JP2021131998A - Manufacturing method of internal combustion spark plug - Google Patents

Manufacturing method of internal combustion spark plug Download PDF

Info

Publication number
JP2021131998A
JP2021131998A JP2020027732A JP2020027732A JP2021131998A JP 2021131998 A JP2021131998 A JP 2021131998A JP 2020027732 A JP2020027732 A JP 2020027732A JP 2020027732 A JP2020027732 A JP 2020027732A JP 2021131998 A JP2021131998 A JP 2021131998A
Authority
JP
Japan
Prior art keywords
center electrode
tip
hole
spark plug
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020027732A
Other languages
Japanese (ja)
Other versions
JP7365932B2 (en
Inventor
裕貴 河田
Yuki Kawada
裕貴 河田
孝之 猪原
Takayuki Inohara
孝之 猪原
裕樹 渡辺
Hiroki Watanabe
裕樹 渡辺
翔太 木下
Shota Kinoshita
翔太 木下
佳祐 杉田
Keisuke Sugita
佳祐 杉田
脩平 中島
Shuhei Nakajima
脩平 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Soken Inc filed Critical Denso Corp
Priority to JP2020027732A priority Critical patent/JP7365932B2/en
Publication of JP2021131998A publication Critical patent/JP2021131998A/en
Application granted granted Critical
Publication of JP7365932B2 publication Critical patent/JP7365932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Abstract

To provide a manufacturing method of an internal combustion spark plug, capable of accurately controlling the size of a discharge gap.SOLUTION: In a manufacturing method of an internal combustion spark plug 1, the spark plug 1 includes: a cylindrical insulator 3; a center electrode 4 that is retained inside the insulator 3 and projects from a font edge of the insulating glass 3; a cylindrical housing 2 that retains the insulator 3 on an inner circumference side thereof; and a cover part 5 that is provided at a front edge of the housing 2 so as to cover the center electrode 4. In the cover part 5, a thought hole 51 is formed that causes an auxiliary chamber 50 formed inside the cover part 5 to communicate with the outside. At an inner circumferential end 511 of the though hole 51, a grounding electrode 6 is provided that forms a discharge gap G between itself and the center electrode 4. When manufacturing the spark plug 1, in a state where the housing 2, the insulator 3, the center electrode 4, and the cover 5 are integrated, the discharge gap G is formed into a predetermined size.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関用のスパークプラグの製造方法に関する。 The present invention relates to a method for manufacturing a spark plug for an internal combustion engine.

特許文献1に記載されたスパークプラグは、その先端部において副室を有する。また、副室の先端側において、副室と主燃焼室とを連通する開口部を備える。そして、開口部の内周側の端部と、中心電極との間に放電ギャップを形成する。 The spark plug described in Patent Document 1 has an auxiliary chamber at its tip. Further, on the tip side of the sub chamber, an opening for communicating the sub chamber and the main combustion chamber is provided. Then, a discharge gap is formed between the inner peripheral end of the opening and the center electrode.

特開2016−95986号公報Japanese Unexamined Patent Publication No. 2016-95986

しかしながら、かかるスパークプラグにおいては、放電ギャップの大きさが、開口部の内周端部と中心電極の先端部との間の位置関係によって決まることとなる。それゆえ、かかるスパークプラグを製造するにあたり、放電ギャップの大きさを高精度に管理することができる手法が望まれる。 However, in such a spark plug, the size of the discharge gap is determined by the positional relationship between the inner peripheral end of the opening and the tip of the center electrode. Therefore, in manufacturing such a spark plug, a method capable of controlling the size of the discharge gap with high accuracy is desired.

本発明は、かかる課題に鑑みてなされたものであり、放電ギャップの大きさを高精度に管理することができる内燃機関用のスパークプラグの製造方法を提供しようとするものである。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a method for manufacturing a spark plug for an internal combustion engine capable of controlling the size of a discharge gap with high accuracy.

本発明の一態様は、内燃機関用のスパークプラグ(1)を製造する方法であって、
上記スパークプラグは、
筒状の絶縁碍子(3)と、
該絶縁碍子の内側に保持されると共に該絶縁碍子の先端側に突出した中心電極(4)と、
上記絶縁碍子を内周側に保持する筒状のハウジング(2)と、
上記中心電極を覆うように上記ハウジングの先端部に設けられたカバー部(5)と、を有し、
上記カバー部には、該カバー部の内側に形成された副室(50)を外部に連通させる貫通孔(51)が形成されており、
上記貫通孔の内周端部(511)に、上記中心電極との間に放電ギャップ(G)を形成する接地電極(6)が設けられ、
上記スパークプラグを製造するにあたっては、
上記ハウジングと上記絶縁碍子と上記中心電極と上記カバー部とを一体化した状態において、上記放電ギャップを所定の大きさに形成する、内燃機関用のスパークプラグの製造方法にある。
One aspect of the present invention is a method for manufacturing a spark plug (1) for an internal combustion engine.
The above spark plugs
Cylindrical insulating insulator (3) and
The center electrode (4), which is held inside the insulator and protrudes toward the tip of the insulator,
A tubular housing (2) that holds the insulating insulator on the inner peripheral side, and
It has a cover portion (5) provided at the tip end portion of the housing so as to cover the center electrode.
The cover portion is formed with a through hole (51) for communicating the sub chamber (50) formed inside the cover portion to the outside.
A ground electrode (6) forming a discharge gap (G) with the center electrode is provided at the inner peripheral end portion (511) of the through hole.
In manufacturing the above spark plugs,
A method for manufacturing a spark plug for an internal combustion engine is to form the discharge gap into a predetermined size in a state where the housing, the insulating insulator, the center electrode, and the cover portion are integrated.

上記内燃機関用のスパークプラグの製造方法においては、ハウジングと絶縁碍子と中心電極とカバー部とを一体化した状態において、放電ギャップを所定の大きさに形成する。それゆえ、放電ギャップの大きさを高精度に管理することができる。 In the method for manufacturing a spark plug for an internal combustion engine, a discharge gap is formed to a predetermined size in a state where the housing, the insulator, the center electrode, and the cover portion are integrated. Therefore, the size of the discharge gap can be controlled with high accuracy.

以上のごとく、上記態様によれば、放電ギャップの大きさを高精度に管理することができる内燃機関用のスパークプラグの製造方法を提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
As described above, according to the above aspect, it is possible to provide a method for manufacturing a spark plug for an internal combustion engine capable of controlling the size of the discharge gap with high accuracy.
The reference numerals in parentheses described in the scope of claims and the means for solving the problem indicate the correspondence with the specific means described in the embodiments described later, and limit the technical scope of the present invention. It's not a thing.

