JP2021134152A - (meth)acrylic acid ester composition - Google Patents

(meth)acrylic acid ester composition Download PDF

Info

Publication number
JP2021134152A
JP2021134152A JP2020029443A JP2020029443A JP2021134152A JP 2021134152 A JP2021134152 A JP 2021134152A JP 2020029443 A JP2020029443 A JP 2020029443A JP 2020029443 A JP2020029443 A JP 2020029443A JP 2021134152 A JP2021134152 A JP 2021134152A
Authority
JP
Japan
Prior art keywords
meth
acrylic acid
acid ester
hydrogen atom
ester composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020029443A
Other languages
Japanese (ja)
Inventor
芙美 大野
Fumi Ono
芙美 大野
健 城
Takeshi Jo
健 城
良啓 加門
Yoshihiro Kamon
良啓 加門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020029443A priority Critical patent/JP2021134152A/en
Publication of JP2021134152A publication Critical patent/JP2021134152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)

Abstract

To provide a (meth)acrylic acid ester composition having a condensed ring including a γ-butyrolactone structure or a crosslinked ring structure which has a small chlorine content, is preferably used for an electronic material and has small environmental load.SOLUTION: There is provided a (meth)acrylic acid ester composition which comprises a (meth)acrylic acid ester represented by the following formula (1) and has a chlorine content of 13000 ppm or less. Provided, R1, R2, R3 and R4 each independently is a hydrogen atom, a methyl group or an ethyl group, both A1 and A2 are a hydrogen atom or A1 and A2 form -O-, -CH2- or -CH2CH2- and either one of X1 and X2 is a hydrogen atom and the other is a (meth)acryloyloxy group.SELECTED DRAWING: None

Description

本発明は、(メタ)アクリル酸エステル組成物に関する。 The present invention relates to a (meth) acrylic acid ester composition.

γ−ブチロラクトン構造を含む縮合環又は架橋環構造を有する(メタ)アクリル酸エス
テルは、塗料、接着剤、粘着剤、インキ用レジン、レジスト、成型材料、光学材料等の構
成成分樹脂の原料モノマーとして有用である。
特許文献1には、γ−ブチロラクトン構造を含む縮合環又は架橋環構造を有する低級カ
ルボン酸エステルを加水分解し、得られたアルコールを酸ハロゲン化物により(メタ)ア
クリルエステル化して上記の(メタ)アクリル酸エステルを得る方法が記載されている。
A (meth) acrylic acid ester having a fused ring or crosslinked ring structure containing a γ-butyrolactone structure can be used as a raw material monomer for constituent resins such as paints, adhesives, adhesives, ink resins, resists, molding materials, and optical materials. It is useful.
In Patent Document 1, a lower carboxylic acid ester having a condensed ring or a crosslinked ring structure containing a γ-butyrolactone structure is hydrolyzed, and the obtained alcohol is (meth) acrylic esterified with an acid halide to form the above (meth). A method for obtaining an acrylic acid ester is described.

特開2002−234882号公報JP-A-2002-234882

しかし、特許文献1の方法は酸ハロゲン化物を用いるため含有塩素量が多く、このもの
を用いたポリマーは含有塩素量が多いため焼却処理等により塩素成分が放出され、環境負
荷が大きい。また電子材料の構成成分樹脂の原料モノマーとして用いる場合、塩素成分が
腐食を引き起こす場合がある。
本発明は、含有塩素量が少なく電子材料にも好適に用いられ、環境負荷が小さいγ−ブ
チロラクトン構造を含む縮合環又は架橋環構造を有する(メタ)アクリル酸エステル組成
物を提供することを目的とする。
However, since the method of Patent Document 1 uses an acid halide, it contains a large amount of chlorine, and the polymer using this substance has a large amount of chlorine, so that a chlorine component is released by incineration or the like, which has a large environmental load. Further, when used as a raw material monomer for a constituent resin of an electronic material, a chlorine component may cause corrosion.
An object of the present invention is to provide a (meth) acrylic acid ester composition having a condensed ring or a crosslinked ring structure containing a γ-butyrolactone structure having a small chlorine content and preferably used for an electronic material and having a small environmental load. And.

本発明は、以下である。
下記式(1)で表される(メタ)アクリル酸エステルを含み、含有全塩素量が1300
0ppm以下である(メタ)アクリル酸エステル組成物。
The present invention is as follows.
It contains (meth) acrylic acid ester represented by the following formula (1) and contains 1300 total chlorine content.
A (meth) acrylic acid ester composition of 0 ppm or less.

Figure 2021134152
Figure 2021134152

ただし、R、R、R及びRはそれぞれ独立に水素原子、メチル基又はエチル基
であり、
及びAは共に水素原子であるか、又はAとAとで−O−、−CH−又は−
CHCH−を形成しており、
及びXはいずれか一方が水素原子であり、他方が(メタ)アクリロイルオキシ基
である。
However, R 1 , R 2 , R 3 and R 4 are independently hydrogen atoms, methyl groups or ethyl groups, respectively.
Both A 1 and A 2 are hydrogen atoms, or A 1 and A 2 are -O-, -CH 2- or-.
CH 2 CH 2 − is formed,
One of X 1 and X 2 is a hydrogen atom, and the other is a (meth) acryloyloxy group.

本発明の組成物は、含有塩素量が少なく電子材料にも好適に用いられ、環境負荷が小さ
いγ−ブチロラクトン構造を含む縮合環又は架橋環構造を有する(メタ)アクリル酸エス
テル組成物である。
The composition of the present invention is a (meth) acrylic acid ester composition having a condensed ring or a crosslinked ring structure containing a γ-butyrolactone structure having a small chlorine content and preferably used for an electronic material and having a small environmental load.

