JP2021150151A - Fuse element and fuse unit - Google Patents

Fuse element and fuse unit Download PDF

Info

Publication number
JP2021150151A
JP2021150151A JP2020048294A JP2020048294A JP2021150151A JP 2021150151 A JP2021150151 A JP 2021150151A JP 2020048294 A JP2020048294 A JP 2020048294A JP 2020048294 A JP2020048294 A JP 2020048294A JP 2021150151 A JP2021150151 A JP 2021150151A
Authority
JP
Japan
Prior art keywords
melting point
conductor
fuse
low melting
fusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020048294A
Other languages
Japanese (ja)
Other versions
JP7428559B2 (en
Inventor
貴宏 塩浜
Takahiro Shiohama
貴宏 塩浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2020048294A priority Critical patent/JP7428559B2/en
Publication of JP2021150151A publication Critical patent/JP2021150151A/en
Application granted granted Critical
Publication of JP7428559B2 publication Critical patent/JP7428559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

To provide a fuse element that is able to adjust the magnitude of a rated current without changing the shape of a fuse element itself.SOLUTION: A fuse element 10 includes a conductor 40 and a low fusing point body 50 made of a low fusing point material having a fusing point lower than the fusing point of a material composing the conductor 40. The conductor 40 has: a heating portion 44 in which the temperature of the conductor 40 is highest when current is supplied to the conductor 40; and a plurality of arrangement portions 45 provided at a plurality of places whose distances from the heating portion 44 are different. The low fusing point body 50 is disposed on at least one of the plurality of arrangement portions 45. The conductor 40 has a rectangular flat plate-like fusing portion 43, the plurality of arrangement portions 45 are each in the form of a hole penetrating through the conductor 40 and are provided so as to be aligned along the axial direction of the fusing portion 43. The lengths a1, a2 of the conductors 40 sandwiched between adjacent arrangement portions 45 are equal to or shorter than the length b of the conductor 40 sandwiched between an arrangement portion 45 and a side edge of the fusing portion 43.SELECTED DRAWING: Figure 3

Description

本発明は、導電体と、導電体を構成する材料の融点よりも低い融点を有する低融点材料から構成された低融点体と、を備えるヒューズエレメント、及び、そのヒューズエレメントを用いるヒューズユニット、に関する。 The present invention relates to a fuse element including a conductor and a low melting point material composed of a low melting point material having a melting point lower than the melting point of the material constituting the conductor, and a fuse unit using the fuse element. ..

従来から、金属材料から構成された導電体と、その金属材料の融点よりも低い融点を有する低融点金属材料から構成された低融点体と、を備えたヒューズエレメントが提案されている(例えば、特許文献1を参照。)。 Conventionally, a fuse element including a conductor made of a metal material and a low melting point body made of a low melting point metal material having a melting point lower than the melting point of the metal material has been proposed (for example,). See Patent Document 1).

この種のヒューズエレメントの原理は、以下の通りである。まず、導電体に電流が流れたときの発熱(即ち、ジュール熱)により、低融点体が導電体よりも先に溶融する。溶融した液相の低融点体が導電体に接触すると、導電体そのものは未だ融点に達していなくても、導電体を構成する金属材料が低融点体の中に拡散する。この拡散によって導電体が徐々に侵食され、最終的に導電体が切断(溶断)される。上述した原理から、導電体の温度が低融点体の融点に達した時点で、仮に導電体を構成する金属材料の融点に達していなくても、導電体を溶断させられることになる。これにより、ヒューズエレメントをより実用的な温度(即ち、低融点体の融点)で溶断させられる。 The principle of this type of fuse element is as follows. First, the low melting point melts before the conductor due to heat generation (that is, Joule heat) when an electric current flows through the conductor. When the low melting point of the molten liquid phase comes into contact with the conductor, the metal material constituting the conductor diffuses into the low melting point even if the conductor itself has not reached the melting point yet. This diffusion gradually erodes the conductor, and finally the conductor is cut (fused). From the above principle, when the temperature of the conductor reaches the melting point of the low melting point, the conductor can be melted even if it does not reach the melting point of the metal material constituting the conductor. As a result, the fuse element can be blown at a more practical temperature (that is, the melting point of the low melting point).

特開2004−127701号公報Japanese Unexamined Patent Publication No. 2004-127701

上述した従来のヒューズエレメントが溶断に達するときの電流の大きさ(即ち、定格電流)は、導電体の導電断面積の大小によって調整可能となっている。しかし、この場合、定格電流が異なればヒューズエレメントの形状自体を異ならせる必要がある。そのため、実際には、ヒューズエレメントが用いられる各種の装置の仕様に応じて複数の種類のヒューズエレメントを準備することになる。そのため、ヒューズエレメントの製造コストを低減させ難い。 The magnitude of the current (that is, the rated current) when the above-mentioned conventional fuse element reaches the blow can be adjusted by the magnitude of the conductive cross-sectional area of the conductor. However, in this case, if the rated current is different, the shape of the fuse element itself needs to be different. Therefore, in practice, a plurality of types of fuse elements are prepared according to the specifications of various devices in which the fuse elements are used. Therefore, it is difficult to reduce the manufacturing cost of the fuse element.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、ヒューズエレメント自体の形状を異ならせることなく定格電流の大きさを調整可能なヒューズエレメント、及び、そのヒューズエレメントを用いたヒューズユニットの提供である。 The present invention has been made in view of the above circumstances, and an object of the present invention is to use a fuse element capable of adjusting the magnitude of the rated current without changing the shape of the fuse element itself, and the fuse element thereof. The fuse unit is provided.

前述した目的を達成するために、本発明に係るヒューズエレメント及びヒューズユニットは、下記[1]〜[3]を特徴としている。
[1]
導電体と、前記導電体を構成する材料の融点よりも低い融点を有する低融点材料から構成された低融点体と、を備えるヒューズエレメントであって、
前記導電体は、
当該導電体に電流が流れたときに当該導電体の温度が最も高くなる発熱部と、
前記発熱部からの距離が異なる複数の箇所に設けられる複数の配置部と、を有し、
前記低融点体は、
前記複数の前記配置部の少なくとも一つに配置される、
ヒューズエレメントであること。
[2]
上記[1]に記載のヒューズエレメントにおいて、
前記導電体は、
矩形平板状の溶断部を有し、
前記複数の前記配置部は、前記導電体を貫通する孔形状を有し、前記溶断部の軸方向に沿って並ぶように設けられ、
隣り合う前記配置部に挟まれる前記導電体の長さが、前記配置部と前記溶断部の側縁とに挟まれる前記導電体の長さ以下である、
ヒューズエレメントであること。
[3]
複数の導電体と、前記複数の前記導電体を構成する材料の融点よりも低い融点を有する低融点材料から構成されて前記複数の前記導電体の各々に設けられる低融点体と、を備えるヒューズユニットであって、
前記複数の前記導電体の各々は、
当該導電体に電流が流れたときに当該導電体の温度が最も高くなる発熱部を有し、
前記複数の前記導電体の少なくとも一つは、
前記発熱部からの距離が異なる複数の箇所に設けられる複数の配置部と、前記複数の前記配置部の少なくとも一つに配置される前記低融点体と、を有する、
ヒューズユニットであること。
In order to achieve the above-mentioned object, the fuse element and the fuse unit according to the present invention are characterized by the following [1] to [3].
[1]
A fuse element comprising a conductor and a low melting point body made of a low melting point material having a melting point lower than the melting point of the material constituting the conductor.
The conductor is
The heat generating part where the temperature of the conductor becomes the highest when an electric current flows through the conductor, and
It has a plurality of arrangement portions provided at a plurality of locations having different distances from the heat generating portion.
The low melting point body is
Arranged in at least one of the plurality of the arrangement portions,
Must be a fuse element.
[2]
In the fuse element described in [1] above,
The conductor is
It has a rectangular flat plate-shaped fusing part and has a rectangular flat plate-like fusing part.
The plurality of the arrangement portions have a hole shape penetrating the conductor, and are provided so as to be arranged along the axial direction of the fusing portion.
The length of the conductor sandwiched between the adjacent arrangement portions is equal to or less than the length of the conductor sandwiched between the arrangement portion and the side edge of the fusing portion.
Must be a fuse element.
[3]
A fuse comprising a plurality of conductors and a low melting point material composed of a low melting point material having a melting point lower than the melting point of the material constituting the plurality of conductors and provided in each of the plurality of the conductors. It ’s a unit,
Each of the plurality of conductors
It has a heat generating part where the temperature of the conductor becomes the highest when an electric current flows through the conductor.
At least one of the plurality of the conductors
It has a plurality of arrangement portions provided at a plurality of locations having different distances from the heat generating portion, and the low melting point body arranged at at least one of the plurality of arrangement portions.
Must be a fuse unit.