実施形態1における、スパークプラグの一部の断面図。FIG. 3 is a cross-sectional view of a part of the spark plug in the first embodiment. 図1のII視図。FIG. II view of FIG. 実施形態1における、スパークプラグの製造方法の説明図であって、切削加工直前の状態を示す断面説明図。It is explanatory drawing of the manufacturing method of the spark plug in Embodiment 1, and is the cross-sectional explanatory view which shows the state just before cutting. 実施形態1における、仮孔と中心電極の先端部の拡大断面説明図。FIG. 5 is an enlarged cross-sectional explanatory view of a temporary hole and a tip portion of a center electrode in the first embodiment. 図4のV視図。V view of FIG. 実施形態1における、ドリルを中心電極に対して位置合わせした状態を示す拡大断面説明図。FIG. 5 is an enlarged cross-sectional explanatory view showing a state in which the drill is aligned with respect to the center electrode in the first embodiment. 図6のVII−VII矢視断面図。FIG. 6 is a cross-sectional view taken along the line VII-VII of FIG. 実施形態1における、スパークプラグの製造方法の説明図であって、切削加工中の状態を示す断面説明図。It is explanatory drawing of the manufacturing method of the spark plug in Embodiment 1, and is the sectional explanatory view which shows the state during cutting. 実施形態1における、切削加工中の状態を示す拡大断面説明図。FIG. 5 is an enlarged cross-sectional explanatory view showing a state during cutting in the first embodiment. 実施形態1における、切削加工後の状態を示す拡大断面説明図。FIG. 5 is an enlarged cross-sectional explanatory view showing a state after cutting in the first embodiment. 図10のXI視図。XI view of FIG. 実施形態1における、複数の噴孔を描いたスパークプラグの一部の断面図。FIG. 3 is a cross-sectional view of a part of a spark plug in which a plurality of injection holes are drawn according to the first embodiment. 実施形態2における、ドリルを中心電極に対して位置合わせした状態を示す拡大断面説明図。FIG. 2 is an enlarged cross-sectional explanatory view showing a state in which the drill is aligned with respect to the center electrode in the second embodiment. 図13のXIV−XIV矢視断面図。FIG. 13 is a cross-sectional view taken along the line XIV-XIV in FIG. 実施形態2における、切削加工後の状態を示す拡大断面説明図。FIG. 2 is an enlarged cross-sectional explanatory view showing a state after cutting in the second embodiment. 図15のXVI視図。The XVI view of FIG. 実施形態3における、放電加工を用いたスパークプラグの製造方法の説明図。The explanatory view of the manufacturing method of the spark plug using electric discharge machining in Embodiment 3. 実施形態3における、レーザ加工を用いたスパークプラグの製造方法の説明図。The explanatory view of the manufacturing method of the spark plug using laser processing in Embodiment 3. 実施形態4における、スパークプラグの製造方法の説明図であって、切削加工直前の状態を示す断面説明図。It is explanatory drawing of the manufacturing method of the spark plug in Embodiment 4, and is the cross-sectional explanatory view which shows the state just before cutting. 実施形態4における、スパークプラグの製造方法の説明図であって、切削加工中の状態を示す断面説明図。It is explanatory drawing of the manufacturing method of the spark plug in Embodiment 4, and is the sectional explanatory view which shows the state during cutting. 実施形態4における、スパークプラグの一部の断面図。FIG. 5 is a cross-sectional view of a part of the spark plug according to the fourth embodiment. 実施形態5における、スパークプラグの製造方法の説明図であって、切削加工中の状態を示す断面説明図。It is explanatory drawing of the manufacturing method of the spark plug in Embodiment 5, and is the cross-sectional explanatory view which shows the state during cutting. 実施形態5における、スパークプラグの製造方法の説明図であって、切削加工直後の状態を示す断面説明図。It is explanatory drawing of the manufacturing method of the spark plug in Embodiment 5, and is the cross-sectional explanatory view which shows the state immediately after cutting. 実施形態5における、スパークプラグの製造方法の説明図であって、貴金属チップを接合する直前の状態を示す断面説明図。It is explanatory drawing of the manufacturing method of the spark plug in Embodiment 5, and is the cross-sectional explanatory view which shows the state just before joining a precious metal chip. 実施形態5における、スパークプラグの一部の断面図。FIG. 5 is a cross-sectional view of a part of the spark plug according to the fifth embodiment. 実施形態6における、組立体の一部の断面図。FIG. 6 is a cross-sectional view of a part of the assembly according to the sixth embodiment. 図26のXXVII視図。XXVII view of FIG. 26. 実施形態6における、中心電極4の先端部の位置計測の断面説明図。FIG. 6 is a cross-sectional explanatory view of position measurement of a tip portion of a center electrode 4 in the sixth embodiment. 実施形態6における、電極部材を接合する直前の状態を示す断面説明図。FIG. 6 is an explanatory cross-sectional view showing a state immediately before joining the electrode members in the sixth embodiment. 実施形態6における、スパークプラグの一部の断面図。FIG. 6 is a cross-sectional view of a part of the spark plug in the sixth embodiment. 図30のXXXI視図。XXXI view of FIG. 30. 実施形態7における、組立体の一部の断面図。FIG. 6 is a cross-sectional view of a part of the assembly according to the seventh embodiment. 実施形態7における、スパークプラグの一部の断面図。FIG. 6 is a cross-sectional view of a part of the spark plug according to the seventh embodiment. 実施形態7における、組立体を先端側から見た状態の一例を示す説明図。An explanatory view showing an example of a state in which the assembly is viewed from the tip side in the seventh embodiment. 実施形態7における、組立体を先端側から見た状態の他の一例を示す説明図。An explanatory view showing another example of a state in which the assembly is viewed from the tip side in the seventh embodiment. 図34の状態の組立体に、電極部材を接合した状態を示す、説明図。An explanatory view showing a state in which an electrode member is joined to the assembly in the state of FIG. 34. 図35の状態の組立体に、電極部材を接合した状態を示す、説明図。An explanatory view showing a state in which an electrode member is joined to the assembly in the state of FIG. 35. 実施形態8における、スパークプラグの一部の断面図。FIG. 5 is a cross-sectional view of a part of the spark plug according to the eighth embodiment. 図38のXXXIX視図。XXXIX view of FIG. 38. 実施形態8における、他の状態のスパークプラグの一部の断面図。FIG. 8 is a cross-sectional view of a part of the spark plug in another state according to the eighth embodiment. 実施形態8における、軸方向長さの長い電極部材を設けたスパークプラグの一部の断面図。FIG. 8 is a cross-sectional view of a part of a spark plug provided with an electrode member having a long axial length in the eighth embodiment.

(実施形態1)
内燃機関用のスパークプラグの製造方法に係る実施形態について、図1〜図11を参照して説明する。
本形態の製造方法によって製造するスパークプラグ1は、図1、図2に示すごとく、筒状の絶縁碍子3と、中心電極4と、筒状のハウジング2と、カバー部5と、を有する。中心電極4は、絶縁碍子3の内側に保持されると共に絶縁碍子3の先端側に突出している。ハウジング2は、絶縁碍子3を内周側に保持する。カバー部5は、中心電極4を覆うようにハウジング2の先端部に設けられている。
(Embodiment 1)
An embodiment relating to a method for manufacturing a spark plug for an internal combustion engine will be described with reference to FIGS. 1 to 11.
As shown in FIGS. 1 and 2, the spark plug 1 manufactured by the manufacturing method of the present embodiment has a tubular insulating insulator 3, a center electrode 4, a tubular housing 2, and a cover portion 5. The center electrode 4 is held inside the insulating insulator 3 and projects toward the tip end side of the insulating insulator 3. The housing 2 holds the insulating insulator 3 on the inner peripheral side. The cover portion 5 is provided at the tip end portion of the housing 2 so as to cover the center electrode 4.

カバー部5には、カバー部5の内側に形成された副室50を外部に連通させる貫通孔51が形成されている。貫通孔51の内周端部511に、中心電極4との間に放電ギャップGを形成する接地電極6が設けられている。なお、本形態において、接地電極6は、カバー部5における貫通孔51の内周端部511によって構成されている。 The cover portion 5 is formed with a through hole 51 for communicating the sub chamber 50 formed inside the cover portion 5 to the outside. A ground electrode 6 that forms a discharge gap G with the center electrode 4 is provided at the inner peripheral end portion 511 of the through hole 51. In this embodiment, the ground electrode 6 is composed of the inner peripheral end portion 511 of the through hole 51 in the cover portion 5.

スパークプラグ1を製造するにあたっては、図3、図8に示すごとく、ハウジング2と絶縁碍子3と中心電極4とカバー部5とを一体化した状態において、放電ギャップGを所定の大きさに形成する。ハウジング2と絶縁碍子3と中心電極4とカバー部5とを一体化した後に、放電ギャップGを形成する。 In manufacturing the spark plug 1, as shown in FIGS. 3 and 8, the discharge gap G is formed to a predetermined size in a state where the housing 2, the insulator 3, the center electrode 4, and the cover portion 5 are integrated. do. After integrating the housing 2, the insulating insulator 3, the center electrode 4, and the cover portion 5, a discharge gap G is formed.

図1に示すごとく、本形態において、中心電極4は、絶縁碍子3の先端部からプラグ軸方向Zの先端側へ突出している。絶縁碍子3からの中心電極4の突出長さL1は、例えば、副室50の半径r1の1倍〜3倍程度とすることができる。突出長さL1は、さらに好ましくは、副室50の半径r1の1.5倍〜2倍程度とすることができる。なお、半径r1は、プラグ軸方向Zに直交する副室50の断面のうち最も半径が大きくなる副室50の断面の半径にて規定することができる。また、中心電極4は、電極母材401と、電極母材401の先端に接合された延設部材402とを有する。延設部材402は、円柱形状を有する。延設部材402の長さは、例えば、上述の中心電極4の突出長さの8割以上とすることができる。 As shown in FIG. 1, in the present embodiment, the center electrode 4 projects from the tip end portion of the insulating insulator 3 toward the tip end side in the plug axial direction Z. The protruding length L1 of the center electrode 4 from the insulator 3 can be, for example, about 1 to 3 times the radius r1 of the sub chamber 50. The protrusion length L1 can be more preferably about 1.5 to 2 times the radius r1 of the sub chamber 50. The radius r1 can be defined by the radius of the cross section of the sub chamber 50 having the largest radius among the cross sections of the sub chamber 50 orthogonal to the plug axial direction Z. Further, the center electrode 4 has an electrode base material 401 and an extension member 402 joined to the tip of the electrode base material 401. The extension member 402 has a cylindrical shape. The length of the extension member 402 can be, for example, 80% or more of the protruding length of the center electrode 4 described above.

なお、中心電極4は、延設部材402を備えない構成とすることもできる。すなわち、単一部材の電極母材401を先端側に延設して、中心電極4を構成することもできる。
本明細書において、プラグ軸方向Zを、適宜Z方向ともいう。また、Z方向において、スパークプラグ1を主燃焼室に挿入する側を先端側といい、その反対側を基端側という。
The center electrode 4 may be configured not to include the extension member 402. That is, the center electrode 4 can be formed by extending the electrode base material 401 of a single member toward the tip end side.
In the present specification, the plug axial direction Z is also appropriately referred to as the Z direction. Further, in the Z direction, the side where the spark plug 1 is inserted into the main combustion chamber is referred to as the tip end side, and the opposite side is referred to as the base end side.

また、本形態において、カバー部5は、ハウジング2とは別部品として作製される。そして、ハウジング2の先端部に、カバー部5が固定されている。カバー部5とハウジング2とは、例えば溶接にて接合される。なお、カバー部5とハウジング2とを一体部品として作製することもできる。 Further, in the present embodiment, the cover portion 5 is manufactured as a separate part from the housing 2. Then, the cover portion 5 is fixed to the tip end portion of the housing 2. The cover portion 5 and the housing 2 are joined by welding, for example. The cover portion 5 and the housing 2 can also be manufactured as an integral part.

カバー部5は、軸方向Zに立設した円筒状の側周部501と、側周部501の先端側に配された底壁部502とを有する。そして、底壁部502の略中央部に、貫通孔51が形成されている。なお、カバー部5には、貫通孔51以外にも、噴孔53を設けることができる(図12参照)。カバー部5の内側に、副室50が形成されている。 The cover portion 5 has a cylindrical side peripheral portion 501 erected in the axial direction Z, and a bottom wall portion 502 arranged on the tip end side of the side peripheral portion 501. A through hole 51 is formed in a substantially central portion of the bottom wall portion 502. In addition to the through hole 51, the cover portion 5 may be provided with a jet hole 53 (see FIG. 12). An auxiliary chamber 50 is formed inside the cover portion 5.

