JP2021157959A - Positive electrode and lithium ion secondary battery - Google Patents

Positive electrode and lithium ion secondary battery Download PDF

Info

Publication number
JP2021157959A
JP2021157959A JP2020057294A JP2020057294A JP2021157959A JP 2021157959 A JP2021157959 A JP 2021157959A JP 2020057294 A JP2020057294 A JP 2020057294A JP 2020057294 A JP2020057294 A JP 2020057294A JP 2021157959 A JP2021157959 A JP 2021157959A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020057294A
Other languages
Japanese (ja)
Other versions
JP7279675B2 (en
Inventor
智彦 長谷川
Tomohiko Hasegawa
智彦 長谷川
功典 佐藤
Isanori Sato
功典 佐藤
洋 苅宿
Hiroshi Kariyado
洋 苅宿
敬史 毛利
Takashi Mori
敬史 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2020057294A priority Critical patent/JP7279675B2/en
Publication of JP2021157959A publication Critical patent/JP2021157959A/en
Application granted granted Critical
Publication of JP7279675B2 publication Critical patent/JP7279675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a positive electrode having excellent quick charging characteristics, and also provide a lithium ion secondary battery having excellent quick charging characteristics due to the positive electrode.SOLUTION: A positive electrode 10 according to the present invention includes a positive electrode active material layer 14 containing a positive electrode active material mainly composed of a lithium transition metal oxide, and the positive electrode active material layer contains a compound represented by the following chemical formula. Here, X1 and X2 in the following chemical formula represent H or Li, and R represents an alkylene group having 1 to 3 carbon atoms or a halogenated alkylene group.SELECTED DRAWING: Figure 1

Description

本発明は、正極、およびリチウムイオン二次電池に関する。 The present invention relates to a positive electrode and a lithium ion secondary battery.

リチウムイオン二次電池は、ニッケルカドミウム電池、ニッケル水素電池等と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。また、ハイブリッド自動車や、電気自動車用に搭載される電源としても有力な候補となっている。そして、近年の携帯電子機器の小型化、高機能化に伴い、これらの電源となるリチウムイオン二次電池の更なる高容量化が期待されている。 Lithium-ion secondary batteries are lighter and have higher capacity than nickel-cadmium batteries, nickel-metal hydride batteries, and the like, and are therefore widely used as power sources for portable electronic devices. It is also a promising candidate for power sources installed in hybrid vehicles and electric vehicles. With the recent miniaturization and higher functionality of portable electronic devices, it is expected that the capacity of lithium ion secondary batteries, which are the power sources for these devices, will be further increased.

リチウムイオン電池の容量は主に電極の活物質に依存する。負極活物質には、一般に黒鉛などの炭素材料が利用されている。しかし、黒鉛の理論容量は372mAh/gであり、実用化されている電池では、既に約350mAh/gの容量が利用されている。よって、将来の高機能携帯機器のエネルギー源として十分な容量を有するリチウムイオン二次電池を得るためには、さらなる高容量化を実現する必要がある。 The capacity of a lithium-ion battery mainly depends on the active material of the electrode. A carbon material such as graphite is generally used as the negative electrode active material. However, the theoretical capacity of graphite is 372 mAh / g, and a capacity of about 350 mAh / g has already been used in a practical battery. Therefore, in order to obtain a lithium ion secondary battery having a sufficient capacity as an energy source for future high-performance mobile devices, it is necessary to realize a further increase in capacity.

また、近年ではより一層の高容量化に加え、利便性の向上のため急速充電特性や、電動工具やコードレス家電などリチウムイオン二次電池の新規な用途が開拓されたことによる急速放電への要望も高まりつつある。 In recent years, in addition to further increasing the capacity, there is a demand for rapid discharge due to the rapid charging characteristics and the development of new applications for lithium-ion secondary batteries such as power tools and cordless home appliances to improve convenience. Is also increasing.

特許文献1では低空孔率の高エネルギー密度電極を使用したリチウムイオン二次電池において、非水電解質の塩濃度を1.3mol・dm−3以上にすることで、出力特性を改善している。特許文献2ではリチウムイオン二次電池の非水電解液を、LiPF6及びLiBFを含むリチウム塩;及び(a)エチレンカーボネートまたはエチレンカーボネートとプロピレンカーボネートとの混合物からなる環状カーボネートと(b)プロピオネート系エステルのような鎖状エステルとの混合体積比(a:b)が約10:90〜約70:30とすることで、出力特性を改善している。 In Patent Document 1, in a lithium ion secondary battery using a high energy density electrode having a low porosity, the output characteristics are improved by setting the salt concentration of the non-aqueous electrolyte to 1.3 mol · dm -3 or more. In Patent Document 2, the non-aqueous electrolyte solution of a lithium ion secondary battery is a lithium salt containing LiPF 6 and LiBF 4 , and (a) ethylene carbonate or a cyclic carbonate composed of a mixture of ethylene carbonate and propylene carbonate and (b) a propionate system. The output characteristics are improved by setting the mixed volume ratio (a: b) with a chain ester such as an ester to about 10:90 to about 70:30.