本発明において、「(メタ)アクリル酸エステル」は、アクリル酸エステル又はメタク
リル酸エステルを意味する。「(メタ)アクリロイルオキシ基」は、アクリロイルオキシ
基又はメタクリロイルオキシ基を意味し、CH=CR−C(=O)−O−で表される。
Rは水素原子又はメチル基である。
数値範囲を示す「〜」は、その前後に記載された数値を下限値及び上限値として含むこ
とを意味する。
In the present invention, "(meth) acrylic acid ester" means an acrylic acid ester or a methacrylic acid ester. "(Meta) acryloyloxy group" means an acryloyloxy group or a methylenedioxy group, and is represented by CH 2 = CR-C (= O) -O-.
R is a hydrogen atom or a methyl group.
"~" Indicating a numerical range means that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.

本発明に係る(メタ)アクリル酸エステル組成物は、下記式(1)で表される(メタ)
アクリル酸エステルを含み、含有全塩素量が13000ppm以下である。該含有全塩素
量は、10000ppm以下が好ましく、7000ppm以下がより好ましい。なお、該
含有全塩素量は少ない方が好ましく、0ppmであってもよい。含有全塩素量が1300
0ppm以下であることにより、これを用いたポリマーの含有塩素量が少なくなるため焼
却処理等による塩素成分の放出が抑制され、環境負荷を小さくすることができる。また、
電子材料の構成成分樹脂の原料モノマーとして用いる場合においても、塩素成分による腐
食を抑制できる。含有全塩素量は、自動試料燃焼装置AQF−2100H(商品名、(株
)三菱ケミカルアナリテック製)を用いて燃焼させ、吸収液に燃焼ガスを通液させた後、
イオンクロマトグラフィーIC−2010(商品名、東ソー(株)製)で分析することに
より測定した。
The (meth) acrylic acid ester composition according to the present invention is represented by the following formula (1) (meth).
It contains an acrylic acid ester and contains 13000 ppm or less of total chlorine. The total amount of chlorine contained is preferably 10,000 ppm or less, more preferably 7,000 ppm or less. The total amount of chlorine contained is preferably small, and may be 0 ppm. Total chlorine content is 1300
When it is 0 ppm or less, the chlorine content of the polymer using the same is reduced, so that the release of chlorine components due to incineration or the like is suppressed, and the environmental load can be reduced. again,
Even when used as a raw material monomer for a constituent resin of an electronic material, corrosion due to a chlorine component can be suppressed. The total amount of chlorine contained is determined by burning using an automatic sample combustion device AQF-2100H (trade name, manufactured by Mitsubishi Chemical Analytech Co., Ltd.), and after passing the combustion gas through the absorption liquid.
It was measured by analysis with ion chromatography IC-2010 (trade name, manufactured by Tosoh Corporation).

以下に、本発明に係る(メタ)アクリル酸エステル組成物の製造方法を例示する。
本発明に係る下記式(1)で表される(メタ)アクリル酸エステル(以下、「(メタ)
アクリル酸エステル(1)」とも記す。)は、下記式(2)で表される化合物(以下、「
化合物(2)」とも記す。)と(メタ)アクリル酸エステルとをエステル交換させて製造
する。これにより、下記式(1)で表される(メタ)アクリル酸エステルを含み、含有全
塩素量が13000ppm以下である(メタ)アクリル酸エステル組成物を好適に製造す
ることができる。
Hereinafter, a method for producing the (meth) acrylic acid ester composition according to the present invention will be illustrated.
(Meta) acrylic acid ester represented by the following formula (1) according to the present invention (hereinafter, "(meth)"
It is also referred to as "acrylic acid ester (1)". ) Is a compound represented by the following formula (2) (hereinafter, ""
It is also referred to as "Compound (2)". ) And (meth) acrylic acid ester are transesterified to produce. Thereby, a (meth) acrylic acid ester composition containing the (meth) acrylic acid ester represented by the following formula (1) and having a total chlorine content of 13000 ppm or less can be suitably produced.

Figure 2021134152
Figure 2021134152

上記式(1)(2)において、R、R、R及びRはそれぞれ独立に水素原子、
メチル基又はエチル基であり、A及びAは共に水素原子であるか、又はAとA
で−O−、−CH−又は−CHCH−を形成しており、X及びXはいずれか一
方が水素原子であり、他方が(メタ)アクリロイルオキシ基であり、Z及びZはいず
れか一方が水素原子であり、他方がR−C(=O)−O−であり、Rは水素原子又は
アルキル基である。
In the above formulas (1) and (2), R 1 , R 2 , R 3 and R 4 are independently hydrogen atoms, respectively.
A methyl group or an ethyl group, or A 1 and A 2 are both hydrogen atom, or -O between A 1 and A 2 -, - CH 2 - or -CH 2 CH 2 - forms a, either one of X 1 and X 2 are the hydrogen atom, the other is (meth) acryloyloxy group, either one Z 1 and Z 2 is a hydrogen atom and the other R 5 -C (= O ) is -O-, R 5 is a hydrogen atom or an alkyl group.

より具体的に説明すると、化合物(2)とエステル交換させる(メタ)アクリル酸エス
テル(以下、「原料(メタ)アクリル酸エステル」とも記す。)を下記式(3)で表した
場合、化合物(2)と原料(メタ)アクリル酸エステルと間でのエステル相互交換により
、(メタ)アクリル酸エステル(1)及びR−C(=O)−O−Rが生成する。
CH=CR−C(=O)−O−R (3)
ただし、Rは水素原子又はメチル基であり、Rは任意の置換基である。
More specifically, when the (meth) acrylic acid ester to be transesterified with the compound (2) (hereinafter, also referred to as “raw material (meth) acrylic acid ester”) is represented by the following formula (3), the compound ( by an ester interchange between 2) as a raw material (meth) acrylic acid esters, (meth) acrylic acid ester (1) and R 5 -C (= O) -O -R 6 is produced.
CH 2 = CR-C (= O) -OR 6 (3)
However, R is a hydrogen atom or a methyl group, and R 6 is an arbitrary substituent.

