶縁部材7とケース3との間に配置されるスペーサを備えてもよい。この場合、スペーサにより、絶縁部材7が電極体2に押し付けられるため、電極体2と絶縁部材7との摩擦抵抗を大きくすることができる。なお、上記実施形態では、第二絶縁部材72が、絶縁部材7とスペーサとを兼ねている。 Further, the power storage element 1 may include a spacer arranged between the electrode body 2 and the case 3 in addition to the insulating member 7. In this case, since the electrode body 2 is pressed against the insulating member 7 by the spacer, the frictional resistance between the electrode body 2 and the insulating member 7 (the separator 25 and the insulating member 7 in the direction in which the separator 25 moves relative to the insulating member 7). Friction resistance with) can be increased. Further, the power storage element 1 may include a spacer arranged between the insulating member 7 and the case 3. In this case, since the insulating member 7 is pressed against the electrode body 2 by the spacer, the frictional resistance between the electrode body 2 and the insulating member 7 can be increased. In the above embodiment, the second insulating member 72 also serves as the insulating member 7 and the spacer.

このスペーサは、絶縁部材7と一体であってもよいし、別の部材であってもよい。また、スペーサは、絶縁部材7と同じ材質で形成されてもよいし、異なる材質で形成されてもよい。スペーサは、セパレータ25の基材層250と同じ材質で形成されてもよい。 This spacer may be integrated with the insulating member 7 or may be another member. Further, the spacer may be formed of the same material as the insulating member 7, or may be formed of a different material. The spacer may be made of the same material as the base material layer 250 of the separator 25.

なお、スペーサの材質は、蓄電素子1が高温になったとき、スペーサにより、電極体2が絶縁部材7に強く押し付けられる、或いは、絶縁部材7が電極体2に強く押し付けられるように、熱膨張性の高い材質であることが好ましい。具体的に、スペーサの120℃〜150℃における熱膨張係数Aは、A>90×10−6/Kである。 The material of the spacer is thermally expanded so that the electrode body 2 is strongly pressed against the insulating member 7 or the insulating member 7 is strongly pressed against the electrode body 2 by the spacer when the power storage element 1 becomes hot. It is preferable that the material has high properties. Specifically, the coefficient of thermal expansion A of the spacer at 120 ° C. to 150 ° C. is A> 90 × 10 −6 / K.

第一絶縁部材71は、シート状の部材を単に折り曲げて袋状に形成せずに、シート状の部材を例えば融着又は溶着して袋状に形成してもよい。また、第一絶縁部材71は、初めから袋状に形成してもよい。 The first insulating member 71 may be formed in a bag shape by, for example, fusing or welding the sheet-shaped member, instead of simply bending the sheet-shaped member to form a bag shape. Further, the first insulating member 71 may be formed in a bag shape from the beginning.

上記実施形態では、絶縁部材7は、袋状の第一絶縁部材71とシート状の第二絶縁部材72とを含んでいたが、例えば、複数の第二絶縁部材72を含んでもよい。この場合、第二絶縁部材72が、電極体2を該電極体2の厚み方向における両側から挟む位置に、一対配置されることが考えられる。 In the above embodiment, the insulating member 7 includes the bag-shaped first insulating member 71 and the sheet-shaped second insulating member 72, but for example, a plurality of second insulating members 72 may be included. In this case, it is conceivable that a pair of the second insulating members 72 are arranged at positions sandwiching the electrode body 2 from both sides in the thickness direction of the electrode body 2.

なお、蓄電素子1には、第一絶縁部材71と第二絶縁部材72とが配置されていた(即ち、複数の絶縁部材が設けられていた)が、一つの絶縁部材7が配置されてもよい。例えば、蓄電素子1には、第二絶縁部材72のみが配置されていてもよい。即ち、絶縁部材7が第二絶縁部材72のみで構成されてもよい。また、蓄電素子1には、三つ以上の複数の絶縁部材7が配置されてもよい。 Although the first insulating member 71 and the second insulating member 72 were arranged (that is, a plurality of insulating members were provided) in the power storage element 1, even if one insulating member 7 is arranged. good. For example, only the second insulating member 72 may be arranged on the power storage element 1. That is, the insulating member 7 may be composed of only the second insulating member 72. Further, a plurality of three or more insulating members 7 may be arranged on the power storage element 1.