中心電極4の先端部41は、貫通孔51よりも基端側に位置している。したがって、延設部材402の全体が、副室50内に配置されている。放電ギャップGは、中心電極4の先端部41の外周角部と、カバー部5における貫通孔51の内周端部511の基端部との間に形成されている。放電ギャップGの大きさは、例えば、0.2〜1.2mmとすることができる。本形態においては、放電ギャップGは、中心電極4の先端部41の外周の全体にわたって形成されている。つまり、軸方向Zから見て、中心電極4の先端部41と貫通孔51とは、略同心円状に形成されている。 The tip portion 41 of the center electrode 4 is located closer to the proximal end side than the through hole 51. Therefore, the entire extension member 402 is arranged in the sub chamber 50. The discharge gap G is formed between the outer peripheral corner portion of the tip portion 41 of the center electrode 4 and the base end portion of the inner peripheral end portion 511 of the through hole 51 in the cover portion 5. The size of the discharge gap G can be, for example, 0.2 to 1.2 mm. In the present embodiment, the discharge gap G is formed over the entire outer circumference of the tip portion 41 of the center electrode 4. That is, when viewed from the axial direction Z, the tip portion 41 of the center electrode 4 and the through hole 51 are formed substantially concentrically.

なお、中心電極4の先端部41には、先端凹面423が形成されている。先端凹面423は、ドリル7の前端部72の形状に対応した円錐状の凹面となっている(図9、図10参照)。ただし、ドリル7の前端部72の形状を変更したり、加工方法を変更したりするなどして、先端部41に先端凹面423を設けない形状とすることもできる。 The tip portion 41 of the center electrode 4 is formed with a tip concave surface 423. The tip concave surface 423 is a conical concave surface corresponding to the shape of the front end portion 72 of the drill 7 (see FIGS. 9 and 10). However, the shape of the front end portion 72 of the drill 7 may be changed, the processing method may be changed, or the like so that the tip portion 41 is not provided with the tip concave surface 423.

本形態においては、図3〜図11に示すごとく、貫通孔51の内周端部511と中心電極4の先端部41とを加工することにより、放電ギャップGを所定の大きさに形成する。また、一つの加工具7によって、貫通孔51の内周端部511を切削加工しつつ、中心電極4の先端部41を切削加工する。 In this embodiment, as shown in FIGS. 3 to 11, the discharge gap G is formed to a predetermined size by processing the inner peripheral end portion 511 of the through hole 51 and the tip end portion 41 of the center electrode 4. Further, the tip portion 41 of the center electrode 4 is cut while the inner peripheral end portion 511 of the through hole 51 is cut by one processing tool 7.

より具体的には、加工具7はドリルである。図9に示すごとく、ドリル7の側部71によって貫通孔51の内周端部511を切削加工する。ドリル7の前端部72によって中心電極4の先端部41を切削加工する。 More specifically, the processing tool 7 is a drill. As shown in FIG. 9, the inner peripheral end portion 511 of the through hole 51 is cut by the side portion 71 of the drill 7. The tip portion 41 of the center electrode 4 is cut by the front end portion 72 of the drill 7.

図3〜図5に示すごとく、貫通孔51の内周端部511の加工前の状態において、カバー部5には、仮孔52が形成されている。また、この状態において、図5に示すごとく、仮孔52の開口方向から見て、中心電極4の先端部41が仮孔52内に収まっている。かかる状態から、図6〜図10に示すごとく、仮孔52を拡張するように加工する。これにより、図10、図11に示すごとく、貫通孔51の内周端部511でもある接地電極6と、中心電極4の先端部41とが、所定の位置関係となるように形成される。それゆえ、放電ギャップGが所定の大きさに形成される。 As shown in FIGS. 3 to 5, a temporary hole 52 is formed in the cover portion 5 in the state before processing of the inner peripheral end portion 511 of the through hole 51. Further, in this state, as shown in FIG. 5, the tip portion 41 of the center electrode 4 is housed in the temporary hole 52 when viewed from the opening direction of the temporary hole 52. From this state, as shown in FIGS. 6 to 10, the temporary hole 52 is processed so as to be expanded. As a result, as shown in FIGS. 10 and 11, the ground electrode 6 which is also the inner peripheral end portion 511 of the through hole 51 and the tip end portion 41 of the center electrode 4 are formed so as to have a predetermined positional relationship. Therefore, the discharge gap G is formed to have a predetermined size.

ドリル7による貫通孔51及び中心電極4の加工は、より具体的には、例えば、次のような手順にて行うことができる。
まず、図3に示すごとく、ハウジング2と絶縁碍子3と中心電極4とカバー部5とを互いに組み付けて一体化する。この一体化したものを、以下において組立体11という。なお、一体化前の段階において、カバー部5の底壁部502の略中央には仮孔52が形成されている。
More specifically, the processing of the through hole 51 and the center electrode 4 by the drill 7 can be performed by, for example, the following procedure.
First, as shown in FIG. 3, the housing 2, the insulating insulator 3, the center electrode 4, and the cover portion 5 are assembled and integrated with each other. This integrated product will be referred to as an assembly 11 below. At the stage before integration, a temporary hole 52 is formed in the substantially center of the bottom wall portion 502 of the cover portion 5.

図5、図11に示すごとく、仮孔52の直径は、後に形成される貫通孔51の直径よりも小さく、中心電極4の先端部41の直径よりも大きい。そして、図3、図4に示すごとく、ドリル7による切削加工前の中心電極4の先端部41が、仮孔52内に挿入されている。この時点における中心電極4の先端部41は、仮孔52の先端と同じ、Z方向の位置に配置されている。ただし、先端部41は、仮孔52よりも先端側へ突出していてもよい。また、先端部41を仮孔52の先端よりも基端側に配置することもできる。また、最終的に得ようとする放電ギャップGの大きさによっては、先端部41を仮孔52よりも基端側、すなわち副室50内に設けておくこともできる。 As shown in FIGS. 5 and 11, the diameter of the temporary hole 52 is smaller than the diameter of the through hole 51 formed later and larger than the diameter of the tip portion 41 of the center electrode 4. Then, as shown in FIGS. 3 and 4, the tip portion 41 of the center electrode 4 before cutting by the drill 7 is inserted into the temporary hole 52. The tip 41 of the center electrode 4 at this point is arranged at the same position in the Z direction as the tip of the temporary hole 52. However, the tip portion 41 may protrude toward the tip side from the temporary hole 52. Further, the tip portion 41 can be arranged closer to the base end side than the tip end of the temporary hole 52. Further, depending on the size of the discharge gap G to be finally obtained, the tip portion 41 may be provided on the proximal end side of the temporary hole 52, that is, in the sub chamber 50.

仮孔52は、極力、中心軸が中心電極4の先端部41と一致するように形成しておく。しかし、実際には、各部品の寸法公差や、組付け公差等によって、図4、図5に示すごとく、互いの中心軸がずれた状態にて、中心電極4と仮孔52とが配置されることがある。すなわち、例えば、電極母材401に対する延設部材402の接合位置、延設部材402の傾き、ハウジング2に対するカバー部5の接合位置等の微妙なずれによって、中心電極4の先端部41と仮孔52との軸ずれは充分に生じ得る。 The temporary hole 52 is formed so that the central axis coincides with the tip portion 41 of the center electrode 4 as much as possible. However, in reality, the center electrode 4 and the temporary hole 52 are arranged in a state where the central axes are deviated from each other as shown in FIGS. 4 and 5 due to the dimensional tolerance of each component, the assembly tolerance, and the like. There are times. That is, for example, due to a slight deviation in the joining position of the extension member 402 with respect to the electrode base material 401, the inclination of the extension member 402, the joining position of the cover portion 5 with respect to the housing 2, etc., the tip portion 41 of the center electrode 4 and the temporary hole Axis deviation from 52 can be sufficiently generated.

上記のように、貫通孔51及び中心電極4の先端部41の加工前に、図3に示すごとく、ハウジング2と絶縁碍子3と中心電極4とカバー部5とを一体化した組立体11を形成しておく。この状態から、図6〜図9に示すごとく、ドリル7によって、先端側から、カバー部5における仮孔52付近を切削加工すると共に、中心電極4の先端部41を切削加工する。 As described above, before processing the through hole 51 and the tip portion 41 of the center electrode 4, as shown in FIG. 3, the assembly 11 in which the housing 2, the insulator 3, the center electrode 4, and the cover portion 5 are integrated is formed. Form it. From this state, as shown in FIGS. 6 to 9, the vicinity of the temporary hole 52 in the cover portion 5 is cut from the tip side by the drill 7, and the tip portion 41 of the center electrode 4 is cut.

このとき、ドリル7の中心軸を、中心電極4の先端部41の中心軸に一致させる。図4〜図6に示すごとく、中心電極4の先端部41には、中心凹部42が形成されている。中心凹部42は円錐形状を有し、この円錐形状の頂点421が中心電極4の先端部41の中心軸に存在する。そして、ドリル7を、徐々に前進させる。つまり、ドリル7をスパークプラグ1の基端側へ向かって徐々に送りながら、カバー部5及び中心電極4の加工を同時に行う。 At this time, the central axis of the drill 7 is aligned with the central axis of the tip portion 41 of the center electrode 4. As shown in FIGS. 4 to 6, a central recess 42 is formed in the tip portion 41 of the center electrode 4. The central recess 42 has a conical shape, and the apex 421 of this conical shape exists on the central axis of the tip portion 41 of the center electrode 4. Then, the drill 7 is gradually advanced. That is, while gradually feeding the drill 7 toward the base end side of the spark plug 1, the cover portion 5 and the center electrode 4 are processed at the same time.

ドリル7の送り量を所定の送り量に制御する。所定の送り量は、所望の放電ギャップGが得られるような値である。この送り量は、予め設定しておく。送り量は、例えば、カバー部5の先端部の位置を基準にして、そこからの前進寸法とすることができる。 The feed amount of the drill 7 is controlled to a predetermined feed amount. The predetermined feed amount is a value such that a desired discharge gap G can be obtained. This feed amount is set in advance. The feed amount can be, for example, a forward dimension from the position of the tip end portion of the cover portion 5 as a reference.