式(1)中、R、R、R及びRはそれぞれ独立に水素原子、メチル基又はエチ
ル基であり、水素原子又はメチル基が好ましい。R、R、R及びRのうちメチル
基又はエチル基であるのは、0〜4個のいずれでもよいが、0〜2個が好ましい。
及びAは共に水素原子であるか、又はAとAとで−O−、−CH−又は−
CHCH−を形成している。A及びAは、AとAとで−O−、−CH−又
は−CHCH−を形成していることが好ましく、AとAとで−CH−を形成し
ていることが特に好ましい。
In the formula (1), R 1 , R 2 , R 3 and R 4 are independently hydrogen atoms, methyl groups or ethyl groups, and hydrogen atoms or methyl groups are preferable. Of R 1 , R 2 , R 3 and R 4 , the number of methyl groups or ethyl groups may be any of 0 to 4, but 0 to 2 is preferable.
Both A 1 and A 2 are hydrogen atoms, or A 1 and A 2 are -O-, -CH 2- or-.
CH 2 CH 2 − is formed. A 1 and A 2, -O between A 1 and A 2 -, - CH 2 - or -CH 2 CH 2 - is preferable to form a, -CH 2 between A 1 and A 2 - of It is particularly preferable that it is formed.

及びXはいずれか一方が水素原子であり、他方が(メタ)アクリロイルオキシ基
である。X及びXのどちらが(メタ)アクリロイルオキシであってもよい。
(メタ)アクリル酸エステル(1)の具体例としては、前記した特許文献1に記載のも
のが挙げられる。
式(2)中のR、R、R、R、A及びAはそれぞれ、式(1)中のR
、R、R、A及びAと同じである。
One of X 1 and X 2 is a hydrogen atom, and the other is a (meth) acryloyloxy group. Either X 1 or X 2 may be (meth) acryloyloxy.
Specific examples of the (meth) acrylic acid ester (1) include those described in Patent Document 1 described above.
R 1 , R 2 , R 3 , R 4 , A 1 and A 2 in Eq. (2) are R 1 , R 1 in Eq. (1), respectively.
Same as R 2 , R 3 , R 4 , A 1 and A 2.

及びZはいずれか一方が水素原子であり、他方がR−C(=O)−O−である
。式(1)中のXが(メタ)アクリロイルオキシ基である場合はZがR−C(=O
)−O−であり、Xが(メタ)アクリロイルオキシ基である場合はZがR−C(=
O)−O−である。
は水素原子又はアルキル基である。Rのアルキル基の炭素数は、例えば1〜3で
ある。Rとしては、エステル交換反応が進みやすい点から、水素原子又はメチル基が好
ましく、水素原子が特に好ましい。
One of Z 1 and Z 2 is a hydrogen atom, and the other is R 5- C (= O) -O-. When X 1 in the formula (1) is a (meth) acryloyloxy group, Z 1 is R 5- C (= O).
) -O-, and Z 2 is R 5- C (= ) when X 2 is a (meth) acryloyloxy group.
O) -O-.
R 5 is a hydrogen atom or an alkyl group. The carbon number of the alkyl group of R 5 is, for example, 1-3. The R 5, from the viewpoint of the transesterification reaction tends to proceeds, preferably a hydrogen atom or a methyl group, a hydrogen atom is particularly preferred.

エステル交換反応において、化合物(2)は、一種のみを用いてもよいし、二種以上を
併用してもよい。例えば、ZがR−C(=O)−O−である化合物とZがR−C
(=O)−O−である化合物との混合物を用いてもよい。
化合物(2)は、前記した特許文献1に記載の方法により製造できる。
式(3)中、Rは水素原子又はメチル基である。
In the transesterification reaction, the compound (2) may be used alone or in combination of two or more. For example, a compound in which Z 1 is R 5- C (= O) -O- and Z 2 is R 5- C.
A mixture with a compound of (= O) -O- may be used.
Compound (2) can be produced by the method described in Patent Document 1 described above.
In formula (3), R is a hydrogen atom or a methyl group.

は任意の置換基である。Rとしては、例えば、炭素数1〜3のアルキル基、炭素
数2〜3のアルケニル基が挙げられる。具体例としては、メチル基、エチル基、n−プロ
ピル基、イソプロピル基、ビニル基が挙げられる。これらのうち、反応性が高い点ではメ
チル基又はビニル基が好ましく、副生成物が少ない点ではイソプロピル基が好ましい。
エステル交換反応において、原料(メタ)アクリル酸エステルは、一種のみを用いても
よいし、二種以上を併用してもよい。例えば、(メタ)アクリル酸メチルと(メタ)アク
リル酸ビニルとを併用してもよい。
R 6 is an arbitrary substituent. Examples of R 6 include an alkyl group having 1 to 3 carbon atoms and an alkenyl group having 2 to 3 carbon atoms. Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a vinyl group. Of these, a methyl group or a vinyl group is preferable in terms of high reactivity, and an isopropyl group is preferable in terms of a small amount of by-products.
In the transesterification reaction, only one kind of raw material (meth) acrylic acid ester may be used, or two or more kinds may be used in combination. For example, methyl (meth) acrylate and vinyl (meth) acrylate may be used in combination.

原料(メタ)アクリル酸エステルを二種以上用いる場合は、二種以上の原料(メタ)ア
クリル酸エステルを予め混合して化合物(2)と反応させてもよいし、二種以上の原料(
メタ)アクリル酸エステルを順次、化合物(2)と反応させてもよい。
化合物(2)1モルに対する原料(メタ)アクリル酸エステルの比率は、2〜15モル
が好ましく、3〜10モルがより好ましい。原料(メタ)アクリル酸エステルの比率が前
記下限値以上であれば、反応が充分に進行しやすく、前記上限値以下であれば、エステル
交換反応後に、反応生成物から未反応の原料(メタ)アクリル酸エステルを除去するのに
要する時間がより短くなる。
When two or more kinds of raw material (meth) acrylic acid esters are used, two or more kinds of raw material (meth) acrylic acid esters may be mixed in advance and reacted with compound (2), or two or more kinds of raw materials (meth) acrylic acid esters may be used.
The meta) acrylic acid ester may be sequentially reacted with the compound (2).
The ratio of the raw material (meth) acrylic acid ester to 1 mol of the compound (2) is preferably 2 to 15 mol, more preferably 3 to 10 mol. When the ratio of the raw material (meth) acrylic acid ester is equal to or higher than the lower limit value, the reaction is likely to proceed sufficiently, and when the ratio is equal to or lower than the upper limit value, the raw material (meth) unreacted from the reaction product after the transesterification reaction. The time required to remove the acrylic ester is shorter.

