JP2021103920A - Self-excited reactive power compensation device - Google Patents

Self-excited reactive power compensation device Download PDF

Info

Publication number
JP2021103920A
JP2021103920A JP2019234285A JP2019234285A JP2021103920A JP 2021103920 A JP2021103920 A JP 2021103920A JP 2019234285 A JP2019234285 A JP 2019234285A JP 2019234285 A JP2019234285 A JP 2019234285A JP 2021103920 A JP2021103920 A JP 2021103920A
Authority
JP
Japan
Prior art keywords
compensator
distribution line
self
constant
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019234285A
Other languages
Japanese (ja)
Other versions
JP6879652B1 (en
Inventor
晃 神部
Akira Kanbe
晃 神部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2019234285A priority Critical patent/JP6879652B1/en
Application granted granted Critical
Publication of JP6879652B1 publication Critical patent/JP6879652B1/en
Publication of JP2021103920A publication Critical patent/JP2021103920A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

To provide a self-excited reactive power compensation device that carries a function of automatically measuring impedance of a distribution line and can automatically change a constant of a compensator to an optimum value.SOLUTION: In a self-excited reactive power compensation device 1, a compensator constant for which frequency characteristics of a system voltage control system becomes optimal (a control system is stable, response is fast, and control accuracy is good) is calculated in advance for an impedance value of various distribution lines. The calculated optimal compensator constant is automatically optimized and set by correcting each time based on automatic measurement results of the distribution line impedance value.SELECTED DRAWING: Figure 1

Description

本発明は、自励式無効電力補償装置を構成する補償器の定数を自動で最適値に変更する技術に関する。 The present invention relates to a technique for automatically changing the constant of a compensator constituting a self-excited electrostatic compensator to an optimum value.

太陽光発電や風力発電など自然エネルギーを利用する分散型電源が配電系統に大量導入された場合、系統電圧の変動が増大することが懸念される。つまり、日射や風力の急変によりこれらの出力は大きく変動するため、その影響で系統電圧も急激に変動する。 When a large number of distributed power sources that use natural energy such as solar power generation and wind power generation are introduced into the distribution system, there is a concern that fluctuations in the system voltage will increase. In other words, these outputs fluctuate greatly due to sudden changes in solar radiation and wind power, and as a result, the system voltage also fluctuates sharply.

その影響による急激な電圧変動に対しては、変圧器のタップを切換えて電圧を調整する従来の電圧調整装置では対応できず、この問題を解決する装置としてSTATCOMなどの無効電力補償装置が有効と考えられる。 The conventional voltage regulator that adjusts the voltage by switching the tap of the transformer cannot cope with the sudden voltage fluctuation due to the influence, and a static power compensator such as STATCOM is effective as a device to solve this problem. Conceivable.

STATCOMはIGBT等の半導体デバイスで構成された自励式の無効電力補償装置であり、高速な無効電力出力制御によって急激な電圧変動を迅速に抑制することができる。(下記特許文献1参照)。 STATCOM is a self-excited static VARCOM compensator composed of semiconductor devices such as IGBTs, and can quickly suppress sudden voltage fluctuations by high-speed static VAR power output control. (See Patent Document 1 below).

愛知電機技報No.37 p30 高圧配電線用STATCOMの開発Aichi Electric Technical Report No. 37 p30 Development of STATCOM for high-voltage distribution lines

上記STATCOMの制御系を構成する補償器の定数を決めるにあたっては、事前に配電線のインピーダンスを調査し、それに合わせて手動で最適となるよう設定していた。このため、配電系統の切り換えなどで配電線のインピーダンスが大きく変化すると、その都度補償器の設定を手動で変更する必要があった。 In determining the constants of the compensators that make up the STATCOM control system, the impedance of the distribution line was investigated in advance and manually set to be optimal accordingly. Therefore, when the impedance of the distribution line changes significantly due to the switching of the distribution system or the like, it is necessary to manually change the setting of the compensator each time.

本発明は、配電線のインピーダンスを自動計測する機能を搭載し、補償器の定数を自動で最適値に変更することのできる自励式無効電力補償装置を提供する。 The present invention provides a self-excited reactive compensator equipped with a function of automatically measuring the impedance of a distribution line and capable of automatically changing the constant of a compensator to an optimum value.