上記[1]の構成のヒューズエレメントによれば、ヒューズエレメントの導電体にあらかじめ設けられている複数の配置部(例えば、貫通孔、窪み、切り欠き、及び、図柄の表示など)の少なくとも一つに、低融点体が配置される。複数の配置部の各々と、導電体への通電時に最も高温となる発熱部と、の距離は、互いに相違している。そのため、導電体への通電時、複数の配置部の各々の温度は、発熱部との距離に基づいて異なる。具体的には、発熱部との距離が短いほど配置部の温度は高くなる。よって、低融点体を設ける配置部を異ならせれば、導電体が溶断に至る際の電流値(いわゆる定格電流の値)が異なることになる。したがって、本構成のヒューズエレメントは、導電体の形状は異ならせることなく、定格電流の大きさを調整可能である。 According to the fuse element having the configuration of [1] above, at least one of a plurality of arrangement portions (for example, through holes, dents, notches, and symbol display) provided in advance on the conductor of the fuse element. A low melting point body is arranged in. The distances between each of the plurality of arranged portions and the heat generating portion that becomes the hottest when the conductor is energized are different from each other. Therefore, when the conductor is energized, the temperature of each of the plurality of arranged portions differs based on the distance from the heat generating portion. Specifically, the shorter the distance from the heat generating portion, the higher the temperature of the arranged portion. Therefore, if the arrangement portion where the low melting point body is provided is different, the current value (so-called rated current value) when the conductor reaches fusing will be different. Therefore, in the fuse element of this configuration, the magnitude of the rated current can be adjusted without changing the shape of the conductor.

上記[2]の構成のヒューズエレメントによれば、配置部を構成する貫通孔同士の間の導電体の長さ(例えば、図3におけるa1及びa2)が、配置部と溶断部の側縁とに挟まれる導電体の長さ(例えば、図3におけるb)以下である。よって、通電時、前者の導電体部分(貫通孔に挟まれる導電体部分)は、後者の導電体部分(配置部と溶断部の側縁との間に挟まれる導電体部分)よりも速やかに溶け終わる。その結果、本来溶断するべき後者の導電体部分を溶かすために用いるべき低融点体を、前者の部分が無用に消費してしまうことが抑えられる。したがって、本構成のヒューズエレメントは、設計された定格電流でより正確に導電体を溶断可能である。 According to the fuse element having the configuration of [2] above, the length of the conductor between the through holes constituting the arrangement portion (for example, a1 and a2 in FIG. 3) is set to the side edge of the arrangement portion and the fusing portion. It is less than or equal to the length of the conductor sandwiched between them (for example, b in FIG. 3). Therefore, when energized, the former conductor portion (the conductor portion sandwiched between the through holes) is faster than the latter conductor portion (the conductor portion sandwiched between the arrangement portion and the side edge of the fusing portion). It finishes melting. As a result, it is possible to prevent the former portion from unnecessarily consuming the low melting point body that should be used to melt the latter conductor portion that should be originally blown. Therefore, the fuse element of this configuration can blow the conductor more accurately at the designed rated current.

上記[3]の構成のヒューズユニットによれば、複数の導電体の少なくとも一つに複数の配置部が設けられ、それら配置部の少なくとも一つに低融点体が配置される。複数の配置部の各々と、導電体への通電時に最も高温となる発熱部と、の距離は、互いに相違している。そのため、導電体への通電時、複数の配置部の各々の温度は、発熱部との距離に基づいて異なる。よって、低融点体を設ける配置部を異ならせれば、導電体が溶断に至る際の電流値(いわゆる定格電流の値)が異なることになる。したがって、本構成のヒューズユニットは、各導電体の形状を異ならせることなく、定格電流の大きさを調整可能である。 According to the fuse unit having the configuration of the above [3], a plurality of arrangement portions are provided in at least one of the plurality of conductors, and a low melting point body is arranged in at least one of the arrangement portions. The distances between each of the plurality of arranged portions and the heat generating portion that becomes the hottest when the conductor is energized are different from each other. Therefore, when the conductor is energized, the temperature of each of the plurality of arranged portions differs based on the distance from the heat generating portion. Therefore, if the arrangement portion where the low melting point body is provided is different, the current value (so-called rated current value) when the conductor reaches fusing will be different. Therefore, in the fuse unit having this configuration, the magnitude of the rated current can be adjusted without changing the shape of each conductor.

このように、本発明によれば、ヒューズエレメント自体の形状を異ならせることなく定格電流の大きさを調整可能なヒューズエレメント、及び、そのヒューズエレメントを用いたヒューズユニットを提供できる。 As described above, according to the present invention, it is possible to provide a fuse element whose rated current magnitude can be adjusted without changing the shape of the fuse element itself, and a fuse unit using the fuse element.

以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。 The present invention has been briefly described above. Further, the details of the present invention will be further clarified by reading through the embodiments described below with reference to the accompanying drawings.

図1は、本発明の実施形態に係るヒューズエレメントを用いるヒューズユニット、及び、ヒューズユニットに接続される各種部品を示す斜視図である。FIG. 1 is a perspective view showing a fuse unit using the fuse element according to the embodiment of the present invention and various parts connected to the fuse unit. 図2は、図1に示すヒューズエレメントを示す斜視図である。FIG. 2 is a perspective view showing the fuse element shown in FIG. 図3は、図2に示すヒューズ部40Aを拡大して示す斜視図である。FIG. 3 is an enlarged perspective view of the fuse portion 40A shown in FIG. 図4は、図2に示すヒューズ部40A,40B,40Cを拡大して示す平面図である。FIG. 4 is an enlarged plan view of the fuse portions 40A, 40B, and 40C shown in FIG.

<実施形態>
以下、図面を参照しながら、本発明の実施形態に係るヒューズエレメント10、及び、ヒューズエレメント10を用いるヒューズユニット1について説明する。
<Embodiment>
Hereinafter, the fuse element 10 according to the embodiment of the present invention and the fuse unit 1 using the fuse element 10 will be described with reference to the drawings.

図1に示すように、本発明の実施形態に係るヒューズユニット1は、ヒューズエレメント10と、樹脂製のハウジング20と、を備える。ハウジング20は、ヒューズエレメント10の大部分を覆う(収容する)ように、樹脂材料によりヒューズエレメント10と一体に成形(モールド成形)されている。ヒューズユニット1は、バッテリ(図示省略)と各種外部負荷(図示省略)から延びる各種電線2A,2B,2C(図1参照)とを電気的に接続すると共に、定格電流を超える大きさの電流が流れたときにバッテリと各種電線2A,2B,2Cとの電気的接続を断つ機能を有する。 As shown in FIG. 1, the fuse unit 1 according to the embodiment of the present invention includes a fuse element 10 and a resin housing 20. The housing 20 is integrally molded (molded) with the fuse element 10 by a resin material so as to cover (accommodate) most of the fuse element 10. The fuse unit 1 electrically connects a battery (not shown) and various electric wires 2A, 2B, 2C (see FIG. 1) extending from various external loads (not shown), and a current having a magnitude exceeding the rated current is generated. It has a function of disconnecting the electrical connection between the battery and various electric wires 2A, 2B, and 2C when it flows.