エステル交換反応は、典型的には、触媒の存在下で行う。
触媒としては、エステル交換反応を進行させるものであれば特に限定されないが、例え
ば、テトラブトキシチタン、テトライソプロポキシチタン、テトラメトキシチタン等のテ
トラアルコキシチタン類、ジブチル錫オキシド、ジオクチル錫オキシド等のジアルキル錫
オキシド類、アルミニウムアルコキシレート、及びアルカリ金属アルコキシレート類が挙
げられる。これらの触媒は、一種のみを用いてもよいし、二種以上を併用してもよい。
The transesterification reaction is typically carried out in the presence of a catalyst.
The catalyst is not particularly limited as long as it allows the transesterification reaction to proceed, and is, for example, tetraalkoxytitaniums such as tetrabutoxytitanium, tetraisopropoxytitanium, and tetramethoxytitanium, and dialkyls such as dibutyltin oxide and dioctyltin oxide. Examples thereof include tin oxides, aluminum alkoxyrates, and alkali metal alkoxylates. Only one kind of these catalysts may be used, or two or more kinds of these catalysts may be used in combination.

触媒としては、反応性の点では、テトラブトキシチタン、テトライソプロポキシチタン
、テトラメトキシチタンが好ましく、副生成物が少ない点では、ジブチル錫オキシド、ジ
オクチル錫オキシド、テトラメトキシチタンが好ましい。反応性が優れ、副反応が少ない
点では、テトラメトキシチタンがより好ましく、反応性が優れる点では、テトライソプロ
ポキシチタンがより好ましい。
As the catalyst, tetrabutoxytitanium, tetraisopropoxytitanium, and tetramethoxytitanium are preferable in terms of reactivity, and dibutyltin oxide, dioctyltin oxide, and tetramethoxytitanium are preferable in terms of low by-products. Tetramethoxytitanium is more preferable in terms of excellent reactivity and few side reactions, and tetraisopropoxytitanium is more preferable in terms of excellent reactivity.

触媒は、全量を一度に仕込んでもよいし、数回に分けて加えてもよい。触媒を二種以上
用いる場合には、全量を一度に仕込んでもよいし、いずれかの触媒を任意のタイミングで
加えてもよい。
触媒の使用量は、化合物(2)1モルに対して0.005〜0.2モルが好ましく、0
.01〜0.1モルがより好ましい。触媒の使用量が前記下限値以上であれば、反応が進
行しやすい。触媒の使用量が前記上限値以下であれば、副生成物が生成しにくい。また反
応後の触媒の除去が容易である。
The entire amount of the catalyst may be charged at one time, or may be added in several portions. When two or more kinds of catalysts are used, the whole amount may be charged at one time, or any of the catalysts may be added at an arbitrary timing.
The amount of the catalyst used is preferably 0.005 to 0.2 mol per 1 mol of compound (2), and is 0.
.. More preferably 01 to 0.1 mol. When the amount of the catalyst used is equal to or higher than the lower limit, the reaction is likely to proceed. If the amount of the catalyst used is not more than the upper limit, by-products are unlikely to be produced. In addition, the catalyst can be easily removed after the reaction.

エステル交換反応の反応温度は、50〜150℃が好ましく、80〜130℃がより好
ましい。反応温度が前記下限値以上であれば、エステル交換反応を充分に進行させやすく
、前記上限値以下であれば、副生成物の生成を抑制しやすい。
エステル交換反応の反応時間は、バッチサイズ、触媒、反応温度により異なるが、1〜
15時間が好ましく、2〜12時間がより好ましい。反応時間が前記下限値以上であれば
、エステル交換反応を充分に進行させやすく、前記上限値以下であれば、副生成物の生成
を抑制しやすい。
The reaction temperature of the transesterification reaction is preferably 50 to 150 ° C, more preferably 80 to 130 ° C. When the reaction temperature is at least the lower limit value, the transesterification reaction is likely to proceed sufficiently, and when it is at least the upper limit value, the formation of by-products is likely to be suppressed.
The reaction time of the transesterification reaction varies depending on the batch size, catalyst, and reaction temperature, but is 1 to 1.
15 hours is preferred, more preferably 2-12 hours. When the reaction time is at least the lower limit value, the transesterification reaction is likely to proceed sufficiently, and when it is at least the upper limit value, the formation of by-products is likely to be suppressed.

エステル交換反応の際に、系内の水分が多いと触媒活性が低下したり副生成物が増加し
たりするため、エステル交換反応を開始する前に、必要に応じて、系内の水分を除去する
。エステル交換反応の開始時の系内の水分量としては、1000質量ppm以下が好まし
く、500質量ppm以下がより好ましく、200ppm質量以下が更に好ましい。
系内の水分を除去する方法としては、特に限定されないが、例えばディーンスタークト
ラップやデカンター等の装置を用いて、トルエンやメタクリル酸メチル等の高沸点溶剤と
共沸させる方法が挙げられる。操作が簡便であることから、化合物(2)をトルエンやメ
タクリル酸メチルに溶解させ、ディーンスタークトラップ又はデカンターを用いて、トル
エンやメタクリル酸メチルを加熱還流させるとともに水を反応系外に除去する方法が好ま
しい。
During the transesterification reaction, if there is a large amount of water in the system, the catalytic activity decreases and by-products increase. Therefore, before starting the transesterification reaction, the water content in the system is removed as necessary. do. The amount of water in the system at the start of the transesterification reaction is preferably 1000 mass ppm or less, more preferably 500 mass ppm or less, still more preferably 200 ppm mass or less.
The method for removing water in the system is not particularly limited, and examples thereof include a method of azeotropically boiling with a high boiling point solvent such as toluene or methyl methacrylate using an apparatus such as a Dean-Stark trap or a decanter. Since the operation is simple, a method in which compound (2) is dissolved in toluene or methyl methacrylate, and toluene or methyl methacrylate is heated to reflux using a Dean-Stark trap or a decanter, and water is removed from the reaction system. Is preferable.