特開2003−173821号公報Japanese Unexamined Patent Publication No. 2003-173821 特表2010−539670号公報Special Table 2010-599670

しかしながら、従来技術の方法では出力特性は改善するものの、急速充電特性については未だ満足されないという課題があった。 However, although the output characteristics are improved by the method of the prior art, there is a problem that the quick charging characteristics are not yet satisfied.

本発明は上記従来技術の有する課題に鑑みてなされたものであり、急速充電特性に優れる正極、およびリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a positive electrode having excellent quick charging characteristics and a lithium ion secondary battery.

上記課題を解決するため、本発明に係る正極は、リチウム遷移金属酸化物を主体とする正極活物質を含む正極活物質層を有する正極であって、上記正極活物質層は、化学式(1)で表される化合物を含むことを特徴とする。 In order to solve the above problems, the positive electrode according to the present invention is a positive electrode having a positive electrode active material layer containing a positive electrode active material mainly composed of a lithium transition metal oxide, and the positive electrode active material layer is a chemical formula (1). It is characterized by containing a compound represented by.

Figure 2021157959
・・・(1)
(XおよびXはHまたはLiであり、Rは炭素数が1〜3のアルキレン基またはハロゲン化アルキレン基を示す。)
Figure 2021157959
... (1)
(X 1 and X 2 are H or Li, and R represents an alkylene group having 1 to 3 carbon atoms or a halogenated alkylene group.)

本発明に係る正確なメカニズムは不明だが、以下のように考えている。一般的なリチウムイオン電池では、正極活物質表面のリチウムイオンが、電解液中のカーボネート溶媒4分子に配位される(溶媒和される)ことで充電反応が進行する。この正極活物質から電解液への固液界面の溶媒和反応が律速となり、急速充電特性が悪化する。本発明に係る正極は、カルボニル基を4つ有する化学式(1)で表される化合物を正極に含む。これにより、正極活物質表面のリチウムイオンが強く配位され、上記の溶媒和反応が速やかに進行し、急速充電特性が改善する。 Although the exact mechanism according to the present invention is unknown, it is considered as follows. In a general lithium ion battery, the charging reaction proceeds by coordinating (solvating) the lithium ions on the surface of the positive electrode active material with four molecules of the carbonate solvent in the electrolytic solution. The solvation reaction at the solid-liquid interface from the positive electrode active material to the electrolytic solution becomes rate-determining, and the rapid charging characteristics deteriorate. The positive electrode according to the present invention contains a compound represented by the chemical formula (1) having four carbonyl groups in the positive electrode. As a result, the lithium ions on the surface of the positive electrode active material are strongly coordinated, the above solvation reaction proceeds rapidly, and the quick charging characteristics are improved.

本発明に係る正極は更に、上記化学式(1)で表される化合物が、上記正極活物質層の単位質量当たり2.5×10−5mol/g以上2.5×10−2mol/g以下含まれることが好ましい。 Further, in the positive electrode according to the present invention, the compound represented by the chemical formula (1) is 2.5 × 10 −5 mol / g or more and 2.5 × 10 −2 mol / g per unit mass of the positive electrode active material layer. It is preferably contained below.

これによれば、化合物の含有量として好適であり、急速充電特性がより改善する。 According to this, it is suitable as the content of the compound, and the quick charging characteristic is further improved.

本発明に係るリチウムイオン二次電池は、上記正極を含むことを特徴とする。 The lithium ion secondary battery according to the present invention is characterized by including the above-mentioned positive electrode.

本発明によれば、急速充電特性に優れる正極、およびリチウムイオン二次電池を提供される。 According to the present invention, a positive electrode having excellent quick charging characteristics and a lithium ion secondary battery are provided.

本実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross-sectional view of the lithium ion secondary battery of this embodiment.

以下、図面を参照しながら本発明に係る好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想到できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。 Hereinafter, preferred embodiments according to the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments. In addition, the components described below include those that can be easily conceived by those skilled in the art and those that are substantially the same. Further, the components described below can be combined as appropriate.

<リチウムイオン二次電池>
図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える積層体30と、リチウムイオンを含む電解質溶液と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード60とを備える。
<Lithium-ion secondary battery>
As shown in FIG. 1, the lithium ion secondary battery 100 according to the present embodiment is arranged adjacent to each other between the plate-shaped negative electrode 20 and the plate-shaped positive electrode 10 and the negative electrode 20 and the positive electrode 10. One end is electrically connected to a laminate 30 including a plate-shaped separator 18, an electrolyte solution containing lithium ions, a case 50 containing these in a sealed state, and a negative electrode 20. It includes a lead 62 whose other end protrudes to the outside of the case, and a lead 60 whose one end is electrically connected to the positive electrode 10 and whose other end protrudes to the outside of the case.

正極10は、正極集電体12と、正極集電体12上に形成された正極活物質層14と、を有する。また、負極20は、負極集電体22と、負極集電体22上に形成された負極活物質層24と、を有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。 The positive electrode 10 has a positive electrode current collector 12 and a positive electrode active material layer 14 formed on the positive electrode current collector 12. Further, the negative electrode 20 has a negative electrode current collector 22 and a negative electrode active material layer 24 formed on the negative electrode current collector 22. The separator 18 is located between the negative electrode active material layer 24 and the positive electrode active material layer 14.