ここで、貫通孔51の直径は、ドリル7の直径に基づいて特定される。そのため、貫通孔51の直径は予め把握できる。また、上述のように、ドリル7の中心軸は、中心電極4の先端部41の中心軸に一致させるため、得られる貫通孔51は、中心電極4と同心円状となる。それゆえ、中心電極4の先端部41の軸方向Zの位置が決まれば、放電ギャップGの大きさは決まる。 Here, the diameter of the through hole 51 is specified based on the diameter of the drill 7. Therefore, the diameter of the through hole 51 can be grasped in advance. Further, as described above, since the central axis of the drill 7 coincides with the central axis of the tip portion 41 of the central electrode 4, the obtained through hole 51 is concentric with the central electrode 4. Therefore, if the position of the tip portion 41 of the center electrode 4 in the axial direction Z is determined, the size of the discharge gap G is determined.

そこで、所望の大きさの放電ギャップGが得られる中心電極4の先端部41の位置となるように、ドリル7の送り量を設定する。そして、その設定値通りにドリル7を送りながら、中心電極4の先端部41及び貫通孔51の内周端部511の切削加工を行う。以上により、所望の放電ギャップGを形成することができる。
なお、中心電極4の先端部41には、図9、図10に示すごとく、ドリル7の前端部72の形状に対応した円錐状の先端凹面423が形成される。
Therefore, the feed amount of the drill 7 is set so as to be at the position of the tip portion 41 of the center electrode 4 where a discharge gap G having a desired size can be obtained. Then, while feeding the drill 7 according to the set value, the tip portion 41 of the center electrode 4 and the inner peripheral end portion 511 of the through hole 51 are cut. As described above, the desired discharge gap G can be formed.
As shown in FIGS. 9 and 10, a conical tip concave surface 423 corresponding to the shape of the front end portion 72 of the drill 7 is formed on the tip portion 41 of the center electrode 4.

次に、本形態の作用効果につき説明する。
本形態の内燃機関用のスパークプラグの製造方法においては、ハウジング2と絶縁碍子3と中心電極4とカバー部5とを一体化した状態において、放電ギャップGを所定の大きさに形成する。それゆえ、放電ギャップGの大きさを高精度に管理することができる。
Next, the action and effect of this embodiment will be described.
In the method for manufacturing a spark plug for an internal combustion engine of the present embodiment, the discharge gap G is formed to a predetermined size in a state where the housing 2, the insulator 3, the center electrode 4, and the cover portion 5 are integrated. Therefore, the size of the discharge gap G can be controlled with high accuracy.

また、貫通孔51の内周端部511と中心電極4の先端部41とを加工することにより、放電ギャップGを所定の大きさに形成する。それゆえ、放電ギャップGの大きさの微調整を行いやすい。 Further, the discharge gap G is formed to a predetermined size by processing the inner peripheral end portion 511 of the through hole 51 and the tip end portion 41 of the center electrode 4. Therefore, it is easy to finely adjust the size of the discharge gap G.

また、一つの加工具7によって、貫通孔51の内周端部511を切削加工しつつ、中心電極4の先端部41を切削加工する。これにより、内周端部511と先端部41との相対位置の精度を向上させやすい。したがって、放電ギャップGの大きさをより管理しやすい。 Further, the tip portion 41 of the center electrode 4 is cut while the inner peripheral end portion 511 of the through hole 51 is cut by one processing tool 7. As a result, it is easy to improve the accuracy of the relative position between the inner peripheral end portion 511 and the tip portion 41. Therefore, it is easier to control the size of the discharge gap G.

ドリル7の側部71によって貫通孔51の内周端部511を切削加工し、ドリル7の前端部72によって中心電極4の先端部41を切削加工する。これにより、貫通孔51と中心電極4の先端部41との加工精度を容易に向上させやすい。 The side portion 71 of the drill 7 cuts the inner peripheral end portion 511 of the through hole 51, and the front end portion 72 of the drill 7 cuts the tip portion 41 of the center electrode 4. As a result, the machining accuracy between the through hole 51 and the tip portion 41 of the center electrode 4 can be easily improved.

加工前の状態において、仮孔52の開口方向から見て中心電極4の先端部41が仮孔52内に収まっている。そして、仮孔52を拡張するように加工する。これにより、中心電極4の先端部41の位置を確認しつつ、容易に貫通孔51及び中心電極4の先端部41の加工を行うことができる。 In the state before processing, the tip portion 41 of the center electrode 4 is housed in the temporary hole 52 when viewed from the opening direction of the temporary hole 52. Then, the temporary hole 52 is processed so as to be expanded. As a result, the through hole 51 and the tip portion 41 of the center electrode 4 can be easily processed while confirming the position of the tip portion 41 of the center electrode 4.

以上のごとく、本形態によれば、放電ギャップの大きさを高精度に管理することができる内燃機関用のスパークプラグの製造方法を提供することができる。 As described above, according to the present embodiment, it is possible to provide a method for manufacturing a spark plug for an internal combustion engine capable of controlling the size of the discharge gap with high accuracy.

なお、中心電極4の先端部41の中心軸と、ドリル7の中心軸との位置合わせを行うにあたっては、例えば、組立体11の状態において、カメラ等の光学的計測機にて、先端部41の位置を計測しておくことが考えられる。つまり、カメラ等を、軸方向Zの先端側から仮孔52を介して中心電極4の先端部41を撮像し、その位置を計測する。計測によって得られた中心電極4の先端部41の位置に合せて、ドリル7の位置を合わせる。これにより、より高精度に中心電極4の先端部41及び貫通孔51の切削加工を行うことができる。 In aligning the central axis of the tip portion 41 of the center electrode 4 with the central axis of the drill 7, for example, in the state of the assembly 11, the tip portion 41 is used by an optical measuring instrument such as a camera. It is conceivable to measure the position of. That is, the tip portion 41 of the center electrode 4 is imaged from the tip end side in the axial direction Z through the temporary hole 52 by a camera or the like, and the position thereof is measured. The position of the drill 7 is aligned with the position of the tip portion 41 of the center electrode 4 obtained by the measurement. As a result, the tip portion 41 and the through hole 51 of the center electrode 4 can be cut with higher accuracy.

(実施形態2)
本形態においては、図13〜図16に示すごとく、貫通孔51の加工後においても仮孔52の一部が残る場合について説明する。
かかる形態は、中心電極4の先端部41の直径と仮孔52の直径との差がある程度大きく、貫通孔51の直径と仮孔52の直径との差がある程度小さく、かつ、組立体11の状態において仮孔52の中心軸と中心電極4の先端部41の中心軸とが大きくずれている場合に生じ得る。
(Embodiment 2)
In this embodiment, as shown in FIGS. 13 to 16, a case where a part of the temporary hole 52 remains even after the through hole 51 is processed will be described.
In such a form, the difference between the diameter of the tip portion 41 of the center electrode 4 and the diameter of the temporary hole 52 is large to some extent, the difference between the diameter of the through hole 51 and the diameter of the temporary hole 52 is small to some extent, and the assembly 11 This may occur when the central axis of the temporary hole 52 and the central axis of the tip portion 41 of the central electrode 4 are largely deviated from each other in the state.

この場合も、ドリル7による貫通孔51及び中心電極4の加工方法は、実施形態1と略同様に行うことができる。すなわち、図13に示すごとく、組立体11の状態において、中心電極4の先端部41は、カバー部5の貫通孔51に挿入配置されている。このとき、図14に示すごとく、中心電極4の先端部41は、カバー部5の貫通孔51に対して、大きく偏心している。この組立体11における中心電極4の先端部41の中心軸に、ドリル7の中心軸を一致させる。ただし、図14に示すごとく、軸方向Zから見て、仮孔52の一部が、ドリル7の側部71よりも外側にはみ出た状態となっている。この点が、実施形態1と相違する。そして、徐々にドリル7を所定の送り量まで前進させながら、中心電極4の先端部41を切削加工しつつ、貫通孔51の内周端部511を切削加工する。 In this case as well, the method of processing the through hole 51 and the center electrode 4 by the drill 7 can be performed in substantially the same manner as in the first embodiment. That is, as shown in FIG. 13, in the state of the assembly 11, the tip portion 41 of the center electrode 4 is inserted and arranged in the through hole 51 of the cover portion 5. At this time, as shown in FIG. 14, the tip portion 41 of the center electrode 4 is largely eccentric with respect to the through hole 51 of the cover portion 5. The central axis of the drill 7 is aligned with the central axis of the tip portion 41 of the central electrode 4 in the assembly 11. However, as shown in FIG. 14, when viewed from the axial direction Z, a part of the temporary hole 52 is in a state of protruding outward from the side portion 71 of the drill 7. This point is different from the first embodiment. Then, while gradually advancing the drill 7 to a predetermined feed amount, the tip portion 41 of the center electrode 4 is cut, and the inner peripheral end portion 511 of the through hole 51 is cut.

これにより、図15、図16に示すごとく、中心電極4の先端部41が副室50内に形成されると共に、カバー部5に貫通孔51が形成される。ここで、貫通孔51は、ドリル7の切削加工によって得られる輪郭512と、仮孔52の輪郭522とが繋がった形状となる。したがって、得られる貫通孔51の内周端部511は、その全体が、中心電極4の先端部41と同心円状とはならないし、そもそも円形とならない。 As a result, as shown in FIGS. 15 and 16, the tip portion 41 of the center electrode 4 is formed in the sub chamber 50, and the through hole 51 is formed in the cover portion 5. Here, the through hole 51 has a shape in which the contour 512 obtained by cutting the drill 7 and the contour 522 of the temporary hole 52 are connected. Therefore, the entire inner peripheral end portion 511 of the obtained through hole 51 is not concentric with the tip end portion 41 of the center electrode 4, and is not circular in the first place.