図2に示すように、ヒューズエレメント10は、バスバ30(板状の金属部材)と、バスバ30の一部である複数(本例では、3つ)のヒューズ部40A,40B,40Cにそれぞれ配置された複数(本例では、3つ)の低融点体50A,50B,50Cと、を備える。 As shown in FIG. 2, the fuse elements 10 are arranged in the bus bar 30 (plate-shaped metal member) and a plurality of fuse portions 40A, 40B, 40C which are a part of the bus bar 30 (three in this example), respectively. It is provided with a plurality of (three in this example) low melting point bodies 50A, 50B, and 50C.

バスバ30は、ハウジング20から外部に(少なくとも一部が)露出している部位として、図1に示すように、板状のバッテリ接続部31と、複数(本例では、3つ)の板状の接続部32A,32B,32Cと、複数(本例では、3つ)の板状のヒューズ部40A,40B,40Cと、を備える。バスバ30の板厚は、本例では、全域に亘って一定である。 As shown in FIG. 1, the bus bar 30 has a plate-shaped battery connection portion 31 and a plurality of (three in this example) plate-shaped portions as portions exposed to the outside (at least a part) from the housing 20. 32A, 32B, 32C, and a plurality of (three in this example) plate-shaped fuse portions 40A, 40B, 40C. In this example, the plate thickness of the bus bar 30 is constant over the entire area.

ヒューズユニット1(ヒューズエレメント10)は、バッテリ端子(図示省略)を介して、バッテリに接続される。具体的には、このバッテリ端子は、バッテリの上面に配置されたバッテリポスト(図示省略)に接続されると共に、円柱状の電極(スタッドボルト。図示省略)を有している。バッテリ接続部31は、自身に設けられた貫通孔33(図2参照)にこのスタッドボルトが挿通されてボルト締結されることにより、スタッドボルトに固定される。これにより、バッテリ接続部31が、バッテリ端子を介してバッテリポスト(ひいてはバッテリ)に電気的に接続された状態にて固定されることになる。 The fuse unit 1 (fuse element 10) is connected to the battery via a battery terminal (not shown). Specifically, this battery terminal is connected to a battery post (not shown) arranged on the upper surface of the battery and has a columnar electrode (stud bolt, not shown). The battery connection portion 31 is fixed to the stud bolt by inserting the stud bolt into the through hole 33 (see FIG. 2) provided in the battery connection portion 31 and fastening the stud bolt. As a result, the battery connection portion 31 is fixed in a state of being electrically connected to the battery post (and thus the battery) via the battery terminal.

接続部32Aは、図1に示すように、自身の貫通孔34A(図2参照)に挿通される円柱状の電極21A(スタッドボルト)に、電線2Aの一端部に設けられた端子3Aの貫通孔22Aを挿通させて、ナット4Aと接続部32Aとで端子3Aを挟むようにナット4Aを電極21Aに締結固定することで、電線2Aの他端部に接続されている外部負荷と電気的に接続される。 As shown in FIG. 1, the connecting portion 32A penetrates the terminal 3A provided at one end of the electric wire 2A through the columnar electrode 21A (stud bolt) inserted into its own through hole 34A (see FIG. 2). By inserting the hole 22A and fastening and fixing the nut 4A to the electrode 21A so that the terminal 3A is sandwiched between the nut 4A and the connecting portion 32A, the nut 4A is electrically connected to the external load connected to the other end of the electric wire 2A. Be connected.

同様に、接続部32Bは、自身の貫通孔34B(図2参照)に挿通される円柱状の電極21B(スタッドボルト)に、電線2Bの一端部に設けられた端子3Bの貫通孔22Bを挿通させて、ナット4Bと接続部32Bとで端子3Bを挟むようにナット4Bを電極21Bに締結固定することで、電線2Bの他端部に接続されている外部負荷と電気的に接続される。接続部32Cは、自身の貫通孔34C(図2参照)に挿通される円柱状の電極21C(スタッドボルト)に、電線2Cの一端部に設けられた端子3Cの貫通孔22Cを挿通させて、ナット4Cと接続部32Cとで端子3Cを挟むようにナット4Cを電極21Cに締結固定することで、電線2Cの他端部に接続されている外部負荷と電気的に接続される。 Similarly, the connecting portion 32B inserts the through hole 22B of the terminal 3B provided at one end of the electric wire 2B into the columnar electrode 21B (stud bolt) inserted through its own through hole 34B (see FIG. 2). By fastening and fixing the nut 4B to the electrode 21B so as to sandwich the terminal 3B between the nut 4B and the connecting portion 32B, the nut 4B is electrically connected to the external load connected to the other end of the electric wire 2B. The connection portion 32C is formed by inserting a through hole 22C of a terminal 3C provided at one end of an electric wire 2C into a columnar electrode 21C (stud bolt) inserted through its own through hole 34C (see FIG. 2). By fastening and fixing the nut 4C to the electrode 21C so as to sandwich the terminal 3C between the nut 4C and the connecting portion 32C, the nut 4C is electrically connected to the external load connected to the other end of the electric wire 2C.

図2に示すように、バスバ30において、バッテリ接続部31は、ヒューズ部40Aを介して接続部32Aと接続され、ヒューズ部40Bを介して接続部32Bと接続され、ヒューズ部40Cを介して接続部32Cと接続されている。換言すると、バッテリと、各種電線2A,2B,2C(即ち、各種外部負荷)とは、ヒューズ部40A,40B,40Cを介してそれぞれ電気的に接続される。 As shown in FIG. 2, in the bus bar 30, the battery connection unit 31 is connected to the connection unit 32A via the fuse unit 40A, is connected to the connection unit 32B via the fuse unit 40B, and is connected via the fuse unit 40C. It is connected to the unit 32C. In other words, the battery and the various electric wires 2A, 2B, 2C (that is, various external loads) are electrically connected to each other via the fuse portions 40A, 40B, 40C, respectively.

以下、説明の便宜上、接続部32A,32B,32Cを互いに区別して表現する必要がない場合、これらを総称して「接続部32」と呼ぶことがある。同様に、ヒューズ部40A,40B,40Cを互いに区別して表現する必要がない場合、これらを総称して「ヒューズ部40」と呼ぶことがある。同様に、低融点体50A,50B,50Cを互いに区別して表現する必要がない場合、これらを総称して「低融点体50」と呼ぶことがある。 Hereinafter, for convenience of explanation, when it is not necessary to separately represent the connection portions 32A, 32B, and 32C, they may be collectively referred to as "connection portion 32". Similarly, when it is not necessary to distinguish the fuse portions 40A, 40B, and 40C from each other, they may be collectively referred to as the "fuse portion 40". Similarly, when it is not necessary to distinguish the low melting point bodies 50A, 50B, and 50C from each other, they may be collectively referred to as "low melting point body 50".

各ヒューズ部40は、定格電流を超える大きさの電流が流れたときにジュール熱により、溶断されるように設計されている。ヒューズ部40が溶断されると、溶断したヒューズ部40と接続されている接続部32と、バッテリ接続部31との電気的接続が断たれる。 Each fuse unit 40 is designed to be blown by Joule heat when a current having a magnitude exceeding the rated current flows. When the fuse portion 40 is blown, the electrical connection between the connection portion 32 connected to the blown fuse portion 40 and the battery connection portion 31 is cut off.