<正極>
本実施形態に係る正極は、リチウム遷移金属酸化物を主体とする正極活物質を含む正極活物質層を有する正極であって、上記正極活物質層は、化学式(1)で表される化合物を含むことを特徴とする。
<Positive electrode>
The positive electrode according to the present embodiment is a positive electrode having a positive electrode active material layer containing a positive electrode active material mainly composed of a lithium transition metal oxide, and the positive electrode active material layer is a compound represented by the chemical formula (1). It is characterized by including.

本実施形態に係る正確なメカニズムは不明だが、以下のように考えている。一般的なリチウムイオン電池では、正極活物質表面のリチウムイオンが、電解液中のカーボネート溶媒4分子に配位される(溶媒和される)ことで充電反応が進行する。この正極活物質から電解液への固液界面の溶媒和反応が律速となり、急速充電特性が悪化する。本実施形態に係る正極は、カルボニル基を4つ有する化学式(1)で表される化合物を正極に含む。これにより、正極活物質表面のリチウムイオンが強く配位され、上記の溶媒和反応が速やかに進行し、急速充電特性が改善する。 The exact mechanism according to this embodiment is unknown, but it is considered as follows. In a general lithium ion battery, the charging reaction proceeds by coordinating (solvating) the lithium ions on the surface of the positive electrode active material with four molecules of the carbonate solvent in the electrolytic solution. The solvation reaction at the solid-liquid interface from the positive electrode active material to the electrolytic solution becomes rate-determining, and the rapid charging characteristics deteriorate. The positive electrode according to the present embodiment contains a compound represented by the chemical formula (1) having four carbonyl groups in the positive electrode. As a result, the lithium ions on the surface of the positive electrode active material are strongly coordinated, the above solvation reaction proceeds rapidly, and the quick charging characteristics are improved.

化学式(1)で表される化合物の合成法としては特に限定されるものではないが、例えば次の方法が挙げられる。まず、シュウ酸と、2価アルコールとを適当な溶媒へ溶解させ、この溶液を加熱することで脱水反応を進行させ、XおよびXがHである化合物を得る。更に、この化合物と、水酸化リチウムとを適当な溶媒中で中和反応を進行させることで、XおよびXがLiで置換した化合物を得ることが出来る。 The method for synthesizing the compound represented by the chemical formula (1) is not particularly limited, and examples thereof include the following methods. First, oxalic acid and a dihydric alcohol are dissolved in a suitable solvent, and the solution is heated to proceed with a dehydration reaction to obtain a compound in which X 1 and X 2 are H. Further, by proceeding the neutralization reaction of this compound and lithium hydroxide in an appropriate solvent, a compound in which X 1 and X 2 are replaced with Li can be obtained.

化学式(1)で表される化合物の同定法としては、NMR、IR、MS等、一般的に有機化合物の同定に用いられる解析手法を用いることが出来る。 As a method for identifying the compound represented by the chemical formula (1), an analysis method generally used for identification of an organic compound such as NMR, IR, and MS can be used.

本実施形態に係る正極は更に、上記化学式(1)で表される化合物が、上記正極活物質層の単位質量当たり2.5×10−5mol/g以上2.5×10−2mol/g以下含まれることが好ましい。 Further, in the positive electrode according to the present embodiment, the compound represented by the chemical formula (1) is 2.5 × 10 −5 mol / g or more and 2.5 × 10 −2 mol / g per unit mass of the positive electrode active material layer. It is preferably contained in an amount of g or less.

これによれば、化合物の含有量として好適であり、急速充電特性がより改善する。 According to this, it is suitable as the content of the compound, and the quick charging characteristic is further improved.

(正極集電体)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
(Positive current collector)
The positive electrode current collector 12 may be any conductive plate material, and for example, a thin metal plate (metal foil) such as aluminum or an alloy thereof or stainless steel can be used.

(正極活物質層)
正極活物質層14は、正極活物質、正極用バインダー、および正極用導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a positive electrode conductive auxiliary agent.

(正極活物質)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、該リチウムイオンのカウンターアニオン(例えば、PF )のドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、化学式:LiNiCoMn(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物Li(M)(PO(ただし、M=VOまたはV、かつ、0.9≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素を示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物が挙げられる。
(Positive electrode active material)
As the positive electrode active material, occlusion of lithium ions and release, desorption and insertion of lithium ions (intercalation), or counter anions of the lithium ions (e.g., PF 6 -) to doping and dedoping of reversibly As long as it can be advanced, it is not particularly limited, and a known electrode active material can be used. For example, lithium cobalt oxide (LiCoO 2), lithium nickel oxide (LiNiO 2), lithium manganese spinel (LiMn 2 O 4), and the chemical formula: LiNi x Co y Mn z M a O 2 (x + y + z + a = 1,0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0 ≦ a ≦ 1, M is a compound represented by one or more elements selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr). Metal oxide, lithium vanadium compound Li a (M) b (PO 4 ) c (However, M = VO or V, and 0.9 ≦ a ≦ 3.3, 0.9 ≦ b ≦ 2.2, 0 .9 ≤ c ≤ 3.3), olivine type LiMPO 4 (where M indicates one or more elements selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr), titanium lithium acid (Li 4 Ti 5 O 12) , LiNi x Co y Al z O 2 composite metal oxide such as (0.9 <x + y + z <1.1) , and the like.