請求項1記載の発明は、種々の配電線のインピーダンス値に対して、系統電圧制御系の周波数特性が最適(制御系が安定かつ応答が速く、制御精度が良い)となる補償器定数をあらかじめ計算しておき、こうして把握しておいた最適な補償器定数を、配電線インピーダンス値の自動計測結果に基づき都度補正することにより自動で最適化して設定することに特徴を有する。 The invention according to claim 1 preliminarily sets a compensator constant at which the frequency characteristics of the system voltage control system are optimal (the control system is stable, the response is fast, and the control accuracy is good) with respect to the impedance values of various distribution lines. It is characterized in that the optimum compensator constant that has been calculated and grasped in this way is automatically optimized and set by correcting each time based on the automatic measurement result of the distribution line impedance value.

請求項2記載の発明は、請求項1記載の自励式無効電力補償装置において、当該自励式無効電力補償装置から次数間高調波の微小電流を配電系統に注入して、系統電圧の同次数の高調波を計測することで、下記式(1)で次数間高調波電流を求め、下記式(2)で次数間高調波電圧を求め、これらを入力として下記式(3)で前記配電線インピーダンスを求め、これを平均化することにより、平均化した値を前記配電線インピーダンス値と自動推定することを特徴とする請求項1記載の自励式無効電力補償装置:

Figure 2021103920
According to the second aspect of the present invention, in the self-excited electrostatic compensator according to the first aspect, a minute current of interorder harmonics is injected into the distribution system from the self-excited electrostatic compensator to obtain the same order of the system voltage. By measuring the harmonics, the inter-order harmonic current is obtained by the following formula (1), the inter-order harmonic voltage is obtained by the following formula (2), and the distribution wire impedance is obtained by the following formula (3) using these as inputs. The self-excited electrostatic compensator according to claim 1, wherein the averaged value is automatically estimated as the distribution line impedance value by obtaining and averaging the values.
Figure 2021103920

請求項1記載の発明によれば、配電線のインピーダンスが大きく変化した場合でも、補償器の設定を手動でする必要はない。また、補償器の最適値を系統電圧制御系の周波数特性から決定するので、制御系を安定かつ応答速度が速く、制御精度の良いものにできる。さらに、あらかじめ把握しておいた最適な補償器定数を、配電線インピーダンス値の自動計測結果に基づきより最適な値に補正することができる。 According to the invention of claim 1, even if the impedance of the distribution line changes significantly, it is not necessary to manually set the compensator. Further, since the optimum value of the compensator is determined from the frequency characteristics of the system voltage control system, the control system can be stable, the response speed is fast, and the control accuracy is good. Further, the optimum compensator constant grasped in advance can be corrected to a more optimum value based on the automatic measurement result of the distribution line impedance value.

請求項2記載の発明によれば、請求項1記載の発明による効果に加え、配電線インピーダンスを計測する際に、配電線に存在しない次数間高調波を用いるので、他からの影響を受けにくく、式(1)と式(2)で積分・時間平均して(ディジタルフーリエ変換を用いて)次数間高調波の電圧・電流を検出し、さらに式(3)で求めた値の平均値を採用するので、配電線のインピーダンスを精度良く推定できる。 According to the invention of claim 2, in addition to the effect of the invention of claim 1, when measuring the distribution line impedance, an interorder harmonic that does not exist in the distribution line is used, so that it is not easily affected by others. , Integrate and time average with equations (1) and (2) to detect the voltage and current of inter-order harmonics (using digital Fourier transform), and then average the values obtained with equation (3). Since it is used, the impedance of the distribution line can be estimated accurately.

本発明に係る自励式無効電力補償装置の制御ブロック図である。It is a control block diagram of the self-excited electrostatic compensator which concerns on this invention. 線路リアクタンスと補償器の最適ゲインとの関係を示す図である。It is a figure which shows the relationship between the line reactance and the optimum gain of a compensator.

以下、本発明の実施の形態を図1により説明する。図1において、1は高圧配電系統に接続される自励式無効電力補償装置であり、2は補償器として機能する系統電圧制御部である。 Hereinafter, embodiments of the present invention will be described with reference to FIG. In FIG. 1, 1 is a self-excited electrostatic compensator connected to a high-voltage distribution system, and 2 is a system voltage control unit that functions as a compensator.