以下、図3及び図4を参照しながら、ヒューズ部40について説明する。図4に示すように、各ヒューズ部40の輪郭形状は同形である。各ヒューズ部40は、バッテリ接続部31から接続部32側に向けて延びる延在部41と、接続部32からバッテリ接続部31側に向けて延びる延在部42と、延在部41及び延在部42の双方の延出端部を連結する溶断部43と、から構成される。 Hereinafter, the fuse unit 40 will be described with reference to FIGS. 3 and 4. As shown in FIG. 4, the contour shape of each fuse portion 40 is the same. Each fuse portion 40 has an extending portion 41 extending from the battery connecting portion 31 toward the connecting portion 32 side, an extending portion 42 extending from the connecting portion 32 toward the battery connecting portion 31 side, and the extending portion 41 and extending. It is composed of a fusing portion 43 that connects both extending ends of the existing portion 42.

本例では、延在部41及び延在部42は、互いに逆向きに屈曲する略L字状の平板状の形状を有し、溶断部43は、バッテリ接続部31と接続部32とを結ぶ連結方向(図4にて、上下方向)に沿って直線状に延びる矩形平板状の形状を有する。溶断部43は、バッテリ接続部31と接続部32とを、板厚方向に段差なく連結している。 In this example, the extending portion 41 and the extending portion 42 have a substantially L-shaped flat plate shape that bends in opposite directions to each other, and the fusing portion 43 connects the battery connecting portion 31 and the connecting portion 32. It has a rectangular flat plate shape that extends linearly along the connecting direction (vertical direction in FIG. 4). The fusing portion 43 connects the battery connecting portion 31 and the connecting portion 32 without a step in the plate thickness direction.

溶断部43の延在部41側の端部は、溶断部43の連結方向に延びる一対の側縁(側面)にそれぞれ窪みを形成することで、導電断面積(電流が流れる面積)がヒューズ部40のうちで最も小さい発熱部44となっている。通電断面積が小さいほど、電気抵抗がより大きくなるため、ジュール熱がより多く発生する。即ち、ヒューズ部40に電流が流れる際、発熱部44の温度がヒューズ部40のうちで最も高くなる。 The end of the fusing portion 43 on the extending portion 41 side has a recess in each of the pair of side edges (side surfaces) extending in the connecting direction of the fusing portion 43, so that the conductive cross-sectional area (area through which the current flows) is the fuse portion. It is the smallest heating unit 44 among the 40. The smaller the energized cross-sectional area, the higher the electrical resistance and therefore more Joule heat is generated. That is, when a current flows through the fuse unit 40, the temperature of the heat generating unit 44 becomes the highest among the fuse units 40.

各ヒューズ部40のうちヒューズ部40Aのみについて、図3に示すように、溶断部43の上面(図3にて、紙面手前側の面)にて、複数(本例では、3つ)の配置部45a,45b,45cが、連結方向に直交する幅方向の中央位置にて連結方向に沿って並ぶように、設けられている。以下、説明の便宜上、配置部45a,45b,45cを互いに区別して表現する必要がない場合、これらを総称して「配置部45」と呼ぶことがある。配置部45は、低融点体50が載置される箇所(目印)として機能する。 Of the fuse portions 40, only the fuse portion 40A is arranged on the upper surface of the fusing portion 43 (the surface on the front side of the paper surface in FIG. 3) (three in this example) as shown in FIG. The portions 45a, 45b, 45c are provided so as to be arranged along the connecting direction at the central position in the width direction orthogonal to the connecting direction. Hereinafter, for convenience of explanation, when it is not necessary to express the arrangement units 45a, 45b, and 45c separately from each other, they may be collectively referred to as "arrangement unit 45". The arranging portion 45 functions as a place (mark) on which the low melting point body 50 is placed.

本例では、各配置部45はそれぞれ、板厚方向に貫通する円形の貫通孔であって、目視可能となっている。各配置部45の直径は、同じであることが好適である。なお、ヒューズ部40Aのうちで導電断面積が発熱部44にて最小となるように、各配置部45(貫通孔)の直径が設計されている。 In this example, each of the arrangement portions 45 is a circular through hole penetrating in the plate thickness direction and is visible. It is preferable that the diameter of each arrangement portion 45 is the same. The diameter of each arrangement portion 45 (through hole) is designed so that the conductive cross-sectional area of the fuse portion 40A is minimized in the heat generating portion 44.

図3に示すように、配置部45a及び配置部45bに挟まれる溶断部43の最小長さを「a1」、配置部45b及び配置部45cに挟まれる溶断部43の最小長さを「a2」、配置部45及び連結方向に延びる溶断部43の側縁に挟まれる溶断部43の最小長さを「b」と定義すると、「b≧a1,b≧a2」という関係が成立している。これらの関係が成立することによる作用については後述する。以下、図3に示すように、隣接する配置部45に挟まれる溶断部43の部分を「溶断部43a」と呼び、配置部45及び連結方向に延びる溶断部43の側縁に挟まれる溶断部43の部分を「溶断部43b」と呼ぶ。 As shown in FIG. 3, the minimum length of the fusing portion 43 sandwiched between the arrangement portion 45a and the arrangement portion 45b is "a1", and the minimum length of the fusing portion 43 sandwiched between the arrangement portion 45b and the arrangement portion 45c is "a2". If the minimum length of the fusing portion 43 sandwiched between the arrangement portion 45 and the side edge of the fusing portion 43 extending in the connecting direction is defined as "b", the relationship "b ≧ a1, b ≧ a2" is established. The action of establishing these relationships will be described later. Hereinafter, as shown in FIG. 3, the portion of the fusing portion 43 sandwiched between the adjacent arrangement portions 45 is referred to as a “fusing portion 43a”, and the fusing portion sandwiched between the arrangement portion 45 and the side edge of the fusing portion 43 extending in the connecting direction. The portion 43 is referred to as a “fusing portion 43b”.

ヒューズ部40Aにおいて、溶断部43の上面における配置部45a,45b,45cの何れか一つには、固相の低融点体50Aが載置される。本例では、図3及び図4に示すように、低融点体50Aが、配置部45a(即ち、貫通孔)に載置されている。具体的には、貫通孔である配置部45aの孔内に低融点体50Aの一部が入り込み、且つ、低融点体50Aの他部が配置部45aの開口周縁を覆いながら半球状の形状を有するように溶断部43の表面上に配置されている。このように低融点体50Aの一部が孔内に入り込むことで、低融点体50Aを目標の配置部45aに適正に配置できるとともに、配置後における低融点体50Aの位置ずれ等を抑制できる。この効果は、配置部45aが貫通孔以外の形状(例えば、窪みや切り欠き等)を有する場合においても、同様に発揮され得る。低融点体50を構成する材料(低融点金属材料)は、例えば、錫(Sn)を主成分とする合金である。一方、ヒューズ部40(バスバ30)を構成する金属材料は、例えば、銅(Cu)を主成分とする合金である。低融点体50を構成する低融点金属材料の融点(純Sn:232℃)は、ヒューズ部40を構成する金属材料の融点(純Cu:1085℃)よりも低い。 In the fuse portion 40A, a solid phase low melting point body 50A is placed on any one of the arrangement portions 45a, 45b, 45c on the upper surface of the blown portion 43. In this example, as shown in FIGS. 3 and 4, the low melting point body 50A is placed in the arrangement portion 45a (that is, the through hole). Specifically, a part of the low melting point body 50A enters the hole of the arrangement portion 45a which is a through hole, and the other portion of the low melting point body 50A covers the opening peripheral edge of the arrangement portion 45a to form a hemispherical shape. It is arranged on the surface of the fusing portion 43 so as to have it. By allowing a part of the low melting point body 50A to enter the pores in this way, the low melting point body 50A can be appropriately placed in the target placement portion 45a, and the misalignment of the low melting point body 50A after placement can be suppressed. This effect can be similarly exerted even when the arrangement portion 45a has a shape other than the through hole (for example, a depression or a notch). The material (low melting point metal material) constituting the low melting point body 50 is, for example, an alloy containing tin (Sn) as a main component. On the other hand, the metal material constituting the fuse portion 40 (bass bar 30) is, for example, an alloy containing copper (Cu) as a main component. The melting point of the low melting point metal material constituting the low melting point body 50 (pure Sn: 232 ° C.) is lower than the melting point of the metal material constituting the fuse portion 40 (pure Cu: 1085 ° C.).