上記実施形態では、電極体2の外周部において、電極の外側にセパレータ25が一周巻き付けられていたが、電極の外側にセパレータ25が複数周巻き付けられていてもよい。即ち、図9び図10に示すように、電極体2のY軸方向(重なり方向)における外側に位置する端部では、セパレータ25が複数重ねられてもよい。本実施形態の電極体2では、電極体2のY軸方向(重なり方向)における外側に位置する端部では、2枚のセパレータ25が重ねられている。また、複数(例えば、2枚)重ねられたセパレータ25のY軸方向の最も内側に位置するセパレータ25と隣り合う電極の未塗工部(例えば、負極未塗工部243)が、最も内側に位置するセパレータ25の内面253と接触している(図10参照)。 In the above embodiment, the separator 25 is wound around the outside of the electrode on the outer peripheral portion of the electrode body 2, but the separator 25 may be wound around the outside of the electrode a plurality of times. That is, as shown in FIGS. 9 and 10, a plurality of separators 25 may be stacked at the outer end of the electrode body 2 in the Y-axis direction (overlapping direction). In the electrode body 2 of the present embodiment, two separators 25 are overlapped at an end portion of the electrode body 2 located outside in the Y-axis direction (overlapping direction). Further, the uncoated portion (for example, the negative electrode uncoated portion 243) of the electrode adjacent to the separator 25 located on the innermost side of the plurality of (for example, two) stacked separators 25 in the Y-axis direction is on the innermost side. It is in contact with the inner surface 253 of the positioned separator 25 (see FIG. 10).

また、本実施形態の蓄電素子1では、電極体2の重なり方向における端部において、重ねられたセパレータ25のうち最も内側に位置するセパレータ25の内面253が、電極において滑りやすい負極未塗工部243(未塗工部)と接触していても、絶縁部材7(例えば、第二絶縁部材72)と最も外側に位置するセパレータ25の外面252との摩擦抵抗が大きいため、この最も外側に位置するセパレータ25の熱収縮しにくいことにより、電極間の接触を抑制できる。具体的には、最も外側のセパレータ25の外面252と絶縁部材7とが十分な摩擦抵抗を有していることで、最も外側のセパレータ25の熱収縮が抑制されるため、電極体25の厚み方向において、このセパレータ25よりも内側に位置するセパレータ25に十分な緊圧がかかったままで維持される。これにより、この内側に位置するセパレータ25の熱収縮が抑制され、電極間の接触を抑制できる。 Further, in the power storage element 1 of the present embodiment, at the end portion of the electrode body 2 in the overlapping direction, the inner surface 253 of the separator 25 located on the innermost side of the stacked separators 25 is slippery on the electrode. Even if it is in contact with 243 (uncoated portion), it is located on the outermost side because the frictional resistance between the insulating member 7 (for example, the second insulating member 72) and the outer surface 252 of the separator 25 located on the outermost side is large. Since the separator 25 is less likely to shrink due to heat, contact between the electrodes can be suppressed. Specifically, since the outer surface 252 of the outermost separator 25 and the insulating member 7 have sufficient frictional resistance, the heat shrinkage of the outermost separator 25 is suppressed, so that the thickness of the electrode body 25 is increased. In the direction, the separator 25 located inside the separator 25 is maintained under sufficient tension. As a result, the heat shrinkage of the separator 25 located inside the separator 25 is suppressed, and the contact between the electrodes can be suppressed.

上記実施形態では、絶縁部材7(例えば、第一絶縁部材71や第二絶縁部材72)の厚みは、均一であったが、不均一であってもよい。例えば、絶縁部材7の電極の未塗工部(例えば、負極未塗工部243)と対向する部分の厚みが、絶縁部材7の他の部分の厚みより大きいことが考えられる。このように、絶縁部材7の電極の未塗工部(例えば、負極未塗工部243)と対向する部分について、この部分の厚みが厚いことにより、絶縁部材7や未塗工部に対してセパレータ25がしっかりと押し付けられる。このため、絶縁部材7とセパレータ25との摩擦抵抗や電極の未塗工部と電極の未塗工部と対向するセパレータ25との緊圧を高めることができるので、電極間の接触を抑制できる。 In the above embodiment, the thickness of the insulating member 7 (for example, the first insulating member 71 and the second insulating member 72) is uniform, but may be non-uniform. For example, it is conceivable that the thickness of the portion of the insulating member 7 facing the uncoated portion (for example, the negative electrode uncoated portion 243) of the electrode is larger than the thickness of the other portion of the insulating member 7. As described above, the portion of the insulating member 7 facing the uncoated portion (for example, the negative electrode uncoated portion 243) of the electrode is thicker than the insulating member 7 and the uncoated portion. The separator 25 is firmly pressed. Therefore, the frictional resistance between the insulating member 7 and the separator 25 and the tension between the uncoated portion of the electrode and the separator 25 facing the uncoated portion of the electrode can be increased, so that contact between the electrodes can be suppressed. ..