エステル交換反応は、(メタ)アクリル酸エステル等の重合を抑制する点から、重合禁
止剤の存在下で行うことが好ましい。空気又は酸素を吹き込みながら反応を行うことも有
効である。
重合禁止剤としては、重合を抑制するものであれば特に限定されないが、ヒドロキノン
、4−メトキシフェノール、2,4−ジメチル−6−t−ブチルフェノール、p−ベンゾ
キノン、2,5−ジフェニル−p−ベンゾキノン、フェノチアジン、N−ニトロソジフェ
ニルアミン、銅塩、金属銅、2,2,6,6−テトラメチルピペリジン−1−オキシル等
が挙げられる。
The transesterification reaction is preferably carried out in the presence of a polymerization inhibitor from the viewpoint of suppressing the polymerization of the (meth) acrylic acid ester or the like. It is also effective to carry out the reaction while blowing air or oxygen.
The polymerization inhibitor is not particularly limited as long as it suppresses polymerization, but is hydroquinone, 4-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, p-benzoquinone, 2,5-diphenyl-p-. Examples thereof include benzoquinone, phenothiazine, N-nitrosodiphenylamine, copper salt, metallic copper, 2,2,6,6-tetramethylpiperidin-1-oxyl and the like.

エステル交換反応は、溶媒の存在下で行ってもよい。溶媒としては、特に限定されない
が、例えばトルエン、ヘプタン、ヘキサン等が挙げられる。
エステル交換反応の終了後、反応液を濃縮し、精製して(メタ)アクリル酸エステル(
1)を回収する。
エステル交換反応の終了後、反応液をそのまま濃縮し、精製してもよいが、この場合、
精製後に触媒が残存する場合がある。そのため、反応液中の触媒を除去した後に精製する
ことが好ましい。
The transesterification reaction may be carried out in the presence of a solvent. The solvent is not particularly limited, and examples thereof include toluene, heptane, hexane and the like.
After the transesterification reaction is complete, the reaction solution is concentrated and purified to (meth) acrylic acid ester (
Collect 1).
After the transesterification reaction is completed, the reaction solution may be concentrated and purified as it is, but in this case,
The catalyst may remain after purification. Therefore, it is preferable to purify after removing the catalyst in the reaction solution.

触媒の除去方法としては、例えば以下の方法が挙げられる。
・水又は水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム等
のアルカリ水溶液で反応液を水洗又は中和水洗する方法。
・炭酸ナトリウム、炭酸水素ナトリウム、酸化マグネシウム等のアルカリ粉末を反応液
に加え、攪拌の後、中和塩をろ過する方法。
・水及び塩酸、硫酸等の酸を反応液に加えて触媒を溶解させる方法。
Examples of the method for removing the catalyst include the following methods.
-A method of washing the reaction solution with water or an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide, sodium carbonate, or sodium hydrogen carbonate.
-A method in which alkaline powder such as sodium carbonate, sodium hydrogen carbonate, magnesium oxide, etc. is added to the reaction solution, stirred, and then the neutralized salt is filtered.
-A method in which water and an acid such as hydrochloric acid or sulfuric acid are added to the reaction solution to dissolve the catalyst.

これらの方法のうち、工程が簡略であり、収率が良好であることから、水及び酸を反応
液に加えて触媒を溶解させる方法が好ましい。
触媒として広く用いられるテトラアルコキシチタン類は、水と接触した際に大量の不溶
物が発生し、この不溶物を溶解するのは困難である。一方で、テトラアルコキシチタン類
は、酸と接触させることでも不溶物が発生するが、この不溶物は水溶性の塩であるため、
水を加えると溶解する。したがって、テトラアルコキシチタン類を溶解するためには、反
応液に酸を加えた後に、水を加えることが好ましい。このとき加える酸としては、特に限
定されないが、使用量が少なくできる点から、硫酸、硝酸、塩酸等の強酸が好ましく、取
り扱いが容易である点から、硫酸が特に好ましい。
Of these methods, the method of adding water and an acid to the reaction solution to dissolve the catalyst is preferable because the process is simple and the yield is good.
Tetraalkoxytitaniums, which are widely used as catalysts, generate a large amount of insoluble matter when they come into contact with water, and it is difficult to dissolve this insoluble matter. On the other hand, tetraalkoxytitaniums also generate insoluble matter when brought into contact with acid, but since this insoluble matter is a water-soluble salt,
Dissolves when water is added. Therefore, in order to dissolve the tetraalkoxytitaniums, it is preferable to add water after adding the acid to the reaction solution. The acid to be added at this time is not particularly limited, but a strong acid such as sulfuric acid, nitric acid, or hydrochloric acid is preferable from the viewpoint that the amount used can be reduced, and sulfuric acid is particularly preferable from the viewpoint of easy handling.

触媒を溶解する前に、必要に応じて、反応液を有機溶媒で希釈する。希釈に用いる有機
溶媒としては、トルエン、ベンゼン、ヘキサン、シクロヘキサン、酢酸エチル、ジエチル
エーテル、ジイソプロピルエーテル等が挙げられる。これらの中では、抽出効率が高く、
溶媒の使用量を少なくできる点から、トルエン、酢酸エチル、ジエチルエーテルが好まし
く、収率がより優れる点から、トルエン、酢酸エチルがより好ましい。
If necessary, the reaction solution is diluted with an organic solvent before the catalyst is dissolved. Examples of the organic solvent used for dilution include toluene, benzene, hexane, cyclohexane, ethyl acetate, diethyl ether, diisopropyl ether and the like. Among these, the extraction efficiency is high
Toluene, ethyl acetate, and diethyl ether are preferable from the viewpoint that the amount of the solvent used can be reduced, and toluene and ethyl acetate are more preferable from the viewpoint of better yield.