他方、本例では、図4に示すように、ヒューズ部40Bにおいて、溶断部43の上面(図4にて、紙面手前側の面)にて、固相の低融点体50Bが、連結方向におけるヒューズ部40Aの配置部45aに対応する位置且つ幅方向における中央位置に載置されている。同様に、ヒューズ部40Cにおいて、溶断部43の上面にて、固相の低融点体50Cが、連結方向におけるヒューズ部40Aの配置部45bに対応する位置且つ幅方向における中央位置に載置されている。なお、低融点体50B,50Cの形状は、上述した低融点体50Aの形状と同様である。 On the other hand, in this example, as shown in FIG. 4, in the fuse portion 40B, on the upper surface of the blown portion 43 (the surface on the front side of the paper surface in FIG. 4), the solid phase low melting point body 50B is in the connecting direction. It is placed at a position corresponding to the arrangement portion 45a of the fuse portion 40A and at the center position in the width direction. Similarly, in the fuse portion 40C, the low melting point body 50C of the solid phase is placed on the upper surface of the blown portion 43 at a position corresponding to the arrangement portion 45b of the fuse portion 40A in the connecting direction and at the center position in the width direction. There is. The shapes of the low melting point bodies 50B and 50C are the same as the shapes of the low melting point bodies 50A described above.

以下、図3及び図4に示す各ヒューズ部40における溶断動作を説明する。まず、その準備として、ヒューズ部40の溶断原理について説明する。ヒューズ部40に電流が流れると、その際にヒューズ部40に生じる発熱(ジュール熱)により、低融点体50が溶断部43よりも先に溶融する。溶融した(液相の)低融点体50が溶断部43に接触すると、溶断部43そのものは未だ融点に達していなくても、溶断部43を構成する金属材料が低融点体50の中に拡散する。この拡散によって溶断部43が徐々に侵食され、この侵食が溶断部43b(図3参照)の幅方向の全域に亘って進行した段階で、溶断部43が切断(溶断)される。上述した溶断原理から、低融点体50が載置されている箇所の溶断部43の温度が低融点体50の融点に達した時点にて(溶断部43を構成する金属材料の融点に達していなくても)、溶断部43を溶断させられることになる。これにより、ヒューズエレメント10をより実用的な温度(低融点体50の融点)にて溶断させられる。 Hereinafter, the blowing operation of each fuse portion 40 shown in FIGS. 3 and 4 will be described. First, as a preparation for this, the blowing principle of the fuse portion 40 will be described. When a current flows through the fuse section 40, the low melting point body 50 melts before the fusing section 43 due to the heat generated (Joule heat) generated in the fuse section 40 at that time. When the molten (liquid phase) low melting point body 50 comes into contact with the fusing part 43, the metal material constituting the fusing part 43 diffuses into the low melting point body 50 even if the fusing part 43 itself has not reached the melting point yet. do. The fusing portion 43 is gradually eroded by this diffusion, and when the erosion progresses over the entire width direction of the fusing portion 43b (see FIG. 3), the fusing portion 43 is cut (fused). From the above-mentioned fusing principle, when the temperature of the fusing portion 43 at the place where the low melting point body 50 is placed reaches the melting point of the low melting point body 50 (the melting point of the metal material constituting the fusing portion 43 is reached). (Even if it is not), the fusing portion 43 can be fusing. As a result, the fuse element 10 can be blown at a more practical temperature (melting point of the low melting point body 50).

ヒューズ部40Aへの通電時において、ヒューズ部40Aの溶断部43では、最も高温となる発熱部44から遠ざかるにつれて、温度がより低くなる。即ち、配置部45b周辺の溶断部43の温度は、配置部45a周辺の溶断部43の温度より低く、配置部45c周辺の溶断部43の温度は、配置部45b周辺の溶断部43の温度より低い。ヒューズ部40Aを流れる電流の大きさが大きいほど、発熱部44の温度(即ち、各配置部45の温度)が高くなる。以上より、低融点体50Aを載置する配置部45を異ならせれば、溶断部43が溶断に至る際の電流の大きさ(即ち、定格電流)が異なることになる。 When the fuse portion 40A is energized, the temperature of the blown portion 43 of the fuse portion 40A becomes lower as the distance from the heat generating portion 44, which is the highest temperature, increases. That is, the temperature of the fusing portion 43 around the arrangement portion 45b is lower than the temperature of the fusing portion 43 around the arrangement portion 45a, and the temperature of the fusing portion 43 around the arrangement portion 45c is lower than the temperature of the fusing portion 43 around the arrangement portion 45b. Low. The larger the magnitude of the current flowing through the fuse portion 40A, the higher the temperature of the heat generating portion 44 (that is, the temperature of each arrangement portion 45). From the above, if the arrangement portion 45 on which the low melting point body 50A is placed is different, the magnitude of the current (that is, the rated current) when the fusing portion 43 reaches fusing will be different.

具体的には、ヒューズ部40Aを流れる電流の大きさがA1のときに配置部45a周辺の溶断部43の温度が低融点体50の融点と等しくなるものとすると、ヒューズ部40Aを流れる電流の大きさがA1のときに、配置部45a周辺の溶断部43の温度が低融点体50の融点と等しくなり、配置部45b周辺及び配置部45c周辺の溶断部43の温度が低融点体50の融点より低くなる。即ち、低融点体50Aを配置部45aに載置した状態で、ヒューズ部40Aを流れる電流の大きさがA1に達すると、溶断部43における配置部45aに対応する連結方向の位置にて溶断部43を溶断させられる。換言すれば、図3及び図4に示すように、低融点体50Aを配置部45aに載置することで、ヒューズ部40Aの定格電流をA1に設定することができる。 Specifically, assuming that the temperature of the fusing portion 43 around the arrangement portion 45a is equal to the melting point of the low melting point body 50 when the magnitude of the current flowing through the fuse portion 40A is A1, the current flowing through the fuse portion 40A When the size is A1, the temperature of the fusing portion 43 around the arrangement portion 45a becomes equal to the melting point of the low melting point body 50, and the temperature of the fusing portion 43 around the arrangement portion 45b and the arrangement portion 45c is the temperature of the low melting point body 50. It is lower than the melting point. That is, when the magnitude of the current flowing through the fuse portion 40A reaches A1 with the low melting point body 50A placed on the arrangement portion 45a, the fusing portion is located at the position in the connecting direction corresponding to the arrangement portion 45a in the fusing portion 43. 43 is melted. In other words, as shown in FIGS. 3 and 4, the rated current of the fuse portion 40A can be set to A1 by placing the low melting point body 50A on the arrangement portion 45a.

ヒューズ部40Aを流れる電流の大きさがA1より大きいA2のときに配置部45b周辺の溶断部43の温度が低融点体50の融点と等しくなるものとすると、ヒューズ部40Aを流れる電流の大きさがA2のときに、配置部45a周辺の溶断部43の温度が低融点体50の融点より高くなり、配置部45b周辺の溶断部43の温度が低融点体50の融点と等しくなり、配置部45c周辺の溶断部43の温度が低融点体50の融点より低くなる。即ち、低融点体50Aを配置部45bに載置した状態で、ヒューズ部40Aを流れる電流の大きさがA2に達すると、溶断部43における配置部45bに対応する連結方向の位置にて溶断部43を溶断させられる。換言すれば、低融点体50Aを配置部45bに載置することで、ヒューズ部40Aの定格電流をA2に設定することができる。 When the magnitude of the current flowing through the fuse portion 40A is larger than A1 and the temperature of the fusing portion 43 around the arrangement portion 45b is equal to the melting point of the low melting point body 50, the magnitude of the current flowing through the fuse portion 40A When is A2, the temperature of the fusing portion 43 around the arrangement portion 45a becomes higher than the melting point of the low melting point body 50, the temperature of the fusing portion 43 around the arrangement portion 45b becomes equal to the melting point of the low melting point body 50, and the arrangement portion The temperature of the fusing portion 43 around 45c becomes lower than the melting point of the low melting point body 50. That is, when the magnitude of the current flowing through the fuse portion 40A reaches A2 with the low melting point body 50A placed on the arrangement portion 45b, the fusing portion is located at the position in the connecting direction corresponding to the arrangement portion 45b in the fusing portion 43. 43 is melted. In other words, by placing the low melting point body 50A on the arrangement portion 45b, the rated current of the fuse portion 40A can be set to A2.