(正極用バインダー)
正極用バインダーは正極活物質同士を結合すると共に、正極活物質層14と正極用集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等が挙げられる。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO、LiBF、LiPF等のリチウム塩とを複合化させたもの等が挙げられる。
(Binder for positive electrode)
The positive electrode binder binds the positive electrode active materials to each other, and also bonds the positive electrode active material layer 14 and the positive electrode current collector 12. The binder may be any one capable of the above-mentioned bonding, for example, fluororesins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), cellulose, styrene / butadiene rubber, ethylene / propylene rubber, and polyimide. A resin, a polyamide-imide resin, or the like may be used. Further, an electron conductive conductive polymer or an ionic conductive polymer may be used as the binder. Examples of the electron-conducting conductive polymer include polyacetylene, polythiophene, polyaniline and the like. Examples of the ionic conductive polymer include a composite of a polyether polymer compound such as polyethylene oxide and polypropylene oxide and a lithium salt such as LiClO 4 , LiBF 4 , and LiPF 6. Be done.

正極活物質層14中のバインダーの含有量は特に限定されないが、添加する場合には正極活物質100質量部に対して0.5〜5質量部であることが好ましい。 The content of the binder in the positive electrode active material layer 14 is not particularly limited, but when added, it is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.

(正極用導電助剤)
正極用導電助剤としては、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、ITO等の導電性酸化物が挙げられる。
(Conductive aid for positive electrode)
The conductive auxiliary agent for the positive electrode is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and a known conductive auxiliary agent can be used. Examples thereof include carbon-based materials such as graphite and carbon black, metal fine powders such as copper, nickel, stainless steel and iron, and conductive oxides such as ITO.

<負極>
(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅等の金属薄板(金属箔)を用いることができる。
<Negative electrode>
(Negative electrode current collector)
The negative electrode current collector 22 may be any conductive plate material, and for example, a thin metal plate (metal foil) such as copper can be used.

(負極活物質層)
負極活物質層24は、負極活物質、負極用バインダー、および負極用導電助剤から主に構成されるものである。
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a negative electrode binder, and a negative electrode conductive auxiliary agent.

(負極活物質)
負極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)を可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、グラファイト、ハードカーボン等の炭素系材料、酸化シリコン(SiO)、金属シリコン(Si)等の珪素系材料、チタン酸リチウム(LTO)等の金属酸化物、リチウム、スズ、亜鉛等の金属材料が挙げられる。
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can reversibly proceed with the occlusion and release of lithium ions and the desorption and insertion (intercalation) of lithium ions, and a known electrode active material can be used. .. For example, carbon-based materials such as graphite and hard carbon , silicon-based materials such as silicon oxide (SiO x ) and metallic silicon (Si), metal oxides such as lithium titanate (LTO), and metals such as lithium, tin and zinc. Materials can be mentioned.

負極活物質として金属材料を用いない場合、負極活物質層24は更に、負極用バインダーおよび負極用導電助剤を含んでいてもよい。 When no metal material is used as the negative electrode active material, the negative electrode active material layer 24 may further contain a negative electrode binder and a negative electrode conductive auxiliary agent.

(負極用バインダー)
負極用バインダーとしては特に限定は無く、上記で記載した正極用バインダーと同様のものを用いることができる。
(Binder for negative electrode)
The binder for the negative electrode is not particularly limited, and the same binder as the binder for the positive electrode described above can be used.

(負極用導電助剤)
負極用導電助剤としては特に限定は無く、上記で記載した正極用導電助剤と同様のものを用いることができる。
(Conductive auxiliary agent for negative electrode)
The conductive auxiliary agent for the negative electrode is not particularly limited, and the same conductive auxiliary agent for the positive electrode described above can be used.

<電解液>
本発明に係る電解液は、溶媒および電解質から主に構成されるものである。
<Electrolytic solution>
The electrolytic solution according to the present invention is mainly composed of a solvent and an electrolyte.

(溶媒)
上記溶媒としては、一般にリチウムイオン二次電池に用いられている溶媒を任意の割合で混合して使用することが出来る。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状カーボネート化合物、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等の鎖状カーボネート化合物、γ−ブチロラクトン(GBL)等の環状エステル化合物、プロピオン酸プロピル(PrP)、プロピオン酸エチル(PrE)、酢酸エチル等の鎖状エステル化合物が挙げられる。
(solvent)
As the solvent, a solvent generally used for a lithium ion secondary battery can be mixed and used at an arbitrary ratio. For example, cyclic carbonate compounds such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, chain carbonate compounds such as diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC), γ-butyrolactone. Cyclic ester compounds such as (GBL), chain ester compounds such as propyl propionate (PrP), ethyl propionate (PrE), and ethyl acetate can be mentioned.