触媒を溶解した後、必要に応じて、反応液を濃縮する。
精製方法としては、カラムクロマトグラフィー、蒸留等が挙げられる。
精製を行う際には、重合が起こる場合があるため、重合禁止剤を共存させることが好ま
しい。重合禁止剤としては、重合を抑制するものであれば特に限定されず、エステル交換
反応時に使用するものと同様のものが使用できる。空気又は酸素を吹き込みながら精製を
行うことも重合抑制に有効である。
After dissolving the catalyst, the reaction solution is concentrated if necessary.
Examples of the purification method include column chromatography and distillation.
When purification is performed, polymerization may occur, so it is preferable to coexist with a polymerization inhibitor. The polymerization inhibitor is not particularly limited as long as it suppresses polymerization, and the same ones used in the transesterification reaction can be used. Purification while blowing air or oxygen is also effective in suppressing polymerization.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は以下の実施例に限定さ
れるものではない。「%」は質量%を意味する。
以下の各例における生成物の同定はH−NMRにより行った。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. "%" Means mass%.
The products in each of the following examples were identified by 1 1 H-NMR.

(合成例1)
撹拌機、温度計、ディーンスターク管、コンデンサーを備えたフラスコに、8−ホルミ
ルオキシ−4−オキサトリシクロ[5.2.1.02,6]デカン−3−オンと9−ホル
ミルオキシ−4−オキサトリシクロ[5.2.1.02,6]デカン−3−オンとの混合
物60.2g(0.31mol)、メタクリル酸メチル122.6g(1.22mol)
、4−メトキシフェノール62mg(0.50mmol)、トルエン60.1g、チタン
テトライソプロポキシド2.6g(0.0092mol)を入れ、メタノールを含む留出
液を抜き出しながら8時間還流させた。その後、硫酸10.2g(0.10mol)、ト
ルエン30.4g、水60.1gを加えて洗浄し、続いて5%重曹水、水で順次洗浄した
後、溶媒を留去した。これをシリカゲルカラムクロマトグラフィーで精製し、透明な液体
の8−メタクリロイルオキシ−4−オキサトリシクロ[5.2.1.02,6]デカン−
3−オンと9−メタクリロイルオキシ−4−オキサトリシクロ[5.2.1.02,6
デカン−3−オンとの混合物69.2g(0.29mol、収率95%)を得た。
(Synthesis Example 1)
In a flask equipped with a stirrer, thermometer, Dean-Stark tube, and condenser, 8-formyloxy-4-oxatricyclo [5.2.1.0 2,6 ] decan-3-one and 9-formyloxy- 4- Oxatricyclo [5.2.1.0 2,6 ] Mixture with decane-3-one 60.2 g (0.31 mol), methyl methacrylate 122.6 g (1.22 mol)
, 4-methoxyphenol 62 mg (0.50 mmol), toluene 60.1 g, and titanium tetraisopropoxide 2.6 g (0.0092 mol) were added, and the mixture was refluxed for 8 hours while extracting a distillate containing methanol. Then, 10.2 g (0.10 mol) of sulfuric acid, 30.4 g of toluene and 60.1 g of water were added for washing, followed by washing with 5% aqueous sodium hydrogen carbonate and water in that order, and then the solvent was distilled off. This was purified by silica gel column chromatography, and a clear liquid 8-methacryloyloxy-4-oxatricyclo [5.2.1.0 2,6 ] decane-
3-one and 9-methacryloyloxy-4-oxatricyclo [5.2.1.0 2,6 ]
A mixture with decane-3-one was obtained in an amount of 69.2 g (0.29 mol, yield 95%).

Figure 2021134152
Figure 2021134152

(合成例2)
撹拌機、温度計、コンデンサーを備えたフラスコに、8−ホルミルオキシ−4−オキサ
トリシクロ[5.2.1.02,6]デカン−3−オンと9−ホルミルオキシ−4−オキ
サトリシクロ[5.2.1.02,6]デカン−3−オンとの混合物35.3g(0.1
8mol)、メタノール100mLを入れた。これに10%水酸化カリウム水溶液100
gを加え、室温で12時間撹拌してアルカリ加水分解し、メタノールを留去した。続いて
残さを酢酸エチルで抽出し、有機層を合わせて水で洗浄した後、硫酸ナトリウムで乾燥し
、溶媒を留去した。これをシリカゲルカラムクロマトグラフィーで精製し、透明な液体の
8−ヒドロキシ−4−オキサトリシクロ[5.2.1.02,6]デカン−3−オンと9
−ヒドロキシ−4−オキサトリシクロ[5.2.1.02,6]デカン−3−オンとの混
合物26.1g(0.16mol、収率86%)を得た。
(Synthesis Example 2)
8-formyloxy-4-oxatricyclo [5.2.1.0 2,6 ] decane-3-one and 9-formyloxy-4-oxatri in a flask equipped with a stirrer, a thermometer and a condenser. Mixture with cyclo [5.2.1.0 2,6 ] decane-3-one 35.3 g (0.1)
8 mol) and 100 mL of methanol were added. To this, 10% potassium hydroxide aqueous solution 100
g was added, and the mixture was stirred at room temperature for 12 hours for alkaline hydrolysis, and methanol was distilled off. Subsequently, the residue was extracted with ethyl acetate, the organic layers were combined, washed with water, dried over sodium sulfate, and the solvent was distilled off. This was purified by silica gel column chromatography, and the clear liquid 8-hydroxy-4-oxatricyclo [5.2.1.0 2,6 ] decane-3-one and 9
26.1 g (0.16 mol, yield 86%) of a mixture with −hydroxy-4- oxatricyclo [5.2.1.0 2,6] decane-3-one was obtained.