3は逆γδ変換・逆αβ変換部であり、4は電流出力部(出力電流制御やPWM制御インバータ、LCフィルタ、昇圧変圧器を含む)、5は次数間高調波電流検出部である。 Reference numeral 3 denotes an inverse γδ conversion / inverse αβ conversion unit, 4 is a current output unit (including output current control, PWM control inverter, LC filter, and step-up transformer), and 5 is an interorder harmonic current detection unit.

6は次数間高調波電圧検出部であり、7は配電線インピーダンス演算部である。8は補償器定数決定部であり、9は次数間高調波電流指令値生成部である。10は系統電圧検出部であり、11はPLL、12は次数間高調波信号生成部である。 Reference numeral 6 denotes an inter-degree harmonic voltage detection unit, and reference numeral 7 denotes a distribution line impedance calculation unit. Reference numeral 8 denotes a compensator constant determination unit, and 9 is an inter-degree harmonic current command value generation unit. Reference numeral 10 is a system voltage detection unit, 11 is a PLL, and 12 is an inter-degree harmonic signal generation unit.

上記のとおり構成した本発明の自励式無効電力補償装置1は、直流電圧制御系と系統電圧制御系から構成されている。 The self-excited electrostatic compensator 1 of the present invention configured as described above is composed of a DC voltage control system and a system voltage control system.

系統電圧制御系は、系統電圧制御部2、逆γδ変換・逆αβ変換部3、電流出力部4、計器用変成器VTおよび系統電圧検出部10から構成される。自励式無効電力補償装置1の出力電流指令値は、前記2つの制御系の補償器の出力を逆γδ変換・逆αβ変換することにより作成される。そして、電流出力部4は、当該出力電流指令値に応じた電流を配電線に出力し、無効電力を供給する。 The system voltage control system is composed of a system voltage control unit 2, an inverse γδ conversion / inverse αβ conversion unit 3, a current output unit 4, an instrument transformer VT, and a system voltage detection unit 10. The output current command value of the self-excited reactive compensator 1 is created by performing inverse γδ conversion and inverse αβ conversion of the outputs of the compensators of the two control systems. Then, the current output unit 4 outputs a current corresponding to the output current command value to the distribution line and supplies the ineffective power.

以上のように構成した自励式無効電力補償装置1において、補償器2の定数を決定する場合、まず、配電線のインピーダンスを計測する。計測にあたっては、該無効電力補償装置1から次数間高調波(例えば、2.5次)の微小電流を配電系統に注入する。 In the self-excited electrostatic power compensator 1 configured as described above, when determining the constant of the compensator 2, first, the impedance of the distribution line is measured. In the measurement, a minute current of inter-degree harmonics (for example, 2.5th order) is injected from the static power compensator 1 into the distribution system.

次数間高調波電流検出部5は、電流検出器CTで検出した電流i(t)(電流出力部4から出力される電流)と次数間高調波信号生成部12が出力する次数間高調波信号を入力として、下記[数1]によって次数間高調波電流Ikのcos成分とsin成分を求め、下記[数2]によって次数間高調波電流Ikを求める。 The inter-order harmonic current detection unit 5 includes the current i (t) (current output from the current output unit 4) detected by the current detector CT and the inter-order harmonic signal output by the inter-order harmonic signal generation unit 12. Is used as an input, the cos component and sin component of the interorder harmonic current Ik are obtained by the following [Equation 1], and the interorder harmonic current Ik is obtained by the following [Equation 2].

Figure 2021103920
Figure 2021103920

Figure 2021103920
Figure 2021103920

次数間高調波電圧検出部6は、計器用変成器VTで検出した電圧v(t)(自励式無効電力補償装置1が接続されている点の配電線の電圧)と次数間高調波信号生成部12が出力する次数間高調波信号を入力として、下記[数3]によって次数間高調波電圧Vkのcos成分とsin成分を求め、下記[数4]によって次数間高調波電圧Vkを求める。 The inter-order harmonic voltage detection unit 6 generates a harmonic signal between the order voltage v (t) (voltage of the distribution wire at the point where the self-excited ineffective power compensator 1 is connected) detected by the instrument transformer VT. Using the interorder harmonic signal output by unit 12 as an input, the cos component and sin component of the interorder harmonic voltage Vk are obtained by the following [Equation 3], and the interorder harmonic voltage Vk is obtained by the following [Equation 4].