ヒューズ部40Aを流れる電流の大きさがA2より大きいA3のときに配置部45c周辺の溶断部43の温度が低融点体50の融点と等しくなるものとすると、ヒューズ部40Aを流れる電流の大きさがA3のときに、配置部45a周辺及び配置部45b周辺の溶断部43の温度が低融点体50の融点より高くなり、配置部45c周辺の溶断部43の温度が低融点体50の融点と等しくなる。即ち、低融点体50Aを配置部45cに載置した状態で、ヒューズ部40Aを流れる電流の大きさがA3に達すると、溶断部43における配置部45cに対応する連結方向の位置にて溶断部43を溶断させられる。換言すれば、低融点体50Aを配置部45cに載置することで、ヒューズ部40Aの定格電流をA3に設定することができる。以上のように、ヒューズ部40Aでは、低融点体50Aを載置する配置部45を異ならせることで、ヒューズ部40(即ち、バスバ30)の形状を異ならせることなく、定格電流の大きさを調整可能である。 When the magnitude of the current flowing through the fuse portion 40A is larger than A2 and the temperature of the fusing portion 43 around the arrangement portion 45c is equal to the melting point of the low melting point body 50, the magnitude of the current flowing through the fuse portion 40A When is A3, the temperature of the fusing portion 43 around the arrangement portion 45a and the vicinity of the arrangement portion 45b is higher than the melting point of the low melting point body 50, and the temperature of the fusing portion 43 around the arrangement portion 45c is the melting point of the low melting point body 50. Become equal. That is, when the magnitude of the current flowing through the fuse portion 40A reaches A3 with the low melting point body 50A placed on the arrangement portion 45c, the fusing portion is located at the position in the connecting direction corresponding to the arrangement portion 45c in the fusing portion 43. 43 is melted. In other words, by placing the low melting point body 50A on the arrangement portion 45c, the rated current of the fuse portion 40A can be set to A3. As described above, in the fuse portion 40A, by making the arrangement portion 45 on which the low melting point body 50A is placed different, the magnitude of the rated current can be increased without changing the shape of the fuse portion 40 (that is, the bus bar 30). It is adjustable.

ここで、上述したように、ヒューズ部40Aについて、「b≧a1,b≧a2」という関係が成立している(図3参照)。即ち、ヒューズ部40Aへの通電時、溶断部43を構成する金属材料が低融点体50の中に拡散する速度が、溶断部43の上面の延在領域に亘って均一であると仮定すると、溶断部43において、溶断部43aは溶断部43bと比べてより速やかに溶け終わる。このため、本来溶断するべき溶断部43bを溶かすために用いるべき低融点体50を、溶断部43aが無用に消費することが抑えられる。 Here, as described above, the relationship “b ≧ a1, b ≧ a2” is established for the fuse portion 40A (see FIG. 3). That is, assuming that the rate at which the metal material constituting the fusing portion 43 diffuses into the low melting point body 50 when the fuse portion 40A is energized is uniform over the extending region on the upper surface of the fusing portion 43. In the fusing portion 43, the fusing portion 43a finishes melting more quickly than the fusing portion 43b. Therefore, it is possible to prevent the fusing portion 43a from unnecessarily consuming the low melting point body 50 that should be used to melt the fusing portion 43b that should be fusing.

以上、本例では、図3及び図4に示すように、ヒューズ部40Aでは、低融点体50Aが配置部45aに載置されているので、ヒューズ部40Aの定格電流がA1に設定されている。ヒューズ部40Bでは、低融点体50Bが連結方向におけるヒューズ部40Aの配置部45aに対応する位置に載置されているので、ヒューズ部40Bの定格電流がA1に設定されている。ヒューズ部40Cでは、低融点体50Cが連結方向におけるヒューズ部40Aの配置部45bに対応する位置に載置されているので、ヒューズ部40Cの定格電流がA2に設定されている。 As described above, in this example, as shown in FIGS. 3 and 4, in the fuse portion 40A, the low melting point body 50A is placed on the arrangement portion 45a, so that the rated current of the fuse portion 40A is set to A1. .. In the fuse portion 40B, since the low melting point body 50B is placed at a position corresponding to the arrangement portion 45a of the fuse portion 40A in the connecting direction, the rated current of the fuse portion 40B is set to A1. In the fuse portion 40C, since the low melting point body 50C is placed at a position corresponding to the arrangement portion 45b of the fuse portion 40A in the connecting direction, the rated current of the fuse portion 40C is set to A2.

なお、ヒューズ部40Aの各配置部45の何れか一つに低融点体50Aを載置する際には、配置部45が目視可能であることから、低融点体50Aが載置されるべき配置部45を目視しながら、作業者による手作業で、その配置部45に低融点体50Aを載置することが可能である。一方、ヒューズ部40B,40Cでは、溶断部43の上面において目視可能な配置部45に相当する目印が存在しない。即ち、ヒューズ部40B、40Cの溶断部43の上面の所定箇所に低融点体50B,50Cをそれぞれ載置する作業は、所定の機械等を利用して行うことが好ましい。 When the low melting point body 50A is placed on any one of the arrangement portions 45 of the fuse portion 40A, the arrangement portion 45 is visible, so that the low melting point body 50A should be placed. It is possible to manually place the low melting point body 50A on the arranging portion 45 while visually observing the portion 45. On the other hand, in the fuse portions 40B and 40C, there is no mark corresponding to the visible arrangement portion 45 on the upper surface of the blown portion 43. That is, it is preferable to use a predetermined machine or the like to place the low melting point bodies 50B and 50C on the upper surface of the blown portion 43 of the fuse portions 40B and 40C, respectively.

<作用・効果>
以上、本実施形態に係るヒューズエレメント10によれば、ヒューズエレメント10のヒューズ部40にあらかじめ設けられている複数の配置部45の少なくとも一つに、低融点体50が配置される。複数の配置部45の各々と、ヒューズ部40への通電時に最も高温となる発熱部44と、の距離は、互いに相違している。そのため、ヒューズ部40(ヒューズエレメント10)への通電時、複数の配置部45の各々の温度は、発熱部44との距離に基づいて異なる。よって、低融点体50を設ける配置部45を異ならせれば、ヒューズ部40が溶断に至る際の電流値が異なることになる。したがって、本実施形態に係るヒューズエレメント10は、ヒューズ部40(即ち、ヒューズエレメント10)の形状を異ならせることなく、定格電流の大きさを調整可能である。
<Action / effect>
As described above, according to the fuse element 10 according to the present embodiment, the low melting point body 50 is arranged in at least one of the plurality of arrangement portions 45 provided in advance in the fuse portion 40 of the fuse element 10. The distances between each of the plurality of arrangement portions 45 and the heat generating portion 44, which becomes the hottest when the fuse portion 40 is energized, are different from each other. Therefore, when the fuse portion 40 (fuse element 10) is energized, the temperature of each of the plurality of arrangement portions 45 differs based on the distance from the heat generating portion 44. Therefore, if the arrangement portion 45 on which the low melting point body 50 is provided is different, the current value when the fuse portion 40 is blown will be different. Therefore, in the fuse element 10 according to the present embodiment, the magnitude of the rated current can be adjusted without changing the shape of the fuse portion 40 (that is, the fuse element 10).