しかし、内周端部511のうちの一部、すなわち上述の輪郭512の部分において、中心電極4の先端部41と内周端部511との距離が最短となると共に、所定の距離が保たれることとなる。つまり、所定の放電ギャップGが、中心電極4の先端部41と内周端部511の一部との間に形成される。換言すると、内周端部511のうちの輪郭512の部分が、接地電極6となる。 However, in a part of the inner peripheral end portion 511, that is, the portion of the contour 512 described above, the distance between the tip portion 41 of the center electrode 4 and the inner peripheral end portion 511 is the shortest, and a predetermined distance is maintained. Will be. That is, a predetermined discharge gap G is formed between the tip portion 41 of the center electrode 4 and a part of the inner peripheral end portion 511. In other words, the portion of the contour 512 of the inner peripheral end portion 511 becomes the ground electrode 6.

その他は、実施形態1と同様である。なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。 Others are the same as in the first embodiment. In addition, among the codes used in the second and subsequent embodiments, the same codes as those used in the above-described embodiments represent the same components and the like as those in the above-mentioned embodiments, unless otherwise specified.

本形態のように、仮孔52に対して中心電極4の先端部41が大きくずれた場合にも、精度の高い放電ギャップGを形成することができる。すなわち、例えば、中心電極4の延設部材402が傾いて、先端部41の位置がプラグ中心軸からずれたような場合でも、放電ギャップGを精度よく形成することができる。
その他、実施形態1と同様の作用効果を有する。
As in the present embodiment, the discharge gap G with high accuracy can be formed even when the tip portion 41 of the center electrode 4 is largely displaced with respect to the temporary hole 52. That is, for example, even when the extension member 402 of the center electrode 4 is tilted and the position of the tip portion 41 deviates from the central axis of the plug, the discharge gap G can be formed with high accuracy.
In addition, it has the same effect as that of the first embodiment.

(実施形態3)
本形態は、図17、図18に示すごとく、中心電極4の先端部41及びカバー部5の貫通孔51の加工を、ドリル以外の手段にて行う形態である。
ずなわち、中心電極4の先端部41及びカバー部5の貫通孔51の加工は、例えば、図17に示すごとく、放電加工にて行うこともできる。この場合には、例えば、中心電極4及びカバー部5に対する放電電極73の位置や、放電エネルギ、放電時間等を調整することで、中心電極4の先端部41と貫通孔51とを形成することができる。
(Embodiment 3)
In this embodiment, as shown in FIGS. 17 and 18, the tip portion 41 of the center electrode 4 and the through hole 51 of the cover portion 5 are machined by means other than a drill.
That is, the processing of the through hole 51 of the tip portion 41 of the center electrode 4 and the cover portion 5 can also be performed by electric discharge machining, for example, as shown in FIG. In this case, for example, the tip portion 41 of the center electrode 4 and the through hole 51 are formed by adjusting the position of the discharge electrode 73 with respect to the center electrode 4 and the cover portion 5, the discharge energy, the discharge time, and the like. Can be done.

また、中心電極4の先端部41及びカバー部5の貫通孔51の加工は、例えば、図18に示すごとく、レーザ加工にて行うこともできる。この場合には、中心電極4及びカバー部5に対するレーザ加工ヘッド74の位置、レーザ光の照射エネルギ、照射時間等を調整することによって、中心電極4の先端部41と貫通孔51とを形成することができる。
その他は、実施形態1と同様であり、同様の作用効果を奏する。
Further, the processing of the through hole 51 of the tip portion 41 of the center electrode 4 and the cover portion 5 can also be performed by laser processing, for example, as shown in FIG. In this case, the tip portion 41 of the center electrode 4 and the through hole 51 are formed by adjusting the position of the laser processing head 74 with respect to the center electrode 4 and the cover portion 5, the irradiation energy of the laser beam, the irradiation time, and the like. be able to.
Others are the same as those in the first embodiment, and have the same effects.

(実施形態4)
本形態は、図19〜図21に示すごとく、中心電極4の先端部41を、Z方向と交差する向きとした形態である。
すなわち、例えば、図21に示すごとく、中心電極4は、先端部41をZ方向に対して傾斜させるように、屈曲部43を設けている。そして、中心電極4の先端部41は、カバー部5の底壁部502と側周部501との間の角部に対向している。そして、このカバー部5の角部に、貫通孔51を形成している。
(Embodiment 4)
In this embodiment, as shown in FIGS. 19 to 21, the tip portion 41 of the center electrode 4 is oriented so as to intersect the Z direction.
That is, for example, as shown in FIG. 21, the center electrode 4 is provided with a bent portion 43 so as to incline the tip portion 41 with respect to the Z direction. The tip 41 of the center electrode 4 faces the corner between the bottom wall 502 of the cover 5 and the side peripheral 501. A through hole 51 is formed at the corner of the cover portion 5.

かかるスパークプラグ1を製造する際には、例えば、図19に示すごとく、まずは、カバー部5の角部に仮孔52を備えた組立体11を用意する。組立体11においては、仮孔52に中心電極4の先端部41が挿入された状態となっている。
次いで、図20に示すごとく、組立体11に対して、中心電極4の先端部41に対向する方向から、ドリル7を対向配置する。すなわち、ドリル7の前端部72を、斜め先端側から、カバー部5の角部に向ける。この状態から、徐々にドリル7を前進させながら、カバー部5の角部を切削加工するとともに、中心電極4の先端部41を切削加工する。
When manufacturing such a spark plug 1, for example, as shown in FIG. 19, first, an assembly 11 having a temporary hole 52 at a corner of the cover portion 5 is prepared. In the assembly 11, the tip portion 41 of the center electrode 4 is inserted into the temporary hole 52.
Next, as shown in FIG. 20, the drill 7 is arranged to face the assembly 11 from the direction facing the tip 41 of the center electrode 4. That is, the front end portion 72 of the drill 7 is directed from the oblique tip side toward the corner portion of the cover portion 5. From this state, while gradually advancing the drill 7, the corner portion of the cover portion 5 is cut and the tip portion 41 of the center electrode 4 is cut.

このドリル7を、所定の送り量だけ前進させることにより、図21に示すごとく、所定の放電ギャップGが形成される。
その他は、実施形態1と同様である。
By advancing the drill 7 by a predetermined feed amount, a predetermined discharge gap G is formed as shown in FIG. 21.
Others are the same as in the first embodiment.

本形態の場合には、プラグ中心軸から離れた位置に、放電ギャップGを精度よく形成することができる。
その他は、実施形態1と同様である。
In the case of this embodiment, the discharge gap G can be accurately formed at a position away from the central axis of the plug.
Others are the same as in the first embodiment.

(実施形態5)
本形態は、図22〜図25に示すごとく、中心電極4の先端部41に貴金属チップ44を設ける形態である。
すなわち、中心電極4の先端部41を加工することによって先端凹面423を形成した後、先端凹面423に嵌合する基端凸面441を備えた貴金属チップ44を接合する。
(Embodiment 5)
In this embodiment, as shown in FIGS. 22 to 25, the precious metal tip 44 is provided at the tip end 41 of the center electrode 4.
That is, after the tip concave surface 423 is formed by processing the tip 41 of the center electrode 4, the precious metal tip 44 having the proximal convex surface 441 that fits into the tip concave 423 is joined.

本形態においても、まずは、実施形態1と同様に、組立体11(図3参照)に対して、図22、図23に示すごとく、カバー部5の貫通孔51の切削加工を行いつつ、中心電極4の先端部41の切削加工を行う。ただし、本形態の場合には、接合する貴金属チップ44のZ方向の長さを考慮して、中心電極4の先端部41の切削加工を、より基端側まで行う。すなわち、後述のように、先端部41に貴金属チップ44を配置した状態において、適切な放電ギャップGの大きさが得られるような位置まで、中心電極4の先端部41(ここでは、延設部材402の先端部)を切削加工する。 Also in this embodiment, first, as in the first embodiment, the assembly 11 (see FIG. 3) is centered while the through hole 51 of the cover portion 5 is cut as shown in FIGS. 22 and 23. The tip portion 41 of the electrode 4 is cut. However, in the case of this embodiment, the tip portion 41 of the center electrode 4 is cut to the base end side in consideration of the length of the precious metal chip 44 to be joined in the Z direction. That is, as described later, when the precious metal tip 44 is arranged on the tip 41, the tip 41 of the center electrode 4 (here, an extension member) is reached to a position where an appropriate discharge gap G size can be obtained. The tip of 402) is machined.

これにより、図23に示すごとく、中心電極4の先端部41が加工されると共に、貫通孔51が形成される。実施形態1においても説明したように、中心電極4の先端部41をドリル7にて切削加工することにより、中心電極4の先端部41には、ドリル7の前端部72の形状に対応した円錐状の先端凹面423が形成される。 As a result, as shown in FIG. 23, the tip portion 41 of the center electrode 4 is processed and the through hole 51 is formed. As described in the first embodiment, by cutting the tip 41 of the center electrode 4 with the drill 7, the tip 41 of the center electrode 4 has a cone corresponding to the shape of the front end 72 of the drill 7. A concave tip surface 423 is formed.

一方、図24に示すごとく、貴金属チップ44として、その一部に基端凸面441を形成したものを用意する。貴金属チップ44は、例えば、白金合金、イリジウム合金等からなるものを用いることができる。基端凸面441は、上述のように、中心電極4の先端凹面423と略同一形状とする。なお、先端凹面423は、例えば、ドリル7の形状等から、予め把握することができる。 On the other hand, as shown in FIG. 24, as the precious metal chip 44, a chip having a base end convex surface 441 formed on a part thereof is prepared. As the noble metal chip 44, for example, one made of a platinum alloy, an iridium alloy, or the like can be used. As described above, the base end convex surface 441 has substantially the same shape as the tip end concave surface 423 of the center electrode 4. The concave tip surface 423 can be grasped in advance from, for example, the shape of the drill 7.