Figure 2021103920
Figure 2021103920

Figure 2021103920
Figure 2021103920

次に、配電線インピーダンス演算部7は、次数間高調波電流検出部5によって求めた次数間高調波電流Ikと、次数間高調波電圧検出部6によって求めた次数間高調波電圧Vkを入力として配電線インピーダンスZlを求める。 Next, the distribution line impedance calculation unit 7 receives the inter-order harmonic current Ik obtained by the inter-order harmonic current detection unit 5 and the inter-order harmonic voltage Vk obtained by the inter-order harmonic voltage detection unit 6 as inputs. Obtain the distribution line impedance Zl.

配電線インピーダンスZl=R+jX(R:配電線インピーダンスの抵抗分、X:配電線インピーダンスのリアクタンス分)とすると、次数間高調波におけるインピーダンスZlkは下記[数5]のようになる。 Assuming that the distribution line impedance Zl = R + jX (R: the resistance of the distribution line impedance and X: the reactance of the distribution line impedance), the impedance Zlk in the interorder harmonics is as shown in [Equation 5] below.

Figure 2021103920
Figure 2021103920

また、次数間高調波におけるインピーダンスZlkは下記[数6]で計算できる。 Further, the impedance Zlk in the inter-degree harmonic can be calculated by the following [Equation 6].

Figure 2021103920
Figure 2021103920

したがって、配電線インピーダンスは下記[数7]によって求めることができる。 Therefore, the distribution line impedance can be obtained by the following [Equation 7].

Figure 2021103920
Figure 2021103920

最後に、計算誤差を小さくするため、求めた配電線インピーダンスを平均化する。平均化した値が配電線インピーダンスの計測値となる。 Finally, in order to reduce the calculation error, the obtained distribution line impedance is averaged. The averaged value is the measured value of the distribution line impedance.

配電線インピーダンスの計測値は、補償器定数決定部8に出力され、補償器定数決定部8は配電線インピーダンスの計測値に基づき補償器定数の最適値を決定する。 The measured value of the distribution line impedance is output to the compensator constant determination unit 8, and the compensator constant determination unit 8 determines the optimum value of the compensator constant based on the measured value of the distribution line impedance.

補償器定数の最適値は、系統電圧制御系の周波数特性から決定する。一般に、制御系の制御精度や応答性、安定性(発振する・しない)は、制御系の周波数特性で決まる。配電線のインピーダンスに応じて補償器2の定数を調整することにより、系統電圧制御系の周波数特性を最適(安定かつ応答速度が速く、制御精度が良い)なものにすることができる。 The optimum value of the compensator constant is determined from the frequency characteristics of the system voltage control system. In general, the control accuracy, responsiveness, and stability (oscillation / non-oscillation) of a control system are determined by the frequency characteristics of the control system. By adjusting the constant of the compensator 2 according to the impedance of the distribution line, the frequency characteristics of the system voltage control system can be optimized (stable, fast response speed, and good control accuracy).

種々の配電線のインピーダンス値に対して、系統電圧制御系の周波数特性を最適なものにする補償器2の定数をあらかじめ把握しておく。この関係性から、補償器定数の最適値を決定することができる。以下に補償器定数の最適値の決定方法について説明する。 The constant of the compensator 2 that optimizes the frequency characteristics of the system voltage control system with respect to the impedance values of various distribution lines is grasped in advance. From this relationship, the optimum value of the compensator constant can be determined. The method of determining the optimum value of the compensator constant will be described below.

まず、図1に示す高圧配電線で想定される線路インピーダンスに対して、系統電圧制御系の最適な補償器定数をあらかじめ計算しておく。具体的には、線路リアクタンスを複数個の範囲に分割(例えば、図2に示すように、線路リアクタンスXをX1≦X<X2、X2≦X<X3、X3≦X<X4、…などの範囲に分割)する。 First, the optimum compensator constant of the system voltage control system is calculated in advance for the line impedance assumed in the high-voltage distribution line shown in FIG. Specifically, the line reactance is divided into a plurality of ranges (for example, as shown in FIG. 2, the line reactance X is divided into ranges such as X1 ≦ X <X2, X2 ≦ X <X3, X3 ≦ X <X4, ... Divide into).