更に、本実施形態に係るヒューズエレメント10によれば、配置部45を構成する貫通孔同士の間の溶断部43の長さ(図3におけるa1及びa2)が、配置部45と溶断部43の側縁とに挟まれる溶断部43の長さ(図3におけるb)以下である。よって、通電時、溶断部43a(図3参照)がより速やかに溶け終わるため、本来溶断するべき溶断部43b(図3参照)を溶かすために用いるべき低融点体50を溶断部43aが無用に消費することが抑えられる。したがって、本実施形態に係るヒューズエレメント10は、設計された定格電流にてより正確に導電体を溶断可能である。 Further, according to the fuse element 10 according to the present embodiment, the lengths of the fusing portions 43 (a1 and a2 in FIG. 3) between the through holes forming the arrangement portion 45 are the lengths of the arrangement portion 45 and the fusing portion 43. It is less than or equal to the length of the fusing portion 43 sandwiched between the side edges (b in FIG. 3). Therefore, when the power is turned on, the fusing portion 43a (see FIG. 3) finishes melting more quickly, so that the fusing portion 43a does not need the low melting point body 50 that should be used to melt the fusing portion 43b (see FIG. 3) that should be originally fused. Consumption is suppressed. Therefore, the fuse element 10 according to the present embodiment can more accurately blow the conductor at the designed rated current.

<他の形態>
なお、本発明は上記各実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
<Other forms>
The present invention is not limited to each of the above embodiments, and various modifications can be adopted within the scope of the present invention. For example, the present invention is not limited to the above-described embodiment, and can be appropriately modified, improved, and the like. In addition, the material, shape, dimensions, number, arrangement location, etc. of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

上記実施形態では、ヒューズ部40Aの溶断部43の上面にて、3つの配置部45が連結方向に沿って並ぶように設けられている。これに対し、ヒューズ部40Aの溶断部43の上面にて、2つの配置部45、或いは、4つ以上の配置部45が連結方向に沿って並ぶように設けられていてもよい。 In the above embodiment, three arrangement portions 45 are provided so as to be arranged along the connection direction on the upper surface of the blown portion 43 of the fuse portion 40A. On the other hand, on the upper surface of the blown portion 43 of the fuse portion 40A, two arrangement portions 45 or four or more arrangement portions 45 may be provided so as to be arranged along the connection direction.

更に、上記実施形態では、配置部45として、溶断部43に貫通孔が形成されている。これに対し、配置部45として、溶断部43の上面にて貫通しない窪みが形成されてもよいし、溶断部43の上面に目印が描かれていてもよい。 Further, in the above embodiment, a through hole is formed in the fusing portion 43 as the arranging portion 45. On the other hand, as the arrangement portion 45, a recess that does not penetrate may be formed on the upper surface of the fusing portion 43, or a mark may be drawn on the upper surface of the fusing portion 43.

更に、上記実施形態では、溶断部43の連結方向に延びる一対の側縁(側面)にそれぞれ窪みを形成することで、導電断面積がヒューズ部40のうちで最も小さい発熱部44が形成されている。これに対し、溶断部43の厚さを他の部分と比べて薄くすることで、導電断面積がヒューズ部40のうちで最も小さい発熱部44が形成されていてもよい。 Further, in the above embodiment, by forming recesses on each of the pair of side edges (side surfaces) extending in the connecting direction of the fusing portion 43, the heat generating portion 44 having the smallest conductive cross-sectional area among the fuse portions 40 is formed. There is. On the other hand, by making the thickness of the fusing portion 43 thinner than that of the other portions, the heat generating portion 44 having the smallest conductive cross-sectional area among the fuse portions 40 may be formed.

更に、上記実施形態では、バスバ30は、バッテリ接続部31と、複数の接続部32A,32B,32Cと、複数のヒューズ部40A,40B,40Cと、を備え、バッテリ接続部31は、ヒューズ部40Aを介して接続部32Aと接続され、ヒューズ部40Bを介して接続部32Bと接続され、ヒューズ部40Cを介して接続部32Cと接続されている。これに対し、接続部32B,32C、及び、ヒューズ部40B,40Cが省略されて、バスバ30が、バッテリ接続部31と、単一の接続部32Aと、単一のヒューズ部40Aを備え、バッテリ接続部31が、ヒューズ部40Aを介してのみ、接続部32Aと接続されていてもよい。 Further, in the above embodiment, the bus bar 30 includes a battery connection unit 31, a plurality of connection units 32A, 32B, 32C, and a plurality of fuse units 40A, 40B, 40C, and the battery connection unit 31 is a fuse unit. It is connected to the connecting portion 32A via the 40A, connected to the connecting portion 32B via the fuse portion 40B, and connected to the connecting portion 32C via the fuse portion 40C. On the other hand, the connection portions 32B and 32C and the fuse portions 40B and 40C are omitted, and the bus bar 30 includes a battery connection portion 31, a single connection portion 32A, and a single fuse portion 40A, and is a battery. The connecting portion 31 may be connected to the connecting portion 32A only via the fuse portion 40A.

更に、上記実施形態では、ヒューズ部40Aにおいて、溶断部43の上面における配置部45a,45b,45cの何れか一つに低融点体50Aが載置されている。これに対し、ヒューズ部40Aにおいて、溶断部43の上面における配置部45a,45b,45cのうち何れか二つ、又は、配置部45a,45b,45cの全てに低融点体50Aがそれぞれ載置されていてもよい。 Further, in the above embodiment, in the fuse portion 40A, the low melting point body 50A is placed on any one of the arrangement portions 45a, 45b, 45c on the upper surface of the blown portion 43. On the other hand, in the fuse portion 40A, the low melting point body 50A is placed on any two of the arrangement portions 45a, 45b, 45c on the upper surface of the fusing portion 43, or all of the arrangement portions 45a, 45b, 45c. May be.