また、上記実施形態では、絶縁部材7(例えば、第一絶縁部材71や第二絶縁部材72)の表面粗さは、均一であったが、不均一であってもよい。例えば、絶縁部材7の電極の未塗工部(例えば、負極未塗工部243)と対向する部分の表面粗さが、絶縁部材7の他の部分の表面粗さより粗いことが考えられる。このように、絶縁部材7の電極の未塗工部(例えば、負極未塗工部243)と対向する部分について、表面粗さが粗いことにより、絶縁部材7と電極の未塗工部(例えば、負極未塗工部243)と対向しているセパレータ25との摩擦抵抗を大きくすることができる。 Further, in the above embodiment, the surface roughness of the insulating member 7 (for example, the first insulating member 71 and the second insulating member 72) is uniform, but may be non-uniform. For example, it is conceivable that the surface roughness of the portion of the insulating member 7 facing the uncoated portion (for example, the negative electrode uncoated portion 243) of the electrode is coarser than the surface roughness of the other portion of the insulating member 7. As described above, since the surface roughness of the portion of the insulating member 7 facing the uncoated portion of the electrode (for example, the negative electrode uncoated portion 243) is rough, the uncoated portion of the insulating member 7 and the electrode (for example, for example). , The frictional resistance between the negative electrode uncoated portion 243) and the separator 25 facing the negative electrode can be increased.

また、上記実施形態では、セパレータ25は、二軸延伸フィルムを含んでいたが、これを含まなくてもよい。例えば、セパレータ25は、一軸延伸フィルムを含むことが考えられる。 Further, in the above embodiment, the separator 25 includes a biaxially stretched film, but this may not be included. For example, the separator 25 may include a uniaxially stretched film.

上記実施形態では、電極体2は、巻回タイプの電極体(正極23、負極24、及びセパレータ25の積層体22が巻回された電極体)であったが、電極とセパレータ25とが交互に重ねられた積層タイプの電極体であってもよい。具体的には、複数の正極23、複数の負極24、及び、複数のセパレータ25を備え、正極23と負極24とが交互に配置されると共に、正極23と負極24との間にセパレータ25が配置された積層タイプの電極体であってもよい。なお、積層タイプの電極体2を用いる場合、電極体2の最も外側に位置する部位は、電極体2の積層方向(重なり方向)における両端に位置する部位である。 In the above embodiment, the electrode body 2 is a winding type electrode body (an electrode body in which a laminated body 22 of a positive electrode 23, a negative electrode 24, and a separator 25 is wound), but the electrodes and the separator 25 alternate. It may be a laminated type electrode body which is laminated on the above. Specifically, a plurality of positive electrodes 23, a plurality of negative electrodes 24, and a plurality of separators 25 are provided, the positive electrodes 23 and the negative electrodes 24 are alternately arranged, and the separator 25 is provided between the positive electrode 23 and the negative electrode 24. It may be an arranged laminated type electrode body. When the laminated type electrode body 2 is used, the outermost portions of the electrode body 2 are the portions located at both ends in the laminating direction (overlapping direction) of the electrode bodies 2.

さらに、上記実施形態においては、蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類や形状は任意である。例えば、本発明は、種々の二次電池、その他、一次電池や、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。 Further, in the above embodiment, the case where the power storage element is used as a chargeable / dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) has been described, but the type and shape of the power storage element are arbitrary. For example, the present invention can be applied to various secondary batteries, other primary batteries, and power storage elements of capacitors such as electric double layer capacitors.