そして、分割範囲ごとに補償器定数の最適値を範囲の中心値で計算する。次に、上述の如く配電線インピーダンスの計測値を得たら、当該計測値が属する範囲に対応する補償器の定数を自動選択する。 Then, the optimum value of the compensator constant is calculated at the center value of the range for each division range. Next, when the measured value of the distribution line impedance is obtained as described above, the constant of the compensator corresponding to the range to which the measured value belongs is automatically selected.

ここで、インピーダンスの計測値が分割範囲の境界値に近い場合は、前記中心値に対応する補償器定数を選択してしまうと補償器定数が最適値からずれてしまう。そこで、図2に示すように分割範囲ごとの中心値に対応する補償器定数を直線などの曲線で結び、関数として表す。 Here, when the measured value of impedance is close to the boundary value of the division range, if the compensator constant corresponding to the center value is selected, the compensator constant deviates from the optimum value. Therefore, as shown in FIG. 2, the compensator constants corresponding to the center values for each division range are connected by a curve such as a straight line and expressed as a function.

自動計測したインピーダンス値に応じて、この関数を用いて補正することにより、より最適な補償器定数が得られる。これにより、前記中心値に対応する補償器定数を設定する場合と比較して、より最適値に近い補償器定数を設定することができる。つまり、配電線インピーダンスを計測する都度、図2に示すような、配電線インピーダンス値と補償器定数の関係を表す関数を用いて補償器定数の最適値を自動計算する。 A more optimal compensator constant can be obtained by correcting using this function according to the automatically measured impedance value. As a result, the compensator constant closer to the optimum value can be set as compared with the case where the compensator constant corresponding to the center value is set. That is, each time the distribution line impedance is measured, the optimum value of the compensator constant is automatically calculated using a function representing the relationship between the distribution line impedance value and the compensator constant as shown in FIG.

このようにして決定した補償器定数は系統電圧制御部2に出力され、補償器の定数が自動的に最適値に設定される。 The compensator constant determined in this way is output to the system voltage control unit 2, and the compensator constant is automatically set to the optimum value.

以上説明したように、本発明の自励式無効電力補償装置によれば、制御系の補償器の定数を決めるにあたり、事前に配電線のインピーダンスを調査する必要がない。 As described above, according to the self-excited electrostatic compensator of the present invention, it is not necessary to investigate the impedance of the distribution line in advance when determining the constant of the compensator of the control system.

また、系統切換などで配電線のインピーダンスが大きく変化した場合でも、補償器の定数は自動的に最適値に変更されるので、従来のように手動で補償器定数の設定を変更する必要がない。 In addition, even if the impedance of the distribution line changes significantly due to system switching, the compensator constant is automatically changed to the optimum value, so there is no need to manually change the compensator constant setting as in the past. ..

なお、補償器定数の補正は、図2に示す一次補間に限定するものではなく、スプライン補間など補正に最適な曲線を関数として採用すれば良い。 The correction of the compensator constant is not limited to the linear interpolation shown in FIG. 2, and a curve optimal for correction such as spline interpolation may be adopted as a function.

本発明は、配電線のインピーダンスに応じて調整動作や制御動作を行う配電用機器に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used for a power distribution device that performs an adjustment operation or a control operation according to the impedance of a distribution line.

1 自励式無効電力補償装置
2 系統電圧制御部(補償器)
3 逆γδ変換・逆αβ変換部
4 電流出力部
5 次数間高調波電流検出部
6 次数間高調波電圧検出部
7 配電線インピーダンス演算部
8 補償器定数決定部
9 次数間高調波電流指令値生成部
10 系統電圧検出部
11 PLL
12 次数間高調波信号生成部
1 Self-excited reactive compensator 2 System voltage control unit (compensator)
3 Inverse γδ conversion / Inverse αβ conversion unit 4 Current output unit 5 Inter-order harmonic current detection unit 6 Inter-order harmonic voltage detection unit 7 Distribution line impedance calculation unit 8 Compensator constant determination unit 9 Inter-order harmonic current command value generation Unit 10 System voltage detector 11 PLL
12th degree harmonic signal generator

請求項記載の発明は、複数の系統における配電線のインピーダンス値に対して、系統電圧制御系の周波数特性を基に補償器定数をあらかじめ計算しておき、こうして把握しておいた補償器定数を、配電線インピーダンス値の自動計測結果に基づき都度補正することにより自動で設定することを特徴とする自励式無効電力補償装置であって、当該自励式無効電力補償装置から次数間高調波の微小電流を配電系統に注入して、系統電圧の同次数の高調波を計測することで、下記式(1)で次数間高調波電流を求め、下記式(2)で次数間高調波電圧を求め、これらを入力として下記式(3)で前記配電線インピーダンスを求め、これを平均化することにより、平均化した値を前記配電線インピーダンス値と自動推定することを特徴とする自励式無効電力補償装置:
式(1)