(電解質)
電解質は、リチウムイオン二次電池の電解質として用いられるリチウム塩であれば特に限定は無く、例えば、LiPF、LiBF、リチウムビスオキサレートボラート等の無機酸陰イオン塩、LiCFSO、(CFSONLi、(FSONLi等の有機酸陰イオン塩等を用いることができる。
(Electrolytes)
The electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte for a lithium ion secondary battery. For example, an inorganic acid anion salt such as LiPF 6 , LiBF 4 , or lithium bisoxalate boron, LiCF 3 SO 3 , Organic acid anionic salts such as (CF 3 SO 2 ) 2 NLi and (FSO 2 ) 2 NLi can be used.

以上、本発明に係る好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[実施例1]
(化学式(1)で表される化合物の合成)
純水1Lに対し、シュウ酸100mmolおよびエチレングリコール10mmolを溶解させ、攪拌しながら100℃で8時間還流を行った。溶液を冷却した後、水−ジエチルエーテルで分液を繰り返し、有機相を回収することでn=2,X=X=H,R=CH−CHである中間体を得た。この中間体5mmolを改めて純水1Lへ溶解させ、これに10mmolの水酸化リチウムを加えて30分攪拌した。この溶液を水−ジエチルエーテルで分液を繰り返し、水相を回収することでn=2,X=X=Li,R=CH−CHである目的物を得た。
[Example 1]
(Synthesis of compound represented by chemical formula (1))
100 mmol of oxalic acid and 10 mmol of ethylene glycol were dissolved in 1 L of pure water, and the mixture was refluxed at 100 ° C. for 8 hours with stirring. After cooling the solution, water - diethyl ether repeating the separation was obtained by collecting the organic phase n = 2, X 1 = X 2 = H, the intermediates are R = CH 2 -CH 2. 5 mmol of this intermediate was dissolved again in 1 L of pure water, 10 mmol of lithium hydroxide was added thereto, and the mixture was stirred for 30 minutes. The solution of water - diethyl ether repeatedly separated, n by recovering the aqueous phase = 2, X 1 = X 2 = Li, to give the desired compound is R = CH 2 -CH 2.

(正極の作製)
正極活物質としてLiCoO、導電助剤としてカーボンブラック、バインダーとしてPVDFを用いた。LiCoO:カーボンブラック:PVDF=90:5:5(質量部)の割合で混合し、この混合粉全体に対して、2.5×10−3mol/gの濃度となるように、上記で作製した化学式(1)で表される化合物を添加した。これを、ハイブリッドミキサーを用いてN−メチル−2−ピロリドン(NMP)に分散させることで、正極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmのアルミニウム箔に塗布量12.0mg/cmとなるように塗布し、100℃で乾燥することで正極活物質層を形成した。その後、これをローラープレス機によって加圧成形し、正極を作製した。
(Preparation of positive electrode)
LiCoO 2 was used as the positive electrode active material, carbon black was used as the conductive auxiliary agent, and PVDF was used as the binder. LiCoO 2 : Carbon black: PVDF = 90: 5: 5 (parts by mass) was mixed, and the concentration was 2.5 × 10 -3 mol / g with respect to the entire mixed powder. The prepared compound represented by the chemical formula (1) was added. This was dispersed in N-methyl-2-pyrrolidone (NMP) using a hybrid mixer to prepare a slurry for forming a positive electrode active material layer. This slurry was applied to an aluminum foil having a thickness of 20 μm so as to have a coating amount of 12.0 mg / cm 2, and dried at 100 ° C. to form a positive electrode active material layer. Then, this was pressure-molded by a roller press to prepare a positive electrode.

(負極の作製)
負極活物質として黒鉛、導電助剤としてカーボンブラック、バインダーとしてPVDFを用いた。黒鉛:カーボンブラック:PVDF=90:5:5(質量部)の割合で混合し、ハイブリッドミキサーを用いてN−メチル−2−ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmの銅箔に塗布量8.0mg/cmとなるように塗布し、100℃で乾燥することで負極活物質層を形成した。その後、これをローラープレス機によって加圧成形し、負極を作製した。
(Preparation of negative electrode)
Graphite was used as the negative electrode active material, carbon black was used as the conductive auxiliary agent, and PVDF was used as the binder. Graphite: carbon black: PVDF = 90: 5: 5 (parts by mass) was mixed and dispersed in N-methyl-2-pyrrolidone (NMP) using a hybrid mixer to prepare a slurry for forming the negative electrode active material layer. It was adjusted. This slurry was applied to a copper foil having a thickness of 20 μm so as to have a coating amount of 8.0 mg / cm 2, and dried at 100 ° C. to form a negative electrode active material layer. Then, this was pressure-molded by a roller press to prepare a negative electrode.

(電解液の作製)
溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)、支持塩としてヘキサフルオロリン酸リチウム(LiPF)を用いた。EC:DEC=50:50(体積部)となるように混合し、これに1.0mol/Lの濃度となるようにLiPFを溶解させ、電解液を作製した。
(Preparation of electrolytic solution)
Ethylene carbonate (EC) and diethyl carbonate (DEC) were used as the solvent, and lithium hexafluorophosphate (LiPF 6) was used as the supporting salt. The mixture was mixed so that EC: DEC = 50: 50 (volume part), and LiPF 6 was dissolved therein so as to have a concentration of 1.0 mol / L to prepare an electrolytic solution.