ここで、上述した本発明に係るヒューズエレメント10及びヒューズユニット1の実施形態の特徴をそれぞれ以下[1]〜[3]に簡潔に纏めて列記する。
[1]
導電体(40)と、前記導電体(40)を構成する材料の融点よりも低い融点を有する低融点材料から構成された低融点体(50)と、を備えるヒューズエレメント(10)であって、
前記導電体(40)は、
当該導電体(40)に電流が流れることによって当該導電体(40)の温度が最も高くなる発熱部(44)と、
前記発熱部(44)からの距離が異なる複数の箇所に設けられる複数の配置部(45)と、を有し、
前記低融点体(50)は、
前記複数の前記配置部(45)の少なくとも一つに配置される、
ヒューズエレメント(10)。
[2]
上記[1]に記載のヒューズエレメント(10)において、
前記導電体(40)は、
矩形平板状の溶断部(43)を有し、
前記複数の前記配置部(45)は、前記導電体(40)を貫通する孔形状を有し、前記溶断部(43)の軸方向に沿って並ぶように設けられ、
隣り合う前記配置部(45)に挟まれる前記導電体(40)の長さ(a1,a2)が、前記配置部(45)と前記溶断部(43)の側縁とに挟まれる前記導電体(40)の長さ(b)以下である、
ヒューズエレメント(10)。
[3]
複数の導電体(40)と、前記複数の前記導電体(40)を構成する材料の融点よりも低い融点を有する低融点材料から構成されて前記複数の前記導電体(40)の各々に設けられる低融点体(50)と、を備えるヒューズユニット(1)であって、
前記複数の前記導電体(40)の各々は、
当該導電体(40)に電流が流れることによって当該導電体(40)の温度が最も高くなる発熱部(44)を有し、
前記複数の前記導電体(40)の少なくとも一つは、
前記発熱部(44)からの距離が異なる複数の箇所に設けられる複数の配置部(45)と、前記複数の前記配置部(45)の少なくとも一つに配置される前記低融点体(50)と、を有する、
ヒューズユニット(1)。
Here, the features of the above-described fuse element 10 and fuse unit 1 embodiment of the present invention are briefly summarized and listed below in [1] to [3], respectively.
[1]
A fuse element (10) comprising a conductor (40) and a low melting point body (50) made of a low melting point material having a melting point lower than the melting point of the material constituting the conductor (40). ,
The conductor (40) is
A heat generating portion (44) in which the temperature of the conductor (40) becomes the highest when an electric current flows through the conductor (40).
It has a plurality of arrangement portions (45) provided at a plurality of locations having different distances from the heat generating portion (44).
The low melting point body (50) is
Arranged in at least one of the plurality of arrangement portions (45).
Fuse element (10).
[2]
In the fuse element (10) described in the above [1],
The conductor (40) is
It has a rectangular flat plate-shaped fusing portion (43) and has a rectangular flat plate-like fusing portion (43).
The plurality of the arrangement portions (45) have a hole shape penetrating the conductor (40) and are provided so as to be arranged along the axial direction of the fusing portion (43).
The length (a1, a2) of the conductor (40) sandwiched between the adjacent arrangement portions (45) is sandwiched between the arrangement portion (45) and the side edge of the fusing portion (43). It is less than or equal to the length (b) of (40).
Fuse element (10).
[3]
Each of the plurality of conductors (40) is composed of a plurality of conductors (40) and a low melting point material having a melting point lower than the melting point of the materials constituting the plurality of conductors (40). A fuse unit (1) including a low melting point body (50).
Each of the plurality of conductors (40)
It has a heat generating portion (44) at which the temperature of the conductor (40) becomes the highest when an electric current flows through the conductor (40).
At least one of the plurality of conductors (40)
A plurality of arrangement portions (45) provided at a plurality of locations having different distances from the heat generating portion (44), and the low melting point body (50) arranged at at least one of the plurality of arrangement portions (45). And have,
Fuse unit (1).

1 ヒューズユニット
10 ヒューズエレメント
40 ヒューズ部(導電体)
43 溶断部
44 発熱部
45 配置部
50 低融点体
1 Fuse unit 10 Fuse element 40 Fuse part (conductor)
43 Fusing part 44 Heat generating part 45 Arrangement part 50 Low melting point body

Claims (3)

導電体と、前記導電体を構成する材料の融点よりも低い融点を有する低融点材料から構成された低融点体と、を備えるヒューズエレメントであって、
前記導電体は、
当該導電体に電流が流れたときに当該導電体の温度が最も高くなる発熱部と、
前記発熱部からの距離が異なる複数の箇所に設けられる複数の配置部と、を有し、
前記低融点体は、
前記複数の前記配置部の少なくとも一つに配置される、
ヒューズエレメント。
A fuse element comprising a conductor and a low melting point body made of a low melting point material having a melting point lower than the melting point of the material constituting the conductor.
The conductor is
The heat generating part where the temperature of the conductor becomes the highest when an electric current flows through the conductor, and
It has a plurality of arrangement portions provided at a plurality of locations having different distances from the heat generating portion.
The low melting point body is
Arranged in at least one of the plurality of the arrangement portions,
Fuse element.
請求項1に記載のヒューズエレメントにおいて、
前記導電体は、矩形平板状の溶断部を有し、
前記複数の前記配置部は、前記導電体を貫通する孔形状を有し、前記溶断部の軸方向に沿って並ぶように設けられ、
隣り合う前記配置部に挟まれる前記導電体の長さが、前記配置部と前記溶断部の側縁とに挟まれる前記導電体の長さ以下である、
ヒューズエレメント。
In the fuse element according to claim 1,
The conductor has a rectangular flat plate-shaped fusing portion and has a fusing portion.
The plurality of the arrangement portions have a hole shape penetrating the conductor, and are provided so as to be arranged along the axial direction of the fusing portion.
The length of the conductor sandwiched between the adjacent arrangement portions is equal to or less than the length of the conductor sandwiched between the arrangement portion and the side edge of the fusing portion.
Fuse element.
複数の導電体と、前記複数の前記導電体を構成する材料の融点よりも低い融点を有する低融点材料から構成されて前記複数の前記導電体の各々に設けられる低融点体と、を備えるヒューズユニットであって、
前記複数の前記導電体の各々は、
当該導電体に電流が流れたときに当該導電体の温度が最も高くなる発熱部を有し、
前記複数の前記導電体の少なくとも一つは、
前記発熱部からの距離が異なる複数の箇所に設けられる複数の配置部と、前記複数の前記配置部の少なくとも一つに配置される前記低融点体と、を有する、
ヒューズユニット。
A fuse comprising a plurality of conductors and a low melting point material composed of a low melting point material having a melting point lower than the melting point of the material constituting the plurality of conductors and provided in each of the plurality of the conductors. It ’s a unit,
Each of the plurality of conductors
It has a heat generating part where the temperature of the conductor becomes the highest when an electric current flows through the conductor.
At least one of the plurality of the conductors
It has a plurality of arrangement portions provided at a plurality of locations having different distances from the heat generating portion, and the low melting point body arranged at at least one of the plurality of arrangement portions.
Fuse unit.
JP2020048294A 2020-03-18 2020-03-18 Fuse element and fuse unit Active JP7428559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020048294A JP7428559B2 (en) 2020-03-18 2020-03-18 Fuse element and fuse unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048294A JP7428559B2 (en) 2020-03-18 2020-03-18 Fuse element and fuse unit

Publications (2)

Publication Number Publication Date
JP2021150151A true JP2021150151A (en) 2021-09-27
JP7428559B2 JP7428559B2 (en) 2024-02-06

Family

ID=77849270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048294A Active JP7428559B2 (en) 2020-03-18 2020-03-18 Fuse element and fuse unit

Country Status (1)

Country Link
JP (1) JP7428559B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257301A (en) 2002-03-04 2003-09-12 Yazaki Corp Fuse and manufacturing method for fuse
JP4513030B2 (en) 2007-03-29 2010-07-28 日本電信電話株式会社 Fuse element
JP5282897B2 (en) 2009-03-12 2013-09-04 住友電装株式会社 fuse
JP6799456B2 (en) 2016-12-19 2020-12-16 矢崎総業株式会社 Fuse element and fuse unit

Also Published As

Publication number Publication date
JP7428559B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
JP3219703U (en) Battery bus bar
KR101165602B1 (en) Protection element
US9460882B2 (en) Laminated electrical fuse
JP6510482B2 (en) Fixing structure of conductor unit
JP2018198181A (en) Connecting stem for battery pack, and battery pack
JP6707377B2 (en) Protective element
JP6694687B2 (en) Tab for mounting protective element of assembled battery and assembled battery
JP2021150151A (en) Fuse element and fuse unit
JP6801974B2 (en) Protective element
JP5282897B2 (en) fuse
US11127553B1 (en) Overcurrent cutoff unit
JP2003036836A (en) Trace fuse
US20010050608A1 (en) Multiple terminal/branch circuit fuse
WO2022054404A1 (en) Fuse
JP2003022798A (en) Link fuse
KR20030023753A (en) Busbar connecting terminal
WO2022118642A1 (en) Fuse and vehicle-mounted device
CN219936980U (en) Fuse protector
JP7487098B2 (en) Protection elements and electronic devices
CN220367876U (en) Fuse element for fuse and fuse with same
JP2018101506A (en) Fuse element and fuse unit
KR101435205B1 (en) Fuse and Bolt assembly including the same
JP2022019178A (en) Fuse element
GB2375443A (en) Multiple terminal circuit fuse
JP2023166813A (en) bus bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240125

R150 Certificate of patent or registration of utility model

Ref document number: 7428559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150