Figure 2021103920
式(2)
Figure 2021103920
式(3)
Figure 2021103920
In the invention according to claim 1 , a compensator constant is calculated in advance based on the frequency characteristics of the system voltage control system with respect to the impedance value of the distribution line in a plurality of systems, and the compensator constant thus grasped. Is a self-excited ineffective power compensating device characterized in that is automatically set by correcting each time based on the automatic measurement result of the distribution line impedance value, and is a minute amount of interorder harmonics from the self-excited inactive power compensating device. By injecting a current into the distribution system and measuring the harmonics of the same order of the system voltage, the inter-order harmonic current is obtained by the following formula (1), and the inter-order harmonic voltage is obtained by the following formula (2). , The distribution line impedance is obtained by the following formula (3) with these as inputs, and by averaging them, the averaged value is automatically estimated as the distribution line impedance value. apparatus:
Equation (1)
Figure 2021103920
Equation (2)
Figure 2021103920
Equation (3)
Figure 2021103920

請求項1記載の発明によれば、配電線のインピーダンスが大きく変化した場合でも、補償器の設定変更を手動でする必要はない。また、補償器の最適値を系統電圧制御系の周波数特性から決定するので、制御系を安定かつ応答速度が速く、制御精度の良いものにできる。さらに、あらかじめ把握しておいた最適な補償器定数を、配電線インピーダンス値の自動計測結果に基づきより最適な値に補正することができる。 According to the invention of claim 1, even if the impedance of the distribution line changes significantly, it is not necessary to manually change the setting of the compensator. Further, since the optimum value of the compensator is determined from the frequency characteristics of the system voltage control system, the control system can be stable, the response speed is fast, and the control accuracy is good. Further, the optimum compensator constant grasped in advance can be corrected to a more optimum value based on the automatic measurement result of the distribution line impedance value.

また、請求項記載の発明によれば、請求項1記載の発明による効果に加え、配電線インピーダンスを計測する際に、配電線に存在しない次数間高調波を用いるので、他からの影響を受けにくく、式(1)と式(2)で積分・時間平均して(ディジタルフーリエ変換を用いて)次数間高調波の電圧・電流を検出し、さらに式(3)で求めた値の平均値を採用するので、配電線のインピーダンスを精度良く推定できる。 Further, according to the first aspect of the present invention, in addition to the effect of the invention of claim 1, wherein, when measuring the distribution line impedance, so using Interharmonics not present in the distribution line, the influence from other It is difficult to receive, and the voltage and current of the interorder harmonics are detected by integrating and time averaging with Eqs. (1) and (2) (using digital Fourier transform), and then the average of the values obtained by Eq. (3). Since the value is adopted, the impedance of the distribution line can be estimated accurately.

Claims (2)

種々の配電線のインピーダンス値に対して、系統電圧制御系の周波数特性が最適(制御系が安定かつ応答が速く、制御精度が良い)となる補償器定数をあらかじめ計算しておき、こうして把握しておいた最適な補償器定数を、配電線インピーダンス値の自動計測結果に基づき都度補正することにより自動で最適化して設定することを特徴とする自励式無効電力補償装置。 Compensator constants for which the frequency characteristics of the system voltage control system are optimal (the control system is stable, the response is fast, and the control accuracy is good) are calculated in advance for the impedance values of various distribution lines, and thus grasped. A self-excited inert power compensator that automatically optimizes and sets the optimum compensator constant that has been set by correcting each time based on the automatic measurement result of the distribution line impedance value. 前記自励式無効電力補償装置から次数間高調波の微小電流を配電系統に注入して、系統電圧の同次数の高調波を計測することで、下記式(1)で次数間高調波電流を求め、下記式(2)で次数間高調波電圧を求め、これらを入力として下記式(3)で前記配電線インピーダンスを求め、これを平均化することにより、平均化した値を前記配電線インピーダンス値と自動推定することを特徴とする請求項1記載の自励式無効電力補償装置:
Figure 2021103920
By injecting a minute current of inter-order harmonics from the self-excited electrostatic compensator into the distribution system and measuring the harmonics of the same order of the system voltage, the inter-order harmonic current can be obtained by the following equation (1). , The inter-order harmonic voltage is obtained by the following formula (2), the distribution line impedance is obtained by the following formula (3) using these as inputs, and the averaged value is obtained as the distribution line impedance value. The self-excited electrostatic power compensator according to claim 1, which automatically estimates
Figure 2021103920
JP2019234285A 2019-12-25 2019-12-25 Self-excited electrostatic compensator Active JP6879652B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019234285A JP6879652B1 (en) 2019-12-25 2019-12-25 Self-excited electrostatic compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019234285A JP6879652B1 (en) 2019-12-25 2019-12-25 Self-excited electrostatic compensator