(評価用リチウムイオン二次電池の作製)
上記で作製した正極および負極を、ポリエチレンセパレータを介して順次積層した。この積層体にタブリードを超音波溶着した後、アルミラミネートパックで包装した。その後、上記で作製した電解液を注入し、真空シールすることで評価用リチウムイオン二次電池を作製した。
(Manufacturing of lithium-ion secondary battery for evaluation)
The positive electrode and the negative electrode prepared above were sequentially laminated via a polyethylene separator. The tab leads were ultrasonically welded to this laminate and then packaged in an aluminum laminate pack. Then, the electrolytic solution prepared above was injected and vacuum-sealed to prepare a lithium ion secondary battery for evaluation.

(初回充放電)
上記で作製した評価用リチウムイオン二次電池を、25℃に設定した恒温槽内に入れ、北斗電工株式会社製の充放電試験装置で評価した。まず、電流値0.1Cの定電流充電で電池電圧が4.2Vとなるまで充電を行い、続けて、電流値0.1Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。なお、電流値「X」Cの充電とは、この電池を「1/X」時間で充電可能な電流値のことを示す。例えば、0.1Cは1/0.1時間で充電可能な電流値のことを示す。
(First charge / discharge)
The evaluation lithium ion secondary battery produced above was placed in a constant temperature bath set at 25 ° C. and evaluated with a charge / discharge test device manufactured by Hokuto Denko Co., Ltd. First, the battery is charged until the battery voltage reaches 4.2 V by constant current charging with a current value of 0.1 C, and then discharged until the battery voltage reaches 2.8 V by constant current discharge with a current value of 0.1 C. rice field. The charging of the current value "X" C means the current value at which the battery can be charged in the "1 / X" time. For example, 0.1C indicates a current value that can be charged in 1 / 0.1 hour.

(急速充電特性の測定)
上記と同じ装置を用い、まず、電流値0.1Cの定電流充電で電池電圧が4.2Vとなるまで充電を行い、0.1C充電容量を求め、電流値0.1Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。続けて、電流値10Cの定電流充電で電池電圧が4.2Vとなるまで充電を行い、10C充電容量を求め、電流値0.1Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。10C充電容量維持率=10C充電容量/0.1C充電容量、と定義し、得られた値を表1に示した。この値が高いほど、急速充電特性に優れることを意味する。
(Measurement of quick charge characteristics)
Using the same device as above, first charge with constant current charging with a current value of 0.1C until the battery voltage reaches 4.2V, determine the 0.1C charging capacity, and with constant current discharge with a current value of 0.1C. The battery was discharged until the battery voltage reached 2.8 V. Subsequently, the battery is charged until the battery voltage reaches 4.2 V by constant current charging with a current value of 10 C, the 10 C charging capacity is obtained, and the battery is discharged until the battery voltage reaches 2.8 V by constant current discharge with a current value of 0.1 C. Was done. 10C charge capacity retention rate = 10C charge capacity / 0.1C charge capacity was defined, and the obtained values are shown in Table 1. The higher this value, the better the quick charging characteristics.

[実施例2]
正極の作製において、スラリーに添加した化学式(1)で表される化合物の量を表1に示した値に変更した。それ以外は実施例1と同様として、実施例2の評価用リチウムイオン二次電池を作製した。
[Example 2]
In the preparation of the positive electrode, the amount of the compound represented by the chemical formula (1) added to the slurry was changed to the value shown in Table 1. A lithium ion secondary battery for evaluation of Example 2 was produced in the same manner as in Example 1 except for the above.

[実施例3]
正極の作製において、スラリーに添加した化学式(1)で表される化合物の量を表1に示した値に変更した。それ以外は実施例1と同様として、実施例3の評価用リチウムイオン二次電池を作製した。
[Example 3]
In the preparation of the positive electrode, the amount of the compound represented by the chemical formula (1) added to the slurry was changed to the value shown in Table 1. A lithium ion secondary battery for evaluation of Example 3 was produced in the same manner as in Example 1 except for the above.

[実施例4]
正極の作製において、スラリーに添加した化学式(1)で表される化合物の量を表1に示した値に変更した。それ以外は実施例1と同様として、実施例4の評価用リチウムイオン二次電池を作製した。
[Example 4]
In the preparation of the positive electrode, the amount of the compound represented by the chemical formula (1) added to the slurry was changed to the value shown in Table 1. A lithium ion secondary battery for evaluation of Example 4 was produced in the same manner as in Example 1 except for the above.

[実施例5]
正極の作製において、スラリーに添加した化学式(1)で表される化合物の量を表1に示した値に変更した。それ以外は実施例1と同様として、実施例5の評価用リチウムイオン二次電池を作製した。
[Example 5]
In the preparation of the positive electrode, the amount of the compound represented by the chemical formula (1) added to the slurry was changed to the value shown in Table 1. A lithium ion secondary battery for evaluation of Example 5 was produced in the same manner as in Example 1 except for the above.

[実施例6]
正極の作製において、スラリーに添加した化学式(1)で表される化合物の量を表1に示した値に変更した。それ以外は実施例1と同様として、実施例6の評価用リチウムイオン二次電池を作製した。
[Example 6]
In the preparation of the positive electrode, the amount of the compound represented by the chemical formula (1) added to the slurry was changed to the value shown in Table 1. A lithium ion secondary battery for evaluation of Example 6 was produced in the same manner as in Example 1 except for the above.