そして、上述のように切削加工によって得られた中心電極4の先端凹面423に、貴金属チップ44の基端凸面441を嵌入させるようにして接合する(図25参照)。すなわち、中心電極4の延設部材402の先端部に、貴金属チップ44を接合する。中心電極4における貴金属チップ44の接合は、例えば溶接にて行うことができる。 Then, the base end convex surface 441 of the precious metal chip 44 is fitted into the tip concave surface 423 of the center electrode 4 obtained by cutting as described above (see FIG. 25). That is, the precious metal tip 44 is joined to the tip of the extension member 402 of the center electrode 4. The noble metal chip 44 at the center electrode 4 can be joined by welding, for example.

先端部41に貴金属チップ44を設けた状態において、貴金属チップ44と貫通孔51の内周端部511との間に、放電ギャップGが形成される。この放電ギャップGが所定の大きさとなるように、上述した切削加工(図22参照)において、ドリル7の送り量を制御する。
その他は、実施形態1と同様である。
In a state where the noble metal tip 44 is provided at the tip portion 41, a discharge gap G is formed between the noble metal tip 44 and the inner peripheral end portion 511 of the through hole 51. The feed amount of the drill 7 is controlled in the above-mentioned cutting process (see FIG. 22) so that the discharge gap G has a predetermined size.
Others are the same as in the first embodiment.

本形態によれば、中心電極4の先端部41に貴金属チップ44を配置したスパークプラグ1においても、放電ギャップGの大きさを高精度に管理することができる。その他、実施形態1と同様の作用効果を有する。 According to this embodiment, the size of the discharge gap G can be controlled with high accuracy even in the spark plug 1 in which the precious metal tip 44 is arranged at the tip portion 41 of the center electrode 4. In addition, it has the same effect as that of the first embodiment.

(実施形態6)
本形態は、図26〜図31に示すごとく、放電ギャップGが所定の大きさとなるように、貫通孔51の内周端部511に電極部材61を接合する、内燃機関用のスパークプラグ1の製造方法の形態である。
電極部材61は、内周端部511における周方向の一部に接合する。そして、周方向の接合位置によって、放電ギャップGの大きさを調整する。
(Embodiment 6)
In this embodiment, as shown in FIGS. 26 to 31, the spark plug 1 for an internal combustion engine joins the electrode member 61 to the inner peripheral end portion 511 of the through hole 51 so that the discharge gap G has a predetermined size. It is a form of manufacturing method.
The electrode member 61 is joined to a part of the inner peripheral end portion 511 in the circumferential direction. Then, the size of the discharge gap G is adjusted according to the joining position in the circumferential direction.

すなわち、図26に示すごとく、電極部材61を接合する前に、ハウジング2と絶縁碍子3と中心電極4とカバー部5とを一体化した状態の組立体110を作製する。カバー部5の底壁部502には、予め貫通孔51が形成されている。また、中心電極4の先端部41は、貫通孔51よりも基端側に配置されている。そして、中心電極4の先端部41は、図27に示すごとく、Z方向の先端側から、貫通孔51を介して見える状態にある。 That is, as shown in FIG. 26, before joining the electrode members 61, an assembly 110 in a state in which the housing 2, the insulating insulator 3, the center electrode 4, and the cover portion 5 are integrated is manufactured. A through hole 51 is formed in advance in the bottom wall portion 502 of the cover portion 5. Further, the tip portion 41 of the center electrode 4 is arranged on the proximal end side of the through hole 51. Then, as shown in FIG. 27, the tip portion 41 of the center electrode 4 is in a state of being visible from the tip side in the Z direction through the through hole 51.

図28に示すごとく、この組立体110において、Z方向の先端側から、レーザ計測器81等の光学的計測手段を用いて、貫通孔51に対する中心電極4の先端部41の位置を計測する。すなわち、図27に示すごとく、Z方向に投影したときの、貫通孔51に対する中心電極4の先端部41の位置を測定する。ここで、中心電極4の先端部41と、貫通孔51とは、互いの中心軸が若干ずれていることがある。そうすると、Z方向から見たときに、貫通孔51の内周端部511における電極部材61の周方向の接合位置によって、中心電極4の先端部41と電極部材61との間の距離が変わることとなる。 As shown in FIG. 28, in this assembly 110, the position of the tip portion 41 of the center electrode 4 with respect to the through hole 51 is measured from the tip end side in the Z direction by using an optical measuring means such as a laser measuring instrument 81. That is, as shown in FIG. 27, the position of the tip portion 41 of the center electrode 4 with respect to the through hole 51 when projected in the Z direction is measured. Here, the tip portion 41 of the center electrode 4 and the through hole 51 may have their central axes slightly deviated from each other. Then, when viewed from the Z direction, the distance between the tip portion 41 of the center electrode 4 and the electrode member 61 changes depending on the joint position in the circumferential direction of the electrode member 61 at the inner peripheral end portion 511 of the through hole 51. It becomes.

それゆえ、上述のように計測された貫通孔51に対する中心電極4の先端部41の位置を考慮して、電極部材61の接合位置として適切な周方向位置を算出する。そして、その周方向位置に、電極部材61を接合する(図29〜図31参照)。 Therefore, the position in the circumferential direction suitable as the joining position of the electrode member 61 is calculated in consideration of the position of the tip portion 41 of the center electrode 4 with respect to the through hole 51 measured as described above. Then, the electrode member 61 is joined to the circumferential position (see FIGS. 29 to 31).

接合するにあたっては、例えば、図29に示すごとく、配設治具82に電極部材61を搭載した状態で、配設治具82の一部と共に、貫通孔51に電極部材61を挿入する。このとき、配設治具82の前端面821が中心電極4の先端部41に当接するまで、挿入する。ここで、前端面821は、例えば、電極部材61の基端面611と面一となるようにしておくなど、前端面821と基端面611とのZ方向位置関係が所定の位置関係となるように搭載しておく。 In joining, for example, as shown in FIG. 29, the electrode member 61 is inserted into the through hole 51 together with a part of the arrangement jig 82 with the electrode member 61 mounted on the arrangement jig 82. At this time, the front end surface 821 of the arrangement jig 82 is inserted until it comes into contact with the tip portion 41 of the center electrode 4. Here, the front end surface 821 is set to be flush with the base end surface 611 of the electrode member 61 so that the Z-direction positional relationship between the front end surface 821 and the base end surface 611 becomes a predetermined positional relationship. Install it.

そうすると、配設治具82の前端面821が中心電極4の先端部41に当接した状態において、電極部材61の基端面611と、中心電極4の先端部41とのZ方向の位置関係は、特定の位置関係に決まる。すなわち、例えば、電極部材61の基端面611と、中心電極4の先端部41とが、Z方向における同じ位置に配置される。 Then, in a state where the front end surface 821 of the arrangement jig 82 is in contact with the tip end portion 41 of the center electrode 4, the positional relationship between the base end surface 611 of the electrode member 61 and the tip end portion 41 of the center electrode 4 in the Z direction is changed. , Determined by a specific positional relationship. That is, for example, the base end surface 611 of the electrode member 61 and the tip end portion 41 of the center electrode 4 are arranged at the same position in the Z direction.

それゆえ、中心電極4の先端部41の径方向における、先端部41と電極部材61との間の距離が決まれば、放電ギャップGの大きさが決まることとなる。この径方向における先端部41と電極部材61との間の距離(図31のG1参照)として、適切な距離となりつつ電極部材61が貫通孔51の内周端部511に接合できる周方向位置を算出する。その周方向位置において、内周端部511に電極部材61を配置する。そして、当該位置において、溶接等によって、電極部材61を内周端部511に接合する。
以上により、図30に示すごとく、所望の大きさの放電ギャップGを、電極部材61と中心電極4の先端部41との間に設けたスパークプラグ1が得られる。
その他は、実施形態1と同様である。
Therefore, if the distance between the tip portion 41 and the electrode member 61 in the radial direction of the tip portion 41 of the center electrode 4 is determined, the size of the discharge gap G is determined. As the distance between the tip portion 41 and the electrode member 61 in the radial direction (see G1 in FIG. 31), a circumferential position where the electrode member 61 can be joined to the inner peripheral end portion 511 of the through hole 51 while being an appropriate distance is set. calculate. At the circumferential position, the electrode member 61 is arranged at the inner peripheral end portion 511. Then, at that position, the electrode member 61 is joined to the inner peripheral end portion 511 by welding or the like.
As described above, as shown in FIG. 30, a spark plug 1 in which a discharge gap G having a desired size is provided between the electrode member 61 and the tip end portion 41 of the center electrode 4 can be obtained.
Others are the same as in the first embodiment.

本形態においては、貫通孔51の内周端部511における周方向の適切な位置に、電極部材61を接合することができる。これにより、放電ギャップGの微調整を高精度に行うことができる。
その他、実施形態1と同様の作用効果を有する。
In the present embodiment, the electrode member 61 can be joined to an appropriate position in the circumferential direction at the inner peripheral end portion 511 of the through hole 51. As a result, the discharge gap G can be finely adjusted with high accuracy.
In addition, it has the same effect as that of the first embodiment.

なお、本形態の製造方法によって得られるスパークプラグ1においては、貫通孔51の内周端部511に接合された電極部材61が、接地電極6を構成することとなる。後述する実施形態7及び実施形態8にて得られるスパークプラグ1についても、同様である。 In the spark plug 1 obtained by the manufacturing method of the present embodiment, the electrode member 61 joined to the inner peripheral end portion 511 of the through hole 51 constitutes the ground electrode 6. The same applies to the spark plug 1 obtained in the seventh and eighth embodiments described later.

(実施形態7)
本形態は、図32〜図37に示すごとく、内周端部511から内周側へ突出する電極部材61の内端突出量によって、放電ギャップGの大きさを調整する形態である。本形態においても、図33に示すごとく、電極部材61を、内周端部511における周方向の一部に接合する。
(Embodiment 7)
In this embodiment, as shown in FIGS. 32 to 37, the size of the discharge gap G is adjusted by the amount of protrusion of the inner end of the electrode member 61 protruding from the inner peripheral end portion 511 toward the inner peripheral side. Also in this embodiment, as shown in FIG. 33, the electrode member 61 is joined to a part of the inner peripheral end portion 511 in the circumferential direction.