次いで撹拌機、2つの滴下ロート、温度計、コンデンサーを備えたフラスコに、8−ヒ
ドロキシ−4−オキサトリシクロ[5.2.1.02,6]デカン−3−オンと9−ヒド
ロキシ−4−オキサトリシクロ[5.2.1.02,6]デカン−3−オンとの混合物1
6.8g(0.10mol)、乾燥ジクロロメタン80mLを入れた。滴下ロートの一方
にはトリエチルアミン13.2g(0.13mol)を、もう一方にはメタクリル酸クロ
リド12.5g(0.12mol)を仕込み、フラスコの内部を窒素置換し、系内を約−
5℃にした。そして、フラスコ内を撹拌しながら、トリエチルアミンとメタクリル酸クロ
リドを、メタクリル酸クロリドに対してトリエチルアミンが小過剰になるように調整しな
がら、1時間かけて滴下した。滴下終了後、ジメチルアミノピリジン0.3g(0.00
2mol)を加え、系内が室温に戻るのに任せ24時間撹拌を続けた。そして、反応液に
注意深くメタノール100mLを加え、水、飽和重曹水で順次洗浄した後、硫酸マグネシ
ウムで乾燥し、溶媒を留去した。これをシリカゲルカラムクロマトグラフィーで精製し、
透明な液体の8−メタクリロイルオキシ−4−オキサトリシクロ[5.2.1.02,6
]デカン−3−オンと9−メタクリロイルオキシ−4−オキサトリシクロ[5.2.1.
2,6]デカン−3−オンとの混合物18.4g(0.078mol、収率78%)を
得た。
Then, in a flask equipped with a stirrer, two dropping funnels, a thermometer and a condenser, 8-hydroxy-4-oxatricyclo [5.2.1.0 2,6 ] decane-3-one and 9-hydroxy- 4-Oxatricyclo [5.2.1.0 2,6 ] Mixture with decane-3-one 1
6.8 g (0.10 mol) and 80 mL of dry dichloromethane were added. 13.2 g (0.13 mol) of triethylamine was charged in one of the dropping funnels, and 12.5 g (0.12 mol) of methacrylate chloride was charged in the other. The inside of the flask was replaced with nitrogen, and the inside of the system was about-.
The temperature was set to 5 ° C. Then, while stirring the inside of the flask, triethylamine and methacrylic acid chloride were added dropwise over 1 hour while adjusting so that the amount of triethylamine was slightly excessive with respect to the methacrylic acid chloride. After completion of dropping, 0.3 g of dimethylaminopyridine (0.00)
2 mol) was added, and stirring was continued for 24 hours, leaving the system to return to room temperature. Then, 100 mL of methanol was carefully added to the reaction solution, washed successively with water and saturated aqueous sodium hydrogen carbonate, dried over magnesium sulfate, and the solvent was distilled off. This is purified by silica gel column chromatography and
Clear liquid 8-methacryloyloxy-4-oxatricyclo [5.2.1.0 2,6
] Decan-3-one and 9-methacryloyloxy-4-oxatricyclo [5.2.1.
0 2,6 ] A mixture with decane-3-one was obtained in an amount of 18.4 g (0.078 mol, yield 78%).

Figure 2021134152
Figure 2021134152

(実施例1)
合成例1で得た8−メタクリロイルオキシ−4−オキサトリシクロ[5.2.1.0
,6]デカン−3−オンと9−メタクリロイルオキシ−4−オキサトリシクロ[5.2.
1.02,6]デカン−3−オンとの混合物を用い、含有全塩素量を測定した。全塩素量
は、自動試料燃焼装置AQF−2100H(商品名、(株)三菱ケミカルアナリテック製
)を用いて燃焼させ、吸収液に燃焼ガスを通液させた後、イオンクロマトグラフィーIC
−2010(商品名、東ソー(株)製)で分析することにより測定した。結果を表1に示
す。
(Example 1)
8-Methylloyloxy-4-oxatricyclo [5.2.1.0 2] obtained in Synthesis Example 1
, 6 ] Decane-3-one and 9-methacryloyloxy-4-oxatricyclo [5.2.
1.0 2,6 ] The total chlorine content was measured using a mixture with decane-3-one. The total amount of chlorine is determined by burning using an automatic sample combustion device AQF-2100H (trade name, manufactured by Mitsubishi Chemical Analytech Co., Ltd.), passing combustion gas through the absorption liquid, and then ion chromatography IC.
It was measured by analysis with -2010 (trade name, manufactured by Tosoh Corporation). The results are shown in Table 1.

(比較例1)
合成例2で得た8−メタクリロイルオキシ−4−オキサトリシクロ[5.2.1.0
,6]デカン−3−オンと9−メタクリロイルオキシ−4−オキサトリシクロ[5.2.
1.02,6]デカン−3−オンとの混合物を使用した以外は、実施例1と同様に実施し
た。結果を表1に示す。
(Comparative Example 1)
8-Methylloyloxy-4-oxatricyclo [5.2.1.1.02] obtained in Synthesis Example 2
, 6 ] Decane-3-one and 9-methacryloyloxy-4-oxatricyclo [5.2.
1.0 2,6 ] The same procedure as in Example 1 was carried out except that a mixture with decane-3-one was used. The results are shown in Table 1.

Figure 2021134152
Figure 2021134152

本発明に係る(メタ)アクリル酸エステル組成物は、塗料、接着剤、粘着剤、インキ用
レジン、レジスト、成型材料、光学材料等の構成成分樹脂の原料モノマーとして有用であ
る。その中でも、含有塩素量が少ないため、環境負荷低減を求められる光学用途や電子材
料用途等に好適に用いることができる。
The (meth) acrylic acid ester composition according to the present invention is useful as a raw material monomer for constituent resins such as paints, adhesives, pressure-sensitive adhesives, resins for inks, resists, molding materials, and optical materials. Among them, since the chlorine content is small, it can be suitably used for optical applications and electronic material applications that require reduction of environmental load.