[実施例7]
化学式(1)で表される化合物の合成において、中間体5mmolに対して、5mmolの水酸化リチウムを加えることで、n=2,X=H,X=Li,R=CH−CHと片側の水酸基のみリチウム化された化合物を得た。それ以外は実施例1と同様として、実施例7のリチウムイオン二次電池を作製した。
[Example 7]
In the synthesis of the compound represented by the chemical formula (1), by adding 5 mmol of lithium hydroxide to 5 mmol of the intermediate, n = 2, X 1 = H, X 2 = Li, R = CH 2-CH. A compound in which only 2 and the hydroxyl group on one side were lithium-ized was obtained. A lithium ion secondary battery of Example 7 was produced in the same manner as in Example 1 except for the above.

[実施例8]
化学式(1)で表される化合物の合成において、中間体をそのまま用いることで、n=2,X=X=H,R=CH−CHの化合物を得た。それ以外は実施例1と同様として、実施例8のリチウムイオン二次電池を作製した。
[Example 8]
In the synthesis of the compounds of formula (1), by using the intermediate as to obtain n = 2, X 1 = X 2 = H, the compound of R = CH 2 -CH 2. A lithium ion secondary battery of Example 8 was produced in the same manner as in Example 1 except for the above.

[実施例9]
化学式(1)で表される化合物の合成において、エチレングリコールの代わりにメタンジオールを用いることで、n=2,X=X=H,R=CHの中間体を得た。それ以降の手順は実施例1と同様として、実施例9のリチウムイオン二次電池を作製した。
[Example 9]
By using methanediol instead of ethylene glycol in the synthesis of the compound represented by the chemical formula (1), an intermediate of n = 2, X 1 = X 2 = H, R = CH 2 was obtained. Subsequent procedures were the same as in Example 1, and the lithium ion secondary battery of Example 9 was produced.

[実施例10]
化学式(1)で表される化合物の合成において、エチレングリコールの代わりにトリメチレングリコールを用いることで、n=2,X=X=H,R=CH−CH−CHの中間体を得た。それ以降の手順は実施例1と同様として、実施例10のリチウムイオン二次電池を作製した。
[Example 10]
In the synthesis of the compounds of formula (1), by using trimethylene glycol instead of ethylene glycol, n = 2, X 1 = X 2 = H, the intermediate R = CH 2 -CH 2 -CH 2 I got a body. Subsequent procedures were the same as in Example 1, and the lithium ion secondary battery of Example 10 was produced.

[実施例11]
化学式(1)で表される化合物の合成において、エチレングリコールの代わりにモノフルオロエチレングリコールを用いることで、n=2,X=X=H,R=CH−CHFの中間体を得た。それ以降の手順は実施例1と同様として、実施例11のリチウムイオン二次電池を作製した。
[Example 11]
By using monofluoroethylene glycol instead of ethylene glycol in the synthesis of the compound represented by the chemical formula (1), an intermediate of n = 2, X 1 = X 2 = H, R = CH 2- CHF can be obtained. rice field. Subsequent procedures were the same as in Example 1, and the lithium ion secondary battery of Example 11 was produced.

[比較例1]
正極の作製において、化学式(1)で表される化合物を添加しなかった。それ以外は実施例1と同様として、比較例1の評価用リチウムイオン二次電池を作製した。
[Comparative Example 1]
In the preparation of the positive electrode, the compound represented by the chemical formula (1) was not added. A lithium ion secondary battery for evaluation of Comparative Example 1 was produced in the same manner as in Example 1 except for the above.

実施例2〜11、および比較例1で作製した評価用リチウムイオン二次電池について、実施例1と同様に、急速充電特性の測定を行った。結果を表1に示す。 The quick charging characteristics of the evaluation lithium ion secondary batteries produced in Examples 2 to 11 and Comparative Example 1 were measured in the same manner as in Example 1. The results are shown in Table 1.

実施例1〜6はいずれも、正極に化学式(1)で表される化合物を添加しなかった比較例1に対し、急速充電特性が改善した。上記化合物が存在することで、正極活物質表面のリチウムイオンが強く配位され、溶媒和反応が速やかに進行したものと考えられる。また、添加量としては、2.5×10−5mol/g以上2.5×10−2mol/gが最適であることが明らかとなった。 In each of Examples 1 to 6, the quick charging characteristics were improved as compared with Comparative Example 1 in which the compound represented by the chemical formula (1) was not added to the positive electrode. It is considered that the presence of the above compound strongly coordinated the lithium ions on the surface of the positive electrode active material, and the solvation reaction proceeded rapidly. Further, it was clarified that the optimum amount of addition is 2.5 × 10 −5 mol / g or more and 2.5 × 10 −2 mol / g.

およびXを水素で置換した実施例7,8についても、急速充電特性が改善している。このことより、二つのシュウ酸残渣のカルボニル基が、本発明に係る改善効果を示すにあたって重要であることが示唆された。 The quick charging characteristics are also improved in Examples 7 and 8 in which X 1 and X 2 are replaced with hydrogen. This suggests that the carbonyl groups of the two oxalic acid residues are important in exhibiting the improving effect according to the present invention.