本形態の製造方法においても、まず、図32に示すごとく、電極部材61を接合する前に、ハウジング2と絶縁碍子3と中心電極4とカバー部5とを一体化した状態の組立体110を作製する。本形態においては、中心電極4の先端部41が、貫通孔51に挿入されている。また、カバー部5には、貫通孔51につながる切欠溝54が形成されている。切欠溝54は、カバー部5の底壁部502の先端側面に設けられている。そして、この切欠溝54に、図33に示すごとく、電極部材61が配設可能となっている。 Also in the manufacturing method of this embodiment, first, as shown in FIG. 32, the assembly 110 in a state in which the housing 2, the insulating insulator 3, the center electrode 4, and the cover portion 5 are integrated before joining the electrode members 61 is formed. To make. In this embodiment, the tip portion 41 of the center electrode 4 is inserted into the through hole 51. Further, the cover portion 5 is formed with a notch groove 54 connected to the through hole 51. The notch groove 54 is provided on the front end side surface of the bottom wall portion 502 of the cover portion 5. Then, as shown in FIG. 33, the electrode member 61 can be arranged in the notch groove 54.

そして、接合前においては、電極部材61が貫通孔51の中心に対して進退する方向にスライドできる状態にて、電極部材61を切欠溝54内に配置することができる。 Then, before joining, the electrode member 61 can be arranged in the notch groove 54 in a state where the electrode member 61 can slide in the direction of advancing and retreating with respect to the center of the through hole 51.

この状態において、Z方向の先端側から、レーザ測定装置やカメラ等の光学的計測手段によって、貫通孔51及び切欠溝54に対する中心電極4の先端部41の位置を計測する。これにより、例えば、図34に示すごとく、貫通孔51における切欠溝54から遠い側に中心電極4の先端部41がずれた状態であったり、例えば、図35に示すごとく、貫通孔51における切欠溝54から近い側に中心電極4の先端部41がずれた状態であったりすることが把握できる。 In this state, the position of the tip portion 41 of the center electrode 4 with respect to the through hole 51 and the notch groove 54 is measured from the tip end side in the Z direction by an optical measuring means such as a laser measuring device or a camera. As a result, for example, as shown in FIG. 34, the tip portion 41 of the center electrode 4 is displaced to the side far from the notch groove 54 in the through hole 51, or as shown in FIG. 35, for example, the notch in the through hole 51. It can be seen that the tip portion 41 of the center electrode 4 is displaced toward the side closer to the groove 54.

このような、貫通孔51及び切欠溝54に対する中心電極4の先端部41の位置に応じて、電極部材61を、切欠溝54に沿って、前進させたり後退させたりして、その前端部612の位置を調整する。すなわち、貫通孔51における切欠溝54から遠い側に中心電極4の先端部41がずれている場合には、図36に示すごとく、電極部材61を前進させた状態にて配置する。一方、貫通孔51における切欠溝54から近い側に中心電極4の先端部41がずれている場合には、図37に示すごとく、電極部材61を後退させた状態にて配置する。このようにして、中心電極4の先端部41と電極部材61の前端部612との間の距離を所定の距離に調整する。 Depending on the position of the tip portion 41 of the center electrode 4 with respect to the through hole 51 and the notch groove 54, the electrode member 61 is advanced or retracted along the notch groove 54 to advance or retract the front end portion 612. Adjust the position of. That is, when the tip portion 41 of the center electrode 4 is displaced to the side far from the notch groove 54 in the through hole 51, the electrode member 61 is arranged in an advanced state as shown in FIG. 36. On the other hand, when the tip portion 41 of the center electrode 4 is displaced toward the side close to the notch groove 54 in the through hole 51, the electrode member 61 is arranged in a retracted state as shown in FIG. 37. In this way, the distance between the tip portion 41 of the center electrode 4 and the front end portion 612 of the electrode member 61 is adjusted to a predetermined distance.

そして、当該所定の位置に、電極部材61を位置決めした状態にて、溶接等にて、電極部材61を切欠溝54においてカバー部5に接合する。
以上により、図33に示すごとく、所望の大きさの放電ギャップGを、電極部材61と中心電極4の先端部41との間に設けたスパークプラグ1が得られる。
その他は、実施形態6と同様である。
Then, with the electrode member 61 positioned at the predetermined position, the electrode member 61 is joined to the cover portion 5 in the notch groove 54 by welding or the like.
As described above, as shown in FIG. 33, a spark plug 1 in which a discharge gap G having a desired size is provided between the electrode member 61 and the tip end portion 41 of the center electrode 4 can be obtained.
Others are the same as in the sixth embodiment.

本形態においては、上述のように、電極部材61の内端突出量を調整して接合することができる。これにより、放電ギャップGの微調整を高精度に行うことができる。
その他、実施形態6と同様の作用効果を有する。
In this embodiment, as described above, the electrode member 61 can be joined by adjusting the amount of protrusion at the inner end. As a result, the discharge gap G can be finely adjusted with high accuracy.
In addition, it has the same effect as that of the sixth embodiment.

(実施形態8)
本形態は、図38〜図41に示すごとく、筒状の電極部材61をカバー部5の貫通孔51の内周端部511に接合する形態である。
本形態においては、図38、図39に示すごとく、電極部材61は円筒形状を有する。そして、電極部材61は、貫通孔51の内周端部511からZ方向の基端側に突出するように、接合される。すなわち、副室50内に、電極部材61を突出させる。
(Embodiment 8)
In this embodiment, as shown in FIGS. 38 to 41, the tubular electrode member 61 is joined to the inner peripheral end portion 511 of the through hole 51 of the cover portion 5.
In this embodiment, as shown in FIGS. 38 and 39, the electrode member 61 has a cylindrical shape. Then, the electrode member 61 is joined so as to project from the inner peripheral end portion 511 of the through hole 51 toward the base end side in the Z direction. That is, the electrode member 61 is projected into the sub chamber 50.

本形態においても、実施形態6(図26参照)と同様に、電極部材61を接合する前に、ハウジング2と絶縁碍子3と中心電極4とカバー部5とを一体化した状態の組立体110を作製する。この組立体110において、Z方向の先端側から、レーザ計測器81等の光学的計測手段を用いて、貫通孔51に対する中心電極4の先端部41の位置を計測する(図28参照)。 Also in this embodiment, as in the sixth embodiment (see FIG. 26), the assembly 110 in which the housing 2, the insulating insulator 3, the center electrode 4, and the cover portion 5 are integrated before joining the electrode members 61. To make. In the assembly 110, the position of the tip portion 41 of the center electrode 4 with respect to the through hole 51 is measured from the tip end side in the Z direction by using an optical measuring means such as a laser measuring instrument 81 (see FIG. 28).

そして、計測された貫通孔51に対する中心電極4の先端部41の位置を考慮して、電極部材61の副室50への突出量を算出する。そして、その突出量となる位置において、電極部材61を接合する。すなわち、電極部材61の基端部614と中心電極4の先端部41との間に適切な大きさの放電ギャップGが形成されるような位置にて、電極部材61を内周端部511に配設する。 Then, the amount of protrusion of the electrode member 61 into the sub chamber 50 is calculated in consideration of the position of the tip portion 41 of the center electrode 4 with respect to the measured through hole 51. Then, the electrode member 61 is joined at a position where the amount of protrusion is obtained. That is, the electrode member 61 is attached to the inner peripheral end portion 511 at a position where a discharge gap G having an appropriate size is formed between the base end portion 614 of the electrode member 61 and the tip end portion 41 of the center electrode 4. Arrange.

本形態の製造方法の場合、中心電極4の先端部41の位置によって、電極部材61の副室への突出量を変える。それゆえ、例えば、中心電極4の先端部41の位置によって、電極部材61の先端部613が、図38のようにカバー部5の先端面と同等のZ方向の位置となったり、図40のようにカバー部5の先端面よりも先端側へ突出したりすることもあり得る。また、図41に示すごとく、敢えて、電極部材61をカバー部5の先端面よりも先端側へも突出させるように、電極部材61のZ方向の長さを長めにしておくことも考えられる。この場合、中心電極4の先端部41の位置によって、カバー部5からの電極部材61の先端側への突出量が変わることとなる。
その他は、実施形態6と同様である。
In the case of the manufacturing method of this embodiment, the amount of protrusion of the electrode member 61 into the sub chamber is changed depending on the position of the tip portion 41 of the center electrode 4. Therefore, for example, depending on the position of the tip portion 41 of the center electrode 4, the tip portion 613 of the electrode member 61 may be positioned in the Z direction equivalent to the tip surface of the cover portion 5 as shown in FIG. 38, or in FIG. 40. As described above, the cover portion 5 may protrude toward the tip end side from the tip end surface. Further, as shown in FIG. 41, it is conceivable to intentionally increase the length of the electrode member 61 in the Z direction so that the electrode member 61 projects toward the tip side of the cover portion 5 from the tip surface. In this case, the amount of protrusion of the electrode member 61 from the cover portion 5 toward the tip end side changes depending on the position of the tip end portion 41 of the center electrode 4.
Others are the same as in the sixth embodiment.

本形態の場合にも、放電ギャップGの微調整を高精度に行うことができる。また、敢えて中心電極4の先端部を先端側へ突出させることにより、火花放電の起点の位置を先端側へ移動させやすくなる。その結果、主燃焼室における着火性を向上させやすい構造を得られる。
その他、実施形態6と同様の作用効果を有する。
Also in the case of this embodiment, the discharge gap G can be finely adjusted with high accuracy. Further, by intentionally projecting the tip of the center electrode 4 toward the tip, the position of the starting point of the spark discharge can be easily moved to the tip. As a result, a structure that easily improves the ignitability in the main combustion chamber can be obtained.
In addition, it has the same effect as that of the sixth embodiment.