蓄電素子(例えば電池)は、図11に示すような蓄電装置(蓄電素子が電池の場合は電池モジュール)11に用いられてもよい。蓄電装置11は、少なくとも二つの蓄電素子1と、二つの(異なる)蓄電素子1同士を電気的に接続するバスバ部材12と、を有する。この場合、本発明の技術が少なくとも一つの蓄電素子1に適用されていればよい。 The power storage element (for example, a battery) may be used in the power storage device (battery module when the power storage element is a battery) 11 as shown in FIG. The power storage device 11 includes at least two power storage elements 1 and a bus bar member 12 that electrically connects two (different) power storage elements 1 to each other. In this case, the technique of the present invention may be applied to at least one power storage element 1.

1…蓄電素子、2…電極体、3…ケース、4…外部端子、5…集電体、6…クリップ部材、7…絶縁部材、11…蓄電装置、12…バスバ部材、21…巻芯、22…積層体、23…正極、24…負極、25…セパレータ、31…ケース本体、32…蓋板、71…第一絶縁部材、72…第二絶縁部材、231…金属箔、232…正極活物質層、233…正極未塗工部、234…正極塗工部、241…金属箔、242…負極活物質層、243…負極未塗工部、244…負極塗工部、250…基材層、251…結着剤層、252…外面、253…内面、311…閉塞部、312…胴部、313…長壁部、314…短壁部、321…ガス排出弁 1 ... power storage element, 2 ... electrode body, 3 ... case, 4 ... external terminal, 5 ... current collector, 6 ... clip member, 7 ... insulation member, 11 ... power storage device, 12 ... bus bar member, 21 ... winding core, 22 ... Laminated body, 23 ... Positive electrode, 24 ... Negative electrode, 25 ... Separator, 31 ... Case body, 32 ... Lid plate, 71 ... First insulating member, 72 ... Second insulating member, 231 ... Metal foil, 232 ... Positive electrode active Material layer 233 ... Positive electrode uncoated part, 234 ... Positive electrode coated part, 241 ... Metal foil, 242 ... Negative electrode active material layer, 243 ... Negative electrode uncoated part, 244 ... Negative electrode coated part, 250 ... Base material layer , 251 ... Binder layer, 252 ... Outer surface, 253 ... Inner surface, 311 ... Blocking part, 312 ... Body part, 313 ... Long wall part, 314 ... Short wall part, 321 ... Gas discharge valve

Claims (6)