また、連結基Rの構造を変更した実施例9〜11においても、急速充電特性が改善しており、このことからもシュウ酸残渣のカルボニル基が重要な役割を担うことが示唆された。 Further, in Examples 9 to 11 in which the structure of the linking group R was changed, the quick charging characteristics were also improved, suggesting that the carbonyl group of the oxalic acid residue plays an important role.

Figure 2021157959
Figure 2021157959

本発明により、急速充電特性に優れる正極、およびリチウムイオン二次電池を提供される。 INDUSTRIAL APPLICABILITY The present invention provides a positive electrode having excellent quick charging characteristics and a lithium ion secondary battery.

10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。 10 ... Positive electrode, 12 ... Positive electrode current collector, 14 ... Positive electrode active material layer, 18 ... Separator, 20 ... Negative electrode, 22 ... Negative electrode current collector, 24 ... Negative electrode active material layer, 30 ... Laminated body, 50 ... Case, 60 , 62 ... Reed, 100 ... Lithium ion secondary battery.

Claims (3)

リチウム遷移金属酸化物を主体とする正極活物質を含む正極活物質層を有する正極であって、
前記正極活物質層は、化学式(1)で表される化合物を含むことを特徴とする、正極。
(XおよびXはHまたはLiであり、Rは炭素数が1〜3のアルキレン基またはハロゲン化アルキレン基を示す。)
Figure 2021157959
・・・(1)
A positive electrode having a positive electrode active material layer containing a positive electrode active material mainly composed of lithium transition metal oxide.
The positive electrode active material layer is characterized by containing a compound represented by the chemical formula (1).
(X 1 and X 2 are H or Li, and R represents an alkylene group having 1 to 3 carbon atoms or a halogenated alkylene group.)
Figure 2021157959
... (1)
前記化学式(1)で表される化合物が、前記正極活物質層の単位質量当たり2.5×10−5mol/g以上2.5×10−2mol/g以下、前記正極活物質層に含まれることを特徴とする、請求項1に記載の正極。 The compound represented by the chemical formula (1) is contained in the positive electrode active material layer in an amount of 2.5 × 10 −5 mol / g or more and 2.5 × 10 −2 mol / g or less per unit mass of the positive electrode active material layer. The positive electrode according to claim 1, wherein the positive electrode is included. 請求項1または2に記載の正極を含む、リチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode according to claim 1 or 2.
JP2020057294A 2020-03-27 2020-03-27 Positive electrode, and lithium ion secondary battery Active JP7279675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020057294A JP7279675B2 (en) 2020-03-27 2020-03-27 Positive electrode, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020057294A JP7279675B2 (en) 2020-03-27 2020-03-27 Positive electrode, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2021157959A true JP2021157959A (en) 2021-10-07
JP7279675B2 JP7279675B2 (en) 2023-05-23

Family

ID=77918308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020057294A Active JP7279675B2 (en) 2020-03-27 2020-03-27 Positive electrode, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP7279675B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265719A (en) * 1998-03-17 1999-09-28 Toshiba Corp Lithium secondary battery
JP2004014472A (en) * 2002-06-11 2004-01-15 Sony Corp Nonaqueous secondary battery
JP2004259680A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Non-aqueous lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265719A (en) * 1998-03-17 1999-09-28 Toshiba Corp Lithium secondary battery
JP2004014472A (en) * 2002-06-11 2004-01-15 Sony Corp Nonaqueous secondary battery
JP2004259680A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Non-aqueous lithium secondary battery

Also Published As

Publication number Publication date
JP7279675B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
JP5910627B2 (en) Secondary battery
CN109216758B (en) Nonaqueous electrolyte battery and method for manufacturing nonaqueous electrolyte battery
US10615411B2 (en) Chemical lithiation of electrode active material
JP5357517B2 (en) Lithium ion secondary battery
KR20150022647A (en) Electrolyte for lithium secondary battery and lithium secondary battery
JP4579588B2 (en) Lithium ion secondary battery
KR101479390B1 (en) Negative electrode material, lithium secondary battery, and method for producing negative electrode material
JPWO2019235469A1 (en) Reduced graphene material
JP2010277701A (en) Secondary battery and its manufacturing method
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JP2019061826A (en) Lithium ion secondary battery
JP7279675B2 (en) Positive electrode, and lithium ion secondary battery
JP7120507B2 (en) Lithium borate composition, additive for lithium secondary battery, method for producing lithium borate composition, non-aqueous electrolyte for lithium secondary battery, lithium secondary battery
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2018113164A (en) Nonaqueous electrolyte battery and method for manufacturing the same
JP2011096520A (en) Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP4579587B2 (en) Lithium ion secondary battery
JP2021157958A (en) Positive electrode and lithium ion secondary battery
JP2019061828A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
WO2013069790A1 (en) Non-aqueous electrolyte secondary cell
WO2013069791A1 (en) Non-aqueous electrolyte secondary cell
JP2018133335A (en) Nonaqueous electrolyte battery
JP2019061835A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7279675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150