Claims (1)

下記式(1)で表される(メタ)アクリル酸エステルを含み、含有全塩素量が1300
0ppm以下である(メタ)アクリル酸エステル組成物。
Figure 2021134152
ただし、R、R、R及びRはそれぞれ独立に水素原子、メチル基又はエチル基
であり、
及びAは共に水素原子であるか、又はAとAとで−O−、−CH−又は−
CHCH−を形成しており、
及びXはいずれか一方が水素原子であり、他方が(メタ)アクリロイルオキシ基
である。
It contains (meth) acrylic acid ester represented by the following formula (1) and contains 1300 total chlorine content.
A (meth) acrylic acid ester composition of 0 ppm or less.
Figure 2021134152
However, R 1 , R 2 , R 3 and R 4 are independently hydrogen atoms, methyl groups or ethyl groups, respectively.
Both A 1 and A 2 are hydrogen atoms, or A 1 and A 2 are -O-, -CH 2- or-.
CH 2 CH 2 − is formed,
One of X 1 and X 2 is a hydrogen atom, and the other is a (meth) acryloyloxy group.
JP2020029443A 2020-02-25 2020-02-25 (meth)acrylic acid ester composition Pending JP2021134152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020029443A JP2021134152A (en) 2020-02-25 2020-02-25 (meth)acrylic acid ester composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020029443A JP2021134152A (en) 2020-02-25 2020-02-25 (meth)acrylic acid ester composition

Publications (1)

Publication Number Publication Date
JP2021134152A true JP2021134152A (en) 2021-09-13

Family

ID=77660177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020029443A Pending JP2021134152A (en) 2020-02-25 2020-02-25 (meth)acrylic acid ester composition

Country Status (1)

Country Link
JP (1) JP2021134152A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161068A (en) * 2000-09-14 2002-06-04 Mitsubishi Rayon Co Ltd Method for producing (meth)acrylic anhydride and method for producing (meth)acrylate
JP2002234882A (en) * 2000-12-06 2002-08-23 Mitsubishi Rayon Co Ltd (meth)acrylic ester, alcohol as raw material therefor, and method for producing them
JP2002284739A (en) * 2000-07-28 2002-10-03 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid ester
JP2002308866A (en) * 2001-04-09 2002-10-23 Mitsubishi Chemicals Corp Polycyclic compound having lactone structure
JP2003146979A (en) * 2001-11-14 2003-05-21 Mitsubishi Chemicals Corp Method for producing lactone
JP2008162946A (en) * 2006-12-28 2008-07-17 Mitsubishi Rayon Co Ltd Method for producing (meth)acrylate
WO2014148386A1 (en) * 2013-03-22 2014-09-25 三菱レイヨン株式会社 Production method for (meth) acrylate aryl ester

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284739A (en) * 2000-07-28 2002-10-03 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid ester
JP2002161068A (en) * 2000-09-14 2002-06-04 Mitsubishi Rayon Co Ltd Method for producing (meth)acrylic anhydride and method for producing (meth)acrylate
JP2002234882A (en) * 2000-12-06 2002-08-23 Mitsubishi Rayon Co Ltd (meth)acrylic ester, alcohol as raw material therefor, and method for producing them
JP2002308866A (en) * 2001-04-09 2002-10-23 Mitsubishi Chemicals Corp Polycyclic compound having lactone structure
JP2003146979A (en) * 2001-11-14 2003-05-21 Mitsubishi Chemicals Corp Method for producing lactone
JP2008162946A (en) * 2006-12-28 2008-07-17 Mitsubishi Rayon Co Ltd Method for producing (meth)acrylate
WO2014148386A1 (en) * 2013-03-22 2014-09-25 三菱レイヨン株式会社 Production method for (meth) acrylate aryl ester

Similar Documents

Publication Publication Date Title
JP2000229911A (en) Production of 2-alkyl-2-adamantyl (meth)acrylates
JP5399915B2 (en) Process for the synthesis of (meth) acrylic esters catalyzed by polyol titanates
JP2006315960A (en) Tricyclodecanediol di(meth)acrylate and method for producing the same
JP4456939B2 (en) Method for purifying adamantyl esters
JP2003342268A (en) Method for producing epoxy-terminated (meth)acrylate
JPH0967306A (en) Production of isobornyl (meth)acrylate
JP2021134152A (en) (meth)acrylic acid ester composition
JP2002179619A (en) Method for producing methylcyclohexyl(meth)acrylate
JP4866517B2 (en) Method for producing (meth) acrylic anhydride and method for producing (meth) acrylic acid ester
JP2008162946A (en) Method for producing (meth)acrylate
JP2021088526A (en) Method for producing (meth)acrylate
EP1319650B1 (en) Process for producing (meth)acrylic anhydride and process for producing (meth)acrylic ester
JP3885249B2 (en) Purification method of glycidyl (meth) acrylate
JP4080723B2 (en) Method for producing resist monomer
JP2022007362A (en) Method for producing (meth)acrylic acid ester
JPH03120263A (en) Preparation of (meth)acrylate compound
JP2009256307A (en) Adamantyl ester of unsaturated carboxylic acid and method for producing the same
JP5207263B2 (en) Method for producing organic compound
JP3312806B2 (en) Method for producing tetrahydrobenzyl (meth) acrylate
JP2005263757A (en) Method for producing (meth)acrylic ester
JP2639029B2 (en) Method for producing cyano group-containing (meth) acrylic acid ester
JP2005154395A (en) Method for producing (meth)acrylic acid ester
JP3397660B2 (en) Method for producing piperidyl (meth) acrylate derivative with low coloring
JP2021147374A (en) Method for purifying lactone compound
JP2003231664A (en) Method for purifying (meth)acrylic ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230905