Publications (2)

Publication Number Publication Date
JP6879652B1 JP6879652B1 (en) 2021-06-02
JP2021103920A true JP2021103920A (en) 2021-07-15

Family

ID=76083833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019234285A Active JP6879652B1 (en) 2019-12-25 2019-12-25 Self-excited electrostatic compensator

Country Status (1)

Country Link
JP (1) JP6879652B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189090A (en) * 1997-09-09 1999-03-30 Kyushu Electric Power Co Inc Voltage stabilization controller using static phase modification equipment
JP2002171667A (en) * 2000-11-30 2002-06-14 Nissin Electric Co Ltd Power system stabilizer
JP2006271070A (en) * 2005-03-23 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp Thyristor controlled reactor based svc device
JP2012200111A (en) * 2011-03-23 2012-10-18 Kansai Electric Power Co Inc:The Voltage rise suppression device and dispersed power supply interconnection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189090A (en) * 1997-09-09 1999-03-30 Kyushu Electric Power Co Inc Voltage stabilization controller using static phase modification equipment
JP2002171667A (en) * 2000-11-30 2002-06-14 Nissin Electric Co Ltd Power system stabilizer
JP2006271070A (en) * 2005-03-23 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp Thyristor controlled reactor based svc device
JP2012200111A (en) * 2011-03-23 2012-10-18 Kansai Electric Power Co Inc:The Voltage rise suppression device and dispersed power supply interconnection system

Also Published As

Publication number Publication date
JP6879652B1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
US10944264B2 (en) Active filter for resonance reduction
US9444253B2 (en) Paralleling of active filters with independent controls
CN106655144A (en) Dual-closed-loop control-based active voltage arc extinction method and apparatus for power distribution network in fault
KR20130081723A (en) Adaptive generation and control of arbitrary electrical waveforms in a grid-tied power conversion system
RU2354025C1 (en) Method for high harmonics compensation and system power factor correction
CN112260280A (en) Harmonic control method for bidirectional AC/DC converter in hybrid micro-grid
US8531852B2 (en) System and a method for controlling at least one voltage converter having a plurality of cells in series
WO2018021152A1 (en) Power conversion device
CN108183490A (en) Control gain adjustment method, device and system for reactive compensation device
KR20200001300A (en) System for controlling grid-connected apparatus for distributed generation
Fagundes et al. Reactive power flow control of a dual unified power quality conditioner
JP6879652B1 (en) Self-excited electrostatic compensator
JP6783826B2 (en) Self-excited reactive power compensator
TW201801435A (en) Identification method for identifying a resonance of a power grid, and grid-connected unit
RU2686114C1 (en) Method for compensation of voltage unbalance in three-phase network
CN109378847B (en) Micro-grid energy storage PCS control system and method
RU2524347C2 (en) Device for earth fault current compensation in three-phase electrical networks (versions)
JP2017041980A (en) Distributed power supply device, and distributed power source interconnection system
Sukanth Comparative study of different control strategies for DSTATCOM
CN107870266B (en) Three-phase photovoltaic grid-connected inverter power grid impedance inductance detection method
RU2802915C1 (en) Reactive power compensator control method
CN108233374B (en) Method and system for suppressing impact load harmonic waves of preassembled box transformer substation
JP2004320860A (en) Reactive power compensator
Gonzatti et al. Statcom based on modified synchronous reference frame
KR101870076B1 (en) Apparatus for measuring a three-phase root mean square output in a power system and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210429

R150 Certificate of patent or registration of utility model

Ref document number: 6879652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150