電極とセパレータとが重ねられた電極体と、
前記電極体を収容するケースと、
前記電極体と前記ケースとの間に配置された絶縁部材と、を備え、
前記電極体における前記電極とセパレータとの重なり方向における最も外側に、前記セパレータが位置し、
前記最も外側に位置するセパレータの前記重なり方向における外側を向いた外面は、前記絶縁部材と接し、
前記最も外側に位置するセパレータの外面の摩擦係数が、前記最も外側に位置するセパレータの前記重なり方向における内側を向いた内面の摩擦係数より大きい、
ことを特徴とする蓄電素子。
An electrode body in which an electrode and a separator are stacked, and
A case for accommodating the electrode body and
An insulating member arranged between the electrode body and the case is provided.
The separator is located on the outermost side of the electrode body in the overlapping direction of the electrode and the separator.
The outer surface of the outermost separator facing outward in the overlapping direction is in contact with the insulating member.
The coefficient of friction of the outer surface of the outermost separator is greater than the coefficient of friction of the inner surface of the outermost separator facing inward in the overlapping direction.
A power storage element characterized by this.
前記最も外側に位置するセパレータは、基材層と、該基材層に重ねられた結着剤層と、を有し、
前記結着剤層が、前記最も外側に位置するセパレータの外面を構成している、請求項1記載の蓄電素子。
The outermost separator has a base material layer and a binder layer superimposed on the base material layer.
The power storage element according to claim 1, wherein the binder layer constitutes an outer surface of the separator located on the outermost side.
前記電極は、活物質が金属箔に塗布された塗工部と、前記活物質が前記金属箔に塗布されていない未塗工部と、を含み、
前記電極体の前記重なり方向における外側に位置する端部では、
前記セパレータが複数重ねられ、複数重ねられた前記セパレータの前記重なり方向の最も内側に位置するセパレータと隣り合う電極の未塗工部が、前記最も内側に位置するセパレータの内面と接触している、請求項1又は請求項2に記載の蓄電素子。
The electrode includes a coated portion in which the active material is applied to the metal foil and an uncoated portion in which the active material is not applied to the metal foil.
At the outer end of the electrode body in the overlapping direction,
A plurality of the separators are stacked, and the uncoated portion of the electrode adjacent to the separator located on the innermost side in the overlapping direction of the plurality of stacked separators is in contact with the inner surface of the separator located on the innermost side. The power storage element according to claim 1 or 2.
前記絶縁部材は、複数配置されている、請求項1〜請求項3のいずれか1項に記載の蓄電素子。 The power storage element according to any one of claims 1 to 3, wherein a plurality of the insulating members are arranged. 電極とセパレータとが重ねられ、前記電極と前記セパレータとの重なり方向において前記電極よりも前記セパレータが外側に位置する電極体と、
前記電極体を収容するケースと、
前記電極体と前記ケースとの間に配置された絶縁部材と、を備え、
前記外側に位置するセパレータは、基材層と、該基材層に重ねられた結着剤層を有し、
前記外側に位置するセパレータにおいて、前記結着剤層と前記絶縁部材とが接触している、
ことを特徴とする蓄電素子。
An electrode body in which the electrode and the separator are overlapped, and the separator is located outside the electrode in the overlapping direction of the electrode and the separator.
A case for accommodating the electrode body and
An insulating member arranged between the electrode body and the case is provided.
The separator located on the outside has a base material layer and a binder layer superimposed on the base material layer.
In the separator located on the outside, the binder layer and the insulating member are in contact with each other.
A power storage element characterized by this.
前記電極は、活物質が金属箔に塗布された塗工部と、該塗工部と並んで配置されるとともに前記活物質が前記金属箔に塗布されていない未塗工部と、を含み、
前記外側に位置するセパレータの前記塗工部と前記未塗工部の並び方向における少なくとも端部において、前記結着剤層と前記絶縁部材とが接触している、請求項5記載の蓄電素子。
The electrode includes a coated portion in which the active material is applied to the metal foil, and an uncoated portion in which the active material is arranged side by side with the coated portion and the active material is not applied to the metal foil.
The power storage element according to claim 5, wherein the binder layer and the insulating member are in contact with each other at least at the ends of the coated portion and the uncoated portion of the separator located on the outer side in the alignment direction.
JP2020070437A 2020-04-09 2020-04-09 Power storage element Pending JP2021168239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020070437A JP2021168239A (en) 2020-04-09 2020-04-09 Power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020070437A JP2021168239A (en) 2020-04-09 2020-04-09 Power storage element

Publications (1)

Publication Number Publication Date
JP2021168239A true JP2021168239A (en) 2021-10-21

Family

ID=78079965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020070437A Pending JP2021168239A (en) 2020-04-09 2020-04-09 Power storage element

Country Status (1)

Country Link
JP (1) JP2021168239A (en)

Similar Documents

Publication Publication Date Title
JP5541514B2 (en) Multilayer secondary battery
US9887404B2 (en) Secondary battery
JP6583711B2 (en) Electricity storage element
US20220311057A1 (en) Electrode assembly and secondary battery comprising same
JP5445872B2 (en) Secondary battery
JP6748401B2 (en) Storage element
JP6975381B2 (en) Non-aqueous electrolyte secondary battery
KR20140041057A (en) Pouch-type secondary battery
US20240055741A1 (en) Electrode assembly and secondary battery comprising the same
US9502733B2 (en) Electrode assembly and secondary battery having the same
JP2017224451A (en) Electric storage element
JP6970912B2 (en) A power storage element and a power storage device including a power storage element
JP6738565B2 (en) Electric storage element and method for manufacturing electric storage element
US20220376321A1 (en) Electrode assembly and secondary battery comprising the same
JP2021168239A (en) Power storage element
JP2018081792A (en) Power storage element
JP2021044081A (en) Power storage element
JP6770714B2 (en) Power storage element
JP7352857B2 (en) Energy storage element
JP2020077492A (en) Nonaqueous electrolyte secondary battery
JP6726398B2 (en) Storage element
JP7068644B2 (en) Power storage element
JP2018055918A (en) Power storage element
JP6876248B2 (en) Electrode assembly
JP2021168284A (en) Power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240424