本発明は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。 The present invention is not limited to each of the above embodiments, and can be applied to various embodiments without departing from the gist thereof.

1 内燃機関用のスパークプラグ
2 ハウジング
3 絶縁碍子
4 中心電極
41 (中心電極の)先端部
5 カバー部
51 貫通孔
511 内周端部
6 接地電極
G 放電ギャップ
1 Spark plug for internal combustion engine 2 Housing 3 Insulator 4 Center electrode 41 (center electrode) tip 5 Cover 51 Through hole 511 Inner peripheral end 6 Ground electrode G Discharge gap

Claims (10)

内燃機関用のスパークプラグ(1)を製造する方法であって、
上記スパークプラグは、
筒状の絶縁碍子(3)と、
該絶縁碍子の内側に保持されると共に該絶縁碍子の先端側に突出した中心電極(4)と、
上記絶縁碍子を内周側に保持する筒状のハウジング(2)と、
上記中心電極を覆うように上記ハウジングの先端部に設けられたカバー部(5)と、を有し、
上記カバー部には、該カバー部の内側に形成された副室(50)を外部に連通させる貫通孔(51)が形成されており、
上記貫通孔の内周端部(511)に、上記中心電極との間に放電ギャップ(G)を形成する接地電極(6)が設けられ、
上記スパークプラグを製造するにあたっては、
上記ハウジングと上記絶縁碍子と上記中心電極と上記カバー部とを一体化した状態において、上記放電ギャップを所定の大きさに形成する、内燃機関用のスパークプラグの製造方法。
A method of manufacturing a spark plug (1) for an internal combustion engine.
The above spark plugs
Cylindrical insulating insulator (3) and
The center electrode (4), which is held inside the insulator and protrudes toward the tip of the insulator,
A tubular housing (2) that holds the insulating insulator on the inner peripheral side, and
It has a cover portion (5) provided at the tip end portion of the housing so as to cover the center electrode.
The cover portion is formed with a through hole (51) for communicating the sub chamber (50) formed inside the cover portion to the outside.
A ground electrode (6) forming a discharge gap (G) with the center electrode is provided at the inner peripheral end portion (511) of the through hole.
In manufacturing the above spark plugs,
A method for manufacturing a spark plug for an internal combustion engine, in which the discharge gap is formed to a predetermined size in a state where the housing, the insulating insulator, the center electrode, and the cover portion are integrated.
上記貫通孔の内周端部と上記中心電極の先端部とを加工することにより、上記放電ギャップを所定の大きさに形成する、請求項1に記載の内燃機関用のスパークプラグの製造方法。 The method for manufacturing a spark plug for an internal combustion engine according to claim 1, wherein the discharge gap is formed to a predetermined size by processing the inner peripheral end portion of the through hole and the tip end portion of the center electrode. 一つの加工具(7)によって、上記貫通孔の上記内周端部を切削加工しつつ、上記中心電極の先端部を切削加工する、請求項2に記載の内燃機関用のスパークプラグの製造方法。 The method for manufacturing a spark plug for an internal combustion engine according to claim 2, wherein the tip of the center electrode is cut while the inner peripheral end of the through hole is cut by one processing tool (7). .. 上記加工具は、ドリルであって、該ドリルの側部(71)によって上記貫通孔の内周端部を切削加工し、上記ドリルの前端部(72)によって上記中心電極の先端部を切削加工する、請求項3に記載の内燃機関用のスパークプラグの製造方法。 The processing tool is a drill, in which the inner peripheral end portion of the through hole is cut by the side portion (71) of the drill, and the tip portion of the center electrode is cut by the front end portion (72) of the drill. The method for manufacturing a spark plug for an internal combustion engine according to claim 3. 上記貫通孔の上記内周端部の加工前の状態において、上記カバー部には、仮孔(52)が形成されており、該仮孔の開口方向から見て、上記中心電極の先端部が上記仮孔内に収まっており、上記仮孔を拡張するように加工する、請求項2〜4のいずれか一項に記載の内燃機関用のスパークプラグの製造方法。 A temporary hole (52) is formed in the cover portion in the state before processing of the inner peripheral end portion of the through hole, and the tip portion of the center electrode is formed when viewed from the opening direction of the temporary hole. The method for manufacturing a spark plug for an internal combustion engine according to any one of claims 2 to 4, wherein the spark plug is housed in the temporary hole and is processed so as to expand the temporary hole. 上記中心電極の先端部を加工することによって先端凹面(423)を形成した後、該先端凹面に嵌合する基端凸面(441)を備えた貴金属チップ(44)を接合する、請求項2〜5のいずれか一項に記載の内燃機関用のスパークプラグの製造方法。 Claims 2 to 2 in which a tip concave surface (423) is formed by processing the tip portion of the center electrode, and then a precious metal chip (44) having a base end convex surface (441) to be fitted to the tip concave surface is joined. 5. The method for manufacturing a spark plug for an internal combustion engine according to any one of 5. 上記放電ギャップが所定の大きさとなるように、上記貫通孔の上記内周端部に電極部材を接合する、請求項1に記載の内燃機関用のスパークプラグの製造方法。 The method for manufacturing a spark plug for an internal combustion engine according to claim 1, wherein an electrode member is joined to the inner peripheral end portion of the through hole so that the discharge gap has a predetermined size. 上記電極部材は、上記内周端部における周方向の一部に接合し、該周方向の接合位置によって、上記放電ギャップの大きさを調整する、請求項7に記載の内燃機関用のスパークプラグの製造方法。 The spark plug for an internal combustion engine according to claim 7, wherein the electrode member is joined to a part of the inner peripheral end portion in the circumferential direction, and the size of the discharge gap is adjusted according to the joining position in the circumferential direction. Manufacturing method. 上記電極部材は、上記内周端部における周方向の一部に接合し、上記内周端部から内周側へ突出する上記電極部材の内端突出量によって、上記放電ギャップの大きさを調整する、請求項7に記載の内燃機関用のスパークプラグの製造方法。 The electrode member is joined to a part of the inner peripheral end portion in the circumferential direction, and the size of the discharge gap is adjusted by the amount of the inner end protrusion of the electrode member protruding from the inner peripheral end portion to the inner peripheral side. The method for manufacturing a spark plug for an internal combustion engine according to claim 7. 上記電極部材は筒形状を有し、上記内周端部から基端側へ突出する上記電極部材の基端突出量によって、上記放電ギャップの大きさを調整する、請求項7に記載の内燃機関用のスパークプラグの製造方法。 The internal combustion engine according to claim 7, wherein the electrode member has a tubular shape, and the size of the discharge gap is adjusted by the amount of protrusion of the base end of the electrode member protruding from the inner peripheral end portion toward the proximal end side. How to make spark plugs for.
JP2020027732A 2020-02-21 2020-02-21 Method of manufacturing spark plugs for internal combustion engines Active JP7365932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020027732A JP7365932B2 (en) 2020-02-21 2020-02-21 Method of manufacturing spark plugs for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020027732A JP7365932B2 (en) 2020-02-21 2020-02-21 Method of manufacturing spark plugs for internal combustion engines

Publications (2)

Publication Number Publication Date
JP2021131998A true JP2021131998A (en) 2021-09-09
JP7365932B2 JP7365932B2 (en) 2023-10-20

Family

ID=77551165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020027732A Active JP7365932B2 (en) 2020-02-21 2020-02-21 Method of manufacturing spark plugs for internal combustion engines

Country Status (1)

Country Link
JP (1) JP7365932B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186667A (en) 2007-01-29 2008-08-14 Denso Corp Spark plug for internal combustion engine
JP5530940B2 (en) 2010-01-15 2014-06-25 日本特殊陶業株式会社 Spark plug and method of manufacturing the spark plug
JP6034199B2 (en) 2013-01-07 2016-11-30 日本特殊陶業株式会社 Plasma jet ignition plug
JP6478575B2 (en) 2014-11-13 2019-03-06 株式会社Soken Spark plug

Also Published As

Publication number Publication date
JP7365932B2 (en) 2023-10-20

Similar Documents

Publication Publication Date Title
EP1775808B1 (en) Spark plug and method for producing spark plug
JP2006286469A (en) Spark plug for internal combustion engine
JP2016062664A (en) Spark plug, and method of manufacturing spark plug
CN111001941B (en) Laser drilling method
US20190193226A1 (en) Method to produce a radial run-out tool as well as a radial run-out tool
JP2021131998A (en) Manufacturing method of internal combustion spark plug
US9887520B2 (en) Method for producing a spark plug
EP0773375B1 (en) Processing method for connecting rod
JP4680513B2 (en) Spark plug manufacturing method and spark plug
EP3481586B1 (en) Double nozzle for a laser cutting head
US9401587B2 (en) Method of manufacturing an ignition plug
US9899806B2 (en) Method for manufacturing spark plug
CN107017557B (en) Manufacturing device for spark plug
JP4718283B2 (en) Manufacturing method of spark plug
JPS5824203B2 (en) Manufacturing method for optical fiber connector plugs
JP7440907B2 (en) Female thread machining method, estimated cutting edge distance determination device, and tool presetter
JP2006324120A (en) Spark plug of internal combustion engine
JP2020142325A (en) Cutting tip and processed component manufacturing method
JP2018190586A (en) Manufacturing method of spark plug
WO2019162464A1 (en) A method of machining a bore extending from an outer wall of a workpiece with liquid-jet guided laser beam
JP5690250B2 (en) Manufacturing method of spark plug
JP2022186279A (en) Spark plug for internal combustion engine and manufacturing method for the same
JP2022007058A (en) Manufacturing method of spark plug for internal combustion engine
JP2023108915A (en) Spark plug for internal combustion engine
JP6861448B1 (en) Center drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231010

R150 Certificate of patent or registration of utility model

Ref document number: 7365932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150